9

DROP BREAKUP AND RHEOLOGICAL PROPERTIES OF POLYSTYRENE/POLYPROPYLENE BLENDS

Ms. Chatriya Suamsung

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,
and Case Western Reserve University

2000

ISBN 974-334-167-6

Thesis Title : Drop Breakup and Rheological Properties of

Polystyrene/Polypropylene Blends

By : Ms. Chatriya Suamsung

Program : Polymer Science

Thesis Advisors: Professor Ronald G. Larson

Associate Professor Anuvat Sirivat

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

College Director

Lord Lees 9/5/2000

(Professor Somchai Osuwan)

Thesis Committee:

(Prof. Ronald G. Larson)

(Assoc. Prof. Anuvat Sirivat)

Anust June 28/4/2000

(Dr. Rathanawan Magaraphan)

R. Magaraph

ABSTRACT

4172005063

: POLYMER SCIENCE PROGRAM

KEYWORD

: Drop breakup/ Coalescence/ Capillary number/ viscosity

ratio/ The first normal stress difference ratio

Chatriya Suamsung: Drop Breakup, Coalescence and

Rheological Properties of Polystyrene/Polypropylene

Blends. Thesis Advisors: Prof. Ronald G. Larson, Assoc.

Prof. Anuvat Sirivat, 81 pp. ISBN 974-334-167-6

In order to control the polymer blend rheological properties, a better understanding of mechanisms of drop breakup and coalescence during processing is very important. In this work, the morphology of dispersed phase in terms of number average droplet size was investigated as a function of shearing time and shear strain rate. The number average droplet sizes were found to reach the statistical equilibrium morphology with monomodal size distributions at the shear strain unit about 10,000 for PS/PP blends at high and low viscosity ratios. Only drop breakup process was observed in our investigation. For the effect of elasticity, the correlation between two dimensionless parameters, capillary number (Ca) and the first normal stress difference ratio (N_{1,r}) was observed. Ca was found to increase linearly with the first normal stress difference ratio at any given value of viscosity ratio. For a given the first normal stress difference ratio, Ca was found to be surprisingly higher for a lower viscosity ratio. The capillary number of the viscoelastic systems was higher than that of a Newtonian system due to the effect of elasticity in the immiscible polymer blends investigated.

บทคัดย่อ

นางสาวฉัตรีญา สวมสูง : การแตกตัวของอนุภาคทรงกลมและคุณสมบัติการ ใหลที่เกิด จากการเฉือนของสารผสมพอลิเมอร์ระหว่าง พอลิสไตรีน/พอลิโพรพิลีน (Drop Breakup and Rheological Properties of Polystyrene/Polypropylene Blends) อ. ที่ปรึกษา : ศ. คร. รอนาล ลาสัน และ รศ. คร. อนุวัฒน์ ศิริวัฒน์ 81 หน้า ISBN 974-334-167-6

งานวิจัยนี้ศึกษาและค้นคว้าผลของแรงเฉือนและระยะเวลาของการเฉือนต่อ โครงสร้าง ภายในของสารผสมพอลิเมอร์ที่ไม่สามารถรวมตัวเป็นเนื้อเคียวกัน ซึ่งได้แก่ พอลิสไตรีน/พอลิโพ พิลีน ขนาดโดยเฉลี่ยจากจำนวนของอนุภาคทรงกลมถูกศึกษาโดยขึ้นอยู่กับเวลาในการเฉือนและ อัตราเร็วของการเฉือน จากผลการทดลองพบว่าขนาดโดยเฉลี่ยจากจำนวนของอนุภาคทรงกลมทั้ง อัตราส่วนความหนืดสูงและความหนืดต่ำ เข้าสู่สภาวะสมคุลโดยมีการกระจายตัวแบบเอกกาพ เมื่อ ความเครียดเฉือนมีค่า 10000 ที่สภาวะการทดลองนี้ มีเพียงปรากฏการณ์การแตกตัวของอนุภาค ทรงกลมเกิดขึ้นเท่านั้น

สำหรับการศึกษาผลกระทบจากความยืดหยุ่นนั้น ได้ทำการศึกษาจากความสัมพันธ์ ระหว่างอัตราส่วนระหว่างแรงเฉือนต่อแรงพยุงตัวของอนุภาคทรงกลม (Capillary Number) กับอัตราส่วนระหว่างความยืดหยุ่นของสารพอลิเมอร์ทั้งสอง พบว่า อัตราส่วนระหว่างแรงเฉือน ต่อแรงพยุงตัวของอนุภาคทรงกลม ณ.อัตราส่วนของความหนืดต่างๆ มีค่าเพิ่มขึ้นโดยตรงกับอัตรา ส่วนระหว่างความยืดหยุ่นของสารสองชนิด โดยอัตราส่วนระหว่างแรงเฉือนต่อแรงพยุงตัวเพิ่มขึ้น เมื่ออัตราส่วนของความหนืดสูงขึ้น นอกจากนี้ผลที่ได้จากการทดลองทั้งหมดมีค่าสูงกว่า ระบบที่ ไม่มีความยืดหยุ่น (Newtonian system)

