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ABSTRACT
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Morphology of immiscible blends, PS/PP, PS/HDPE, and
PMMA/HDPE, was investigated in terms of shear strain rate and shearing
time. The coalescence process was observed. The minimum dispersed sizes of
all blend systems were found at the shear strain rate of 200 'L Above and
below this shear strain rate valug, the rate of coalescence overcame the rate of
drop breakup resulting in larger droplet size. The correlation between
viscoelasticity and morphology can he expressed by two dimensionless
parameters, capillary number (Ca) and the first normal stress difference ratio
(Nr). At N, > 3, coalescence was promoted due to high collision rate and fast
matrix drainage during collision. At Nr< 3, coalescence also occurred due to
low shear stress. Palierne’s theory was tested and it can be used to predict the
complex modulus of the immiscible blends.
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