THE ZnO/QUANTUM DOTS WITH MIXED NATURAL DYES SYSTEM FOR DYE-SENSITIZED SOLAR CELLS

Warunya Junhom

A Thesis Submitted in Partial Fulfilment of the Requirements

For the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University

in Academic Partnership with

The University of Michigan, The University of Oklahoma,

And Case Western Reserve University

2014

Thesis Title: The ZnO/Quantum Dots with Mixed Natural Dyes System for

Dye-Sensitized Solar Cells

By: Warunya Junhom

Program: Polymer Science

Thesis Advisor: Assoc. Prof. Rathanawan Magaraphan

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Assoc. Prof. Rathanawan Magaraphan)

Magazapa

(Asst. Prof. Boonyarach Kitiyanan)

(Assoc. Prof. Jatuphorn Wootthikanokkhan)

ABSTRACT

5572027063: Polymer Science Program

Warunya Junhom: The ZnO/Quantum Dots with Mixed Natural

Dyes System for Dye-Sensitized Solar Cells.

Thesis Advisor: Assoc. Prof. Rathanawan Magaraphan 94 pp.

Keywords: Mixed dyes/ Yellow cotton/ Red orchid/ Spirulina/ Indigo/ Quantum

dots/ Kinetic adsorption/ Isothermal adsorption/ Zinc oxide

This work aims to study the effect of natural dyes and quantum dots on performance of dye sensitized solar cells (DSSCs). ZnO was used as a semiconductor and photoanode that was fabricated by the doctor blade method. The yellow cotton, red orchid, spirulina and indigo were used as a sensitizer. For optical properties of dyes, the maximum absorption wavelength of red orchid, spirulina, indigo and yellow cotton extract was 519, 620, 626 and 488 nm which were obtained from pelargonidin, c-phycocyanin, indigo and quercetin, respectively. Then the conversion efficiency was obtained. It was found that indigo showed the highest conversion efficiency equaled to 0.0200%. Then the method that dyes used to adsorb on ZnO was investigated. The results indicated that the dyes exhibited pseudo-second-order model for kinetic study. Moreover, both the Langmuir and the Freundlich model were used for an isothermal study. In order to enhance the conversion efficiency, the mixed dyes and QDs were chosen for a further study on optical properties and photovoltaic performance. The results illustrated that the absorption and emission intensities increased with the dipping time of QDs. For mixed dyes systems, it was found that the use of a combination of yellow cotton-spirulina resulted in the DSSC with the highest conversion efficiency value of 0.0145% by varying the dipping time of producing QDs on ZnO, it was found that the ZnO/CdS, prepared by using the dipping time of 9 min showed the highest conversion efficiency of 0.0345%.

บทคัดย่อ

วรัญญา จันหอม : จุคควอนตัมบนซิงค์ออกไซค์ และสีข้อมธรรมชาติผสม สำหรับเซลล์ แสงอาทิตข์ชนิดสีข้อมไวแสง (The ZnO/Quantum Dots with Mixed Natural Dyes for Dye-Sensitized Solar Cells) อาจารย์ที่ปรึกษา : รศ.คร. รัตนวรรณ มกรพันธุ์ 94 หน้า