ACKNOWLEDGEMENTS

The author gratefully gives special thanks to her U.S. advisor, Prof. Ronald G. Larson for his recommendations on the research. She is also deeply indepted to her Thai advisors, Assoc. Prof. Anuvat Sirivat, who not only originated the thesis work, but also gave the intensive suggestion, invaluable guidance, constructive advices and vital help throughout this research work.

She greatly appreciates all professors for invaluable knowledge to hers at the Petroleum and Petrochemical College, Chulalongkorn University.

She would like to express her thanks to HMC Polymer Company and Dow Chemical for supporting polypropylenes and polystyrenes.

Finally, the sincerest appreciation is for her family for the love, understanding, encouragement and financial support.

TABLE OF CONTENTS

				PAGE
	Title Pa	age		i
	Abstract (in English)			iii
	Abstract (in Thai)			iv
	Acknowledgements Table of Contents			v
	Table of Contents			vi
	List of Tables			x
	List of Figures			xi
	Abbrev	viation		xiii
CHA	APTER			
	I	INTROD	UCTION	1
		1.1 Theor	retical Background	3
		1.1.1	Drop Breakup for Newtonian Fluids	
			and Polymer Blends	3
		1.1.2	Coalescence for Newtonian Fluids and	
			Polymer Blends	4
	II	LITERA	TURE SURVEY	7
	2.1 Immiscible Polymer Blends in			
		Newto	onian System	7
	2.2 Immiscible Polymer Blend in			
		Non-N	Newtonian System	8
	III	EXPERI	MENTAL	14
		3.1 Mater	ials	14

CHAPTER		1	PAGE
	2 1 1	Dolumoro	1.4
		Polymers	14
	3.2 Equip		15
		Compression Moulding Machine	15
	3.2.2	Rheometer	15
	3.2.3	Microtome Sector	15
	3.2.4	Optical Microscope	16
	3.3 Metho	odology	16
	3.3.1	Pre-Processing Rheological Characterization	16
		3.3.1.1 Dynamic Modulus	16
		3.3.1.2 Shear Viscosity	17
		3.3.1.3 The First Normal Stress Difference	17
	3.3.2	Post-Processing Rheological Characterization	18
		3.3.2.1 Shear Viscosity	18
		3.3.2.2 The First Normal Stress Difference	18
	3.3.3	Sample Preparation	18
		3.3.3.1 Blending	18
		3.3.3.2 Shearing by the Cone and Plate	
		Rheometer	19
		3.3.3.3 Sectioning by Microtome Sector	19
	3.3.4	Morphology Investigation	20
IV	RESULT	S AND DISCUSSION	21
		ogical Characterizations	21
	4.1.1	Molecular Weight Characterization	21
		Shear Viscosity	22
		The First Normal Stress Difference	24

CHAPTER			PAGE
	414	Polymer Degradation	26
		of Shearing Time	30
		Droplet Size	30
		Distribution Function of Droplet Size	32
		of Shear Strain Rate	35
	4.3.1	Droplet Size	35
		Distribution Function of droplet Size	36
		orrelation between Viscoelastic Properties and	1
		nology of Immiscible Polymer Blends	38
	4.4.1	The Viscosity Ratio and the First Normal stre	ess
		Difference Ratio of the Blends	38
	4.4.2	The Capillary Number (Ca) and the First	
		Normal Stress Difference Ratio (N _{1,r})	
		Correlation	42
V	CONCLU	USIONS	45
	REFERE	NCES	46
	APPEND	IX A	50
	APPEND	IX B	52
	APPEND	IX C	59

