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17.04 กิกะไบต หรือ ประมาณ 50.09% ในโหนดสำหรับเก็บขอมูลถาวร
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SIWAPOL JUMNONGSAKSUB : REDUCING SMART CONTRACT RUN-

TIME ERRORS ON THE ETHEREUM BLOCKCHAIN. ADVISOR : DR.

Kunwadee Sripanidkulchai, Ph.D., 84 pp.

With smart contracts, a wide range of applications can be implemented on

blockchains. Ethereum stores smart contract byte code with the smart contract ad-

dress so, the Ethereum Virtual Machine (EVM) can read and execute transactions

correctly. All executed transactions (both successful and failed transactions) are

stored on the platform permanently. Failed transactions are thrown by the EVM

due to runtime errors and result in monetary waste. The waste from these transac-

tions add up to around 2 million Ethers or $634.2 million. In this thesis, we propose

Evitar, a warning algorithm for reducing Ethereum smart contract runtime errors,

which has two mechanisms. First, Evitar proposes that users send transactions with

the maximum gas allowed to avoid Out of Gas errors. However, this results in an

extremely high transaction fee when transactions fail. Second, Evitar analyzes trans-

actions called to each method in smart contracts and marks a method as a method

with a high failure rate if the number of failed transactions reaches Evitar’s thresh-

old. This mechanism prevents users from sending and paying for transactions that

are likely to fail. We run experiments to evaluate the performance of Evitar by re-

playing transactions in a private network. The results show that Evitar can reduce

failed transactions up to 99.52% compared to sending under default behaviour in ex-

change for a reduction in successful transactions by 1.78%. The amount of gas used

by Evitar is only one-tenth compared to sending under default behaviour. Sending

transactions with the maximum gas in Evitar reduces Out of Gas errors by 99.25%.

In addition, Evitar can save up to 15.04 GB (82.32%) of storage in the Geth default
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node and 50.09 GB (50.09%) in the Parity full archive node.

Department: Computer Engineering Student’s Signature . . . . . . . . . . . . . . . . . . .

Field of Study: Computer Engineering Advisor’s Signature . . . . . . . . . . . . . . . . . . .

Academic Year: 2020



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

viii

Acknowledgements

I would like to thank Dr. Kunwadee Sripanidkulchai, my advisor, for giving

me an opportunity to learn about blockchain especially Ethereum blockchain and

inviting me to enrol in graduate school. She freely let me choose my thesis topic and

always give me a lot of advice to make my topic more feasible. When I struck with

any problems during my research, she always discusses with me for solutions. For

the time I feel tired and burnout, she cheers me up and gives me motivations to con-

tinue on the research. Talking with her always broaden my options not only about

research but it is including student life, teaching skill, and how to think carefully

before deciding.

I thanked thesis committees including Associate Professor Kultida Rojviboon-

chai, DR. Duangdao Wichadakul, and Associate Professor Sukumal Kitisin for giv-

ing valuable advice to improve this thesis.

I thanked the scholarship from the Department of Computer Engineering, Fac-

ulty of Engineering, Chulalongkorn University.

I thanked my beloved family who was also another person to give me an op-

portunity to get into higher education and always listen to every problem during my

research. They also gave me morale when I feel tired during my research.

I also thanked my ISEL lab mates for giving valuable advice and helping me

to solve research problems during these two years.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONTENTS

Page

Abstract (Thai) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract (English) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Ethereum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Ethereum Virtual Machine (EVM) . . . . . . . . . . . . . . . . . . . . 7

2.4 Smart Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 EVM Runtime Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Related Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 MadMax: Surviving Out-of-Gas Conditions in Ethereum Smart

Contracts [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Making Smart Contracts Smarter [2] . . . . . . . . . . . . . . . . . . . 14

3.3 SmartCheck: Static Analysis of Ethereum Smart Contracts [3] . . . . 15

4 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1 Runtime error identification . . . . . . . . . . . . . . . . . . . . . . . . 17

Geth Trace and Parity Trace Comparison . . . . . . . . . . . . . . . . 18

Parity Trace Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x
Page

Trace Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Monetary Waste from Failed Transactions . . . . . . . . . . . . . . . . 24

