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1. INTRODUCTION

1.1. Motivation

Machine translation, automatic text summarization, dependency parsing, and semantic
parsing are useful for processing, analyzing, and extracting meaningful information from text.
These tasks require a basic unit that has a simple grammatical structure to reduce the tasks'
complexity. For example, dependency parsing [1], which extracts a syntactic structure for
language understanding, needs to consider every word pair in the text to assign a relation. Thus,
the complexity of dependency parsing depends on the input text's sequence length. If the text is
segmented into smaller parts, the task will be easier to perform. However, the basic unit should
be not only as small as possible but also required to be complete in itself. For instance, if the
basic unit is too short and does not contain sufficient information, many meaningful relations in
dependency parsing will not be extracted inside the basic unit. Thus, the basic unit should be

small yet contain complete meaning to make the mentioned tasks more efficient.

A sentence is raised as a basic unit because a sentence is always complete in itself.
Moreover, a sentence can also be easily extracted from raw text because the sentence
boundaries in English are easily identified by a period (“.”) [2]. Many prior works require a
sentence to perform their tasks. For example, in machine translation, a sentence pair is required
for supervised training [3-5]. Meanwhile, many automatic text summarization works treat a
sentence as one item of information and select the important ones to be summarized [6-8].
Dependency parsing also requires a sentence as an input text to extract its syntactic structure

that the machine understands [1, 9, 10].

However, there is no explicit end-of-sentence marker for identifying the sentence boundary
in some written languages, such as Thai, Arabic, Khmer, and Lao [11]. Therefore, extracting
sentences from raw text in these languages is not trivial. For example, “He wishes to buy 4
ingredients for cooking an omelet. Therefore, he goes shopping and buys an egg, milk, salt, and
pepper.” The text can be segmented with a period “.” into two sentences “He wishes to buy 4
ingredients for cooking a fried egg.” and “Therefore, he goes shopping and buys an egg, milk, salt,
and pepper.” Meanwhile, in Thai, the same text is “ wnFesnsfiaztedaulsznen 4 etnedmsininlai@en
sahuandslels v inde uazwinna” Note that there is no punctuation or even a word to indicate
where the text should be segmented. Although most Thai people usually use a space character

as a sentence boundary, the illustrated text shows that only one out of six space characters is a



sentence boundary. Therefore, there is no explicit marker for identifying sentence boundaries to

segment the text, especially for the exemplified case.

Prior works on Thai sentence segmentation have adopted traditional machine learning
models to predict where a sentence boundary is in the text. The authors of [12-14] proposed
traditional models to determine whether a considered space is a sentence boundary based on
the words and their part of speech (POS) near the space. Although a space is usually considered
essential as a sentence boundary marker in Thai, approximately 23% of the end of sentences is
not a space character in a news domain corpus [15]. Thus, Zhou N. et al. [15] proposed a
conditional random field (CRF)-based model with n-gram features to predict which word is the
sentence boundary. This work considered Thai sentence segmentation as a sequence tagging
problem similar to named entities recognition and part-of-speech tagging. Each word in the text
will be classified whether it is the end of a sentence or not, as shown in Figure 1. With a CRF
module [16], the model extracts sentence-level tag information, where each prediction in a
sequence considers the previous predicted tags instead of only the input words. Meanwhile, the
n-gram [17], which is an input feature, is constructed from a combination of words around the
considered position. This method achieves the state-of-the-art result for Thai sentence
segmentation and achieves greater accuracy than other models by approximately 10% on the

Orchid dataset [18].

I’'m interested to register a new card. What should I do?
aula alns Uns Ay fioq g dals Ay
(son teaj) (samak) (bart) (k"rdb) (ton) (t"am) (jan naj) (k"rib)
sb sb

Figure 1. An example of a labeled paragraph. Here, sb represents a sentence boundary.

Several deep learning approaches have been applied in various tasks of natural language
processing (NLP), including the long short-term memory [19], self-attention [20], and other
models. To tackle the sequence tagging problem, Huang Z. et al. [21] proposed a deep learning
model called Bi-LSTM-CRF, which integrates a CRF module to gain the benefit of both deep
learning and traditional machine learning approaches. In their experiments, the Bi-LSTM-CRF
model achieved an improved level of accuracy in many NLP sequence tagging tasks, such as
named entity recognition, POS tagging and chunking. This model is also used as a base
(backbone) model for many works that achieve promising accuracy in sequence tagging tasks.

[22-26].



In this work, two models are chosen as baseline models. First, the Bi-LSTM-CRF model is
adopted as our baseline and backbone model because many sequence tagging works also apply
the model as a backbone model and vyield respectable performance. Second, the CRF model,
which achieved the best result on the Thai sentence segmentation task [27] is also treated as

another baseline model to compare with prior works.

This work makes three contributions to improve Bi-LSTM-CRF for Thai sentence
segmentation. These contributions apply the suitable deep learning modules carefully to tackle

various problems of this task. Each contribution is described as follows.

First, we propose adding n-gram embedding to Bi-LSTM-CRF due to its success in [27]. To
integrate n-gram features in Bi-LSTM-CRF, the feature is embedded into a dense embedding
vector trained along with the model. With the n-gram embedding addition, it can extract a local
representation from n-gram embedding, which helps in capturing word groups that exist near a
sentence boundary. Although Jacovi A. et al. [28] reported that a convolutional neural network
(CNN) can be used as an n-gram detector to capture local features, we chose n-gram embedding

over a CNN due to its better accuracy, as will be shown in Section 5.4.1.

Second, we propose adding distant representation into the model via a self-attention
mechanism [20], which can focus on the keywords of dependent clauses that are far from the
considered word. Self-attention has been used in many recent state-of-the-art models, most
notably the Transformer [20] and Bidirectional Encoder Representations from Transformers (BERT)
[29]. BERT has outperformed Bi-LSTM on numerous tasks, including question answering and
language inference. Therefore, we choose to use self-attention modules to extract distant

representations along with local representations to improve model accuracy.

Third, we also apply two techniques to utilize unlabeled data: semi-supervised learning and
a pre-training method, which are essential for low-resource languages such as Thai, for which
annotation is costly and time-consuming. The first technique is semi-supervised learning [30].
Many semi-supervised learing approaches have been proposed in the computer vision [31, 32]
and natural language processing [33-35] fields. Our choice for semi-supervised learning to
enhance model representation is Cross-View Training (CVT) [33]. Clark K. et al. [33] claim that CVT
can improve the representation layers of the model, which is our goal. However, CVT was not
designed to be integrated with self-attention and CRF modules; consequently, we provide a

modified version of CVT in this work.



Instead of using only CVT to improve the representation with unlabeled data, the pre-
training method is also adopted in our model. There are many proposed pre-trained word
representations in the field of NLP [29, 36-38]. In this task, to decide whether each word is a
sentence boundary, the context of the given text is essential. Thus, contextualized word
representations are chosen over Word2Vec [37] that embeds each word independently from the
context. Currently, BERT [29] or other variant contextual models of BERT are usually a part of the
state-of-the-art methods for many tasks [22, 39, 40]. However, BERT models require a large
amount of GPU memory in the training process. Therefore, ELMo, which needs less GPU memory
than BERT [41], is chosen in this work due to our resource limitations. Note that some variants of
BERT models are also optimized for less memory usage but require additional techniques, such
as knowledge distillation [41] and factorized embedding parameterization [42], which requires

further investigation on the Thai corpus.

Based on the above contributions, we pursue the experiment on Thai sentence
segmentation. The experiment is performed on two Thai sentence segmentation datasets,
including Orchid and UGWC [43]. In the experiment, the proposed model is compared to four
existing methods: POS-trigram [13], Winnow [12], Maximum entropy [14], and CRF [27]. Moreover,
we also perform ablation studies, which add each proposed contribution sequentially to observe
their individual effect on the performance. The ablation studies found that local representation
(n-grams) vyields the largest improvement on Thai sentence segmentation; thus, its effect is

further analyzed using interpretation techniques.

1.2. Research objectives

This thesis aims to solve Thai sentence segmentation using a deep learning method. The
main hypothesis is “The accuracy in Thai sentence sesmentation will be enhanced by applying
various deep learning modules and training with a semi-supervised method along with a pre-
trained language model.” Moreover, we also perform an interpretation of n-gram features to
reveal the understanding of the trained model. To sum up, the following two objectives are

specified and will be addressed by the proposed contributions in this work:

® To propose a novel deep learning model for Thai sentence segmentation

® To utilize unlabeled data with semi-supervised techniques to improve the

representation of a model along with a pre-trained language model



1.3. Contributions

The studies in this thesis will focus on four main contributions to improve the accuracy of

the model in Thai sentence segmentation as following:

® \We added n-gram features to Bi-LSTM-CRF as local representation to captures the word
groups around boundaries.

® \We applied self-attention modules to extract a distant representation that focuses on
the keywords in the dependent clause.

® \We presented a semi-supervised learning technique or CVT, which is specific for Thai
sentence segmentation, to utilize unlabeled data.

® \We adapted ELMo or deep contextual embedding as a pre-trained language model to

improve the representation of the model.

1.4. Thesis outline

Chapter 2 presents an overview of background knowledge that is related to this thesis. A
sentence in Thai is defined. Deep learning modules, which are used in this work, are reviewed.
Furthermore, we describe how to apply a deep learning model with semi-supervised learning and
elaborate on the detail of CVT. The pre-trained language model and ELMo are also included in

this chapter. Finally, interpretation approaches of a deep learning model are explained.

In Chapter 3, we review the prior works of Thai sentence segmentation for a comparison
with our model. Moreover, we also review the literature on a related task which is English

punctuation restoration.

Chapter 4 presents our proposed model architecture, including local and distant features.
We also provide how to train the model with a novel CVT and how to pre-trained the language

model.

In Chapter 5, we describe the experimental setups and the results on both Thai sentence
segmentation and English punctuation restoration. The data statistics and hyper-parameter in our
experiments are described in the experimental setups section. Meanwhile, the results show a
comparison between our model and the baseline and the improvement of each contribution.

