บทบาทของฟิมบรีที่ไวต่อแมนโนสในการป้องกันโรคหัยฟอยด์ในหนู

นาย สมเกียรติ ตริตานิภากุล

วิหยานิพนธ์นี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรวิหยาศาสตรมหาบัณฑิต สหสาขาวิชาจุลชีววิหยาหางการแพหย์ บัณฑิตวิหยาลัย จุฬาลงกรณ์มหาวิหยาลัย

พ.ศ. 2531

ISBN 974-568-613-1 ลิขสิทธิ์ของบัณฑิฅวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

013793

The Protective Role of Mannose-Sensitive Fimbriae in Mouse Typhoid

Mr. Somkiat Tritanipakul

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science

Inter-Department of Medical Microbiology

Graduate School

Chulalongkorn University

1988

ISBN 974-568-613-1

Thesis Title

The Protective Role of Mannose-Sensitive

Fimbriae in Mouse Typhoid

Ву

Mr. Somkiat Tritanipakul

Inter-Department Medical Microbiology

Thesis Advisor

Instructor Pakathip Reynolds, M.Sc.

Co - Advisor

Professor B.L. Reynolds, Ph.D.

Accepted by the Graduate School, Chulalongkorn University in Fulfillment of the Requirements for the Master's Degree.

(Professor Thavorn Vajrabhayar, Ph.D.)

Th	69	ie	Comm	i	++	66	

Taballip Reynolds.... Thesis Advisor (Instructor Pakathip Reynolds, M.Sc.)

(Professor P. I. Poynolds, Ph. D.)

(Professor B.L. Reynolds, Ph.D.)

Pada Suethirm Member

(Associate Professor Dr. Tada Sueblinvong)

สมเกียรติ ตริตานิภากุล : บทบาทของพีมบรีที่ไวต่อแมนโนสในการป้องกันโรคทัยฟอยด์ในหนู

(THE PROTECTIVE ROLE OF MANNOSE - SENSITIVE FIMBRIAE IN MOUSE

TYPHOID) อ.ที่ปรึกษา : อ.ผกาทิพย์ เรโนลด์, 101 หน้า.

การศึกษานี้ เพื่อดูความสามารถของ type-1 fimbriae แอนติเจนของ Salmonella ใน
การป้องกันโรคในหนู โดยใช้ S. typhimurium F885 ซึ่งเป็นสายพันธุ์ที่สามารถทำให้เกิดการรวมกลุ่ม
ของเม็คเลือดแคงหนูตะเภา แต่สามารถถูกยับยั้งด้วย D-mannose และ methyl &-Dmannopyranoside ซึ่ง mannose-sensitive fimbriae นี้ถูกตัดออกจากบัคเตรี โดยใช้เครื่อง
homogenizer และเมื่อใช้วิธีการเตรียมพีมบรีของ Dodd และ Eisenstein โดยละลายพีมบรีใน 5
โมลาร์ ยูเรีย และทำให้บริสุทธิ์ยิ่งขึ้น โดยนำไปชั่นด้วยเครื่อง ultracentrifuge วิธีนี้ทำให้ได้จำนวน
พีมบรีที่บริสุทธิ์มากกว่าอีก 2 วิธี คือ วิธีของ Salit และ Gotschlich กับวิธีของ Knutton และคณะ
เมื่อใช้เทคนิคการทำ immunoelectrophoresis และ sodium dodecyl sulfatepolyacrylamide gel electrophoresis พบว่า พีมบรีที่เตรียมได้นั้นมีความบริสุทธิ์ และมีน้ำหนัก
โมเลกุลประมาณ 19,000 ซึ่งสามารถทำให้เกิดการรวมกลุ่มของเม็คเลือดแดงหนูตะเภาด้วย เมื่อทดสอบ
ดูด้วยกล้องจุลทรรศน์อิเล็คตรอนพบว่า มีเส้นผ่าศูนย์กลางประมาณ 6 นาโมเมตร

การศึกษาผลการป้องกันโรคในหนู โดยให้ 1x10¹⁰ S.typhimurium F885 หรือ E.coli
F492 ทางปาก หรือให้พีมบรีที่เตรียมได้จำนวน 50 ไมโครกรัม ทางหน้าท้องในวันที่ 0 และทางใต้ผิวหนัง
ในวันที่ 12 เมื่อ challenge หนูทุกกลุ่มด้วย 1,000 LD50 ของ S.typhimurium C5 ทางบากพบว่า
เปอร์เซ็นต์การตายและจำนวนของ S.typhimurium C5 ในม้ามและ Payer's patches ของหนูกลุ่ม
ที่ถูกกระตุ้นด้วย S.typhimurium F885 และพีมบรีน้อยกว่าหนูกลุ่มที่ถูกกระตุ้นด้วย E.coli F492 และ
กลุ่มควบคุมอย่างมีนัยสำคัญทางสถิติ ซึ่งความสามารถในการป้องกันโรคนี้สัมพันธ์กับความสามารถของบัคเตรี
ที่สามารถคงอยู่ใน Payer's patches ของลำไส้เล็ก นอกจากนี้ยังพบว่า lipopolysaccharide ไม่มี
ความสำคัญในการป้องกันโรค เพราะสายพันธุ์ F885 ที่สามารถกระตุ้นให้เกิดการป้องกันโรคมี 0 แอนติเจน
ที่แตกต่างกับสายพันธุ์ C5 ที่ใช้ challenge

