DEVELOPMENT OF POLY(P-PHENYLENE)/CROSSLINKED POLY(ε-CAPROLACTONE) AS ELECTROACTIVE SHAPE MEMORY COMPOSITE

Napat Charoonrak

A Thesis Submitted in Partial Fulfilment of the Requirements

For the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University

In Academic Partnership with

The University of Michigan, The University of Oklahoma,

Case Western Reserve University, and Institut Français du Pétrole

2013

Thesis Title: Development of Poly(p-phenylene)/Crosslinked Poly(ε-

caprolactone) as Electroactive Shape Memory Composite

By: Napat Charoonrak

Program: Polymer Science

Thesis Advisor: Prof. Anuvat Sirivat

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

...... College Dean

(Asst. Prof. Fomthong Malakul)

Thesis Committee:

(Prof. Anuvat Sirivat)

(Assoc. Prof. Thirasak Rirksomboon)

(Asst. Prof. Wanchai Lerdwijitjarud)

ABSTRACT

547202363: Polymer Science Program

Napat Charoonrak: Development of Poly(p-phenylene)/Crosslinked poly(ϵ -caprolactone) as Electroactive Shape Memory Composite.

Thesis Advisor: Prof. Anuvat Sirivat 126 pp.

Keywords: Electroactive composite/ Conductive polymers/ Crosslinked

polycaprolactone/ Poly(p-phenylene)

Electroactive shape memory composites are smart materials that change their shapes and recover their initial shapes in the presence of an applied electric field. In this work, the focus is on fabricating an electroactive shape memory composite consisting of iron (III) chloride doped poly(p-phenylene)(PPP)/crosslinked poly(ε-caprolactone) (cPCL) using benzoyl peroxide (BPO) as a crosslinking agent. In addition, thermal property, electrical conductivity, and electromechanical properties of the composite as a function of crosslinking ratio, doping level, and concentration of embedded PPP are investigated. The electromechanical properties show that 3%wt BPO cPCL gives the highest storage modulus response and electrical sensitivity. However, the electrical sensitivity decreases dramatically at 0.01%v/v of embedded PPP because of the increasing of initial storage modulus. Then start to increase with increasing the concentration of PPP which can be attributed to the increases of dipole moment induction in the presence of an external electrical stimulation.

บทคัดย่อ

ณภัทร จรูญรักษ์: การเตรียมวัสคุเชิงประกอบจดจำรูปร่างที่ตอบสนองต่อสนามไฟฟ้า จากพอถิพาราฟินิถีนและพอถิคาโปรแล็กโทน (Development of Poly(p-phenylene)/Crosslinked Poly(E-caprolactone) as Electroactive Shape Memory Composite) อาจารย์ที่ปรึกษา: ศ. คร. อนุวัฒน์ ศิริวัฒน์ 126 หน้า

ในงานวิจัยนี้ได้ทำการศึกษาความเป็นไปได้ในการทำวัสดุเชิงประกอบที่ตอบสนองต่อ สนามไฟฟ้าจากการผสมระหว่างพอลิคาโปรแล็กโทนซึ่งเป็นพอลิเมอร์กึ่งผลึกที่มีจุดหลอมเหลวต่ำ มีคุณสมบัติกล้ายขางและมีความยืดหยุ่นสูงกับอนุภาคพอลิพาราฟินิลีนซึ่งเป็นคอนจุเกตเตคพอลิ เมอร์ที่ง่ายต่อการสังเคราะห์และมีคุณสมบัตินำไฟฟ้า ในงานวิจัยนี้ ใอออนคลอไรค์ถูกใช้เป็นสาร โด๊ปเพื่อเพิ่มความมีขั้วและความสามารถในการนำไฟฟ้าให้กับพอลิพาราฟีนิลีนส่งผลทำให้วัสดุ เกิดไดโพลโมเมนต์ได้ดีขึ้น นอกจากนี้ได้ทำการศึกษาผลกระทบของปริมาณของเบนโซอิลเปอร์ ออกใชต์ซึ่งเป็นสารเชื่อมโยงเพื่อปรับปรุงคุณสมบัติเชิงกลของพอลิคาโปรแล็กโทน (0, 1, 3, 5, 7, และ 10% โดยน้ำหนัก) อัตราส่วนโมลของสารโด๊ปต่อพอลิพาราฟีนิลีนมอนอเมอร์ (uPPP, 1:30, 30:1, และ 100:1 dPPP) และปริมาณพอลิพาราฟินิลีนที่ใส่ลงไปในวัสดุเชิงประกอบ (0.01, 0.05, 0.1, 0.5, และ 1.0% โดยปริมาตร) ต่อสมบัติทางความร้อนและการตอบสนองเชิงกลต่อสนามไฟฟ้า ผลการวิจัยพบว่าในกรณีของพอลิคาโปรแล็กโทนบริสุทธิ์ การตอบสนองเชิงกลต่อสนามไฟฟ้า $(\Delta G')$ และความไวต่อสนามไฟฟ้า $(\Delta G'/G'_0)$ มีค่าสูงสุดเมื่อใช้สารเชื่อมโยงปริมาณร้อยละ 3 โดยน้ำหนักวัสดเชิงประกอบที่ประกอบด้วยพอลิพาราฟีนิลีนปริมาณร้อยละ 0.01 โดยปริมาตร มี ความไวต่อสนามไฟฟ้าต่ำลงเนื่องจากวัสดุมีความแข็งมากขึ้น อย่างไรก็ตามเมื่อใส่พอลิพาราฟีนิ ลืนมากขึ้นจะสามารถตอบสนองต่อสนามไฟฟ้าได้ดีขึ้นเนื่องจากปริมาณไดโพลโมเมนต์ที่ถูก เหนี่ยวนำในวัสดุภายใต้สนามไฟฟ้ามีมากขึ้น