งานวิจัยนี้นำเสนอเกี่ยวกับผลกระทบของสีย้อมธรรมชาติและจุคควอนตัมต่อ ประสิทธิภาพการเปลี่ยนพลังงานแสงอาทิตย์เป็นพลังงานไฟฟ้าของเซลล์แสงอาทิตย์ชนิคสีย้อมไว แสง ในงานวิจัยนี้เซลล์แสงอาทิตย์ทำมาจากสารกึ่งตัวนำซิงค์ออกไซค์ที่เตรียมได้จากวิธีการปาค แบบคอกเตอร์ (doctor blade) คอกสุพรรณิการ์ กล้วยไม้สีแคง สาหร่ายเกลียวทอง และครามถก สกัดเพื่อใช้เป็นสารไวแสง จากการศึกษาสมบัติทางแสงของสีย้อมธรรมชาติ แสดงให้เห็นว่าสีย้อม มีค่าการคูคกลื่นแสงที่มากที่สุดเท่ากับ 519, 620, 626 และ 488 นาโนเมตร ซึ่งสอดคล้องกับ องค์ประกอบทางเคมีภายในคือ พีลาโกนิคิน (Pelargonidin), ซี-ไฟโคไซยานิน (C-phycocyanin), อินคิโก (Indigo) และ เคอร์เซทิน (Qurecetin) ตามลำคับ จากนั้นได้วัดประสิทธิภาพของเซลล์ พบว่าเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสงที่ใช้อินคิโกเป็นองค์ประกอบให้ค่าประสิทธิภาพของ เซลล์สูงที่สุดซึ่งมีค่าเท่ากับ 0.0200% จากการศึกษาวิธีที่สีย้อมใช้ในการยึดเกาะบนซิงค์ออกไซค์ พบว่าสีข้อมใช้ปฏิกิริยาซูโคลำคับที่สองเมื่อศึกษาในค้านของจลศาสตร์ ส่วนค้านของอุณหภูมิ ศาสตร์พบว่าสีย้อมใช้รูปแบบทั้งของแลงเมียร์ (Langmuir) และฟรอยลิคค์ (Freundlich) ในการยึค เกาะบนซิงค์ออกไซค์ เพื่อที่จะเพิ่มค่าประสิทธิภาพของเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสง สีย้อม ผสมและจุคควอนตับถูกเลือกมาเพื่อใช้ในการศึกษานี้ จากการศึกษาสมบัติทางแสง จากการศึกษา สมบัติทางแสงชี้ให้เห็นว่าค่าความเข้มจะสูงขึ้นเมื่อเวลาในการจุ่มเพื่อสร้างจุคควอนตัมเพิ่มขึ้น สำหรับสีย้อมผสมพบว่าค่าประสิทธิภาพของเซลล์ในระบบสีย้อมคอกสุพรรณิการ์ผสมกับสีย้อม สาหร่ายเกลียวทองให้ค่าประสิทธิภาพของเซลล์สูงที่สุดซึ่งมีค่าเท่ากับ 0.0145% แล้วระบบการ ผสมสีข้อมนี้ถูกนำมาใช้ในการศึกษาผลกระทบของจุคควอนตัมต่อประสิทธิภาพของเซลล์โคยการ เปลี่ยนเวลาที่ใช้ในการจุ่มขั้ว ซิงค์ออกไซค์เพื่อสร้างจุคควอนตัม พบว่าแคคเมียม (II) ซัลไฟค์บน ซิงค์ออกไซค์ที่เวลาการจุ่ม 9 นาทีให้ค่าประสิทธิภาพของเซลล์ที่สูงที่สุดมีค่าเท่ากับ 0.0345%

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to my advisor, Assoc. Prof. Rathanawan Magaraphan, for providing valuable guidance, inspiration, encouragement, and opportunities. Also, I am very grateful to Asst. Prof. Boonyarach Kitiyanan and Assoc. Prof. Jatuphorn Wootthikanokkhan, member of the thesis committee for their kind cooperation.

I would like to appreciate Asst. Prof. Sojipong Chattraporn from the Department of Physics, Faculty of Science, Chulalongkorn University for the suggestion and Asst. Prof. Viwat Vchirawongkwin from the Department of Chemistry, Faculty of Science, Chulalongkorn University for the kind support of the molecular simulator. In addition, I would like to thanks all faculty members and staffs at The Petroleum and Petrochemical College, Chulalongkorn University for their knowledge and assistance.

Moreover, I would like to give my special thanks to all members in my research group, as well as all of my friends for their friendship, encouragement and kind assistance.

This thesis work is funded by The Petroleum and Petrochemical College; The National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials,

Thailand, and the Government Budget 2012-2013, Thailand.

- Finally, I wish to express my deep gratitude to my family for their love, understanding and encouragement during all year spent for my M.S. study.

TABLE OF CONTENTS

		PAGE
Title	Page	i
Abst	tract (in English)	iii
Abst	tract (in Thai)	iv
- Ackı	nowledgements	v
Tabl	e of Contents	vi
List	of Tables	x
List	of Figures	xi
Abb	reviations	xiv
List	of Symbols	XV
СНАРТЕ	R -	
I	INTRODUCTION	1
II	THEORETICAL BACKGROUND AND	
	LITERATURE REVIEW	3
	2.1 Dye-Sensitized Solar Cell	3
	2.2 Operating Principle of Dye-Sensitized Solar Cell	3
	2.3 Components of Dye-Sensitized Solar Cells	5
	2.3.1 Photosensitizers	5
	2.3.2 Electrolytes	7
	2.3.3 Counter-Electrode	7
	2.4 Efficiency Factors	8
	2.5 Natural Dye for Sensitizer	10
	2.6 Quantum Dot Sensitizer (QD)	12
	2.6.1 Preparation of QD	12
	2.6.2 Electrolyte-Mediated Charge Transport	13
141	2.6.3 CdS QD	13
	2.6.4 ZnS QD	13

