
BACKGROUND AND LITERATURE SURVEY
CHAPTER II

2.1 Crevice Corrosion

Corrosion in narrow gaps is localized corrosion proceeding at a fast rate 
within a narrow crevice. It ensues from differential aeration. On account o f difficulty 
of oxygen seeping the small cavity, the oxygen concentration is lower in the crevice.

Crevice corrosion may figure out between two adjacent metal pieces or 
between a metal piece and a nonmetal piece. They may also be simple fractures.

The destruction of crevice may be discussed in more details as shown in 
Figure 2.1. Here two metal plates are attached with rivets and immersed in water. At 
site A, in crevice, the contribution of oxygen by diffusion is smaller than at site c, 
outside the crevice.

Figure 2.1 Crevice corrosion (Piron, 1991).

Consequently, there is a galvanic cell between site A and site c  that sets to 
cause metal dissolution (e.g.iron), primarily in the crevice that is

Fe -------*■  Fe++ + 2e
The liberated electrons go to site c, where the reaction with oxygen is 

dominant and oxygen acts as the likely electron acceptor for liberated electrons.
The surplus o f Fe++ in the crevice constitutes an excess o f positive charges 

that can react with water, according to the below reaction
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Fe++ + 2H20  -------- Fe(OH)2 + 2H+
This corresponds to the augmentation in acidity observed in the crevice. 

This lower pH increases the corrosion rate in the crevice. Besides, oxygen is an 
electron acceptor and has higher availability at site c, it promotes iron dissolution to 
gain liberated electrons further from site A. Thereby this phenomena also supports 
the corrosion inside crevice.

2.2 Surface Tension

Surface tension can be viewed into two ways as either the free energy 
required to create new surface area [energy/(length)2] or the line o f force 
[forces/length].

Creating a new surface requires work. This work, พ, is proportional to the 
number of molecules transported to the surface and thus to the boundary o f the new 
surface, which can be presented by the basic linear defining equation as

พ = yAA (2.1)
where y is called the constant surface tension.

Figure 2.2 shows a simple device consisting o f a wire loop with a movable 
slide that can clarify both ways o f viewing surface tension. The device acts as an 
idealized frictionless apparatus.

Figure 2.2 Wire loop with a slide wire on which a liquid film can be formed and 
stretched by an applied force F (Fennell and Wennerstrom, 1994).
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The wire loop was dipped into a liquid, forming a liquid film. Surface 
tension causes the slide wire to move in the direction o f decreasing film area unless 
an opposing force is applied. This force, F, operates along the entire film edge, varies 
linearly with the length / o f the slide wire, and has a characteristic value for each 
liquid. The apparatus determines the surface tension with the top and bottom surfaces 
as

y = F / 2/ (2.2)
The work associated with expanding the interfacial area as

dพ = F dx = y 21 dx = y dA (2.3)
The work of increasing the area was contributed to the differential Gibbs 

free energy at constant temperature and pressure which is shown in Equation (2.4)

where
dG = y dA (2.4)

y = (d G ไ
 ̂dA JT|J (2.5)

This expression shows surface tension as the increase in Gibbs free energy 
per unit area increased.

2.3 The Work of Adhesion and Cohesion

The concepts o f adhesion and cohesion was needed to clarify how liquids 
behave when they come into contact. In a single liquid, the work o f cohesion 
corresponds to the work required to pull apart a volume o f unit cross-sectional area, 
as shown in Figure 2.3 and the equation

AG = waa = 2 y a (2.6)
(sometimes a surface tension ya was denoted as yav to describe that the second 
phase is a vapor).
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Figure 2.3 (a) The work o f cohesion, waa = 2 y av, in a liquid, (b) The work of  
adhesion, wab = Yav+ Ypv' YaP’ t0 separate the unit area o f the interface into two 
liquid-air interfaces (Fennell and Wennerstrom, 1994).

Presenting yav as half o f the cohesion work indicates that surface tension
measures the free energy change included when molecules from the bulk o f a sample 
are moved to its surface.

ffaving two interfaces /surfaces is clearly advantageous if sum of free 
energies o f the two surfaces, yS|+  y lv, is smaller than free energy of the initial
surface y sv. Therefore, it is natural to introduce a spreading coefficient, ร.

