THIN FILM COATING OF POLYSTYRENE THROUGH VAPOR PHASE MONOMER DEPOSITION

Mr. Wera Kiettikul

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University

in Academic Partnerhip with

The University of Michigan, The University of Oklahoma

and Case Western Reserve University

1998

ISBN 974-638-522-4

Thesis Title : Thin-Film Coating of Polystyrene Through Vapor

Phase Monomer Deposition

By : Mr. Wera Kiettikul

Program Polymer Science

Thesis Advisors : Prof. Erdogan Gulari

Dr. Nantaya Yanumet

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

Director of the College

(Prof. Somchai Osuwan)

Thesis Committee

(Prof. Erdogan Gulari)

(Dr. Nantaya Yanumet)

N. Yamenet.

(Dr. Suwabun Chirachanchai)

ABSTRACT

##962021 : POLYMER SCIENCE PROGRAM

KEYWODS: Thin film coating / Polystyrene / Vapor phase monomer deposition / Atmospheric vapor deposition polymerization

Wera Kiettikul: Thin Film Coating of Polystyrene through Vapor Phase Monomer Deposition. Thesis advisor: Prof. Erdogan Gulari and Dr. Nantaya Yanumet, 72 pp. ISBN 974-638-522-4

Thin-film of polystyrene on quartz substrate was obtained in an atmospheric pressure vapor deposition chamber. The polymerization was initiated by ultraviolet lamp in the presence of photoinitiator. The polymerization takes place at low substrate temperature with the use of 100W ultraviolet lamp. Deposition weight and molecular weight are found to increase with the decrement of substrate temperature down to -5.0 °C. The increments of diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide photoinitiator, deposition time, and flow rate of nitrogen carrier gas increase the deposition weight and molecular weight of deposited film.

บทคัดย่อ

วีระ เกียรติกุล: การเคลื่อบฟิล์มบางของพอลิสไตรีนโดยการเกาะติดของมอนอเมอร์ใน สถานะใจ (Thin film Coating of Polystyrene through Vapor Phase Monomer Deposition) อาจารย์ที่ปรึกษา: ศ.คร.เออโดแกน กูลารี และ คร.นันทยา ยานุเมศ 72 หน้า ISBN 974-638-522-4

การเคลือบติดของฟิลม์บางพอลิสไตรีนสามารถกระทำได้บนพื้นผิวควอตซ์โดยกระบวน การเกาะติดของไอในความดันบรรยากาศ การเกิดปฏิกริยาพอลิเมอไรเซชันสามารถกระตุ้นได้ ด้วยการใช้ตัวเร่งปฏิกิริยาแบบใช้แสงและหลอดกำเนิดแสงเหนือม่วง พื้นผิวที่อุณหภูมิต่ำสามารถ เกิดปฏิกิริยาพอลิเมอไรเซชันด้วยหลอดรังสีเหนือม่วงที่มีกำลัง 100 วัตต์ เมื่อลดอุณหภูมิของพื้น ผิวลงเท่ากับ -5.0 องศาเซลเซียส พบว่าน้ำหนักของฟิล์มที่เกาะติดและมวลโมเลกุลมีค่าเพิ่มขึ้น การเพิ่มปริมาณของตัวเร่งปฏิกิริยา (2,4,6 - ไตรเมธิลเบนโซอิล ฟอสฟิน ออกไซด์), เวลาในการ เกาะติด, และอัตราการไหลของแก๊สพาหะในโตรเจน จะเพิ่มน้ำหนักของฟิล์มที่เกาะติดและมวล โมเลกุลของฟิล์ม

ACKNOWLEDGMENTS

This thesis could not have been completed without the assistance of the following individuals. I would like to thank all of them for making this thesis a success.

Out of a sense of gratefulness, I would like to express my deepest gratitude to Prof. Erdogan Gulari and Dr. Nantaya Yanumet who took much care in guiding and assisting me devotedly and enthusiastically throughout my graduate work.

I would like to extend my sincere thanks to all the Professors who guided me through their courses, establishing the knowledge needed in this thesis. I would like to extend my sincere appreciation to Dr. Masao Tamada from Japan Atomic Energy and Research Institute from Japan for giving me very useful papers and helpful suggestions.

I would like to give special thanks to Assist. Prof. Sujitra Wongkasemjit for the permission to use the UV lamp and Dr.Suwabun Chirachanchai for his valuable suggestions in the thesis writing.

I would like to thank C.P.O Poon Arj-Pru for his valuable suggestions and discussion in electrical and mechanical set up.

Finally, I would like to express my whole-hearted gratitude to my parents for their forever love, encouragement, and measureless support.

TABLE OF CONTENTS

			PAGE
	Title	Page	i
	Abst	ract	iii
	Ackr	v	
	List	x	
	List of Figures		xi
CHAPTER			
I	INT	RODUCTION	
	1.1	Types of Thin-Film Deposition	1
		1.1.1 Physical Vapor Deposition (PVD)	1
		1.1.2 Chemical Vapor Deposition (CVD)	4
		1.1.3 Plasma Polymerization	6
	1.2	Photopolymerization	8
		1.2.1 Photoinitiator	8
	1.3	Atmospheric-Pressure Vapor-Phase	
		Polymerization	12
	1.4	Objectives	13
II	LIT	ERATURE SURVEY	
	2.1	Vapor Deposition Polymerization of	
		Organic Monomer	14