การศึกษานี้ ทำให้ได้สมุมติฐานที่ว่า type-1 fimbriae ของสายพันธุ์ C5 เป็นปัจจัยที่ช่วยให้ เกิดการยึดเกาะกับเยื่อบุผิวเซลล์ของลำไส้ และผลการทดลองนี้เป็นตัวอย่างหนึ่งของการใช้พีมบรีที่บริสุทธิ์ ในการเป็นวัคขึ้นที่ดีและปลอดภัยได้

ภาควิชา สหสาขาจุลชีววิทยาทางการแพทย์	A de
สาขาวิชา จุลชีววิทยาทางการแพทย์	ลายมือชื่อนิสิต
ปีการศึกษา	ลายมือชื่ออาจารย์ที่ปรึกษา ภาพใน (ปีสม

SOMKIAT TRITANIPAKUL: THE PROTECTIVE ROLE OF MANNOSE-SENSITIVE FIMBRIAE IN MOUSE TYPHOID. THESIS ADVISOR: INST. PAKATHIP REYNOLDS, 101 PP.

This study was performed to determine whether type-1 fimbriae of Salmonella were protective antigens in mice. We used a strain of S.typhimurium F885 which causes strong haemagglutination of guinea pig erythrocytes (haemagglutinating power = 3,200), which was inhibited by D-mannose, and methyl α -D-mannopyranoside.

Mannose-sensitive fimbriae were released from these bacteria by high speed blending and after the method of Dodd and Eisenstein, the fimbriae were resuspended in 5 M urea to disaggregate cell membranes and flagella, leaving the urea-resistant fimbriae intact to be further purified by ultracentrifugation. This method was found to give higher yields than two other methods, namely that of Salit and Gotschlich, and Knutton et al. The fimbriae were found to be pure by immunoelectrophoresis criteria and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with an apparent subunit molecular weight of 19,000; they gave strong haemagglutination with guinea pig erythrocytes. Examined by electron microscopy, the diameters were 6 nm and retained their native morphology in the purification process.

Protective studies were carried out in groups of mice which were vaccinated orally with 1×10^{10} whole cells of <u>S.typhimurium F885</u> of <u>E.coli</u> F492 or with 50 µg of fimbriae injected intraperitonealy on day 0 and subcutaneously on day 12. All groups of mice were subjected to oral challenge with 1,000 LD50 of the virulent strain, <u>S.typhimurium C5</u>. The percentage of deaths, and the numbers of challenge organisms in the spleen and Peyer's patches were significantly less in the <u>S.typhimurium F885</u> and fimbriae immunized mice than in those of controls and <u>E.coli F492</u> immunized mice. Further, there appeared to be a correlation between the protective ability of these strains and their ability to persist in the small intestinal Peyer's patches. Lipopolysaccharide (LPS) seem to plays no part in the bacterial protection, because the protective strain F885, and the challenge strain C5 carry quite different O-antigens.

These results are consistant with the hypothesis that type-1 fimbriae of strain C5 act as virulence factors by facilitating adhesion to intestinal epithelia and provides another example that purified fimbriae can serve as safe and effective vaccines.

ภาควิชา	สหสาขาจุลชีววิทยาทางการแพทย์	A A A A A A A A A A A A A A A A A A A
สาขาวิชา	จุลชีววิทยาทางการแพทย์	ลายม่อช่อนสัต
ปีการศึกษา	lndଁ n ବ	ลายมือชื่ออาจารย์ที่ปรึกษา 🦝 🏑 เป็นวน

ACKNOWLEDGEMENT

This thesis would never have been successed without any heartfully supports and advices of the following persons whom I would like to express my heartful thanks to their valuable helps. Their great assistance will be memorable to me and to those who find the usefulness of this work.

My deeply appreciation to:

Instructor Pakathip Reynolds, Division of Immunology, Department of Microbiology, Faculty of Medicine Chulalongkorn University, my advisor, and Profressor B.L. Reynolds, Science Division, Thai Red Cross Society (Queen Saovabha Memorial Institute), my co-advisor, for their valuable advices, strong encouragement and constructive criticisms.

