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APPENDICES

Appendix A Scanning Electron Microscope Photographs

A.l' Scanning Electron Microscope Photographs for ALO6B Carbon Steel
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(d) At 10,000X magnification

A.2 Scanning Electron Microscope Photographs for Qinshan Steel
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(d) At 10,000X magnification

A3 Scanning Electron Microscope Photographs for 2.5%Cr/1.0% Mo Steel
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A.4 Scanning Electron Microscope Photographs for 304 Stainless Steel
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(c) At3,500X magnification
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Appendix B Electron Diffraction Patterns

Electron Diffraction Patterns for A106B Carbon Steel
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B.2 Electron Diffraction Patterns for Qinshan Steel
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(e) Qinshan_OUT_2
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(f) QinshanOUT]

B.3 Electron Diffraction Patterns for 2.5% Cr/1.0% Mo Steel
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B.4 Electron Diffraction Patterns for 304 Stainless Steel
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Appendix ¢ Lift Out Method
Step 1 Locate the Area of Interest

The location of an area of interest can be done using the FIB microscope's
imaging capabilities. Imaging the sample allows the area of interest to be selected
visually. For semiconductor devices, the FIB system's precision navigation
capabilities can be employed to locate the region of interest with an accuracy that is
on the order of microns. The image shows part of a memory array structure of an
integrated circuit from which a TEM "lift-out" specimen will be prepared.

Step 2 FIB-deposita Protective Tungsten Layer

A layer of FIB-deposited tungsten js placed over the area of interest to
prevent milling or multiple image scans from damaging the surface of the TEM
specimen cross-section. This step is especially important when surface phenomena
on bulk samples are to be analysed. FIB-deposited tungsten provides a fast and
precise method for protecting surfaces during FIB procedures.
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Step 3 Mill Initial Trenches and Rough Polish

Using a large beam current for fast ion milling, two trenches are milled on
either side of the tungsten that has heen deposited above the area of interest. The
trenches here have been milled so as to just touch the tungsten on either side, leaving
awall of material in the centre that is approximately two microns thick. The trenches
themselves are approximately twenty microns wide, fourteen microns long and ten to
fifteen microns deep.
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Step 4 Thin the Central Membrane

A smaller beam current is used to further thin the central membrane
between the two trenches to a thickness of approximately 1 micrometer. Because
milling at a sharp angle, or on an edge, enhances the speed and depth of the mill, the
trenches are now stepped, with their deepest points being on either side of the central
membrane. One micron is the nominal thickness at which it is recommended to

proceed to the next step in the specimen preparation.

Step 5 Perform "Frame Cuts" on Central Membrane

The bulk sample and the area of interest are tilted to a steep angle,
commonly 45° or 60°. Three cuts are made to the central membrane, framing the area
of interest. Inside these cuts, the membrane will be ion polished until it is electron
transparent. Typically, the membrane is left attached to the bulk at its top two
comers. This provides structural strength and stability to the membrane.

Some damage is done to the membrane by tilting and imaging its face.
However, since the penetration depth is on the order of nanometers for any given
material, any damage done to the cross-section is restricted to essentially the surface
of the sample. During the course of the next few steps in the procedure, more than
the first two hundred nanometers of material are polished away, ensuring that any
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damage to the electron transparent membrane as a result of imaging is not present in
the final specimen.
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Step s "Polish Mills" to Near Nominal Thickness

The beam currentis reduced again, and the membrane is ion polished on
both sides to a nominal thickness of approximately 0.3 micrometers. At this point,
the membrane is very close to being finished. The minimal beam current associated
with this step in the procedure leaves the membrane with almost no trace ofthe ion
polish. However, for most materials, 300 nanometers is still much too thick to be
electron transparent. So the membrane still requires another very careful, very gentle
polishing step.
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Step 7 Polish for Electron Transparency of Membrane

The last polishing step, again reducing the heam current, brings the
membrane to a thickness of between 120 and 50 nanometers. At these thicknesses,
the membrane is electron transparent, and will clearly display the cross-section of the
area of interest in a TEM. Milling on this nanometer scale demonstrates the precision
that FIB microscope-micromachining systems are capable of attaining. This site
specificity and precision make FIB systems very useful tools for TEM specimen
preparation and any other milling on a microscopic scale.
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