Moreover, we analyze how the proposed contribution improves the model. In addition, to



understand the impact of n-gram features, we also perform the model interpretation to indicate

the importance of local representation is in both tasks.

Finally, Chapter 6 concludes this thesis and shows the best performance for each task. Also,

we summarize the ablation studies about each contribution.



Research schedule

1.5.

In this section, Gantt chart is provided with the project’s activities and the duration of each

activity
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Define research problem

Make research assumptions

Implement baseline model

Implement proposed model

Perform experiment

Revise model structure

Implement proposed model #2

Perform experiment #2

Revise model structure #2

Implement proposed model #3

Perform experiment #3

Revise model structure #3

Analyse the result

\Write research paper

Submit to journal

Write proposal document

Present Proposal document

Review literature #2

Perform experiment #4

Review literature #3

Perform experiment #5

Review literature #4

Perform experiment #6

Review literature #5

Perform experiment #7

Review literature #6

Perform experiment #8

Write final document

Present final document




1.6. Publications

The work in this thesis primarily relates to the following peer-reviewed article:

1. Saetia, C., Chuangsuwanich, E., Chalothorn, T., & Vateekul, P. (2019). Semi-supervised Thai

Sentence segmentation using local and distant word representations. Engineering Journal.



2. BACKGROUND KNOWLEDGE

In this chapter, the background knowledge related to this work is presented. There are four
subsections included. The first section describes what a sentence is in Thai. Second, deep
learning models related to the work is described. Third, we explain semi-supervised learning
algorithms, including Cross-View Training. Finally, the last subsection presents various of pre-

trained language models.
2.1. Sentence in Thai

A sentence is considered as a minimal syntactic unit for many tasks such as text
summarization, question answering, and machine translation. To extract sentences from the input
text, a machine exploits the explicit sentence marker like period “.” in English for identifying

sentence boundary.

However, there are several languages, such as Thai, Lao, and Myanmar, of which sentence
marker is not explicit. In Thai, the text does not contain any marker which certainly identifies the
sentence boundary; nevertheless, the Thai writer usually uses space as a vital element to
separate apart of text into the sentence. In contrast, there are also three ways to use space in
contexts [44]. The first is before and after an interjection. The second is before conjunctions.
Before and after a numeric expression is the last one. Therefore, segmenting text into sentences

is not simply performed by splitting with space.

As studied in [11], annotated sentence boundary is found in three cases with substantial
agreement among people. First, the sentence boundary is found when the topic shift occurs.
Second, the overt noun and pronoun, which is used for continuing the topic in a coordinate
clause, is seen as the sentence boundary. In addition, the coordinate clause, which is identified
from a zero subject, is not considered as a new sentence. The last case is that sentence
boundary is identified where the discourse marker is found, such as “Lagmau” (and then),
“maeAszEvIANRINaNil” (throughout this period), “luasietu” (in this period) and “luszezusn” (in

the first phrase), is found.

We also provides ten examples of sentence segmentation from various sources including

Pantip’s posts, books and dissentions.

:|)

is considered as a sentence boundary in the following

text.
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2.2. Deep learning models for NLP

There are various deep learning techniques which are used in NLP and achieve improved
results on numerous tasks, including LSTM, self-attention, and others. There are two techniques

used in this work and described as follows.
2.2.1. Long-short term memory (LSTM) [19]

Long-short term memory (LSTM) is one type of recurrent neural network (RNN). RNN can
capture the temporal pattern from an input sequence; meanwhile, the traditional neural network
assumes that each time step of an input sequence is independent of each other. Hence, RNN,
which utilizes input and history of the previous sequence, gives the promising accuracy over a
traditional neural network in many NLP tasks, such as named entity recognition, POS tagging, and
semantic role labeling. Although, in theory, vanilla RNN can capture arbitrary long-term
dependency information from an input sequence, its practical training process faces the vanishing
gradient problem, in which the model cannot learn from a long sequence of input. Therefore,

LSTM is proposed to avoid this problem by allowing the gradient to flow unchanged.

LSTM is composed of a cell, input gate, output gate, and forget gate, as shown in Figure 2.
The cell takes charge of remembering the values from the previous sequence; meanwhiles, the
gates control the flow of in and out information. The calculation of each gate is defined in
Equations 1 to 3. Each function takes the input representation of the current position x, and the

hidden state of the previous position h;_; as an input where W,, U,, and b, denote as a weight
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matrix and bias of linear transformations; meanwhile, o, and o, represent the sigmoid and

hyperbolic tangent function.

ht
Cus 4+ -
. @
ha & h.
Xt
Figure 2. An architecture of LSTM [45].
fe = 04,(Wsx, + Ushe—y + by) ¢h)
iy = 0g(Wix¢ + Uihe—q + by) (2)
0r = 0g(WoX¢ + Ughe 4 +by) 3)

In each timestep, the model utilizes the output from these gates and generates two types
of state. The first type is the cell state, which is used to calculate ¢;, as shown in Equation 4. This
cell state represents the memory from the previous sequence, where the forget gate determines
whether the memory persists. Furthermore, by using forget gate combine with cell state without
an input, LSTM can allow the gradient can flow over a long input sequence and get rid of the
vanishing gradient problem. The second type is a hidden state, namely, the output of LSTM. The
calculation of this hidden state h; is shown in Equation 5, where the output gate and cell state

go through element-wise multiplication to receive the hidden state.

¢t =ft ®ceor +i Do Wexe + Uche—y + be) 4)
hy = 0, @ oc(ct) (5)

2.2.2. Self-attention [20]
Attention mechanism has become popular in many tasks of NLP, including machine

translation, question answering, and others. Attention mechanism allows the model to focus

selectively on each word regardless of the distance between words.
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However, the attention mechanism relies on both input and output, which sometimes need
the information from the previous sequence; therefore, the attention mechanism cannot be
parallelized in the computation. To handle the mentioned problem, Self-attention mechanism is
proposed. The only input sequence is considered in self-attention mechanism to learn the
attention matrix; thus, the model can compute immediately without waiting to generate a

previous output sequence and gain the ability of parallelization.

One of variant self-attention mechanism is Scaled-dot-product attention, of which inputs are
keys K, query @, and value V vectors and computed, as shown in Equation 6. The dot products
of the key and query vectors are performed, and then scaled by dividing de where dj, is the
number of dimensions of key and query vectors. After that, an attention matrix is acquired from
applying the softmax function to the scaled matrix. Finally, the matrix product of the computed
attention matrix and value vectors is calculated to be the output of Scaled-dot-product

attention.

KT
ScaledDotProductAttention(K, Q,V) = Softmax <Q = ) %4 (6)
k

2.3. Semi-supervised learning

While deep neural networks achieve a satisfying accuracy over traditional methods, the
model requires massive labeled data to generalize. Especially in NLP, an annotation of each task
requires specialized knowledge from linguists; hence, receiving labeled data is costly and time-
consuming. While suffering from the scarcity of labeled data, unlabeled data is utilized in the

training process to improve the model.

There are many proposed semi-supervised learning approaches [30], which achieves
successful results. Self-training [46, 47] is the simplest and earliest approach. As the name
implied, the model, which trained with labeled data, is used to predict unlabeled data, and then

the predicted confident data are used for training until there is no confident data.

However, training with self-training, the model cannot correct and magnify their error
comes from wrong confident data. Therefore, multi-view training approaches [35, 48-50] are
proposed to train different models with different views of data. In the first place, each model in
multi-view training is learned separately, which take expensive computation. Ruder S. et al. [35]

proposed multi-task tri-training to use with deep models for NLP tasks. Inspired by multi-task
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learning, this semi-supervised approach train three models which share the intermediate

representation.

Recently, instead of multi-view training only with the full model, Cross-view training (CVT)
[33] trains auxiliary views, which are generated from the restricted input, to match the primary
view, which comes from the full view of input. Due to the lower computation and better
accuracy of CVT, this method is selected as a semi-supervised learning algorithm to improve the
representations of the proposed model. The detail of CVT is described in the following

subsection.

2.3.1. Cross-view training (CVT) [33]

CVT is a semi-supervised learning technique whose goal is to improve the model
representation using a combination of labeled and unlabeled data. During training, the model is

trained alternately with one mini-batch of labeled data and B mini-batches of unlabeled data.

Labeled data are input into the model to calculate the standard supervised loss for each
mini-batch and the model weights are updated regularly. Meanwhile, each mini-batch of
unlabeled data is selected randomly from the pool of all unlabeled data; the model computes
the loss for CVT from the mini-batch of unlabeled data. This CVT loss is used to train auxiliary
prediction modules, which see restricted views of the input, to match the output of the primary
prediction module, which is the full model that sees all the input. Meanwhile, the auxiliary
prediction modules share the same intermediate representation with the primary prediction

module. Hence, the intermediate representation of the model is improved through this process.

Similar to the previous work, we also apply CVT to a sequence tagging task. However, our
model is composed of self-attention and CRF modules, which were not included in the sequence
tagging model in [33]. The previous CVT was conducted on an LSTM using the concepts of
forward and backward paths, which are not intuitively acquired by the self-attention model [20].
Moreover, the output used to calculate CVT loss was generated by the softmax function, which
does not operate with CRF. Thus, in our study, both the primary and auxiliary prediction modules

needed to be constructed differently from the original ones.

Similar to the previous work, we also apply CVT to a sequence tagging task. However, our
model is composed of self-attention and CRF modules, which were not included in the sequence

tagging model in [33]. The previous CVT was conducted on an LSTM using the concepts of
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forward and backward paths, which are not intuitively acquired by the self-attention model [20].

attending all words of an input at the same time.

Moreover, the output used to calculate CVT loss was generated by the softmax function,
which does not operate with CRF. Thus, in our study, it is necessary for both the primary and

auxiliary prediction modules to be constructed differently from the original modules.

2.4, Pre-trained language model

Employing unlabeled data, many approaches in NLP tasks use the concept of pre-train to
create representations from the massive unlabeled text. Pre-trained word vectors [37] are firstly
proposed to generate dense word representations from tremendous data instead of sparse
representations, such as one-hot vectors or TF-IDF. These pre-trained word vectors are included
as the input representation to improve the performance of a model. However, utilizing pre-
trained word vectors do not regard of context around the words; thus, a pre-trained language
model, which is trained from enormous unlabeled data, is presented to acquire contextual word

representations [51, 52].