Associate Professor Dr. Tada Sueblinvong, and Dr. Nuanthip Kamolvarin, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, for their kindness, helpful guidance of the SDS-PAGE study.

Assistant Professor Dr. Preeda Chaisiri,
Department of Biochemistry, Faculty of Science, for her
kindness, helpful guidance and loan of equiment needed for
the ultracentrifugation study.

The staff and personel in the Department of Microbiology, Faculty of Medicine, Chulalongkorn University and Scientific Division of Thai Red Cross Society, for their enthusiastic co-operation and the loan equipment needed for the laboratorial work.

The staff and personel in the Division of Medical Illustration for their valuable aid in photographic work.

The committee of the Graduate School, Chulalongkorn University, for the research grant to support this study.

Finally, I am deeply indebted to my family for their help, encouragement and understanding.

The state of the s

CONTENTS

Pa	age
THAI ABSTRACT	iv
ENGLISH ABSTRACT	v
ACKNOWLEDGEMENT	vi
LIST OF TABLES	viii
LIST OF FIGURES	ix
ABBREVIATIONS	хi
CHAPTER	
I INTRODUCTION	1
1. Bacterial Adherence	2
1.1 Specificity of The Adherence of Bacteria	
to Mucosal Surfaces	3
1.2 Non-Specific Factors Influencing Bacterial	
Adherence	4
1.3 Specific Binding	5
2. Different Types of Fimbriae in Gram-Negative	
Bacilli	9
2.1 Type-1 Fimbriae	9
2.2 Type-2 Fimbriae	10
2.3 Type-3 Fimbriae	10
2.4 Type-4 Fimbriae	11
2.5 Type-5 Fimbriae	11
2.6 Type-6 Fimbriae	11
2.7 Other Fimbriae	11
3 Fimbrial Adhesins of Salmonella	12
2 1 Characterization of Type-1 Fimbrice	12

CONTENTS (Continued)

		3.4	naewaggrutination specificity and mannose	
			Sensitivity	13
		3.3	Adhesion to Cells Other than Erythrocytes	14
		3.4	Phase variation and Condition of culture.	15
		3.5	Inhibition by D-Mannose and Its Analogues	16
		3.6	MS Adhesive Sites on Fimbriae	18
		3.7	Function of the MS Adhesin	20
	4	Preve	ention of Bacterial Adherence	21
		4.1	Application of Receptor Analogues	21
		4.2	Sublethal Dose of Antibiotics	22
		4.3	Antiadherence Vaccine	22
	5	Fimbr	riae as Vaccines	23
		5.1	In Vitro Studies	23
		5.2	Veterinary Studies	25
		5.3	Human Studies	26
	6	Resea	arch Aims	27
ΙΙ	MA	TERIA:	LS AND METHODS	29
	1.	Exper	rimental Animals	29
		1.1	Mice	29
		1.2	Rabbits	29
	2.	Bacte	erial Strains	29
		2.1	Description of Strains	29
		2.2	Strain Maintenance	31
		2.3	Strain Propagation	31
	3.	Heams	agglutination Test	32

CONTENTS (Continued)

	4.	Heama	agglı	ıtinı	atio	on I	nhi	bit	ion	Te	st		• •		• •	• •	32
	5.	Fimbr	ial	Prep	para	atio	n.										33
		5.1	The	Metl	hod	of	Dod	d a	nd	Eis	ens	tei	n				33
		5.2	The	Metl	hod	of	Knu	tto	n e	t a	l.						34
		5.3	The	Metl	hod	of	Sal	it	and	Go	tsc	hli	ch			• •	34
	6.	Prote	ein E	Estin	mati	on							• •				35
	7.	Elect	ron	Mic	rosc	сору	• • •										36
	8.	Deter	mina	ation	n of	Fi	mbr	iae	Pu	rit	у а	nd	MW			• •	36
		8.1	Immu	inoe	lect	rop	hor	esi	s,	• • •			• •			• •	36
		8.2	Sodi	um I	Dode	ecyl	Su	lfa	te-	Pol	yac	ryl	am:	ide	G	el	
			Elec	ctrop	phor	resi	s.						• •			• •	36
	9.	Immun	e Se	erum									• •				38
		9.1	Ab A	lgai	nst	<u>s</u> . <u>t</u>	yph	imu	riu	<u>m</u> F	885	an	d				
			<u>E</u> . <u>c</u> c	oli l	F492	2											38
		9.2	Ab A	Again	nst	Тур	e-l	Fi	mbr	iae					• •	• •	38
1	0.	Bacte	eria]	Agg	glut	ina	tio	n .					• •			• •	40
1	1.	LD50	Dete	ermiı	nati	ion										• •	41
1	2.	Oral	Immu	ınize	atio	on a	nd	0ra	l I	nfe	cti	on	• •			• •	41
1	3.	Recov	very	and	Eni	ımer	ati	on	of	Bac	ter	ia	fr	om	Μi	ce	41
1	4.	Mouse	Pro	otect	tior	ı Te	st	• • •		• • •							42
-		14.1	Imr	nuni	zati	ion						• • •	• •			• •	42
		14.2	Det	term	inat	tion	of	Pr	ote	cti	on						42
III	RES	SULTS			• • • •										• •		43
	1.	Haems	ngglı	ıtina	atio	on P	rop	ert	ies							• •	43
		1.1	HP 8	and 1	HA v	vith	a GP	Ε.									43