4.3 Evitar Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

TX-Processer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Warning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1 Replay Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Setup Private network . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Starter Node Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Transaction Input Modification . . . . . . . . . . . . . . . . . . . . . . 36

Evitar heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Failed Transactions Reduction . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 MaxGas performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 Gas Consumption Saved . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.5 Storage Saved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Storage saved estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Apppendix A EVM gas table . . . . . . . . . . . . . . . . . . . . . . . . . 57

Apppendix B Ethereum-ETL schema . . . . . . . . . . . . . . . . . . . 63

Apppendix C Evitar API Specification . . . . . . . . . . . . . . . . . . . 67

Apppendix D List of Publications . . . . . . . . . . . . . . . . . . . . . . 70



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xi
Page

D.1 IEEE Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Biography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LIST OF TABLES

Table Page
4.1 Transaction fee waste from failed smart contract transactions. . . . . . . 26

5.1 Number of smart contracts from block 1 to 10,600,000 selected for eval-

uation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Successful and failed transaction count (thousand) using Evitar with dif-

ferent thresh and wnd values in our small dataset. . . . . . . . . . . . . . 39

5.3 The percentage of the transactions changed forEvitar3 andEvitar5 com-

pared to Evitar2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 Transaction error distribution . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.5 The percentage of gas consumption changed of Evitar3 and Evitar5

compared to Evitar2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A.1 EVM Opcode gas cost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.2 EVM Opcode gas cost(cont). . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.3 EVM Opcode gas cost(cont). . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.4 EVM Opcode gas cost(cont). . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.5 EVM Opcode gas cost(cont). . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.6 EVM Opcode gas cost(cont). . . . . . . . . . . . . . . . . . . . . . . . . . 62

B.1 Block schema. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

B.2 Transaction schema. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B.3 Receipt schema. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B.4 Contract schema. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

B.5 Trace schema. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

C.1 ListEvitar API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

C.2 GetMethodsInSmartContract API. . . . . . . . . . . . . . . . . . . . . . . 68

C.3 IsMethodWithHighFailureRate API. . . . . . . . . . . . . . . . . . . . . . 68

C.4 GetMethodDetail API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LIST OF FIGURES

Figure Page
2.1 Blockchain’s block structure. . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Flowchart of smart contract creation. . . . . . . . . . . . . . . . . . . . . . 9

4.1 Trace structure from tracing a transaction using the Geth client. . . . . . 19

4.2 An example of Geth transaction trace. . . . . . . . . . . . . . . . . . . . . 19

4.3 Transaction trace structure from Parity. . . . . . . . . . . . . . . . . . . . 20

4.4 An example of Parity transaction trace including its subtrace. . . . . . . . 22

4.5 The growth of the database for Parity default node and Parity archive

node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.6 Trace tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.7 Distribution of runtime errors for smart contract transactions. . . . . . . 25

4.8 An overview of Evitar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Number of transactions from replaying transactions using Evitar differ-

ent heuristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 The amount of gas consumed from replaying transactions using different

heuristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Size of Geth default node and Parity archive node replayed with

Baseline and Evitar5 heuristics. . . . . . . . . . . . . . . . . . . . . . . . . 47



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter I

INTRODUCTION
Blockchains are disrupting computing platforms in many sectors, such as the

financial, supply chain, and healthcare industries. One of the most practical use

cases of blockchains is cryptocurrency [4, 5]. Cryptocurrency is a digital medium

of exchange in which all transaction records are stored in a blockchain. Bitcoin

[6], the first well-known cryptocurrency with the largest market cap [7], released in

January 2009 by Satoshi Nakamoto, gives the potential to perform a financial trans-

action online without a trusted bank. Anyone can send and receive Bitcoin by par-

ticipating in the Bitcoin network and sending Bitcoin via transactions. Another use

case of blockchains is supply-chain. Using blockchains in the supply-chain industry,

customers gain the traceability of products including material, process, transporta-

tion, and even certification [8]. All records of the product are stored publicly in the

blockchain and can be accessed anytime. For the healthcare sector, blockchains are

used to store the right to access patient personal information such as past medical

history, family history, and social history [9].

