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ABSTRACT

4172015063 POLYMER SCIENCE PROGRAM
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Slip velocity between HDPE melts and tungsten capillary was
determined by means of the classical Mooney analysis. Above a critical shear
stress, wall slip occurred and the plots of the extrapolation length, b, versus
wall slip velocity, vs were qualitatively amenable to the Brochard and de
Germes” disentanglement model which predicted three distinct regimes: (1)
Entangled slip regime, b0 is independent of temperature and increases as
polydispersity increases but decreases as molecular weight increases with the
scaling exponent of -0.36; (I1) Marginal regime, b depends on v's following a
power law with the scaling exponent in the range of 0.42-0.68 but it is
independent of temperature and polydispersity; (1) Rouse regime, kmis found
when molecular weight is greater than 2.4x105g/mol and obviously increases
as polydispersity increases but slightly decreases as temperature increases with
the scaling exponent of -1.21. We attempted to construct a common HDPE
master curve of wall shear stress normalized by the crossover storage modulus
vs. the true shear normalized by the inverse of the cross over frequency. The
normalized curves collapse at low elastic effect (Wi<l). For Wi>l, the
normalized curves do not collapse since the elastic is predominant as
molecular weight, polydispersity and temperature were varied.
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