The successful pretraining objectives are generally classified into two types, autoregressive
(AR) and autoencoder (AE). AR are trained for estimating the probability distribution of the next
word given the previous sequence; on the other word, AR encodes only uni-directional context.
Meanwhile, AE intends to predict the original text from the corrupted text; therefore, AE can

consider a bi-directional context from the corrupted text.

There are various pre-trained language models proposed to utilize enormous unlabeled
data. Peter M. E. et al. [36] proposed ELMo, which exploits Bi-LSTM to extract the contextual
information from the text. ELMo is leared using the concept of autoregressive where the word

representation is generated from the forward and backward paths of Bi-LSTM.

From the success of Transformer, OpenAl GPT [38] utilizes Transformer instead of Bi-LSTM to
be a pre-trained language model. OpenAl GPT is also trained with autoregressive like ELMo.
Utilizing both left and right context jointly, BERT [29] uses the concept of the masked language
model to train Transformer in an autoencoder way. The words in input text are randomly
dropped and fed to the model, and then the rest of the input text tries to restore the dropped

words.
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In this work, we utilize the output of ELMO as a part of the input vectors of the model. The
reason that we choose ELMO instead of BERT is using the transformer approach requires a too

high amount of memory to fit in our GPU.
2.4.1. Embedding from Language Model (ELMo) [36]

Word representation is an embedding of the word which is changed from discrete
representation into dense and continuous representation. Before ELMo is invented, the word
embedding is pre-trained in a context-independent way. Therefore, Peter M. E. et al. proposed

the new way to embed the sequence of words to be the input vectors for target tasks.

This representation exploits two techniques to improve the capability of word vectors. First,
sequences of characters in word are used as part of an input to improve robustness in spell error
and comprehend an affix of words. Second, a model exploits the Bidirectional language model
concept (BiLM) to learn the context of a sentence. By applying these two concepts, the
representation gain the understanding of a complex characteristic of words and usability of the

word in various linguistic context.

The architecture of the model is based on L layers of Bi-LSTM. The input of the model X is
composed of context-independent word embedding and character-based representation which
produced by CNN. In Equation 7, Each step t is embedded as a single vector R, where 71%’1” is
forward path output, Eﬁ’}" is backward path output of layer j. The vector R, comprise forward and
backward path output from every L layer. As a result, ELMo representation or R, acquire the
advantage of different information provided by each layer.

R, = {xf™ hi™, hEM|j =1, ..., L} 7

In the pretraining process, the model is taught by the autoregressive concept or next-word
prediction. In a forward path, each token x; is predicted from {x;|t =1, ...,k — 1} as shown in
Equation 8. Meanwhile, in a backward path, each token x;, is predicted from {x;|t =k +1,...,T}
as shown in Equation 9. The combination of both forward and backward paths is jointly
formulated into the loss, as shown in Equation 10. Note that forward and backward path output

is independently calculated, but its parameters of Bi-LSTM are sharing.

T

p(xq, X3, ooy X7) = np(xk|x1:x2: oy Xp—1) 3

k=1
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T
p(xy, X3, e, X7) = l_lp(xklxk+1’xk+2: e X7) C))
k=1
T
Z(logp(xklxl,xz, s Xg—1) F logp (x| X1, Xie 20 ---;xr)) (10)
k=1

2.5. Interpretation process

Although deep learning models make an advance in the NLP domain, there are always
questions about how the models think when they operate their tasks. The prior works show that
sometimes the model learns unwanted social biases from the training data [53] or understands
superficial patterns to perform their tasks [54]. Therefore, the human tries to understand the

models and gives feedback when they make a mistake.

To perform the interpretation at an instance level, many researchers provide various
methods to explain the prediction in different aspects [53, 55-58]. There are also invented tools

that ease to adapt to text classification [58, 591.

An intermediate layer interpretation is also studied in many fields. In computer vision, the
activation of each convolutional layer is utilized to show how the features of the images are
crafted [60]. Meanwhile, in NLP, the attention mechanism is used in a machine translation and

gives the visualization to show how the input text related to the answer [4].

However, most methods are invented for specific models and difficult for users to
implement for their models. Therefore, Allennlp Interpret [61] is presented to give an
understanding of the effect of the input sequence in the prediction through the gradient. The
methods in this toolkit are easy to apply and can be utilized with any deep model in NLP. Two
groups of methods are implemented in this toolkit. The first group is gradient-based saliency
maps [55, 62, 63]. The process of interpretation is inspired by a gradient technique [55]. The
intuition of this method is to identify how the change in each feature affects the model.
Simonyan K. et al. [55] shows that the score, which indicates the effect of the change in each
feature, can be derived from a gradient of the feature. Therefore, the gradient of the feature can
indicate the importance of the feature in the model. The second group is an adversarial attack

which investigates the weakness of the model [56, 57].
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In this work, we focus on a saliency maps technique in Allennlp interpret toolkit to find the
importance of each n-gram and compare between Thai and English top most important features.

The technique that we apply is simply calculated from the vanilla gradient of word embedding.
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3. RELATED WORKS

In this chapter, three subsections are included. First, the prior works of Thai sentence
segmentation are reviewed. The second section concerns English punctuation restoration due to
the similarity between sentence segmentation and punctuation restoration. In the last section, Bi-

LSTM-CRF, which is considered as the baseline model, is described.

3.1. Previous studies in Thai sentence segmentation

Due to the essential of space in sentence segmentation, previous works [12-14] from have
focused on disambiguating whether a space functions as the sentence boundary. These works
extract contextual features from words and POS around the space. Then, the obtained features
around the corresponding space are input into traditional models to predict whether space is a
sentence boundary. Moreover, to improve the model accuracy, Thai grammar rules [64, 65] are

also integrated with the statistical models.

Although a space is usually considered essential as a sentence boundary marker,
approximately 23% of the sentences end without a space character in one news domain corpus
[27]. Hence, Zhou N. et al. [27] proposed a word sequence tagging CRF-based model in which all
words can be considered as candidates for the sentence boundary. A space is considered as only
one possible means of forming a sentence boundary. The CRF-based model [16], which is
extracted from n-grams around the considered word, achieves a F1 score of 91.9%, which is
approximately 10% higher than the F1 scores achieved by other models [12-14] on the Orchid
dataset, as mentioned in [27]. Nararatwong R. et al. [66] extend this model using a POS-based
word-splitting algorithm to increase identifiable POS tags, resulting in better model accuracy.
Because the focus of this work is adjusting the POS as a postprocessing method, which is an input
of the model instead of proposing a new sentence segmentation model, this work will not be

considered in this paper.

In this work, we adopt the concept of word sequence tagging and compare it with two
baselines: the CRF-based model with n-gram embedding, which is currently the state-of-the-art
for Thai sentence segmentation, and the Bi-LSTM-CRF model, which is currently the deep

learning state-of-the-art approach for sequence tagging.
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3.2. Previous studies of English punctuation restoration

Most languages use a symbol that functions as a sentence boundary; however, a few do not
use sentence markers including Thai, Lao, and Myanmar. Thus, few studies have investigated
sentence segmentation in raw text. However, studies on sentence segmentation, which is
sometimes called sentence boundary detection, are still found in the speech recognition field
[67]. The typical input to the speech recognition model is simply a stream of words. If two
sentences are spoken back to back, by default, a recognition engine will treat it as one sentence.
Thus, sentence boundary detection is also considered a punctuation restoration task in speech
recognition because when the model attempts to restore the period in the text, the sentence

boundary position will also be defined.

Punctuation restoration not only provides a minimal syntactic structure for natural language
processing, similar to sentence boundary detection but also dramatically improves the readability
of transcripts. Therefore, punctuation restoration has been extensively studied. Many approaches
have been proposed for punctuation restoration that uses different features, such as audio and
textual features. Moreover, punctuation restoration is also considered to be a machine learning

problem, similar to word sequence tagging and machine translation.

A combination of audio and textual features was utilized in [68-70] to predict and restore
punctuation, including pitch, intensity, and pause duration, between words. We ignore these
features in our experiment because our main task—Thai sentence segmentation— does not

include audio features.

Focusing only on textual features, there are two main approaches, namely, word sequence
tagging and machine translation. For the machine translation approach, punctuation is treated as
just another type of token that needs to be recovered and included in the output. The methods
in [71-73] restore punctuation by translating from unpunctuated text to punctuated text.
However, our main task, sentence segmentation, is an upstream task in text processing, unlike
punctuation restoration, which is considered a downstream task. Therefore, the task needs to
operate rapidly; consequently, we focus only on the sequence tagging model, which is less

complex than the machine translation model.

In addition to those machine translation tasks, both traditional approaches and deep
learning approaches must solve a word sequence tagging problem. Of the traditional approaches,

contextual features around the considered word were used to predict following punctuation in
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the n-gram [74] and CRF model approaches [75, 76]. Meanwhile, in the deep learning approaches,
a deep convolutional neural network [77], T-LSTM (Textual-LSTM) [70] and a bidirectional LSTM
model with an attention mechanism, called T-BRNN [78], have been adopted to predict a
punctuation sequence from the word sequence. T-BRNN [78] was proposed to solve the task as a
word-sequence tagging problem, and it is currently the best model that uses the word sequence
tagging approach. Tilk O. et al. [78] also proposed a variant named T-BRNN-pre, which integrates
pretrained word vectors to improve the accuracy. Meanwhile, Kim S. [79] proposed to insert a
multi-head attention module between Bi-LSTM to improve the model accuracy called Deep
Recurrent Neural Network with Layer-Wise Multi-head Attentions (DRNN-LWMA). The model is
currently the best model that uses the word sequence tagging approach. Yi J. et al. [22] adopt
the pre-training method to improve the accuracy of the model. This work selects the Bi-LSTM-
CRF as a backbone model. Meanwhile, the input words are embedded by a pre-trained BERT
before feeding to the backbone model. Because POS tags are helpful for this task, POS tags are
always fed to the model in this task. However, POS tags are generated from the machine learning
model which is usually error-prone. Thus, Yi J. et al. [22] also adopted adversarial transfer
learning to imitate the effect of an error from predicted POS tags. As a result, their proposed

model gains a 9.2% F1 score improvement compared to prior works.