At its core, a blockchain platform implements an immutable distributed ledger

whose content is propagated to all nodes in a peer-to-peer network and treated as

global state. With a distributed ledger concept, all nodes have to eventually hold

the same data. This makes all data stored on blockchains transparent to the pub-

lic. A node that holds a different data from others is marked as a malicious node

and is rejected from other nodes in the network. To participate in a network, a user

needs to set up a node to run the blockchain client and connect to other nodes in

the network as peers to sync up its database. When its database is synced, a node

is available and able to make transactions. Since blockchains are transparent, all

blockchain state including current and previous state can be accessed at any time.

In order to update state in the blockchain, a user must create a transaction with the
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updated data then sign the transaction with the signature. After a transaction is

signed, the user needs to relay the transaction to its peers. Validators (miners) then

pick transactions for validating and bundle them with other validated transactions.

Validators are users that provide their resources to validate the correctness of trans-

actions. All validated transactions are stored in a block along with data from the

latest block to form a chain-like database. Finally, the validator publishes the block

to the network. If the block is accepted by the network, it is stored in the blockchain

and the validator receives a reward for the validation. With the immutable proper-

ties and mechanisms to validate transactions, blockchain technology can overcome

the double-spending problem [10, 11] which is one of the most critical challenge in

the financial sector. The double-spending problem is the risk that malicious users

can spend digital currency twice due to the latency of the network as some nodes

may not have the updated data. With blockchain technology, the network can be

formed and run without trusting other nodes while preventing a malicious node

with a counterfeit dataset to participate.

Ethereum [12] is one of the most popular blockchains with the second-largest

market-cap [7]. Ethereum is integrated with the Ethereum Virtual Machine (EVM)

[12]. Ethereum can compile and execute smart contracts [13, 14]. A smart contract

is a set of code that is deployed in the Blockchain and can be executed when trig-

gered by related transactions. With the EVM and smart contracts, Ethereum has the

potential to run many applications such as product traceability [15, 16, 17], e-voting

[18, 19], and games [20, 21, 22]. In addition, smart contracts can enable new decen-

tralized financial systems such as lending platforms [23] for supplying or borrowing

cryptocurrency with auto-calculated interest and decentralized exchanges [24].This

gives users an opportunity to provide liquidity for each trading pair while receiving

some of the trading fees as a reward. To use a smart contract on a blockchain, a user

writes smart contract code and deploys it to the Ethereum network. Once a smart

contract is mined, other users can trigger methods in the smart contract by sending

transactions to the smart contract with proper input.
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While smart contracts have been widely deployed on the Ethereum platform,

not all smart contract transactions are successful. Some transactions fail due to run-

time errors thrown by EVM during executions. When the EVM detects a fatal error,

it halts current execution, reverts global state, and marks the transaction as failed.

These failed transactions cost significant waste in terms of resources for execution,

storage of transaction data, and money for transaction fees and block rewards. We

collect and analyze transaction data from the Ethereum public network which is the

primary public network of the Ethereum blockchain where transactions are sent and

mined. The analysis shows that there are around 2 million Ethers wasted from these

transactions which can be divided into 30,430 Ethers for transaction fees and 1.96

million Ethers for block rewards from generating blocks to store these transactions.

In order to estimate the waste in term of fiat currency, these wasted Ethers are con-

verted to dollars using the daily exchange rate. For the transaction fee, 30 thousand

Ethers is worth $13 million while the 1.96 million Ethers for block rewards is worth

$621.2 million. This means that a huge amount of money is generated and used

wastefully. This existing waste cannot be reduced due to the immutable property

of blockchain but new incoming potential waste can be reduced if users can avoid

sending transactions that are likely to result in failure.