CHAPTER		PAGE
	2.6.5 Ag ₂ S QD	14
Ш	EXPERIMENTAL	15
	3.1 Materials	15
	3.2 Instruments	16
	3.3 Experimental Procedures	16
	3.3.1 Preparation of Natural Dye Sensitizers	16
	3.3.2 Preparation of ZnO for Doctor-blading Method	16
	3.3.3 Preparation of Pt Electrode	17
	3.3.4 Fabrication of DSSC	17
	3.3.4 Batch Adsorption Studies	17
	3.4 Characterizations	18
	3.4.1 Physiochemical Characterization	18
	3.4.2 Photoelectrochemical Measurement	18
IV	STUDY OF NATURAL DYES FOR DYE-SENSITIZED	
	SOLAR CELLS	19
	4.1 Abstract	19
	4.2 Introduction	19
	4.3 Experimental	20
	4.3.1 Materials	20
	4.3.2 Preparation of Natural Dye Sensitizers	21
	4.3.3 Preparation of ZnO for Doctor-blade Method	21
	4.3.4 Preparation of Pt electrode	21
	4.3.5 Fabrication of DSSC	22
	4.3.6 Batch Adsorption Studies	22
	4.3.7 Characterizations	22
	4.4 Results and Discussion	23
	4.4.1 Absorption Spectrum of Dyes Solution	23
	4.4.2 FT-IR Spectroscopy	26

CHAPTER		PAGE
	4.4.3 Surface Morphology and Characterization of ZnO by	
	Doctor-blade Method	28
	4.4.4 Kinetic Adsorption Studies	30
	4.4.5 Isothermal Adsorption Studies	33
	4.4.6 Performance of Natural DSSCs	37
	4.5 Conclusion	39
	4.6 Acknowledgement	39
	4.7 References	39
V	STUDY OF QUANTUM DOTS AND MIXED DYES FOR	
	ENHANCE THE CONVERSION EFFICIENCY OF	
	DYE-SENSITIZED SOLAR CELL	42
	5.1 Abstract	42
	5.2 Introduction	43
	5.3 Experimental	44
	5.3.1 Materials	44
	5.3.2 Preparation of Natural Dye Sensitizers	45
	5.3.3 Preparation of Mixed Natural Dye Sensitizers	45
	5.3.4 Preparation of ZnO Film	45
	5.3.5 Preparation of QDs	45
	5.3.6 Preparation of Platinum (Pt) Electrode	46
	5.3.7 Fabrication of DSSC	46
	5.3.8 Characterizations	46
	5.4 Results and Discussion	47
	5.4.1 Absorption Spectrum of QDs in Ethanol and QDs on	
	ZnO Film	47
	5.4.2 Emission Spectra of QDs in Ethanol	50
	5.4.3 Structure and Morphology of QDs on ZnO Film	53
	5.4.4 Absorption of Mixed Dyes and Mixed Dyes on ZnO	54
	5.4.5 Absorption of Mixed Dyes on ZnO/QDs	57

CHAPTER		PAGE
	5.4.6 Surface Morphology of ZnO/QDs	58
	5.4.7 Performance of QDs on ZnO DSSCs	62
	5.4.8 Performance of Mixed Dyes on ZnO DSSCs	63
	5.4.9 Performance of Pure Dyes on ZnO/QDs	
	Semiconductor DSSC	65
	5.4.10 Performance of Mixed Dyes on ZnO/QDs	
	Semiconductor DSSC	68
	5.5 Conclusion	71
	5.6 Acknowledgement	72
	5.7 References	72
VI	CONCLUSIONS AND RECOMMENDATIONS	74
	6.1 Conclusions	74
	6.2 Reccomandations	75
	REFERENCES	76
	APPENDICES	81
	Appendix A Extinction coefficient of natural dyes	81
	Appendix B Calibration curve of kinetic adsorption studies	82
	Appendix C Calibration curve of isothermal adsorption studies	84
	Appendix D FE-SEM cross-section images with particle size	
	analysis of ZnO and ZnO/QDs	86
	CURRICULUM VITAE	94

LIST OF TABLES

TABL	LE	PAGE
4.1	Extinction coefficient of four natural dyes in deionized water	25
4.2	Kinetic parameters of kinetic models for the adsorption of natural dyes	3
	onto ZnO semiconductor	31
4.3	Langmuir and Freundlich parameters for the adsorption of natural dyes	3
	onto ZnO semiconductor	35
4.4	The Efficiency parameters of DSSC with natural dyes	38
5.1	The Particle size of ZnO/QDs at various dipping time	62
5.2	The efficiency parameters of mixed dyes on ZnO for DSSC	63
5.3	The efficiency parameters of mixed dyes on ZnO/QDs for DSSC	65
5.4	The efficiency parameters of natural dyes and natural Dye/CdS QD	
	on ZnO for DSSC	68
5.5	The efficiency parameters of mixed dyes on ZnO/QDs for DSSC	69