To demonstrate that our model is generalizable to other languages, we compare it with
other punctuation restoration models, including T-LSTM, T-BRNN, T-BRNN-pre, DRNN-LWMA, and
DRNN-LWMA-pre. These models adopt a word sequence tagging approach and do not utilize any

prosodic or audio features.

3.3. Bi-directional LSTM with CRF (Bi-LSTM-CRF) [21]

From the success of bidirectional LSTM in NLP, Bi-LSTM-CRF is proposed as a sequence
tagging model for NLP tasks, such as Name entity recognition, POS tagging, and chunking. The
model gain benefit of both deep learning and traditional approaches. By using Bi-LSTM, the
model is capable of efficiently utilizing both past and future input features. Meanwhile, adapting

CRF, the model can use sentence-level tag information for the decoding process.

The architecture of Bi-LSTM-CRF is illustrated in Figure 3. The model is composed of two
main modules. The first module is bi-directional LSTM, which extract the context vectors from
the forward and backward paths. The second module is CRF, which used the output of bi-
directional LSTM to calculate emission and transmission scores and then use the Viterbi

algorithm to decode the best sequence tag for an input.
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Figure 3. An architecture of Bi-LSTM-CRF [21].
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4. METHODOLOGY

In this chapter, we describe our methodology in two subsections. The first subsection
specifies the model architecture and the details of each module. Meanwhile, the second
subsection expounds on how the model is trained with unlabeled data through pre-trained

concept and the modified CVT.

4.1. Model architecture

In this work, the model predicts the tags y = [v1, V3, ..., Yn1, Vy € Y for the tokens in a word
sequence X = [xq,X,, ..., Xy] where N is the sequence size and x;, ¥, denote the token and its
tag at timestep t, respectively. The word sequence is fed into the model at the same time to
provide sequential information of the input text to the model. Each token x, consists of a word,
its POS, and its type. There are five defined word types: English, Thai, punctuation, digits, and

spaces.

The tag set Y is populated based on the considered task. In Thai sentence segmentation,
the assigned tags are sb and nsb; sb denotes that the corresponding word is a sentence
boundary considered as the beginning of a sentence, while and nsb denotes that the word is not
a sentence boundary. Meanwhile, there are four tags in the punctuation restoration task. Words

not followed by any punctuation are tagged with O. Words that are followed by a period ". ",

comma "," or question mark "?" are tagged to period, comma, and question, respectively.

Our model architecture is based on Bi-LSTM-CRF, as shown in Figure 4. The model is
divided into three modules. The first, low-level module, consists of two separate structures: local
and distant structures. This module is designed to utilize an unlabeled dataset via cross-view
training, which will be described in Section 4.2.2. The module gives the two separate outputs
from two structures, which are only concatenated to feed to the next module. Meanwhile, the
second, high-level module, contains a sequence of stacked Bi-LSTM and self-attention layers,
which helps the model learn the context from the whole word sequence. The final module, the
prediction module, is responsible for predicting the tags y. Each module is described more

completely in the next three subsections.
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Figure 4. Model architecture that integrates local and distant representation.
This model is composed of three main modules: a low-level module, a high-level module, and a
prediction module. In the low-level module, two structures (local and distant) are responsible for
extracting different features.

4.1.1. Low-level module

A sequence of word tokens is input into the low-level module. The input tokens pass
through two structures. The first structure generates a sequence of local representation vectors
Rivcar = [, 1ocats T2, 1ocats > T, ocar], Which is embedding vectors of n-gram features. After
obtaining a sequence of representation vectors, the local representation vectors are fed to the

Bi-LSTM to obtain the recurrent representation vectors. Rrecurrent =

> > > . -
[rl, recurrent, 12, recurrents -, TN, recurrent]v as shown in Equation 11:

Rrecurrent = BiLSTM(Rlocal) (11)

The second structure generates low-level distant representation vectors Ryistant =
[ﬁ,distant'?z,distant'""?N,distant]: which produced by Self-attention. Then, the recurrent and

distant representation vectors are concatenated to form the low-level representation vector R =
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(7,75, .., Ty], as shown in Equation 12, where € represents a concatenation between two

vectors:

Ft = Ft,recurrent ) Ft,distant (12)

4.1.1.1. Local structure

This structure is shown as the left submodule of the low-level module in Figure 4. It
extracts the local representation vectors Rycq;- Its input tokens are used to create n-gram tokens,
which are unigrams x,, bisrams (x,, xp), and trigrams (x,, x,, x.). Each n-gram token is
represented as an embedding vector, which is classified as a unigram embedding vector €,,;, a
bigram embedding vector €,; or a trigram embedding vector é,,;. Each vector €4, is mapped
from a token by gram embedding Embedding j,q4m(x), which is a concatenated vector of the
word embedding Word g, qm (x), POS embedding POSg,..m (x) and type embedding Type grqm (),

as shown in Equation 9:

Embeddinggram x) = Wgram(X) @ POSgram x) @ Typegram(x) (13)

Unigram embedding vector Embedding,,,;(x) is included along with contextual pretrained

vector ELMo,,;(x) from ELMo, as shown in Equation 14:

Embedding ;i (x) = Wypi(x) @ POS;pi(x) @ Typeyni(x) @ ELMoyyi(x) (14)

Each n-gram token at timestep t is generated by the previous, present and next token (x;_;,
Xt Xt41) and embedded into vectors as shown in Equations 15-17 for unigram, bigram, and

trigram consecutively.

gt,uni = Embeddinguni(xt) (15)
€ pi = Embedding; (x;—q, x¢) (16)
€t¢ri = Embedding . (x;—1, X¢, X¢41) 17)

At each timestep t, a local representation vector 7;;,cq; is combined from the n-gram
embedding vectors generated from the context around x,. A combination of embedding vectors,
which is used to construct a local representation vector, is shown in Equation 18. A combination
consists of the unigram, bigram, and trigram embedding vectors at timesteps t-1, t and t+1 and it

is a concatenation of all the embedding vectors:

- - - - - - - - - -
Ttiocal = €r—1uni D €tuni D €rv1,uni D €t—1,0i D €rpi D €rs1,pi D €r—1,6ri D €rtri D Ersn,eri (18)
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4.1.1.2. Distant structure

The distant structure, which is a self-attention module, is shown in Figure 4 on the right
side of the low-level module. The structure extracts low-level distant representation vectors
Ryistant from a sequence of unigram embedding vectors E,,;, as shown in Equation 19. In this
case, the self-attention module is a scaled dot-product attention, where key, query, and value
vectors are the linear projections of the unigram embedding vectors shown in Figure 5. The
linear transformations for key, query, and value are learned separately and updated in the model
through backpropagation. The output vector, which is the scaled dot-product attention at each
timestep, is concatenated with the input vector €, ,,; and projected by a linear transformation.
That projected vector is the output vector of a self-attention module, which is a low-level distant

representation vector.

Raistane = SelfAttention(Ey,;) (19)

output sequences

T

Linear

!

Scaled-Dot Product Atttention

key T q“erYT value T

Linear Linear Linear

input sequences

Figure 5. The architecture of a self-attention module.
This module mainly contains Scaled-Dot Product Attention, which requires three inputs: Key, Query,
and Value. Those inputs are generated from the same input sequence but projected by different linear
transformations.

4.1.2. High-level module

The low-level representation vectors R are used as the input for this module, which outputs
the high-level representation vectors H whose calculation is shown in Equation 20. The high-level
module, as shown in Figure 4, is composed of a stacked bidirectional LSTM and a self-attention
module. A stacked bidirectional LSTM contains K layers of bidirectional LSTMs in which the
output from the previous bidirectional LSTM layer is the input of the next bidirectional LSTM

layer. The self-attention part of this structure is the same as that in the low-level distant
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structure. The self-attention module helps to generate the high-level distant representation

vectors that are output by the high-level module.

H = SelfAttention(StackBiLSTM(R)) (20)

4.1.3. Prediction module

The prediction module is the last module. It includes two layers: a fully connected layer
and a CRF layer. In the fully connected layer, the output vectors from the high-level module are
projected by a linear transformation as shown in Equation 21. The purpose of this layer is to
create the virtual logit vectors G = [gy, g, ---, ], Which represent the probability distribution for
CVT, as discussed in Section 4.2.2.2. Therefore, the number of dimensions of logits equals the

number of possible tags in each task:

g. = NN(h,) (21)

The CRF layer is responsible for predicting the tag y, of a token at each timestep, as shown
in Equation 22. The layer receives a sequence of virtual logit vectors (G) as input and then

decodes them to a sequence of tags y using the Viterbi algorithm.
¥ = CRF(G) (22)

4.2. Training process

To train the sentence segmentation model, the process is split into two steps. First, the
language model (ELMo) is trained with unlabeled data. The pre-trained language model is treated
as a part of input vectors for the model. The second step is to train the model with CVT for the

sentence segmentation problem. Each mentioned step is described in the following subsections.
4.2.1. Pre-trained language model

In this process, the pre-trained language models come from different sources depending on
the language. In UGWC, we pre-train ELMo with original implementation on our unlabeled
dataset. Meanwhile, in English punctuation restoration, the original ELMo of English is applied in

this case.
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Pt local Pt,primary Dt distant
NN + Softmax Softmax NN + Softmax
{

NN (virtual logit)

t

High-level module

A
~
| |

Bi-LSTM
Distant structure
Local structure
Low-level module
f
‘Word tokens

Figure 6. Unlabelled data utilization.
two auxiliary predictions (B¢ jocq1 and Py giseant) are obtained from the local and distant structures in
the low-level module. The primary prediction ﬁt,primary is obtained from the virtual logit vector g.

4.2.2. Cross-view training (CVT)

In this step, CVT is adopted to train the sentence segmentation with labeled and unlabelled
data simultaneously in a semi-supervised learning way. The weights of the model are initialized
normally, except for the low-level module, which is initialized from the pre-trained language

model, as described in Section 4.2.1.