Our work attempts to quantify runtime errors, provide an algorithm to detect

smart contract methods with bad transaction behavior, and give out warning mes-

sages to prevent further transactions on methods that are likely to fail. We analyze

the behavior of runtime errors from transactions. We find that some errors are nec-

essary because the required logic and network state may not have been known prior

to execution. However, many of them can be avoided as they are caused by human

errors: poorly written contracts and poorly funded transactions. In this thesis, we

design Evitar [25], a dynamic algorithm that analyzes smart contract-related trans-

actions to identify each method’s transaction behavior. We label any methods as

method with a high failure rate if many of the transactions that called the method

failed. Evitar’s main purpose is to reduce the number of failed transactions on the

Ethereum blockchain by helping users to avoid sending transactions that will result
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in failure. This will improve the transaction processing performance of the over-

all network since transactions that are likely to fail are prevented and most of the

transactions selected by miners for validation are successful transactions. Further-

more, we can reduce the overall storage of the blockchain by storing fewer failed

transactions.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter II

BACKGROUND
The related technologies to reduce failed transactions in the Ethereum net-

work are reviewed: First we discuss blockchains, a peer-to-peer network with a

distributed database. Next we discuss Ethereum, an open-source blockchain that

provides a platform for transferring cryptocurrency and running smart contracts. In

addition, Ethereum is integrated with the Ethereum Virtual Machine (EVM) which

gives Ethereum the potential to execute smart contracts, on its platform. Last, we

describe all types of EVM runtime errors.

2.1 Blockchain
A blockchain is a digital ledger where all records are duplicated and stored on

all nodes in a peer-to-peer network. Blockchain is an example of distributed ledger

technology (DLT) [26].All stored records are immutable. New records are updated

on all nodes in the same order. This means that anyone who updates a different

set of data from the majority is marked as a malicious user and loses trust in the

network. Data recorded in the blockchain is persistent and data modification is not

permitted. A blockchain has two main structural parts which are the block and the

chain as shown in Figure 2.1. In a blockchain data structure, blocks are linked one-

by-one to form a chain-like database which means that there is only one chain that

is valid. If the chain has diverged, the longer chain will be chosen and the shorter

one is discarded. Each block has a header and body. The block’s header contains

the previous block’s hash which is the key field for linking blocks together as well

as a timestamp, block number, nonce, and Merkle root [27]. The body contains a

set of transactions that are validated transaction. Transactions can be created by

anyone in the network and sent to the transaction pool to wait for validation. In

a public blockchain, anyone can participate as a miner to validate the correctness
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of transactions, add them to a block, and publish blocks to the network. Once a

published block is accepted by the others in the network, the miner receives a reward.

Figure 2.1: Blockchain’s block structure.

2.2 Ethereum
Ethereum is one of the most well-known blockchains. Ethereum is the first

blockchain that enables smart contracts integration through the Ethereum Virtual

Machine (EVM). With the EVM and smart contracts, Ethereum transactions go

beyond sending and receiving assets. Ethereum users can send transactions to create

smart contracts and call them. Although smart contracts enable more use cases on

Ethereum, they increase the demand for throughput on the Ethereum network since

smart contracts are called via transactions. Furthermore, some transactions can

result in failure due to insufficient gas or unsatisfied conditions during execution.

Even if a transaction results in failure and does not affect any state in the blockchain,

it still is stored in the blockchain permanently.

Ethereum is based on the the DLT concept like Bitcoin which means that the

Ethereum network also forms a single chain database. Ethereum uses an account-

based model [13] in which users hold a private key to access their account. The

account holds the user is current balance and is used to exchange Ethers with other

accounts. To support smart contracts, Ethereum adds a new type of account for

smart contracts which can store smart contract bytecode and can be automatically
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executed when there are transactions calling them. Ethereum also uses a gas model

as an incentive for miners. The gas model is used to compute the transaction fee

that owners of transactions give to miners for transaction execution. There are two

factors for calculating transaction fees. The first factor is the amount of gas provided.

Ethereum transactions cost 21,000 gas plus 4 and 68 for each zero and non-zero byte

of input respectively. If the transaction is for a smart contract, gas cost is higher

because more operations are performed by the EVM. Gas cost for each operation in

the EVM are as shown in Appendix A. Second is the gas price, which is the price of

each unit of gas spent for the execution. Mostly, miners prioritize transactions with a

higher gas price. Transaction fees that miners receive are calculated by multiplying

gas price with the amount of gas used for the execution.

