CHAPTER |
INTRODUCTION

The purpose of this chapter is to point out the need for developing efficient
photocatalysts for both photodegradation of organic pollutants and photocatalytic
hydrogen production.

1.1 Rationale and Problems

As the increase in the global energy-source problems and the global
environment problems, one of promising technologies for the future that can solve
these problems is photocatalysis because it is environmentally friendly, which
utilizes the clean and abundant energy ‘resource of solar energy, to perform the
reactions. The photocatalysis can be applied in both organic pollutant elimination
and hydrogen production, as claimed in several researches. The photocatalytic
process has been demonstrated as a potential means for complete photodegradation
of organic pollutants at a low cost and with simplicity in operation as it can be
operated at ambient conditions. Moreover, it does not utilize any toxic materials. In
addition, the photodegradation of most organic pollutants generally produces CO-
and H20. The final product of H2 is also produced from the water splitting reaction.
The attractive features of hydrogen are as follows: hydrogen can be produced from
clean and renewable sources as water and solar energy, leading to the clean and
renewable life cycle of hydrogen; hydrogen has an excellent energy density by
weight, its heating value is much higher than any other fuels (2.5 times higher than
hydrocarbon fuels and nearly 5 times higher than methanol and ethanol); and
hydrogen is an environmentally friendly fuel without release of pollutants (such as
greenhouse gasses).

The drawback of the organic pollutant photodegradation is its slow reaction
rate that makes this process not to be widely applied for wastewater treatment.
Similarly in hydrogen production application, the solar-to-hydrogen energy
conversion efficiency is too low for the technology to be economically sound. The
slow rates of all photocatalysts mainly result from the rapid recombination of photo-



generated electrons and photo-generated holes, as well as the backward reactions and
the poor activity of photocatalysts themselves, especially under visible light
irradiation. In response to these deficiencies, many groups have been conducting
researches with an emphasis on effective remedy methods. One of interesting
approaches is to use sacrificial reagents and carbonate salts to prohibit the rapid
recombination of electron-hole pairs and backward reactions (Avudaithai and Kutty,
1987: sayama and Arakawa, 1992, 1994, 2000; Takata et al, 1998; Li et al, 2003).
Other approaches are metal loading, metal ion doping, dye sensitization, composite
semiconductor, anion doping and metal ion-implantation (Asahi et ai, 2001; 1shii et

al., 2004: Konta et al., 2004: onno et al., 2004, 2005: Kudo, 2006: Subramanian &t
al., 2006).

One of promising photocatalysts is strontium titanate (SrTiCh) because of
its superior physical and chemical properties, such as its excellent,thermal stability,
photocorrosion resistibility, and good structure stability as the host for metal doping
(ohno et al., 2004, 2005). Especially, SrTios can be used as an electrode for
photoelectrolysis of water (Kumar €t al., 1992) and used as a photocatalyst for -
and O production though the water splitting by light irradiation, because its redox
potential of electrons and holes that are induced by UV irradiation is powerful
enough to decompose water into H. and 0. (Wang €t al.,, 2005). However, SITiC-:
has a large band gap of about 3.2 eV, and it can utilize only the UV radiation, which
is the small fraction in the solar radiation (accounts for only 4% of the incoming
solar energy) (Zou et al., 2001; ni et al., 2007), leading to the low photocatalytic
activity of SrTiCL in the visible region. Due to the low photocatalytic activity in the
visible region, the visible-light harvesting potential has been induced into SrTiCss by
doping with various elements, such as lanthanum and nitrogen co-doped SrTiCL
(Wang et al.,, 2005), chromium doped SrTiCh (Chang and Shen, 2006), sulfur and
carbon co-doped SrTiCh (Ohno et al,, 2005), and NiO-SrTiCL (Ashokkumar, 1998).
Other techniques, such as dye sensitization and composite photocatalyst, have been
also used to enhance the photocatalytic activity under visible light irradiation. In
addition, the photocatalytic activity does not depend only on light harvesting
property, but also the structure of the photocatalysts (Moumen &t aI, 1995 Motte
and Pileni, 2000; Pileni, 2003; Liao and Liao, 2007). Some research groups reported



