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ABSTRACT

4472025063  POLYMER SCIENCE PROGRAM
Thipphaya Cherdhirankom: Dynamics of Vorticity Stretching and
Breakup of Isolated Viscoelastic Droplets in an Immiscible
Viscoelastic Matrix
Thesis Advisors: Assoc. Prof Anuvat Sirivat
and Prof. Ronald G. Larson, 98 pp. ISBN 974-17-2345-8
Keywords Vorticity stretching/Elastic blend/Viscoelastic blend

Elastic polystyrene (PS) droplets dispersed in an elastic high density
polyethylene (HDPE) matrix are observed under asimple shearing flow between two
transparent parallel disks. Two grades of HDPE and of PS, are used to formulate two
immiscible blends with the same viscosity ratio of unity but different elasticities and
elasticity ratios. Rather than deform in the flow direction and break up at a capillary
number of near unity, as is the case for Newtonian droplets in a Newtonian medium,
the viscoelastic droplets initially deform in the flow direction after startup of steady
shear, but then begin reverting to a spherical shape, and, for the more elastic blend,
eventually deform in the vorticity direction. With increasing capillary number, the
droplet deforms increasingly along the vorticity direction, and above a critical
capillary number Cac, breakup occurs when two ends of a drop situated on widely
separated streamlines with significantly different velocities are displaced from each
other under flow. The transition from alignment in the flow direction for Newtonian
or slightly elastic droplets to alignment in the vorticity direction for highly elastic
droplets can lead to very large increases of the critical capillary number for droplet
breakup. In addition, the deformation parameter in the relaxation process of both
systems, decays exponentially with time after cessation of steady-state shear, until
long times are reached. The characteristic relaxation time is larger when the capillary
number increases.
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