CONTENTS (Continued)

		1.2	Activit	y of	Diff	erent	Carbo	hydra	ate :	in HA	I 43
	2.	Purif	Cication	of '	Гуре-	l Fim	briae	• • • •			. 48
		2.1	Compari	son	of Pu	rific	ation	Proc	edur	es	. 48
		2.2	Accordi	ng to	o the	Meth	od of	Dodd	and		
			Eisenst	ein							. 48
•	3.	Deter	minatio	n of	Fimb	rial	Purity	and	MW		. 50
		3.1	SDS-PAG	E				••••			. 50
		3.2	IEP	• • • •							. 53
	4.	Distr	ribution	of	Live	Bacte	rial V	acci	nes	in	
		Mice	After C	ral	Feedi	ng					. 53
	5.	LD50	Determi	nati	on						. 57
	6.	Mouse	Protec	tion	Test						. 57
		6.1	Protect	ive	Immun	ity I	nduced	l by	Vari	ous	
			Vaccine	s							. 57
		6.2	Distrib	utio	n of	S. typ	himuri	um C	5 in	Mice	:
			After (ral (Chall	enge					. 60
ΙV	DI	scuss	ON								. 62
REFERI	ENC	ES		• • • •							. 70
APPEN	DIX										
I		CULT	rure mei	IA.							. 88
ΙΙ		REAC	GENTS								. 90
RIOGR	арн'	Υ									101

LIST OF TABLES

Table	e	Page
1	Purified bacterial fimbriae used as vaccines	. 24
2	Description of bacterial strains	. 30
3	HP and HA of GPE by various fimbriate and non-	
	fimbriate strains	. 44
4	Activity of different carbohydrates in HAI of	
	<u>S.typhimurium</u> F885	. 47
5	Comparison of type-1 fimbriae from $\underline{S} \cdot \underline{typhimurium}$	
	F885 by various purification procedures	. 49
6	HA and recovery of protein, type-1 fimbriae during	g
	purification	. 51
7	LD50 Determination	. 58
8	Resistance of mice against oral challenge with	
	S. typhimurium C5 after immunizing with various	
	vaccines	. 59

LIST OF FIGURES

Figu	re	Page
1	Attachment of bacterial cells via specific	
	adhesins to complemetary receptors on the host	
	cell membrane	. 6
2	Specific blockade of bacterial adherence	. 8
3	Calibration curves for MW determination by	
	SDS-PAGE	39
4	Electron micrograph of S. typhimurium F885	45
5	Electron micrograph of $\underline{E} \cdot \underline{\text{coli}}$ F492	46
6	SDS-PAGE analysis of various stages of fimbrial	
	purification	52
7	Electron micrograph of purified type-l fimbriae	54
8	IEP of crude Ag preparation and purified fimbriae	
	Ag	55
9	IEP of purified fimbriae Ag demonstrating purity .	55
10	The number of viable bacteria recovered from the	
	Peyer's patches after oral feeding	56
11	The number of \underline{S} . $\underline{typhimurium}$ C5 recovered from the	
	Pavar's natches and spleen after oral challenge	61

ABBREVIATIONS

Å = angstrom unit

Ab = antibody

Ag = antigen

∝ = alpha

B = beta

C = degree celsius

cm = centimetre

DNA = deoxyribonucleic acid

ed = editor

e.g. = exampli gratia (Latin), for example

et al. = et alii (Latin), and others

etc. = et cetera (Latin), and so on

Fig. = figure

g = gram

x g = gravity (centrifugal force)

g/cm3 = gram per cubic-centimetre

h = hours

i.e. = id est (Latin), that is

i.p. = intraperitoneal

K = kilodaltons

LD50 = 50% lethal dose

M = molarity

ul = microlitre

um = micrometre

mA = milli ampere

ABBREVIATIONS (Continued)

mg = milligram

min = minutes

ml = millilitre

mm = millimetre

nm = nanometre

OD = optical density

s.c. = subcutaneous

SD = standard deviation

sp = species

w/v = weight by volume

