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ABSTRACT
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An effective way to reduce energy usage in a refinery is to design
efficient heat exchanger networks (HENS) by using process optimization on the
Mixed Integer Liner Programming (MILP) method. In this work, retrofit designs
with/without relocation of HENS are done by GAMS (General Algebraic Modeling
System) software. This methodology can generate networks where utility cost, heat
exchanger areas and selection of matches are optimized simultaneously. In addition,
the simplicity in model assumption of non-isothermal mixing with constraints such
as stream splitting and allowed/forbidden matches make the model structure more
convenient to use. This MILP model can be successfully applied to the crude refinery,
providing both retrofit designs with/without relocation. In a special scenario,
relocation topology can be used for further reduction in total cost, which also gives
the highest annual cost saving for retrofitting HENs. This research also determines
the best HENS for light, intermediate and heavy crude refinery.
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o *f Auxiliary continuous variable utilized to compute the cold side heat
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hot stream 7and cold stream; in zone z
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not correspond to the beginning nor the ending of a heat exchanger. A
value of zero corresponds to all other cases



	Cover (English)


	Accepted


	Abstract (English)


	Abstract (Thai)


	Acknowledgements


	Contents