As discussed in Section 2.3.1, CVT requires primary and auxiliary prediction modules for
training with unlabeled data to improve the representation. Thus, we construct both types of
prediction modules for our model. The flow of unlabeled data, which is processed to obtain a
prediction by each module, is shown in Figure 6. The output of each prediction module is
transformed into the probability distribution of each class by the softmax function and then used

to calculate Losscyr, as shown in Equation 23.

1 - - - -
LOSSCVT = WZ DKL (pt,primary' pt,local) + DKL (pt,primary' pt,distant) (23)

teD

The Lossqyr value is based on the Kullback-Leibler divergence (KL divergence) between the

probability distribution of the primary Py primery OUtput and those of two auxiliary modules,
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Dt.ocar anNd Dt aistanes Where t € [1, ..., N]. The KL divergence at each timestep is averaged when

the timesteps are dropped timesteps D.

The details of the primary and auxiliary prediction modules, which are used in the Losscyr

calculation, are described in the following subsections.
4.2.2.1. Primary prediction module

In [33], the output of the primary prediction module is acquired from the last layer and
used to predict tags. However, our model uses a CRF layer to decode the tags instead of the
softmax function. Thus, in semi-supervised learning, the probability distribution of the primary
prediction module should be acquired from the CRF layer. However, the Viterbi algorithm, which
is used for decoding, gives only the best combination for the prediction, but does not provide
the probability distribution. Normally, the distribution from the CRF is calculated by a forward-
backward algorithm [80] which is time consuming. To reduce the training time, the probability
distribution of the primary prediction module P primary is Obtained from the output of the

softmax function, whose input is a virtual logit vector g;, as shown in Equation 24.

ﬁt,primary = Softmax(g;) (24)

4.2.2.2. Auxiliary prediction module

Two auxiliary views are included to improve the model. The first view is generated from a
recurrent representation vector 1y yecurrent 10 acquire the local probability distribution Py jocars
where t € [1,...,N]. The second view is generated from the low-level distant representation
vectors Tygistane 1O acquire the probability distribution of a distant structure in the low-level
module Py gistane Where t € [1, ..., N]. By generating the views from these representation vectors

separately, the local and distant structures in the low-level module can improve equally.

Although both representation vectors are used separately to create auxiliary views, the input
of each structure is still not restricted, unlike [6], where the input is restricted to only previous or
future tokens. Because BERT, which is trained by the masked language model, outperforms
OpenAl GPT, which uses an autoregressive approach for training as reported in [29], we adopt the
concept of the masked language model [81] to obtain both auxiliary views. This approach allows
the representation to fuse the left and the right context, which results in a better representation.
By using the masked language model, some tokens at each timestep are randomly dropped and

denoted as removed tokens <REMOVED>; then, the remaining tokens are used to obtain auxiliary
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predictions in the dropped timesteps D = [d € N | where d is a dropped timestep ], as shown

in Figure 7. The details of both auxiliary prediction modules are described below.

LOSSC VT

1

Model
! T T T T T T
I am (REMOVED) NLP are (REMOVED) vyou

Figure 7. An example of performing a masked language model.
Words are dropped (denoted as <REMOVED=>) randomly. Those positions are used to calculate
Losscyr and update the auxiliary prediction modules to improve the model.

4.2.2.3. Local auxiliary module

For recurrent representation vectors, if one of the tokens is dropped, the related n-gram
tokens that include the dropped tokens will also be dropped. For example, if (x;) is dropped,
(x¢_1,x:) and (x;, x:41) Will also be dropped as removed tokens in the case of a bigram. The
remaining n-gram tokens are then used to obtain the recurrent representation vectors at the
dropped timesteps. Then, the vectors are provided as an input to the softmax function to obtain

the probability distribution of the first auxiliary prediction module, as shown in Equation 25.
ﬁd,local = Softmax (NN(Fd,recurrent)) (25)
4.2.24. Distant auxiliary module

In the other auxiliary prediction module, a sequence of the low-level distant representation
vectors is generated and some tokens are dropped. This sequence of vectors is also input into
the Softmax function, just as in the first auxiliary prediction module, and the output is another

probability distribution, which is the second auxiliary prediction, as shown in Equation 26.

ﬁd,distant = Softmax (NN(Fd,distant)) (2 6)
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4.3. Interpretation process

In this section, we discuss our method to interpret our model decision process by identifying
important n-gram features. These selected features can be compared to the human annotations
or the label of the dataset in order to further analyze the model. The process is inspired by a

vanilla gradient technique, which is proposed in [55].

Based on Equation 27, nine types of features, which are unigram, bigram, and trigram at
timesteps t — 1, t and t + 1, are used as input features for our model. Thus, the gradient of
these nine types of n-gram features are calculated. The gradient Vé, ,,,;(x) is the derivative of the
output of the model y with respect to € 4,qm (x) Where gram € {uni, bi, tri} is the token type
and pos € {—1,0,+1} is the relative position from the current timestep, as shown in Equation

27.

dy
aét,gram (X)

Vét,gram(x) 5 (27)

After that, the score of each feature u,,sgram IS Calculated, as shown in Equation 28.
The score is the summation of all the gradients of tokens X¢pos gram that are uyes gram over all
timesteps t € {1,...,N} in all documents D. This score is used to measure the importance of
each feature. When the summed gradient of the feature is high, that feature is important in
contributing to the model's predictions. On the other hand, if the summed gradient of a feature is

low, that feature is not necessary for the model's prediction.

D N
Score(upos,gram) T Z Z Vé>1:+pos,gram(x) (28)
t=1

where Xt+pos,gram = Upos,gram

To compare the model to humans, two lists of tokens are created from the computed

score and labels. Then, the intersection of both lists is used to compare the similarity. The first
list T model

pos,gram INCludes the top 500 features which have the highest computed score

T(label)

pos,gram CONtains of top 500 features with

Score(upos,gmm) from the gradient. The second list
the highest frequency as a sentence boundary in the training set. After that, the features in the
intersection between two lists are counted, as shown in Equation 29, where ||A]| is a number of
instances in a set A. The counted number Count(pos, gram) will be used for further analysis in

Section 5.4.2.3.



32

del label
Count(pos, gram) = ”T;ngfa)m N ngo‘;;%m” (29)
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5. EXPERIMENTS AND RESULTS

In this section is described conducted experiments. We have already explored the effect of
local and distant representations. Moreover, the impact of CVT has already been investigated.

However, there is no experiment on the pre-training process.

5.1. Dataset

Three datasets are used in the experiments as described in the following subsections. We
use two datasets for Thai sentence segmentation, and the third dataset is used for English
punctuation restoration. The statistics of the preprocessed data are shown in Table 1, including

the number of sequences and the number of vocabulary words in each dataset.

Table 1. The number of passages and vocabulary words in each dataset.

Dataset Statistics # passage # words # vocab
Orchid (Thai) Label data 3,427 685,319 17,047
UGWC (Thai) Label data 48,374 1,242,118 46,463

Unlabeled data 96,777 40,431,319 81.932

Labeled + Unlabeled 145,151 41,673,437 109,415

IWSLT (English) Label data 12,803 2,547,797 47,532
Unlabeled data 8,449 1,678,167 35,931

Labeled + Unlabeled 21,252 4,225,964 56,762

The labeled and unlabeled data are separately counted and shown in the rows.
Note: There are no unlabeled data in the Orchid dataset due to the lack of the same word segmentation
and POS tag set.

We also calculate the average number of words per passage in the unlabeled data that do

not appear in the labeled data, as shown in Table 2.

Table 2. Average number of words per passage that exist in the unlabeled data but not in the labeled

data.
Dataset # words
UGWC 0.650

IWSLT 1.092
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5.1.1. Thai sentence segmentation

In this subsection, two Thai sentence segmentation datasets are described. The first dataset

is Orchid and the second one is UGWC.

5.1.1.1. Orchid [18]

This dataset is a Thai part-of-speech-tagged dataset containing 10,864 sentences. In the
corpus, text was separated into paragraphs, sentences, and words hierarchically by linguists. Each
word was also manually assigned a POS by linguists. These data include no unlabeled data with
the same word segmentation and POS tag set. Hence, we do not execute semi-supervised

learning or pretraining process on this dataset. Sample paragraphs in this dataset is shown in

Figure 8.
PONUUY ¥V Undmba nwide O B 1 gaUmasd av fann sewiwiduuuy _ dwdu s diaer Ba nands
(3kbip)  (rabdp) (bdr k" ys)(nan witea)) (nk) (mi) (jurprason) (rea) (p"irt"ana)(softwes) (tén bi:p) (samrip)  (kan) (jamlxn)  (in) (kam mdwit"s)
sb sb sb
Translated: System design. Abstract. This research work is intended to develop a prototype of software for a process-oriented simulation.
lu ms  oenuuuInsdwel  qe § 0 duwweu & Wdwdaddn  § Anviswesdon ves Insdwd 7 i W ey
(nas) (kan)  (okbip) (tPorrasip)  (tca) (mi) (Kdntom) (dan) (Rovtcart) (Kinlig)  (af)  (swksa) (rajlalag)  (KPom) (Porasip) () (mi)  (h4g)  (yix)
sb sb
Translated: In a telephone design, the procedure is shown in the following flowchart. The study on the detail of the existing telephone.
gownsel @ Swes 9 Wu anwnisad M3 dudunu des Teedl 0 esdUsnewinieu dugu e _ NI
(sap"tpkan) (k) (teambm)  (tea) (pen) (sap*a:pkan) (kan) (dam nymn gan)(ciam) (dogj i) (mi)  (on pra kog)c"am nan)puin ®an)  (KPu) (kam md wi ")
sb sb

Translated: An environment that is simulated will be the artificial process environment. Its basic elementis a process.

Figure 8. Labeled paragraphs in Orchid dataset. Here, sb represents a sentence boundary.

The text in this dataset is collected from publications in the NECTEC annual conference.
Therefore, the text is structured as formal document. The documents usually contain similar
word phrases or function words [82] to convey the lexical meaning such as “For example” or
“Introduction”. Moreover, the named entities like the name of organization are often found in

the text. As a result, the text sometimes contains duplicate word phrases or content words [82].