LIST OF FIGURES

FIGU	FIGURES	
2.1	Principle of operation of dye-sensitized solar sell.	4
2.2	All reactions of DSSC.	4
2.3	Chemical Structure of Synthetic Dyes.	6_
2.4	The current versus voltage curve and power versus voltage curve.	9
2.5	Chemical structure of natural dyes.	11
2.6	Valence energy bands separated with energy gap, Eg,0.	12
3.1	DSSC assembly.	17
4.1	UV-Visible absorbance spectrum of natural dyes solution.	23
4.2	Photographic images of natural dyes.	24
4.3	Photographic images of dyes solution.	24
4.4	Photographic images of their molecular structures.	25
4.5	UV-Visible absorbance spectrum of natural dyes on ZnO.	26
4.6	FT-IR spectrum of dyes and dyes on ZnO.	28
4.7	XRD pattern of ZnO film fabricated by doctor blade method.	29
4.8	Cross-section FE-SEM images of ZnO film.	29
4.9	Effect of interval time of each dye onto ZnO.	30
4.10	Experimental data, pseudo-first-order and pseudo-second-order of	
	natural dyes on ZnO.	33
4.11	Langmuir plots for adsorption of natural dyes on ZnO.	36
4.12	Freundlich plots for adsorption of natural dyes on ZnO.	36
4.13	Experimental data, Langmuir model and Freundlich model of natural	
	dyes on ZnO.	37
4.14	The J-V characteristics of DSSC with natural dyes.	38
5.1	UV-Visible absorption spectra of QDs in ethanol.	47
5.2	UV-Visible absorption spectra of ZnS on ZnO film at various times.	48
5.3	UV-Visible absorption spectra of Ag ₂ S on ZnO film at various times.	49
5.4	UV-Visible absorption spectra of CdS on ZnO film at various times.	50
5.5	Fluorescence emission spectra of QDs in ethanol.	51

FIGU	FIGURES	
5.6	Fluorescence emission spectra of ZnS QDs in ethanol at various	
	dipping time.	51
5.7	Fluorescence emission spectra of CdS QDs in ethanol at various	
	dipping time.	52
5.8	Fluorescence emission spectra of Ag ₂ S QDs in ethanol at various	
	dipping time.	52
5.9	The XRD patterns of QDs on ZnO at dipping time 9 minute and ZnO	
	Powder.	53
5.10	UV-Visible absorption spectra of dyes solution	
	(mixed yellow cotton-indigo system).	54
5.11	UV-Visible absorption spectra of dyes solution	
	(mixed yellow cotton-red orchid system).	55
5.11	UV-Visible absorption spectra of dyes solution	
	(mixed yellow cotton-spirulina system).	56
5.13	UV-Visible absorption spectra of dyes solution	
	(mixed indigo-spirulina system).	57
5.14	UV-Visible absorption spectra of mixed dyes on ZnO of natural dyes.	58
5.15	FE-SEM cross-section images of the ZnO/CdS QD at various times.	59
5.16	FE-SEM cross-section images of the ZnO/ZnS QD at various times.	60
5.17	FE-SEM cross-section images of the ZnO/Ag ₂ S QD at various times.	61
5.18	The J-V characteristics of DSSC with QDs.	63
5.19	The J-V characteristics of DSSCs with mixed yellow cotton-spirulina	
	on ZnO/ZnS QD.	64
5.20	The J-V characteristics of DSSC with yellow cotton dye and CdS QD.	66
5.21	The J-V characteristics of DSSC with indigo dye and CdS QD.	66
5.22	The J-V characteristics of DSSC with red orchid dye and CdS QD.	67
5.23	The J-V characteristics of DSSC with spirulina dye and CdS QD.	67
5.24	The J-V characteristics of DSSCs with mixed yellow cotton-spirulina	
	on $7n\Omega/7nS\Omega\Omega$	60

FIGURES		PAGE
5.25	The J-V characteristics of DSSC with mixed yellow cotton-spirulina	
	on ZnO/CdS QD.	70
5.26	The J-V characteristics of DSSC with mixed yellow cotton-spirulina	
	on ZnO/Ag ₂ S QD.	71

ABBREVIATIONS

CBD Chemical bath deposition

DSSC Dye-sensitized solar cell

FF Fill factor

FTO Fluorine-doped tin oxide

HOMO Highest occupied molecular orbital

 I^{-} Iodide I_2 Iodine

I₃ Triiodide

LiI Lithium iodide

LUMO Lowest unoccupied molecular orbital

NIR Near infrared
PV Photovoltaic

TiO₂ Titanium dioxide

QDs Quantum dots

UV Ultraviolet

Vis Visible

ZnO Zinc oxide

LIST OF SYMBOLS

J Current densities

J_m Maximum-current point

J_{sc} Short-circuit current

V Voltāge

V_{oc} Open-circuit voltage

V_m Maximum-voltage point

P - Power density

η Conversion efficiency