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ABSTRACT

4791004063 Petrochemical Technology Program
Tarawipa Puangpetch: Organic Pollutant Degradation and Hydrogen
Production Using SrTi0s Photocatalysts
Thesis Advisors: Prof. Sumaeth Chavadej, Prof. Susumu Yoshikawa,
and Asst. Prof Thammanoon Sreethawong, 160 pp.
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Pollutant Degradation/ Water Splitting/ Hydrogen Production

Pristine and metal-loaded mesoporous-assembled SrTi0s nanocrystal
photocafalysts were successfully synthesized via the single-step sol-gel method with
the aid of a structure-directing surfactant. The synthesis method provided the
mesoporous-assembled SrTi0s nanocrystal photocatalysts with high purity,
crystallinity, and homogeneity, as well as showed high reliability in photocatalyst
reproduction. The synthesized photocatalysts were investigated their photocatalytic
activity in both degradation of model organic pollutants and water splitting for
hydrogen production with various hole scavengers. The results pointed out that the
photocatalyst structure, in the form of a mesoporous assembly of SrTi0s
nanocrystals, was found to be responsible for the enhancement of the photocatalytic
activity of the SrTi0s photocatalysts. Some metals co-catalyst loading was found to
enhance the photocatalytic hydrogen production activity of the mesoporous-
assembled SrTi03-based photocatalyst. The enhancement in the photocatalytic
hydrogen production activity depended on the electrochemical properties of the
loaded metal type and the loading value. The 1 wt% Au-loaded mesoporous-
assembled SrTi0s photocatalyst was found to be the most effective photocatalyst for
the hydrogen production from the photocatalytic water splitting.
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