ร = Ysv-(Ysi+ Yiv) (2-7)

Figure 2.4 Contact angle on a solid surface (Fennell and Wennerstrom, 1994).
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When ร > 9, spreading will take place, while for negative ร, the liquid 
forms a finite lens.

From Equations (2.6) and (2.7), the spreading coefficient is related to the 
work o f adhesion and cohesion as shown in the below equation

ร = WAB-2yA = w a b - waa (2.8)

2.4 Capillary Rise in a Cylinder

Figure 2.5 A schematic diagram of the capillary rise.

The phenomenon of capillary rise, which is attributed to be one o f the most 
accurate methods, can be used to determine the surface tension o f a liquid. In the 
capillary tube, the liquid surface curve is a spherical cap as shown in the Figure 2.5. 
A capillary tube is dipped into a liquid that wets the tube. The liquid rises in a 
capillary by means o f capillary force and force o f wetting between the liquid and the 
tube.

Factors on which the height o f the rising liquid depend include the radius of 
the capillary radius r, the surface tension o f the liquid y , and the contact angle 9 ,  
between the tube wall, the air, and the liquid. The equation that has been widely used 
to treat such the phenomenon is

pgHry 2 cos 9 (2.9)
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This equation is particularly simple to apply when the liquid wets the solid 
surface so that cos 9 = 1. In this case it suffices to know p , r, and measure h to be 
able to calculate the liquid-vapor surface tension, y .

2.5 The Laplace Equation

Surface tension operates in a liquid film, and, to obtain mechanical 
equilibrium, this tension must be balanced by some equal and opposite force. For 
example, to blow a bubble in a liquid medium, an excess pressure is applied. In an 
isolated particle, such as a droplet, the balancing force comes from stresses within 
the particle.

The insight that is central to this development is that a pressure difference 
operates across a curved interface. The pressure difference is such that the greater 
pressure is on the concave side. Our objective in this section is to relate this pressure 
difference to the curvature of the surface.

Figure 2.6 Definition o f coordinates describing the displacement o f an element o f 
curved surface ABCD to A'B'C'D' (Hiemenz, 1986).
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Figure 2.6 shows a part ABCD of a curved surface. The surface has been 
cleaved by two planes which are perpendicular to one another. Each o f the planes 
therefore contains a portion o f arc where it intersects the curved surface. In the figure 
the radii o f curv ature are designated Ri and R.2, and the lengths are designated X and 
y, respectively, for these two intercepted arcs. The curvature o f a surface, at a point, 
is described in terms of the radii R] and R2 o f the curves corresponding to that point.

The curved surface is moved outwardly by a small amount dz to a new 
position that is A'B'C'D'. Since the comers o f the surface continue to lie along 
extensions o f the diverging radial lines, this move increases the arc lengths to X + dx 
and y  + dy. Obviously the area o f surface must also increase. The work required to 
accomplish this must be supplied by a pressure differrence Àp  across the element of 
surface area.

The area expansion when the surface is displaced is given by 
dA = (x + dx)(y + d y ) -x y  = X dy + y  dx + dx dy ระ X dy + y  dx (2.10) 

where the approximation arises from neglecting second-order differential quantities. 
The increase in free energy associated with this increase in area is given by y dA :

dG = y (x dy + y  dx) (2.11)
If the expansion of this surface is responsible with ordinary pressure-volume 

work, then the work equals Ap dV, where d v  is the volume swept by the moving 
surface. In terms of Figure 2.6, this equals

dw = Apxy dz (2.12)
Equations (2.11) and (2.12) are equal then they are rearranged to get the below 
Equation (2.13)

y (x dy + y  dx) = A pxy dz (2.13)
From similar triangles application, we may establish the following 

proportions from Figure 2.6, there are 
X +dx _ X
R, +dz R, (2.14)

and
y +dy  = 2L
R 9 + dz R 2 (2.15)
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which can be simplified to 
dx 1

7 7
and

xdz

dy_
ydz

(2.16)

(2.17)

Substituting Equations (2.16) and (2.17) into Equation (2.13) enables US to write the 
relationship o f Ap  to R l 1 R 2 and Y as follows

A p = y
V * .

1_ 1 
+ R (2.18)

2 y
This expression was derived in 1805 and is known as the Laplace equation.

