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ABSTRACT

4282001063:  Pol ymer Science Program
Datchanee Chotpattananont: Development of Conductive
Polythiophene for Actuator Applications: Electrorheological Fluid
Thesis Advisors: Assoc. Prof. Anuvat Sirivat
and Prof. Alexander M. Jamieson, 218 pp. ISBN 974-9651-79-0
Keywords:  Polythiophene/ Conductive polymer/ Actuator/ Electrorheological
fluid/ Suspension/ Gelation/ Oscillatory shear/ Steady-state shear/
Yield stress

Electrorheological (ER) fluids are suspensions that exhibit a dramatic
change in rheological properties in the presence of AC or DC electric fields.
Commonly, they are composed of polarizable particles dispersed in a non-conducting
fluid. In this study, poly(3-thiophenacetic acid), PTAA was synthesized via an
oxidative polymerization and doped with perchloric acid to control its conductivity.
The suspension containing perchloric acid-doped poly(3-thiopheneacetic acid) as
dispersed particles and silicone oil as medium was then prepared. The ER
characteristics of PTAA/silicone oil suspensions were further investigated in both
oscillatory and steady shear using rheometer which equipped to a high-voltage
generator. The effects of electric field strength, particle concentration, particle
conductivity, operating temperature, nonionic surfactant were examined. When the
electric field is applied, the PTAA/silicone oil suspension exhibits viscoelastic
behavior and the ER response is enhanced with increasing electric field strength,
From oscillatory shear experiment, the dynamic moduli of the suspension grew up
dramatically by ten orders of magnitude as the electric field strength is increased
through the range 0-2 kv/mm. Moreover, the effects of particle concentration and
conductivity become apparent at intermediate electric field strength (~ 100 vimm).
Upon subsequent applications of electric field, the suspension shows instantaneously
response. After the electric field is released, the sample recovers but not completely.
In addition, the equilibrium rheological properties of the suspension satisfy the sol-



gel transition conditions where tan 8 becomes independent of frequency when the
sufficiently strong electric field strength is provided. According to the gelation
analysis, the values of the viscoelastic exponent located in the range 0.05-0.83
result in the fractal dimension values of 2.5-15. The steady shear experimental
results show that the PTAA/silicone oil suspension shows the typical ER response of
Bingham flow hehavior upon the application of electric field. The yield stress
increases with electric field strength, E, and particle volume fraction, (), according to
a scaling law of the form, 7y oc Eafr. The scaling exponent a approaches the value
of 2, predicted by the polarization model, as the particle volume fraction decreases
and when the doping level of the particles decreases. In addition, the yield stress
under electric field initially increases with temperature up to 25 oC, and then levels
off. The effect of nonionic surfactant addition is evident at relatively weak electric
field strength.  On applying and subsequently releasing the electric field,
respectively, the steady state viscosity and the complex viscosity each
instantaneously increase and then return to their baseline values, i.e., complete
recovery. Morphology of PTAAsilicone oil suspension under quiescent conditions
is further observed using optical microscope. The micrographs show that the
particles are randomly distributed at zero field, whereas on application of the electric
field, a transition to an organized fibrillar structure occurs. The density and thickness
of the fibrils increases with the field strength and particle concentration and some
branching is obviously observed. — Furthermore, we investigated the creep and
recovery behaviors of PTAA nparticles in silicone oil suspensions upon the
application of electric field. The effects of field strength, particle concentration, and
the doping degree (conductivity values) on creep and recovery behaviors of the ER
fluid were examined. The data show that the creep curves of this ER fluid consisted
of both elastic and viscous responses at low stresses. With increasing stress, the fluid
showed an instantaneous elastic response whereas the retarded elastic and the viscous
responses diminished. After the removal of the applied stress, the strain decreased
but did not completely relax to the original value indicating that this fluid exhibited a
partially elastic recovery. The elastic recovery response decreased with increasing
stress and then disappeared at some critical stress value, corresponding to the static



yield stress. The equilibrium compliance parameters, Jc and Jr, were found to
decrease with increasing particle concentration and particle conductivity. The
recovery increased with increasing electric field strength, particle concentration, and
particle conductivity. Moreover, the equilibrium compliance parameters at zero
electric field, Jco and 3ro, strongly depend on the particle concentration and particle
conductivity. The activation electric field, Ec, and the recovery electric field, Er,
depend only on the particle conductivity but independent of particle concentration.
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