Our data preprocessing on the ORCHID corpus was similar to that in [27]: all the comments
are removed, and the data are partitioned into 10 parts containing equal numbers of sentences
to support 10-fold cross-validation. Each training set is split into one part used for validation and
the rest is used for model training. Subsequently, all the words in each dataset are concatenated
and then separated into sequences with 200 words per instance. Each sequence always begins
with the first word of a sentence. If a sequence ends with an unfinished sentence, the next

sequence starts with that complete sentence.
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5.1.1.2. UGWC (User-Generated Web Content) [43]

This Thai dataset includes many types of labeled data useful in sentence segmentation
tasks. The raw text was generated by users having conversations in the financial domain and was
acquired mainly by crawling social sites. The labeled data for sentence segmentation were
manually annotated by linguists using the definitions in [43]. Sample paragraph in this dataset is

shown in Figure 9.

Wl i @ da W e Wi 7 W % @ W oud & ey
(muwd) (ki) (sa:j) (tat) (paj) (jak) (sa:p) (wiz) (daj) (rib)  (rwdn)  (wdj) (l&:w) (jan) (k")
sb sb sb
Translated: The connection is lost. I want to know if you get the request or not.
Waley® Ass wsn i Gu  whlws A B f oy Uws debit | s3I
(p¥it ban t@hizlkh[éq) (ré:k) ([chéj) (n¥n) (te"aw rij) (k"2) (") (pen) (bar) ("am ma da:)
sb sb sb

Translated: Open an account for the first time. How much fee for the registration if I want a normal debit card?

faems 9 wheu  wei  des s dals e mdu

(s kamn)  (ted)  (phan)  (be:) () (t"am) (jagnaj) (bim)  (K"rip)
sb sb

Translated: I want to change the number. What should I do?

Figure 9. Labeled paragraphs in UGWC dataset. Here, sb represents a sentence boundary

The text in this dataset is crawled from social media, which includes both conversations and
news which are related to the financial domain. The text that is collected from conversations are
normally formal, so the text always ends up with final particles “asu” and “az”. While, if the text
is informal, the emoticon is often found in the text. In addition, the text from news contains a

number of conjunctions to create the influence article.

At the time of this study, the dataset was extended from that in [43]; the data were
collected from January 2017 to December 2017. The labeled dataset includes 48,374 passages.

To support semi-supervised learning, the first 3 months of data (96,777 passages) are unlabeled.

Because the data stem from social media, some text exists that cannot be considered as
part of any sentence, such as product links, symbols unrelated to sentences, and extra space
between sentences. These portions were not originally annotated as sentences by the linguists.
However, in this work, we treat these portions as individual sentences and tag the first word of

each fraction as the sentence boundary.

For evaluation purposes, the collection of passages in this dataset is based on 5-fold cross-

validation, similar to the previous work [43]. The passages are treated as input sequences for the
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model. For each passage, word segmentation and POS tagging are processed by the custom

models from this dataset.

5.1.2. English Punctuation Restoration

For an English punctuation restoration experiment, a common dataset called IWSLT is

performed. The detail of dataset is described in the following subsection.

5.1.21. IWSLT [83]

We adopted this English-language dataset to enable comparisons with models intended for
other languages. The dataset is composed of TED talk transcripts. To compare our model with
those of previous works, we selected the training dataset for the machine translation track in
IWSLT2012 and separated it into training and validation sets containing 2.1 million and 295
thousand words, respectively. The testing dataset is the IWSLT2011 reference set, which contains
13 thousand words. To acquire unlabeled data for semi-supervised learning, we adopted the
IWSLT2016 machine translation track training data; duplicate talks that also appear in IWSLT2012

are discarded.

The data preprocessing follows the process in [78]. Each sequence is generated from 200
words, of which beginning is always the first word in a sentence. If a sentence is cut at the end of

a sequence, that sentence is copied in full to the beginning of the next sequence.

To use our model, the POS of each word is required. However, the IWSLT dataset contains
only the raw text of transcripts and does not include POS tags. Thus, we implement POS tagging

using a special library [84] to predict the POS of each word.

5.2. Hyperparameter settings

Before mapping each token included in the unigram, bigram, and trigram to the embedding
vector, we limit the minimum frequency of occurring words that are not marked as an unknown
token. There are 2 parameters set for the unigram Cyerq and the remaining Cygram, respectively.
We found that model accuracy is highly sensitive to these parameters. Therefore, we use a grid

search technique to find the best value for both parameters for the model.

We apply two optimizers used in this work: Adagard [85] and Adam [86], whose learning
rates are set to 0.02 and 0.001 for the Thai and English datasets, respectively. To generalize the
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model, we also integrate L2 regularization with an alpha of 0.01 to the loss function for model
updating. Moreover, dropout is applied to the local representation vectors, recurrent
representation vectors, between all bidirectional LSTMs and enclosed by the self-attention

mechanism in the high-level module.

During training, both the supervised and semi-supervised models are trained until the
validation metrics stop improving; the metrics are (1) sentence boundary F1 score and (2) overall

F1 score for Thai sentence segmentation and English punctuation restoration, respectively.

CVT has three main parameters that impact model accuracy. The first is the drop rate of the
masked language model, which determines the number of tokens that are dropped and used for
learning auxiliary prediction modules as described in Section 3.2. The second is the number of
unlabeled mini-batches B used for training between supervised mini-batches. Third, rather than

using the same dropout rate for the local representation vectors, a new dropout rate is assigned.

Meanwhile, ELMo is pre-trained with different learning rate from the model. The parameters
of ELMo, such as the layers of Bi-LSTM and hidden nodes are set as same as original. The pre-

training of ELMo is processed three epochs with batch size equals 32.

The hyperparameter values were determined through a grid search to find their optimal
values on the different datasets. All the hyperparameters for each dataset are shown in Table 3.
The optimal values from the grid search depend on the task. For Thai sentence segmentation,
the hyperparameters are tuned to obtain the highest sentence boundary F1 score, while the

overall F1 score is used to tune the parameters for English punctuation restoration.

Table 3. Model hyperparameters for each dataset.

Parameters Orchid UGWC IWSLT
Cword 2 2 2
Cngram 2 2 13
Optimizer AdaGrad AdaGrad Adam
Learning Rate 0.02 0.02 0.001
Batch size 16 16 16
Early stopping patience 5 5 5
Unigram embedding size (Text) 64 64 300
Unigram embedding size (POS and Type) 32 32 300
Bigram & Trigram embedding size (Text) 16 16 10
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Parameters Orchid UGWC IWSLT
Bigram & Trigram embedding size (POS and Type) 8 8 10
LSTM hidden size 25 25 256
Number of LSTM layers in High-level module (K) 2 2 4
Self-attention output size 50 50 256
A number of Low-level Self-attention layers 1 1 1

A number of High-level Self-attention layers 1 1 1
Low-level Self-attention projection size 64 64 32
High-level Self-attention projection size 25 25 128
Local embedding dropout 0.30 0.30 0.30
Dropout between layers 0.15 0.15 0.15
Dropped rate of masked language model - 0.30 0.30
Number of unlabeled mini-batch B = 1 2
Dropout of the unlabeled input . 0.50 0.30
Hidden size of LSTM in ELMo = 4096 4096
Number of layers of LSTM in ELMo - 2 2

5.3. Evaluation

During the evaluation, each task is assessed using different metrics based on previous works.

For Thai sentence segmentation, three metrics are used in the evaluation: sentence boundary F1

score, non-sentence boundary F1 score, and space correct [27]. In this work, we mainly focus on

the performance of sentence boundary prediction and not non-sentence boundary prediction or

space prediction. Therefore, we make comparisons with other models regarding only their

sentence boundary F1 scores. The equation for the sentence boundary F1 score metric is shown

in Equation 32 where #(A) is the number of A. In calculating the F1 score, the positive class is

defined as the sentence boundary, and the negative class is defined as the non-sentence

boundary.

#Collectly predicted sentence boundaries

precisiong, =

#All predicted sentence boundaries

#Collectly predicted sentence boundaries

recally, =

2 X precisiong, X recallg,

E 1,sb =

precisiong, + recallg,

#All expected sentence boundaries

(32)
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For English punctuation, the evaluation is measured on each type of punctuation and
overall F1 score. For the punctuation restoration task, we care only about the performance of
the samples belonging to the classes that are tagged to words followed by punctuation;
therefore class 0, which represents words not immediately followed by punctuation, is ignored in
the evaluation. Consequently, the overall F1 score does not include O as the positive class in

Equation 33.

#Collectly predicted punctuation marks

recision = - '
p overall #All predicted punctuation marks

#Collectly predicted punctuation marks

recall =
overall #All expected punctuation marks

2 X precisionyyerqi X recall yyeran

(33)

F = =
Loverall Precision yerqu + recalloveratl

To compare the performance of each punctuation restoration model in a manner similar to
sentence segmentation, the binary F1 score is calculated to measure model accuracy, as shown
in Equation 34. The calculation of this metric is the same as that used in [77]. The metric
considers only where the punctuation position is and ignores the type of restored punctuation.
Therefore, this measure is similar to the metric sentence boundary F1, which only considers the

position of the missing punctuation.

#Collectly predicted punctuation positions

recision;_ = : i iti
p 2=t #All predicted punctuation positions

#Collectly predicted punctuation positions

recall,_ i i iti
FTIULS #All expected punctuation positions

2 X precision,_cjgss X recall; _ciass

Fi,_ = — (34)
1,2=class Precision,_qass + recally_cass

5.4. Results and Discussions

We report and discuss the results of our two tasks in five subsections. Comparison of CNN
and n-gram models for local representation are discussed in the first subsection. The second and
third subsections include the effect of local representation and distant representation,
respectively. The impact of CVT is explained in the fourth subsection. The last subsection
presents a comparison of our model and all the baselines. Moreover, we also conduct paired t-

tests to investigate the significance of the improvement of each contribution.
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5.4.1. Comparison of CNN and n-gram models for local representation

Jacovi A. et al. [28] proposed that a CNN can be used as an n-gram detector to capture local
text features. Therefore, we also performed an experiment to compare a CNN and n-gram
embedded as local structures. The results in Table 4 show that the model using the embedded
n-gram yields greater improvement than the one using an embedded CNN on the Orchid and

UGWC datasets.

