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ABSTRACT

5471030063: Petrochemical Technology Program
W attana Chaisoontornyotin: The Effect of Precipitant on Asphaltene
Aggregation and Deposition.
Thesis Advisors: Prof. H. Scott Fogler and Asst. Prof. Pomthong
Malakul 50 pp.

Keywords: Asphaltene/ Precipitant/ Aggregation/ Deposition

Asphaltenes are fraction of crude oil that cause serious problems in the
petroleum industry. The goal of this study is to compare trends in asphaltene
aggregation and deposition. More specifically, to relate the asphaltene aggregation
particle-particle collision efficiency to the deposition rate by varying the precipitant
carbon number and concentration. Establishing a relationship between the
aggregation and deposition behavior of asphaltenes will provide valuable insight into
both processes. The amount of asphaltenes that are destabilized with different
précipitants and at various concentrations was obtained from centrifugation
experiments, and the collision efficiency for asphaltene aggregation was calculated
using a geometric population balance model. The results revealed that for a fixed
volume fraction of precipitant, the asphaltene-asphaltene collision efficiency
decreased with higher carbon number précipitants. Decreasing the precipitant
concentration resulted in lower collision efficiency. A correlation hetween collision
efficiency and mixture solubility parameter was established for the oil used and
different précipitants. In order to investigate asphaltene deposition hehavior using
different précipitants, the deposition rate was measured using capillary How. The
consistency of the capillary deposition apparatus has been improved by considering
the initial inner diameter of the capillary. Scanning electron microscopy (SEM)
images of the asphaltene deposits were obtained and used to assess the mixing of oil

and precipitant.
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