CHAPTER	PAGE
APPENDIX D	72
APPENDIX E	75
APPENDIX F	79
CURRICULUM VITAE	82

LIST OF TABLES

TABLE PA		GE	
3.1	The Polymer Properties of Polypropylene and Polystyrene	14	
3.2	The Conditions of Shearing Time Required for the Ensemble		
	Mean Equilibrium and the Statistical Equilibrium of the Blend		
	System at 220 $^{0}\mathrm{C}$	19	
4.1	The Molecular Weights and Molecular Weight Dispersities of		
	PP and PS Characterized by the Cone and Plate Rheometer	21	
4.2	The Zero Shear Viscosities of All Homopolymers at 220 °C	22	
4.3	The Initial Zero Shear Viscosity and the Final Zero Shear		
	Viscosity of PP After Shearing at 220 °C	29	
4.4	(a) The First Normal Stress Difference Ratio of PS/PP Blends		
	at the Shear Viscosity of 0.5	39	
	(b) The First Normal Stress Difference Ratio of PS/PP Blends		
	at the Shear Viscosity of 1	39	
	(c) The First Normal Stress Difference Ratio of PS/PP Blends		
	at the Shear Viscosity of 2	40	
	(d) The First Normal Stress Difference Ratio of PS/PP Blends		
	at the Shear Viscosity of 3	40	
4.5	The Shear Viscosity Ratios and the First Normal Stress		
	Difference Ratio for Pre and Post Shearing at 220 °C	41	

LIST OF FIGURES

FIGU	IGURE		
1.1	Idealized Depiction of Shear-Induced Coalescence of		
	Dispersed Newtonian Droplets	5	
4.1	(a) The Shear Viscosities of Polystyrene as a Function		
	of Shear Strain Rate at 220 °C	23	
	(b) The Shear Viscosities of Polypropylene as a Function		
	of Shear Strain Rate at 220 °C	24	
4.2	(a) The First Normal Stress Difference of Polystyrene as		
	a Function of Shear Strain Rate at 220 $^{0}\mathrm{C}$	25	
	(b) The First Normal Stress Difference of Polypropylene		
	as a Function of Shear Strain Rate at 220 $^{0}\mathrm{C}$	25	
4.3	The Degradation Mechanism of Polypropylene in the present	ce	
	of O ₂	26	
4.4	Pre-Processing and Post-Processing Shear Viscosity of PP		
	as a Function of Shear Strain Rate at 220 $^{0}\mathrm{C}$	28	
4.5	The Number Average Diameter of Dispersed Phase PS		
	Versus Shear Strain Unit at 220 °C	31	
4.6	The plot of (D _n /D _{equilibrium}) versus shear strain rate unit of		
	dispersed phase PS at 220 °C	31	
4.7	Distribution Function of Droplet Size for PS(1)/PP(4)		
	Blends as a Function of Shear Strain Unit at Shear Strain		
	Rate of 10 s ⁻¹	33	

FIGURE		
4.8 Distribution Function of Droplet Size for PS(1)/PP(4)		
Blends as a Function of Shear Strain Unit at Shear Strain		
Rate of 100 s ⁻¹	33	
4.9 Distribution Function of Droplet Size for PS(2)/PP(3)		
Blends as a Function of Shear Strain Unit at Shear Strain		
Rate of 10 s ⁻¹	34	
4.10 Distribution Function of droplet Size for PS(2)/PP(3)		
Blends as a Function of Shear Strain Unit at Shear Strain		
Rate of 100 s ⁻¹	34	
4.11 The Equilibrium Droplet Size as a Function of Shear Strain		
Rate of PS(1)/PP(4) and PS(2)/PP(3) Blends at 220 0 C	35	
4.12 Distribution Function of Droplet Size of PS(1)/PP(4) as		
a Function of Shear Strain Rate at 220 °C	37	
4.13 Distribution Function of Droplet Size of PS(1)/PP(4) as		
a Function of Shear Strain Rate at 220 °C	37	
4.14 The Correlation between a Capillary Number (Ca) and		
The First Normal Stress Difference Ratio (N _{1,r}) with		
Various Shear Viscosity Ratios at Pre-Shearing and at 220 °C	C 42	
4.15 The Correlation between a Capillary Number (Ca) and		
The First Normal Stress Difference Ratio (N _{1,r}) with		
Various Shear Viscosity Ratios after Shearing for 5000 Strain	n	
Unit and at 220 °C	43	

LIST OF SYMBOLS

SYMBOL

Subscript-d dispersed phase

Subscript-m matrix phase

 η_d shear viscosity of dispersed phase (dyn/cm².s)

 η_m shear viscosity of matrix phase (dyn/cm².s)

 η_r shear viscosity ratio

N_{1,d} the first normal stress difference of dispersed phase

 (dyn/cm^2)

 $N_{1,m}$ the first normal stress difference of matrix phase

 (dyn/cm^2)

 $N_{1,r}$ the first normal stress difference ratio

Ca Capillary number

D drop diameter (μm)

 D_n number average diameter of dispersed phase (μm)

 Γ interfacial tension (dyn/cm)

 γ shear strain rate (s⁻¹)