Table 4. Comparison between CNN and n-gram embedding for local representation extraction.

Model F1 score (%)

ORCHID uewc
Bi-LSTM-CRF 90.9 87.6
Bi-LSTM-CRF + n-gram 92.4 88.7
Bi-LSTM-CRF + CNN 91.2 87.9

5.4.2. Effect of local representation

To find the effect of local representation, we compare a standard Bi-LSTM-CRF model using
our full implementation to the model that includes n-gram embedding to extract local
representation. In Table 5 and Table 6, the standard Bi-LSTM-CRF model is represented as Bi-

LSTM-CRF (row (e)), while the models with local features are represented as + local (row (f)).

Table 5. The result of Thai sentence segmentation for each model.
For the Orchid dataset, we report the average of each metric on 10-fold cross-validation. Meanwhile,
average metrics from 5-fold cross-validation are shown for the UGWC dataset.

Model Orchid UGWC

precision recall F1 precision recall F1
(a) POS-trigram [13] 74.4 79.8 77.0 - - -
(b) Winnow [12] 92.7 77.3 84.3 - - -
(c) ME [14] 86.2 83.5 84.8 - - -
(d) CRF (Thai baseline) [27] 94.7 89.3 91.9 87.4 82.7 85.0
(e) Bi-LSTM-CRF [21] 92.1 89.7 90.9 87.8 87.4 87.6

Our Improvement

(f) + local 93.1 91.7 92.4 88.4 89.0 88.7
(¢) + local + distant 93.5 91.5 92.5 88.8 88.8 88.8
(h) + local + distant + CVT - - - 88.9 89.0 88.9
(i) + local + distant + CVT + ELMo - - - 88.8 91.0 89.9

Note: The CVT model is not tested on the Orchid dataset because of the lack of unlabeled data.
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5.4.2.1. Thai sentence segmentation

The results in Table 5 show that using n-gram to obtain the local representation improves
the F1 score of the model from 90.9% (row (e)) to 92.4% (row (f)) on the Orchid dataset and from
87.6% (row (e)) to 88.7% (row (f)) on the UGWC dataset. These results occur because many word
groups exist that can be used to signal the beginning and end of a sentence in Thai. Words
always found near sentence boundaries can be categorized into two groups. The first group
consists of final particles, e.g., "ug|Az" (na | kha), "uz|Asy" (na | khrab), "lag|asu" (ley | khrab), "wa?)|
ASU" (leew | khrab), and others. These word groups are usually used at the ends of sentences to
indicate the formality level. For instance, the model with local representation can detect the
sentence boundary at "a3u" (khrab) that is followed by "W&1" (leew), as shown in Figure 10, while
the model without local representation cannot detect the word as a sentence boundary. The
second group consists of conjunctions that are always used at the beginnings of sentences, e.g.,
“mm|‘1§u (after that)", "13J|§‘u (otherwise)" and others. The model that uses n-gram to capture word
group information is better able to detect word groups near sentence boundaries. Thus, this

model can identify these sentence boundaries easily in the Thai language.

o v o o o w
H U Wan Al LINAU n 1 alu

(mi) (nan) (l&w) (khrab) (reim fn) (thi) (hnung) (lan)

Bi-LSTM-CRF sb

+ local sb sb

Figure 10. An example of sentence boundary prediction.
The outputs are predicted by a normal Bi-LSTM-CRF and by the model with local representation
(+ local). Here, "sb" indicates that the word is predicted as the sentence boundary.

5.4.2.2. English punctuation restoration

In contrast, for the English dataset, local representation using n-gram drops the overall F1
score of punctuation restoration from 64.4% (row (g)) to 63.6% (row (h)), as shown in Table 6.
However, the binary F1 score increases slightly from 81.4% (row (g)) to 81.8% (row (h)) when
compared to the Bi-LSTM-CRF model, which does not integrate n-gram embedding. Common
phrases such as “In spite of”, “Even though” and “Due to the fact” might provide strong cues for
punctuation; however, such phrases can be found at both the beginnings and in the middle of
sentences. Because such phrases can be used in both positions, they may follow commas when

they are in the middle of the sentence or periods when they are at the beginning of a sentence.
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However, they still follow either a period or a comma; consequently, such phrases can still help
identify whether the punctuation should be restored, which increases the binary F1 score, which
considers only the positions of missing punctuation. Moreover, English does not use the concept
of a final particle usually found at the end of the sentence—similar to the Thai word group
mentioned earlier—including "ug|Az"(na | kha), "ug|AsU"(na | khrab), "ae|asu" (ley | khrab), "W
ASU" (leew | khrab) and others. Therefore, the word groups captured by n-gram can only help to
identify where punctuation should be restored but they do not help the model determine the

type of punctuation that should be restored.

Table 6. The result of English punctuation restoration by each model.
Each model is evaluated by the F1 score of each class of punctuation, the overall F1 score and the
binary F1 score.

Model Comma | Period | Question mark | Overall | Binary
(@) T-LSTM [70] 45.1 56.6 49.4 50.8 -
(b) T-BRNN [78] 53.1 71.9 62.8 63.1 -
(c) T-BRNN-pre [78] 54.8 72.9 66.7 64.4 -
(d) DRNN-LWMA 59.3 a7 73.3 67.2 -
(e) DRNN-LWMA-pre 61.9 755 69.6 68.6 -
(f) CRF (Thai baseline) [27] 44.9 60.8 26.7 52.7 -
() Bi-LSTM-CRF [21] S 73.1 63.5 64.4 81.4

Our Improvement

(h) + local 55.0 72.3 63.3 63.6 81.8
(i) + local + distant 56.7 729 59.2 64.5 81.7
(j) + local + distant + CVT 56.8 73.7 61.2 65.4 82.8
(k) + local + distant + CVT + ELMO | 64.0 78.6 66.7 71.0 86.9

Note: F1 score for the "O" class, which indicates that there is no punctuation following the word, is not
calculated because we care only the performance of each punctuation class.

5.4.23. Interpretation of n-gram feature

In this section, our model is interpreted and analyzed via the method presented in Section
2.5. Count(pos, gram), which refer how similarity between the model and human, is calculated
over the training set of each corpus, as shown in Table 7. The result of the interpretation shows
the focused n-gram features are rarely found around the punctuation. Compared with the Thai
sentence segmentation model, the focused n-gram features are usually located at the sentence

boundary.
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In UGWC section of Table 7, the result indicates that the model mostly focuses at the end
of the sentence more than the beginning of the sentence due to the lower number of focused
features at the relative position pos = +1. In the intersection list from UGWC at the relative
position pos = —1,0, the features found near sentence boundaries are usually final particles, e.g.,
“Ueglpz” (nd | kha), “uz|afu” (na | khrap), “waalpfu” (Ie:y | khrap), “uan|asu” (I&w | khrap), and
others. These features are usually used at the ends of sentences to indicate the formality level.
Meanwhile, the intersection list at the relative position pos = +1 are composed of greeting
words and "Thank you" phrases that are always at the beginning of sentence, e.g., “aan (Hello)”,

“aaunns (Thank you)” and others.

In contrast, in Orchid, the model focuses more at the beginning of sentence. The features
can be categorized into two groups. First, the content words [82], such as topics (“UnAngin
(abstract)”, “uniin (introduction)”), are focused due to their high frequency caused by the similar
structure between documents. The second group is the function words [82], such as “ Lﬂuﬁ\‘iﬁ (as
follows)”, “iﬁmm‘i‘ﬁ (as shown below)” and “VLﬁﬁx‘lﬁ (as follows)”, which are simply classified as

the end of paragraphs or sentences.

As a result, the models of both Thai datasets focus on different types of features due to the
different writing styles. Despite these findings, our model is able to learn and utilize these n-
grams features, which are also used by humans to decide where the sentence boundary is.
Therefore, using local representation to capture n-grams features attains more improvement over

other contributions in Thai sentence segmentation.

Meanwhile, in English punctuation restoration, the model hardly learns n-gram features
around the punctuation. As a result, the n-gram features degrades the performance in English

punctuation restoration due to the overfitting problem.

Table 7. The number of features in the intersection of two lists that is created from the interpretation
score and labels.

Type of n-gram (gram) Relative position (pos)

Orchid UGWC IWSLT

-1 0 +1 -1 0 +1 -1 0 +1

Uni-gram 51 64 | 117 | 203 | 171 | 152 0 10 1

Bi-gram 6 22 54 | 162 | 165 3 0 10 0

Tri-gram a5 98 56 | 206 | 75 28 3 5 4
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5.4.3. Effect of distant representation

The effect of this contribution can be found by comparing the model that integrates the
distant representation and the model that does not. The model with distant features integrated
is represented as + local + distant (row (g) and row (i) in Table 5 and Table 6 respectively). In
this case, the distant representation is composed of the self-attention modules in both the low-

and high-level modules, as shown in Figure 4.

From the combination of local and distant representation, the results in Table 5 and Table
6 show that the distant feature improves the accuracy of the model on all datasets compared to
the model with no distant representation. The F1 scores of the sentence segmentation models
improved slightly, from 92.4% and 88.7% (row (f)) to 92.5% and 88.8% (row (g)) on the Orchid and
UGWC datasets, respectively. For the IWSLT dataset, the distant feature can recover the overall
F1 score of punctuation restoration, which is degraded by the n-gram embedding; it improves
from 63.6% (row (h)) to 64.5% (row (i)). The reason is that the self-attention modules focus
selectively on certain parts of the passage. Thus, the model focuses on the initial words of the
dependent clauses, which helps in classifying which type of punctuation should be restored. An
example is shown in Figure 11: the model with distant representation classifies the punctuation
after “her” as a “COMMA” because “Before” is the word that indicates the dependent clause.
Meanwhile, the model without distant representation predicts the punctuation as a “PERIOD”

because there is no self-attention module; therefore, it does not focus on the word “Before”.