To update the protocol on the Ethereum blockchain, all nodes need to update

their client to the latest one. There are two types of protocol updates: soft fork (SF)

and hard fork (HF). The SF is a minor update so nodes running older protocol ver-

sions are still compatible. However the HF is a chain split. Only updated nodes can

participate while nodes with older protocol version need to update before partici-

pating. In every HF, the block number to activate a new update is specified so that

nodes in the network know when to update. There are many important HFs [28] in

Ethereum such as the Homestead HF [29], Byzantium HF [30], Constantinople HF

[31, 32], and Istanbul HF [33].

2.3 Ethereum Virtual Machine (EVM)
The Ethereum Virtual Machine or EVM is a virtual machine that is integrated

with the Ethereum client for handling smart contract deployment and execution on

the Ethereum network. It is a quasi-Turing-complete state machine with limited ex-

ecution processes which are controlled by the amount of gas provided by a sender.

The EVM is built as a virtual stack machine with a maximum stack size of 1,024

stacks and each stack item has a size of 256 bits. The EVM also contains a prede-

fined instruction set called opcodes [12, 34],where each opcode is an 8-bit unsigned
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integer. The EVM is used when a transaction for creating or calling smart contract

is selected for validation. It starts by loading the smart contract current state and

transaction input, then executes the transaction following the opcodes read from

transaction input, and uses user-supplied gas as fuel. During the execution, gas

serves as an upper-bound on the amount of work performed by the EVM to prevent

the execution from endless work. If the EVM detects a fatal error during execution,

the EVM handles it by halting the current execution. After the EVM halts the ex-

ecution, it reverts global state back to the initial state prior to the transaction and

marks the transaction as failed.

2.4 Smart Contracts
A smart contract on Ethereum is a set of agreements in the form of code which

can be self-executed when a transaction triggers it. An Ethereum smart contract is

written in higher-level languages such as Solidity [35] and Vyper [36], then com-

piled into EVM bytecode. Once a smart contract is created it can never be updated.

However, it can be deleted using a self-destruct opcode [12, 34]. Figure 2.2 shows

the smart contract workflow. First, the smart contract owner writes the smart con-

tract source code in an editor and compiles the source code into EVM bytecode.

Then, the owner deploys the smart contract bytecode into the Ethereum network by

sending a transaction with the compiled input and waits for the transaction to be

mined. After the transaction is mined, others can call the smart contract specifying

the method hash and variable as inputs to execute. Smart contract transactions can

be divided into two types: smart contract created transactions and smart contract

called transactions which have different input formats and receivers. For the former,

there is no receiver since it is used for creating a new smart contract. The input for-

mat consists of three parts: creation code which is used by the EVM to initialize

state for the smart contract when a smart contract is created, runtime code which

is the main part that contains all code for smart contract execution when called,

and swarm code which is hash of smart contract metadata and can be used to query
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a decentralized storage system called Swarm. For called transactions, the first 10

characters (including “0x”) is the method hash which the transaction needs to use

to trigger execution. A method hash is generated by hashing the method’s name,

arguments and argument’s types. Method hashes that are the same may have differ-

ent code inside. The rest of the input is arguments of the method represented as hex

data. The called transaction type without a receiver is a smart contract transaction,

but labeled as failed due to its invalid input format (i.e., missing a receiver).

Figure 2.2: Flowchart of smart contract creation.

2.5 EVM Runtime Error
From the Ethereum documentation, the EVM handles failure situations by

throwing the current execution, reverting the current state back to the initial state,

handling transaction gas, and marking that transaction as failed. This means that
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failed transactions will not change any global state but still consume gas as fuel

for execution (i.e., reward for the miner). These failed transactions are stored in

the blockchain, the same way as successful transactions. The EVM has 7 types of

runtime errors [12, 30] with different gas consumption behaviors described below.

1. Out of Gas : This runtime error occurs when the gas provided by the sender

for the smart contract execution is insufficient. In depth, the cause of this

runtime error can come from poorly written smart contract source code such

as superfluous code, multipurpose methods, or endless loops. An Out of Gas

error consumes all gas provided by the user because it is all used up.