Since this is the case, Equation (2.18) is general and applies equally well to 
geometrical bodies whose radii o f curvature are constant over the entire surface or to 
more intricate shapes where the radii o f curvature change from place to place on the 
surface. For the former category there are several special cases o f Equation (2.18) 
that are worthy o f note:
1. For a sphere, Ri = R.2 = R, therefore

(2.19)

2. For a cylinder, Ri = R and R2 = 00, therefore

A p  = 1  (2.20)

3. While for a plane, Ri = R2 -  00, therefore
A p  = 0 (2.21)

The curved surface under consideration, which is also possible for a portion 
o f a surface to be locally saddle shaped, the two radii o f curvature lie on opposite 
sides o f the surface and have different signs. It is possible for p  to be zero in this 
situation also.

Physically, the Equation (2.18) indicates that interfacial tension causes an 
increased pressure on the inside o f the surface, the radii o f curvature o f the surface 
have an effect on the magnitude o f that pressure. It also shows that there is a



11

corresponding discontinuity in normal stress, which acts perpendicular to the surface, 
across the boundary.

2.6 Numerical Solution of Differential Equations by Euler’s Method

The numerical technique can readily be adapted to the solution o f more 
complicated differential equations, and whose analytical solution is either difficult or 
impossible. This section is devoted to solve ordinary differential equations o f the 
form

dh
ch = / ( h ,r )

where/ ( h,r ) is the differential equation evaluated at h and r . This estimation can 
be done at any time along the way of

New value = old value + slope X step size 
Or, in mathematical terms,

hj+1 = h, + <KAr) (2.22)
According to this equation, the slope estimate o f (j) is used to extrapolate from an old 
value h 1 to a new value h j+1 over a distance Ar .(Note that this approach is formally 
called Euler 'ร method.)

2.7 Literature Survey

Grzybowski et al. (2001) examined lateral capillary interactions between 
millimeter and sub-millimeter-sized objects floating at the interface of 
perfluorodecalin (PFD) and water. Analytical solutions o f the Laplace equation were 
obtained for two infinitely long faces in terms of the meniscus height and the 
distance between plate to plate. The relations were also used to calculate the energy 
o f the system by sum of the capillary and gravitational energy terms. Moreover, they 
used Finite Element Method to model the contours o f the menisci. They suggested 
that the Finite Element Method is a reliable tool for imaging and studying menisci, 
and of studying capillary interactions between objects.
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A new technique to determine interfacial tension was proposed by Lee et al. 
(2001). Micropipet has been developed to measure the equilibrium and dynamic 
interfacial tensions o f microscopic liquid-gas and liquid-liquid interfaces that were 
determined by measuring the radius o f curvature o f the interface for a series of 
pressure changes on the basis of the Laplace equation. While assuming the contact 
angle was zero, their results were consistent with the interfacial tension values 
reported in the literature determined by other techniques for microscopic interfaces.

Hahm et al. (2000) presented a novel and simple method for preparing 
micron-scale annular structures formed from polystyrene-Z>-poly(methyl 
methacrylate) diblock copolymer films on the silicon oxide substrates via prewetting 
of the underlying substrate with a minor polar solvent before spin-casting o f diblock 
solution. The cylinder-forming microdomains o f PS-è-PMMA annuli exposed the 
unique alignment without the aid o f an external alignment field. These aligned 
microdomains was controlled in nanometer-scale spacing and coherence on the order 
of microns.

Chatelier et al. (1997) used the theoretical approach to model the 
equilibrium capillary height {heq) o f electrolyte solution between ionizable surfaces 
on flat plates as a function o f pH. Their results showed that the dependence o f heq on 
pH depends on the number o f ionizable surface sites per unit area, the intrinsic acid- 
base dissociation constant (Kz) of the surface sites, and the background electrolyte. 
Reasonable best-fit values were obtained for the surface density and the intrinsic pKa 
of the ionizable groups.


	CHAPTER II BACKGROUND AND LITERATURE SURVEY
	2.1 Crevice Corrosion
	2.2 Surface Tension
	2.3 The Work of Adhesion and Cohesion
	2.4 Capillary Rise in a Cylinder
	2.5 The Laplace Equation
	2.6 Numerical Solution of Differential Equations by Euler’s Method
	2.7 Literature Survey