This also illustrates that the model can be improved by adding the self-attention modules
to Bi-LSTM layers. In conclusion, the results have shown that each of the proposed modules

have a positive effect on the overall performance.

Before I met  her I  went through suboptimal search results
+ local PERIOD PERIOD
+ local + distant COMMA PERIOD

Figure 11. An example of punctuation prediction.
The outputs are predicted by the model with distant representation (+ local + distant) and without
distant representation (+ local). The "COMMA" indicates that the word is followed by a comma (,)
and "PERIOD" indicates that a period (.) is restored at that position.
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5.4.4. Effect of CVT

To identify the improvement from CVT, we compared the models that use different training
processes: standard supervised training (+ local + distant) and CVT (+ local + distant +
CVT). The model trained with CVT improves the accuracy in terms of the F1 score on both Thai

and English datasets, as shown in Table 5 and Table 6.

5.4.4.1. Thai sentence segmentation

This experiment was conducted only on the UGWC dataset because no unlabeled data are
available in the Orchid dataset, as mentioned in Section 5.1.1.1. The model improves the F1
score slightly, from 88.8% (row (g)) to 88.9% (row (h)) on the UGWC dataset. Since the labeled
and unlabeled data in the UGWC dataset were drawn from the same source and domain, it
provides little additional knowledge that can be learned by the model. The average number of
new words found in the unlabeled data is only 0.650 per passage, as shown in Table 5. In other

words, the unlabeled passages barely contain any new words.

5.4.4.2. English punctuation restoration

CVT also improved the model on the IWSLT dataset, from an overall F1 score of 64.5% (row
(9) to 65.3% (row (h)) and from a 2-class F1 score of 81.7% to 82.7%. Because both the labeled
and unlabeled data were collected from TED talks, the number of vocabulary words grows
substantially more than in the UGWC dataset because the talks cover various topics. In this
dataset, an average of 1.225 new words are found in each new unlabeled data passage, as shown
in Table 6. Thus, the improvement on the IWSLT dataset is more noticeable than in the UGWC

dataset.

5.4.5. Effect of ELMo

By applying ELMo or contextual representation to the model, an accuracy in both tasks
increase noticeably, from 88.8% to 89.9% in Thai sentence segmentation and from 65.4% to
71.0% in English punctuation restoration. From the results, the gap of improvement in Thai is
lower than in English because the English ELMo is trained from one billion words which is ten
times higher than the data which we used in Thai. Therefore, Thai ELMo that is given more data

might elevate the accuracy of Thai sentence segmentation.
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5.4.6. Comparison with baseline models

5.4.6.1. Thai sentence segmentation

For the Thai sentence segmentation task, our model is superior to all the baselines on both
Thai sentence segmentation datasets, as shown in Table 5. On the Orchid dataset, the
supervised model that includes both local and distant representation was adopted for
comparison to the baseline model. Our model improves the F1 score achieved by CRF-ngram,
which is the state-of-the-art model for Thai sentence segmentation in Orchid, from 91.9% (row
(d) to 92.5% (row (h)). Meanwhile, in the UGWC dataset, our CVT model with ELMo (row (h))
achieves an F1 score of 89.5%, which is higher than the F1 score of both the baselines (CRF-
ngram and Bi-LSTM-CRF (rows d and e, respectively)). Thus, our model is now the state-of-the-art

model for Thai sentence segmentation on both the Orchid and UGWC datasets.

To prove the significance of the model improvements, we compared the cross-validation
results using paired t-tests to obtain the p-values, which are shown in Table 8 for the Orchid

dataset and Table 9 for the UGWC dataset.

Table 8. The improvement of each contribution on the Orchid dataset results shown as p-values from
paired t-tests

Model CRF Bi-LSTM-CRF + local

+ local +0.47% + 0.42% (0.009) +1.53% + 0.39% (<0.001) | -

+ local + distant | +0.54% =+ 0.36% (0.002) +1.60% + 0.39% (<0.001) | +0.07% =+ 0.22% (0.370)

Note: The number in the table reflects the percentage of improvement from the columns compared with
the rows. The number in parentheses is the p-value computed from a paired t-test.




47

Table 9. The improvement of each contribution on the UGWC dataset results shown as p-values from

paired t-tests

Model CRF Bi-LSTM- + local + local + local
CRF + distant | + distant
+ CVT
+ local +3.66% +1.09%
+ 0.16% + 0.14%
(<0.001) (<0.001)
+ local + distant +3.77% +1.20% +0.11%
+ 0.20% + 0.20% +0.14%
(<0.001) (<0.001) (0.182)
+ local + distant + CVT +3.92% +1.34% +0.26% +0.15%
+ 0.20% + 0.14% + 0.06% + 0.12%
(<0.001) (<0.001) (0.001) (0.065)
+ local + distant + CVT + ELMo | +4.87% +2.29% +1.21% +1.10% +0.95%
+ 0.25% + 0.16% + 0.10% + 0.14% | + 0.05%
(<0.001) (<0.001) (<0.001) (<0.001) (<0.001)

Note: The number in the table reflects the percentage of improvement from the columns compared with
the rows. The number in parentheses is the p-value computed from a paired t-test.

5.4.6.2. English punctuation restoration

Our model outperforms all the sequence tagging models. DRNN-LWMA-pre (row (e)) is the
current state-of-the-art model, as shown in Table 6. The CVT model with ELMo improves the

overall F1 score from 68.6% of DRNN-LWMA-pre to 71.0% (row (k).

5.4.7. Discussion

We have shown that incorporating local and global information with CVT can be used to
improve the Thai sentence segmentation and English punctuation restoration tasks. However, we
would like to note that our proposed method assumes no idiosyncrasies specific to the Thai
language. They might be able to improve other languages or tasks as well. For example, one
might consider the tasks of Elementary Discourse Unit (EDU) and clause segmentation which can
help downstream tasks such as text summarization and machine translation by providing the
minimal syntactic units. Also, the experiment results show that each contribution yields different
results for each language. Thus, the results of features or methods are still essential to be
discovered for a particular language, even though the trend of current NLP research is trying to

find the best generic method for every language.
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Moreover, due to the scarcity of labeled data in Thai, more amount of data with sentence
boundaries is still needed. However, only a large number of instances are insufficient to build a
generic model that can be applied to any written styles and domains; the dataset should be
built from various data sources too. Also, all available sentence segmentation datasets, such as
ORCHID, UGWC, and the recently released LST20 [87], should be integrated. However, the
annotation criteria of the datasets are different making the task non-trivial. One possible venue
for exploration is to use multi-criteria learning to utilize the shared information in all datasets.
This method was successfully applied to Chinese word segmentation, which has a similar

problem [88, 89].
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6. CONCLUSIONS

In this paper, we propose a novel deep learning model for Thai sentence segmentation. This
study makes three main contributions. The first contribution is to integrate a local representation
based on n-gram embedding into our deep model. This approach helps to capture word groups
near sentence boundaries, allowing the model to identify boundaries more accurately. Second,
we integrate a distant representation obtained from self-attention modules to capture sentence
contextual information. This approach allows the model to focus on the initial words of
dependent clauses (i.e., "Before", "If", and "Although"). The last contribution is an adaptation of
CVT, which allows the model to utilize unlabeled data to produce effective local and distant

representations.

The experiment was conducted on two Thai datasets, Orchid and UGWC, and one English
punctuation restoration dataset, IWSLT. On the Thai sentence segmentation task, our model
achieves F1 scores of 92.5% and 89.9% on the Orchid and UGWC datasets, constituting a relative
error reduction of 7.4% and 18.5%, respectively. On the English punctuation task, the binary F1
score reached 86.9% when considering only two punctuation classes (making the task similar to
sentence segmentation in Thai). Based on our contributions, the local representation has the
highest impact on the Thai corpus. From the interpretation process, the local representation
revealed that it captures phrases that frequently occurred near the sentence boundary, which is
usually the approach used by humans to recognize the boundary. Meanwhile, the distant
representation and CVT result in strong improvements on the English dataset. Also, ELMo is

suitable for both Thai and English corpus.
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APPENDIX

A. Performance on a public UGWC dataset

In this section, the model is evaluated on a public dataset, a subset of UGWC; the dataset
consists of 15,000 passages, 28,514 sentences, and 183,193 words. Due to the lack of public
unlabeled data, the semi-supervised technique does not be applied. Thus, only the model with
local and distant representation is evaluated by 5-fold validation. The performance is shown in

Table 10.

Table 10. The result of public UGWC and LST20 by the proposed model.

Algorithm Public UGWC LST20

Precision | Recall F1 score Precision Recall F1 score
Bi-LSTM 91.730 91.000 91.360 78.036 59.806 67.715
+ local + distant | 92.262 91.196 91.718 78.578 59.952 68.012

B. Performance on LST20 dataset [87]

LST20 Corpus is a news dataset developed by National Electronics and Computer
Technology Center (NECTEC), Thailand. The dataset includes word boundaries, part of speech
tagging, named entities, clause boundaries, and sentence boundaries. For data preprocessing,
sentences with more than 100 words are filtered out. Each instance is selected from consecutive
sentences in the same file with no filtered sentence between them. If the instance is longer than
ten words, the instance will be divided into two or more instances consisting of ten sentences or
less. After that, the instances that consist of only one sentence are filtered out. As a result, the

data statistics of preprocessed datasets are shown in Table 11. The code for data preprocessing

is publicly available on GitHub. !

Table 11. The number of instances, sentences, and words in preprocessed LST20 dataset.

Dataset # instances # sentences # words
Train 8,315 60,269 2,290,655
Eval 784 5,452 217,652
Test 699 5,201 200,079

1
https://sithub.com/ChanatipSaetia/Preprocessl ST20/blob/main/PreparelLST20.ipynb
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To apply to our proposed model, sentences in each instance are concatenated with a space
token (*_’) into one sequence of tokens. Each token is labeled as a sentence boundary when it is
the end of sentences or the added space token. Similar to the Orchid dataset, in which there is
no unlabeled dataset using the same word tokenization criteria, so the semi-supervised method
is not adopted. Thus, only the model with local and distant representation is evaluated. Its

performance is shown in Table 10.
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