2. Revert : This is a require-style exception thrown by the revert opcode which

was introduced in the Byzantium HF. Reverts are typically used by smart con-

tract creators for validating smart contract inputs or conditions inside methods

to ensure programmatic correctness, such as checking contract ownership, ac-

count balance, or current time. The gas consumption of a Revert error is dif-

ferent from other runtime errors. It only partially consumes gas used from the

beginning if execution to the point that the revert is detected.

3. Invalid Opcode : This is an assert-style exception thrown by invalid opcodes

usually to prevent mathematical errors such as divide by zero. Generally, this

error is unacceptable and should not occur as it should have been caught by

condition-checking code in the contract. An Invalid Opcode consumes all gas

provided as a penalty since these runtime error must not occur.

4. Invalid Jump : This is an old error that has been replaced by revert. However,

it can still occur with older published contracts (Solidity versions prior to

0.4.10). The cause of this runtime error is when the EVM calls the jump

opcode and the jump destination is invalid or non-existent. This runtime error

consumes all gas, same as the Invalid Opcode error. This was considered to

be too much gas consumed and was later replaced by the Revert error.
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5. Stack Underflow : This runtime error happens when the EVM pushes unde-

fined opcodes to the stack or pops an empty stack. This is caused by mal-

formed inputs usually during smart contract creation with two common pat-

terns. First, the user created the smart contract transaction with incomplete

inputs. So, the EVM executes that transaction accidentally pushing undefined

opcodes to the stack. Second, the user called a smart contract transaction with-

out specifying a receiver. This makes the EVM interpret it as a smart contract

creation with malformed input instead. This runtime error also consumes all

gas provided.

6. Stack Overflow : This runtime error happens when the EVM pushes an opcode

to a full stack. The EVM is a stack machine with a limit of 1024 stack size.

During execution, the call opcode [34] is usually pushed on the stack. The

call has to be executed completely before it can be popped out. Recursively

calling this opcode will cause the EVM to keep storing call opcodes in its

stack, exceeding the stack size causing Stack Overflow. This runtime error

also consumes all gas provided.

7. Mutable Call in Static Context : This runtime error happens when the EVM

tries to call the STATICCALL opcode with the modification in the context that

stores global state. Staticcall is used to call read-only functions. When static-

call is used for any function that modifies state, the EVM halts the execution

and returns this runtime error.

The execution status, successful or failed, can be found in the transaction re-

ceipt after the Byzantium block. However, the runtime error which is the root cause

of the transaction, is not stored directly with the transaction or its receipt. The run-

time error of transactions can be obtained using the transaction trace which will be

further explained in Section 4.1.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter III

RELATED RESEARCH
The related work focuses on smart contract vulnerabilities and security issues

by analyzing smart contract source code and bytecode. Solutions and tools are pro-

posed for helping smart contract creators to write code with less vulnerabilities and

avoid using deployed vulnerable smart contract.

3.1 MadMax: Surviving Out-of-Gas Conditions

in Ethereum Smart Contracts [1]
In the Ethereum blockchain, gas is the fuel for executing smart contracts.

Users must pay gas upfront so that the execution cost may not exceed the provided

gas. Some transactions fail due to insufficient gas provided while some of them fail

due to vulnerabilities in smart contracts. Smart contracts that does not handle the

possible abortion of transactions may contain gas-focused vulnerabilities. A vul-

nerable smart contract must not be called because calling it will always end up with

insufficient gas. To prevent this, developers and auditors need to make extensive

use of programming techniques and many tools to minimize the risk of being at-

tacked by attackers. Smart contracts that do not handle the possible abortion of a

transaction correctly are at risk for a gas-focused vulnerability. The examples of

gas-focused vulnerabilities are described as following.

1. Unbounded Mass Operations : This vulnerability is found in smart contracts

that contain too many loops. When executed, it consumes too much gas or

loops infinitely. To close this vulnerability, loop conditions in smart contracts

must be validated with the maximum gas allowed for execution.

