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ABSTRACT

4592001063  Polymer Science Program
Noppom Thanabodegkij : Synthesis of Ti/Mo-MCM-41 and
BiiZTiCand Their Activities.
Thesis Advisors: Assoc. Prof. Sujitra — ongkasemjit and Prof,
Erdogan Guiari 133 pp. ISBN 974-9937-34-1

Keywords:  Silatrane / Titanium Glycolate/Molybdenum Glycolate/ Sol-Gel
Process/ MCM-41/ CTAB/ Bismuth Titanate

Metal alkoxides have been of interest in the past few years for production of
advanced materials due to their hydrolyzable property for sol-gel application.
Silatrane synthesized from inexpensive silica and triethanolamine (TEA) was used as
the precursor for MCM-41 synthesis at low temperature because of its stability in
aqueous solutions. Using cationic surfactant hexadecyltrimethyl ammonium bromice
(CTAB) as a template, the resulting meso-structure mimics the liquid crystal phase.
Variations of the surfactant concentration, ion concentration and temperature of the
system, change the structure of the liquid crystal phase, resulting in different pore
structures and surface area. After heat treatment, extremely high surface area
mesoporous silica was obtained. The surface area was extraordinarily high, up to
more than 2400 m2g at pore volume of 1.29 cclg. However, the pore volume i
increased to 1.72 cc/g when the surface area was lower, 2100 m2g. The mesoporous
MCM-41 was also used as a catalyst support for Ti, Mo. Titanium is successfully
incorporated in hexagonal mesoporous silica to form Ti-MCM4L at low temperature
using titanium glycolate precursor synthesized via the Oxide One Pot Synthesis
(OOPS) process. The percentage of Ti loading was varied from 1to 35%. The
temperatures used to prepare were 60° and so-c. After heat treatment, very high
surface area mesoporous silica was also obtained. As for Mo-MCM-41, high
dispersion of Mo onto MCM-41 was successfully prepared using molybdenum
glycolate precursor. Impregnation process was used to load metal onto support before
and after heat treatment. The %Mo dispersion was as high as 10 mol% or 0.265 ¢



Mo03y SiU2 while the structure of MCM-41 was still retained. Bulk M0O3 was
observed in the case of Mo-loaded onto calcined support of MCM-41(c). Both Ti-
MCM-41 and Mo-MCM-41 were used to study peroxidative reaction, showing
impressive results. Titanium glycolate was also used to prepare bismuth titanate,
Bii2ZTi02)- Pure phase of sillenite structure, Bii2TiC20, was directly synthesized using
stoichiometric bismuth (IIl) nitrate pentahydrate and titanium glycolate by co-
precipitation. The influence of pH on the structure of Bii2ZTiO2 was studied in the pH
range of 3-10. Photo-egradation reaction of 4-nitrophenol (4-NP) was used to study
photocatalytic activity of BiiZlIO2 as a function of the pH. The rate of
decomposition was followed using UV-vis and TOC. The initial concentration of 4-
NP, 44 ppm, was decreased to less than 1 ppm within 30 min for all prepared
catalysts. It was found that the decomposition rate constant of BiiZTiO2) is six times
higher than those of either Til20r Bi203under the same conditions.
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