ACKNOWLEDGEMENTS

The author is grateful for the thesis funded by the Petroleum and Petrochemical College; and the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

The author would like to acknowledge the financial supports from the Conductive and Electroactive Polymers Research Unit of Chulalongkorn University. The Thialand Research Fund (TRF-RTA) and the Royal Thai Government (Budget of Fiscal Year 2555).

This thesis work will not be done without all of faculties who always offer the valuable knowledge. He would like to thank you his thesis advisor, Prof. Anuvat Sirivat for his worth suggestions and experiences. He also gratefully acknowledge to Assoc. Prof. Thirasak Rirksomboon and Assist. Prof. Wanchai Lerdwijitjarud for their kindly being on his thesis committees.

At last, he would like to express thanks for his parents AS Ph.D. students and friends for their love, help, encouragement and understanding.

TABLE OF CONTENTS

		PAGE
Title	e Page	i
Abst	tract (in English)	iii
Abst	tract (in Thai)	iv
Ackı	nowledgements	v
Tabl	e of Contents	vi
List	List of Tables	
List	of Figures	X
СНАРТЕ	R	
I	INTRODUCTION	1
II	THEORETICAL BACKGROUND AND	
	LITERATURE REVIEW	3
	2.1 Electroactive Polymers	3
	2.2 Shape Memory Materials	6
	2.3 Conductive Polymers	8
	2.4 Doping on Conductive Polymers	10
	2.5 Poly (p-phenylene) (PPP)	12
	2.6 Poly (ε-caprolactone) (PCL)	16
	2.7 Crosslinking of Poly (ε-caprolactone)	17
III	EXPERIMENTAL	21
	3.1 Materials	21
	3.1.1 Chemicals	21
	3.1.2 Solvents	21
	3.1.3 Gas	21
	3.2 Equipment	22
	3.3 Methodology	23

CHAPTE	J.R	PAGE
	3.3.1 Poly(p-phenylene) (PPP) Synthesis	23
	3.3.2 PPP Doping Process	23
	3.3.3 Poly(\(\epsilon\)-caprolactone) (PCL) Film Casting	
	and Crosslinking	24
	3.3.4 PCL and PPP Composite Fabrication	24
	3.4 Testing and Characteriazation	24
	3.4.1 Undoped and Doped PPP Particle	24
	3.4.2 Uncrosslinked and Crosslinked PCL	25
	3.4.3 PCL/PPP Composite	26
IV	DEVELOPMENT OF POLY(P-PHENYLENE)/	
	CROSSLINKED POLY(E-CAPROLACTONE) A	AS
	ELECTROACTIVE SHAPE MEMORY COMPO	OSITE 27
	4.1 Abstract	27
	4.2 Introduction	28
	4.3 Experimental	29
	4.4 Results & Discussion	32
	4.5 Conclusion	38
	4.6 Acknowledgement	39
v	CONCLUSIONS	53
	REFERENCES	54
	APPENDICES	60
	Appendix A Fingerprint Peaks of FT-IR Spectra of	
	Poly(p-phenylene) (PPP)	60
	Appendix B Thermal Property	62

CHAPTER		PAGE
Appendix C	Density Measurement of Poly(p-phenylene) (PPP)) 65
Appendix D	Particle Size and Particle Size Distribution	
	of Poly(p-phenylene) (PPP)	70
Appendix E	Conductivity Measurement	72
Appendix F	Determination of the Dopant Concentration	
	of Doped PPP	75
Appendix G	Morphology	77
Appendix H	Investigation of crosslinking efficiency of PCL	80
Appendix I	Electromechanical Properties of	
	Poly(ε-caprolactone) (PCL) Film at Various	
	Crosslinking Ratio	83
Appendix J	Electromechanical Properties of	
	Poly(p-phenylene) (PPP)/Poly(ε-caprolactone)	
	(PCL) Composite at Various Doping Level	94
Appendix K	Electromechanical Properties of	
	Poly(p-phenylene) (PPP)/Poly(ε-caprolactone)	
	(PCL) Composite at Various Concentration	
	of Embedded PPP	103
Appendix L	Dielectrophoretic Behavior	113
Appendix M	Mechanical Properties of PCL films	124
CURRICUL	UM VITAE	126