that mesoporous-structured photocatalysts can offer higher photocatalytic activity
and better light-induced hydrophilicity than non-porous-structured photocatalysts. A
new solution-hased approach that has been developed to achieve mesoporous-
structured materials is the sol-gel process with self-assembly of the surfactant
template. The porosity of mesoporous photocatalysts can be controlled when being
synthesized by using a surfactant-assisted templating sol-gel method (Cassiers etal,
2003; Yusufetal, 2003; Sakulkbaemaruethai etal, 2004; Sreethawong et al., 2005a,
b).

Due to the excellent properties of SrTiCss and the high photocatalytic
activity from better light-induction and higher hydrophilicity of mesoporous-
structured materials (Bacsa and Kiwi, 1998; Dai €f al., 1999: Sreethawong €t al,
2005¢, d, e, 2006), this study aims to investigate the use of sol-gel method with the
aid of structure-directing surfactant for the synthesis of mesoporous-assembled
SrTiCss nanocrystals under mild conditions and to investigate the use of the
synthesized SrTiCss for the photodegradation of organic pollutants and for the
photoproduction of hydrogen from the decomposition of water.

1.2 Objectives

1.2.1 To investigate the use of a sol-gel method with the aid of structure-
directing surfactants for the synthesis of mesoporous-assembled SrTi0s nanocrystals
and metals-loaded mesoporous-assembled SrTios nanocrystals.

1.2.2 To study the photocatalytic activity of the synthesized SrTios
(pristine SrTios) photocatalysts for the photodegradation of model organic pollutants.

1.2.3 To assess the photocatalytic activity of the pristine and metals-loaded
SrTiCss photocatalysts for photocatalytic hydrogen production,

1.3 Scope of Research Work
The sol-gel method with the aid of structure-directing surfactants was used

to synthesize SrTiCss photocatalysts with three different surfactants: laurylamine
hydrochloride (LAHC), cetyltrimethylammonium  bromide (CTAB), and



cetyltrimethylammonium chloride (CTAC), and four different solvents: water (HZO),
ethyl alcohol (Eton), ethylene glycol (EG), and mixed solvent between EtOH and
EG. The calcination temperature was varied in the range of 600°¢ to /50°C with
different heating rates. The photocatalytic activity of the synthesized SrTiCss
photocatalysts for methyl orange degradation was tested to find out the best synthesis
conditions. Then, the SrTiUs photocatalyst prepared at the optimum conditions was
loaded with various metals for the enhancement of their photocatalytic activities
towards both organic pollutant degradation and hydrogen production.

The ultimate goal of this research was to find out the best synthesis
approach for SrTiC>s-based photocatalysts, which provide the highest photocatalytic
activity in both organic pollutant degradation and photoproduction of hydrogen.
Literature reviews and applications of photocatalysts/photocatalysis will be presented
in Chapter 1. Chapter 11l will describe the synthesis method of SrTi0= photocatalysts
with different metal loading and the photocatalytic testing. The investigation in the
synthesis approach and the photocatalytic activity for methyl orange degradation of
the synthesized SrTiCss photocatalysts will be presented in Chapter IV. Chapter V
will present the effects of hole scavenger, Pt co-catalyst loading, and reaction
temperature on the photocatalytic activity for hydrogen production via water splitting
reaction of the synthesized SrTiUs photocatalysts. The effects of metal type and
loading on the photocatalytic activity for hydrogen production via water splitting
reaction of the synthesized SrTios photocatalysts will be discussed in Chapter VI.
The effect of chemical structure and properties of hole scavengers on the
photocatalytic activity for hydrogen production via water splitting reaction of the
synthesized SrTiCss photocatalysts will be presented in Chapter VII. Chapter VIII
will include the conclusions of the research and the recommendations.
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