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ABSTRACT

547202363:  Polymer Science Program
Napat Charoonrak: Development of Poly(p-phenylene)/Crosslinked
poly(e-caprolactone) as Electroactive Shape Memory Composite.
Thesis Advisor: Prof. Anuvat Sirivat 126 pp.

Keywords: Electroactive composite/ Conductive polymers/ Crosslinked
polycaprolactone/ Poly(p-phenylene)

Electroactive shape memory composites are smart materials that change their
shapes and recover their initial shapes in the presence of an applied electric field. In this
work, the focus is on fabricating an electroactive shape memory composite consisting of
iron (II1) chloride doped poly(p-phenylene)(PPP)/crosslinked poly(s-caprolactone)
(cPCL) using benzoyl peroxide (BPO) as a crosslinking agent. In addition, thermal
property, electrical conductivity, and electromechanical properties of the composite as a
function of crosslinking ratio, doping level, and concentration of embedded ppp are
investigated. The electromechanical properties show that 3%wt BPO cPCL gives the
highest storage modulus response and electrical sensitivity. However, the electrical
sensitivity decreases dramatically at o.01%v/v of embedded ppp because of the
increasing of initial storage modulus. Then start to increase with increasing the
concentration of ppp which can be attributed to the increases of dipole moment
induction in the presence of an external electrical stimulation,
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