LIST OF TABLES

ΓABLE		PAGE
2.1	The comparison between electronic EAPs and ionic EAPs	4
2.2	The Comparison table between Shape Memory Polymer (SMP)	
	vs. Shape Memory Alloys (SMA)	7
4.1	Electromechanical Properties of PPP/PCL composites	47
4.2	The comparison of electromechanical properties between 3%	
	wt BPO cPCL and other electroactive materials	48
4.3	Influence of PPP concentration on the dielectrophoresis	
	response in the PPP/PCL composite systems	49
4.4	The comparison of deflection angle (θ) and the	
	dielectrophoresis force (F_d) of the 3% wt BPO cPCL and	
	other electroactive materials	50

LIST OF FIGURES

FIGU	GURE	
2.1	Schematic illustration of (a) bending response measurement	
	of Phy gel suspended vertically in silicone-oil bath and	
	sandwiched between copper electrodes and (b) actuation	
	mechanism were from two dominating factors; ionic	
	polarization of BMIM+ cation and electronic polarization of	
	cellulosic hydroxyl group.	5
2.2	Illustration of the mechanism of the SME in thermo-	
	responsive SMP: (a) hard at low temperature; (b) easily	
	deformed at high temperature; (c) hard again after cooling;	
	(d) temporary (deformed) shape after constraint removed; (e)	
	shape recovery upon heating.	7
2.3	Conductive polymers.	9
2.4	Electronic bands in solids.	9
2.5	The conductivity before and after doping process of	
	conductive polymer (polyacetylene and polyaniline) and	
	other materials.	11
2.6	Electronic band in (a) neutral, (b) polaron, (c) bipolaron and	
	(d) bipolaron band form of conductive polymers.	11
2.7	Polyparaphenylene (PPP) in neutral form.	12
2.8	Polyparaphenylene (PPP) in (a) polaron and (b) bipolaron form	
		13
2.9	Proposed interaction between 50:1 dPPP and NH ₃ .	14
2.10	X-ray diffraction patterns for obtained amorphous uPPP and	
	crystalline uPPP annealed at 450°C for 4.5 h in vacuum, Cu	
	Ka radiation.	15
2.11	Synthesis of PCL.	17

FIGURE		PAGE
2.12	Chemical structures of: (a) benzoyl peroxide (BPO); and (b)	
	dicumyl peroxide (DCP), widespread using peroxides for	
	PCL crosslinking.	18
2.13	An initiation, propagation and termination step of	
	crosslinking system with peroxides and the radiation	18
2.14	SEM images of the (a) cPCL/Raw-M, (b) cPCL/AO-M, and	
	(c) cPCL/PEG-M with 5 wt % MWNTs and 3 wt % BPO.	21
2.15	Self-made compliant electrode for shape memory effect	
	experiment.	21
4.1	The morphology of: a) undoped; b) FeCl ₃ doped PPP particle	
	in the mole ratio between FeCl ₃ and PPP monomer of 30:1 at	
	the magnification of 20 kX; c) 3%wt BPO cPCL; d) 1.0%	
	v/v 30:1 dPPP/3%wt BPO cPCL composite at the	
	magnification of 1.5 kX.	51
4.2	Storage modulus versus frequency of uncrosslinked PCL and	
	crosslinked PCL at the various crosslinking ratios with and	
	without 2 kV/mm of electric field, % strain 0.03, 25°C.	52
4.3	The comparison of the storage modulus sensitivity ($\Delta G'/G'_0$)	
	as a function of electric field strength from 0 to 2 kV/mm of	
	PCL films at the various crosslinking ratios, % strain 0.03,	
	25°C.	52
4.4	Storage modulus versus frequency of PPP/PCL composites	
	at various PPP compositions with and without 2 kV/mm of	
	electric field, % strain 0.03, 25°C.	53
4.5	The comparison of storage modulus sensitivity ($\Delta G'/G'_0$) as a	
	function of electric field strength from 0 to 2 kV/mm of	
	PPP/PCL composites at various PPP compositions, % strain	
	0.03, 25°C	53

FIGURE	PAGE
4.6 Self-made compliant electrode for shape memory effect	5.4
experiment. 4.7 A schematic diagram of: a) The apparatus for deflection	54
experiment which was deployed to observe the dielectrophoretic behavior of PCL films and PPP/PCL	
composites. The samples were immersed vertically in a	
silicone oil bath in which a DC electric field was applied	
through parallel copper electrodes; b) The actuation mechanism of PCL film and PPP/PCL.	54
4.8 Photographs of the bending experiment of 3% wt BPO cPCL	
at the electric field strength ofs: a) 0 V/mm; b) 500 V/mm and 1.0% v/v 30:1 dPPP/3%wt BPO cPCL at the electric	
field strengths of: c) 0 V/mm; d) 500 V/mm.	55