REFERENCES - Abdi, M.A., and Meisen, A. (2001) <u>Amine Degradation: Problems</u>, Review of Research Achievements, Recovery Techniques. - Aroonwilas, A., and Veawab, A. (2004). Characterization and comparison of the CO₂ absorption performance into single and blended alkanolamines in a packed column. <u>Industrial & Engineering Chemistry Research.</u> 43, 2228-2237. - Astarita, G., Savage, D. W., and Bisio, A. (1983) <u>Gas Treating with Chemical Solvents</u>, New York: John Wiley. - Cavenati, S., Grand, C.A., and Rodrigues, A.E. (2006). Removal of carbon dioxide from natural gas by vacuum pressure swing adsorption. <u>Thermochimica</u> Acta, 410, 23-26. - Charkravarty, T., Phukan, U. K., and Weiland, R. H. (1985). Reaction of acid gases with mixtures of amines. <u>Chemical Engineering Progress</u>, 81, 32-36. - Choi, W. J., Seo, J. B., Jang, S. Y., Jung, J.H., and Oh, K.J. (2009). Removal characteristics of CO₂ using aqueous MEA/AMP solutions in the absorption and regeneration process. <u>Chemical Engineering Progress</u>, 81, 32-36. - Dugas, R., and Rochelle, G. T. (2008) Absorption and desorption rates of carbon dioxide with monoethanolamine and piperazine. <u>Energy Procedia</u>, 1, 1163-1169. - Freeman, S. A., Dugas, R., Wagener, D. V., Nguyen, T., and Rochelle, G. T. (2009) Carbon dioxide capture with concentrated, aqueous piperazine. Energy Procedia, 1, 1489-1496. - Idem, R., Wilson, M., Tontiwachiwuthikul, P., Chakma, A., Veawab, A., Aroonwilas, A., and Gelowitz, D. (2006). Pilot plant studies of the CO₂ capture performance of aqueous MEA and mixed MEA/MDEA solvents at the University of Regina CO₂ Capture Technology Development Plant and the Boundary Dam CO₂ Capture Demonstration Plant. <u>Industrial & Engineering Chemistry Research</u>, 45, 2414-2420. - Kiehl, J. T., and Trenberth, K. E. (1997). Earth's annual global mean energy budget. <u>Bulletin of the American Meteorological Society</u>, 78(2), 197–208. - Kohl, A. L., and Reisenfeld, F. C. (1985). <u>Gas Purification</u>. Houston, Texas: Gulf Publishing. - Kotowicz, J., Chmielniak, T., and Szymanska, K. J. (2010). The influence of membrane CO₂ separation on the efficiency of a coal-fired power plant. Energy, 35, 841-850. - Kyoto Protocol, (2009). Status of Ratification. United Nations Framework Convention on Climate Change. 2009-01-14. - Mandal, B. P., Guha, M., Biswas, A. K., and Bandyopadhyay, S. S. (2001). Removal of carbon dioxide by absorption in mixed amines: modeling of absorption in aqueous MDEA/MEA and AMP/MEA solutions. Chemical Engineering Progress, 56, 6217-6224. - Petrochemical Processes Handbook, (2003). Gulf Publishing Co. - Polasek, J., and Bullin J. A. (2006). Selecting amines for sweetening units. <u>Bryan</u> Research and Engineering, 1-9. - Ritter, J. A., and Ebner, A. D. (2004). <u>Carbon dioxide separation technology: R&D Needs For the Chemical and Petrochemical Industries:</u> http://www.chemicalvision2020.org/pdfs/h2_report.pdf - Saha, A. K., Biswas, A. K., and Bandyopadhyay, S. S. (1999). Absorption of CO₂ in a sterically hindered amine: modeling absorption in a mechanically agitated contactor. <u>Separation and Purification Technology</u>, 15, 101-112. - Samanta, A., and Bandyopadhyay, S. S. (2011). Absorption of carbon dioxide into piperazine activated aqueous N-methyldiethanolamine. <u>Chemical engineering journal</u>, doi:10.1016/j.cej.2011.02.008. - Sartori, G., and Savage, D. W. (1983). Sterically hindered amines for CO₂ removal from gases. <u>Industrial Engineering Chemistry</u>, Fundam, 22, 239-249. - Singh, P., Brilman, D.W.F., and Groeneveld, M.J. (2009). Solubility of CO₂ in aqueous solution of newly developed absorbents. Energy Procedia, 1, 1257-1264 - Strazisar, B.R., Anderson, R.R., and White, C.M. <u>Degradation of MEA Used in Carbon Dioxide Capture from Flue Gas of a Coal-fired Electric Power Generating Station</u>. National Energy Technology Laboratory, Pittsburgh. - Tontiwachwuthikul, P., Meisen, A. and Lim, C. J. (1991). Solubility of CO₂ in 2- amino-2-methyl-l-propanol solutions. <u>Journal of Chemical & Engineering</u> <u>Data</u>, 36, 130-133. - U.S. Greenhouse Gas Emissions Inventory (2006). http://www.epa.gov/climatechange/emissions/usgginventory.html - White, C. M., Strazisar, B. R., Granite, E. J., Hoffman, J. S., and Pennline, H.W. (2003). Separation and capture of CO₂ from large stationary sources and sequestration in geological formations Coalbeds and deep saline. <u>Journal</u> of The Air & Waste Management Association, 53, 645-715. - Yan, S., Fang, M., Luo, Z., and Cen, K. (2009). Regeneration of CO₂ from CO₂-rich alkanolamines solution by using reduced thickness and vacuum technology: Regeneration feasibility and characteristic of thin-layer solvent. Chemical Engineering and Processing, 48, 515–523. - Yoon, S. J., Chauhan, R. K., Shim, J. G., Min, B. Y., Eum, H. M., and Lee, H. (2002) Substituent effect in CO₂-amine interaction investigated by NMR and IR spectroscopy. Theories and Application of Chemical Engineering, 8. - Zhang, P., Yao, S., Jianwen, W., Zhao, W., and Qing, Y. (2008.). Regeneration of 2-amino-2-methyl-1-propanol used for carbon dioxide absorption. <u>Journal of Environmental Sciences</u>, 20, 39-44. ## **CURRICULUM VITAE** Name: Ms. Marita Rattanacom Date of Birth: December 23, 1986 Nationality: Thai **University Education:** 2005-2009 Bachelor Degree of Science, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand Working Experience: March-May 2008 Position: Student Internship in Department of **Production Engineering** Company name: Rayong Gas Separation Plant, PTT Public Co., Ltd. **Proceedings:** 1. Rattanacom, M., Sreethawong, T., Chavadej, S., and Kulprathipanja, S. (2011, April 26) Carbon Dioxide Removal from Flue Gas Using Hybrid Solvent Absorption. Proceedings of The 2nd Research Symposium on Petroleum, Petrochemicals, and Advanced Materials and The 17th PPC Symposium on Petroleum, Petrochemicals, and Polymers, Bangkok, Thailand.