CHAPTER				PAGE
	2.2	Atmos	spheric Vapor Deposition	18
	2.3	UV-Ir	nitiated Polymerization of Polystyrene	19
	2.4	Thin I	Film Preparation of Polystyrene	20
Ш	EXP	ERIME	ENTAL SECTION	
	3.1	Mater	ials	21
		3.1.1	Chemicals	21
		3.1.2	Substrates	22
	3.2	Vapor	Deposition Polymerization System	23
		3.2.1	Vapor Deposition Polymerization System	
			Construction	23
		3.2.2	System Assembling	28
	3.3	Depos	sition Procedures	34
		3.3.1	Monomer Preparation	34
		3.3.2	General Procedure for Varpor Deposition	34
	3.4	Chara	cterization Instruments	35
		3.4.1	Fourier Transform Infrared	
			Spectrophotometer	35
		3.4.2	Gel Permeation Chromatography	35
		3.4.3	Scanning Electron Microscope	35
	3.5	Deter	mination of Deposited Weight	35
	3.6	Estim	ation of Film Thickness	36

CHAPTER			PAGE
IV	RES	ULTS AND DISCUSSION	
	4.1	Optimum Conditions for the Vapor I	Deposition
		Polymerization of Styrene Monomer	37
		4.1.1 Type of UV Irradiation Lamp	37
		4.1.2 Substrate Temperature	37
		4.1.3 Type of Substrate	38
		4.1.4 Confirmation of Polymerizati	on 39
		4.1.5 The Image of Deposited Film	42
	4.2	Effects of Deposition Conditions on	The
		Deposition Weight	42
		4.2.1 Effect of Substrate Temperatu	ure 42
		4.2.2 Effect of the Amount of	
		Photoinitiator	44
		4.2.3 Effect of Deposition Time	45
		4.2.4 Effect of Flow Rate	46
	4.3	Effect of Deposition Condition on	
		Film Thickness	47
	4.4	Effect of Deposition Conditions on	
		Molecular weight of the Deposited I	Film 50
		4.4.1 Effect of Substrate Temperate	ure 51
		4.4.2 Effect of the Amount of	
		Photoinitiator	52
		4.4.3 Effect of Deposition Time	53
		4.4.4 Effect of Flow Rate	54
	4.5	Comparison between Deposition W	eight
		and Molecular Weight	55

CHAPTER		PAGE
V	CONCLUSIONS	58
	REFERENCES	59
	APPENDICES	
	APPENDIX I	65
	APPENDIX II	70
	CURRICULUM VITAE	75

LIST OF TABLES

FABLE		PAGE
4.1	Observations of film deposition using 100W UV	
	irradiation lamp	38
4.2	Observations of film deposition on various substrates	39

LIST OF FIGURES

FIGURE		PAGE
1.1	Sputter deposition process	2
1.2	Evaporation deposition process with an electron beam	
	source	3
1.3	CVD system for deposition on tools	5
1.4	Parallel plate capacitively coupled plasma reactor	7
1.5	Structures of benzoin photoinitiator	11
1.6	Structures of (a) acylphosphine oxide;	
	(b) acylphosphonates	11
1.7	Schematic diagram of a vapor phase deposition system	12
2.1	Chamber of vapor-deposition polymerization	
	designed by Tamada et al.	15
2.2	Chamber of vapor deposition polymerization	
	(Ito 1990)	17
2.3	Schematic diagram of the set up for atmospheric	
	pressure mercury sensitized photo CVD preparation	
	of undoped a-Si:H films	18
3.1	Structures of photoinitiators	22
3.2	General layout of the vapor deposition chamber	24
3.3	Set up diagram of the electrical supplier	
	for a 800W heater	25
3.4	Electrical assembly of the direct current voltage	
	supplier for the thermoelectric cooling plate	26

FIGURE		PAGE
3.5	Set up of water cooling coil for thermoelectric	
	cooling plate device	27
3.6	Internal assembly of substrate holder	28
3.7	Schematic of gas flow connections at the back	
	of control panel	29
3.8	Layout of vapor deposition polymerization	
	system	30
3.9	Schematic diagram of vapor deposition	
	polymerization chamber with the thermoelectric	
	cooling plate system	31
3.10	Picture of the set up of vapor deposition	
	polymerization system	32
3.11	External connection of the vapor deposition	
	polymerization chamber	32
3.12	Installation of (a) 100 watts; (b) 9 watts	
	UV irradiation lamp	33
4.1	Polymerization reaction of styrene monomer	40
4.2	FT-IR spectrum of (a) standard polystyrene;	
	(b) deposited; (c) styrene monomer	41
4.3	Scanning electron microimages of deposited film (a) 0°C	
	substrate temperature with 100W lamp; (b) 3°C substrate	
	temperature with 100W lamp	42
4.4	Deposition weight plotted as a function of substrate	
	temperature	43
4.5	Deposition weight plottedas a function of amount of	
	photoinitiator	44

FIGURE		PAGE
4.6	Deposition weight plotted as a function of	
	deposition time	45
4.7	Deposition weight plotted as a function of	
	flow rate	46
4.8	Calculated thickness plotted as a function of	
	(a) substrate temperature; (b) amount of	
	photoinitiator; (c) deposition time; (d) flow rate	49
4.9	Typical chromatogram showing the polymer and	
	monomer peaks at around 16 and 22 minutes	50
4.10	Effect of substrate temperature on molecular weight	51
4.11	Effect of amount of photoinitiator on	
	molecular weight	52
4.12	Effect of deposition time on molecular weight	53
4.13	Effect of flow rate on molecular weight	54
4.14	Molecular weight and deposition weight plotted	
	as a function of (a) substrate temperature;	
	(b) amount of photoinitiator; (c) deposition time;	
	(d) flow rate.	57