2. Wallet Griefing : This vulnerability is found in smart contract functions that
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contain code to send Ethers to other smart contract accounts using the send

function. The target smart contract can run a callback function when receiving

Ethers and that function can contain improper code that makes the transaction

run out of gas. The vulnerable function always runs out of gas and does not

complete its work.

3. Integer Overflows : An example of this vulnerability is when a loop counter is

uint8 and the terminating condition is more than 255. The code keeps looping

infinite times since the value of uint8 is always between 0 to 255.

4. Possible Attacks and Incentives : These are possible attacks that need funds to

exploit the vulnerabilities. These attacks include dumping Ether price, black-

mailing of smart contract holders, or defaming competitors’ smart contracts.

MadMax is a static program analysis technique that automatically detects gas-

focused vulnerabilities. It uses a control-flow-analysis-based decompiler named

Vandal to analyze the gas-focused vulnerabilities. The Vandal decompiler uses

EVM bytecode as input and returns standard structured intermediate representation

including a control-flow graph, three-address code for all operations, and recognized

function boundaries. Then, Madmax analyzes the output from the Vandal decom-

piler using logic-based specifications. The analysis starts from the three-address

code representation from the Vandal decompiler. Loops, induction variables, and

data flow in smart contracts are first analyzed. Next, memory and dynamic data are

analyzed to find smart contracts whose storage increases due to re-entry or nested

arrays. Finally, the concept of gas-focused vulnerabilities is inferred. MadMax an-

alyzes gas-focused vulnerabilities in 6.33 million smart contracts and found out that

4.1% of smart contracts have unbound iteration, 0.12% have Wallet Griefing, and

1.2% have integer overflow vulnerabilities.
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3.2 Making Smart Contracts Smarter [2]
A smart contract is a program that is executed on a blockchain enforced by

a consensus protocol. Smart contracts can implement a wide range of applications

such as token transfer, financial derivatives, and savings. Since smart contracts typ-

ically store a large number of Ethers or tokens, many adversaries are attracted to

these high value incentives and try to manipulate smart contract execution. Unfor-

tunately, there is a lack of attention in the security of smart contracts, resulting in

thousands of dollars’ worth locked away in smart contracts that cannot be patched.

All smart contracts must be checked for correctness before being deployed to the

network. This related work identifies new security flaws in smart contracts which

can be attacked by adversaries and well-known problems such as exceptions and

logical flaws as follows:

1. Transaction-Ordering Dependence (TOD) : Since blockchain state is updated

every time transactions are validated, the order of transactions is an impor-

tant factor for the state update. For example, two users send transactions to

withdraw all remaining funds in a smart contract at the same time. Only the

transaction that is validated first is able to withdraw the fund, while the other

transaction results in failure. Adversaries can use this flaw to attack target

smart contracts by listening to all transactions calling the smart contract. If

there are transactions worth attacking, adversaries send a transaction with the

same input but set a higher gas_price so that the malicious transaction is val-

idated before the normal transaction.

2. Timestamp Dependence : In some functions in smart contracts, block times-

tamp is used as an input to update their storage or used as a source for giving

out rewards. Adversaries can participate in the network as miners and collect

their malicious transactions in a block. Then, they publish the block when the

block timestamp makes the malicious transactions benefit them.

3. Mishandled Exceptions : This flaw occurs when a smart contract calls a send



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15

function which is used to send ether to another address without handling the

result from sending. The target of the send may call some function and run out

of gas while the main execution does not handle this failure. So, the execution

continues even if failure occurs.

4. Re-entrancy Vulnerability : This is a well-known vulnerability that adver-

saries create a smart contract with a fallback function that calls the withdrawal

function of the target smart contract. When the target smart contract sends

Ethers to the malicious smart contract, a loop for calling the withdrawal func-

tion begins. As a result, the target smart contract sends most of its Ethers to

the malicious smart contract.

This related work proposes Oyente, a tool with symbolic execution-based for

analyzing the above flaws in smart contract source code. Oyente uses smart contract

bytecode and global state to analyze the smart contract flaws. The result of the

analysis are security problems of the smart contract control-flow graph. Oyente

identifies at least one security problem from 8,833 out of 19,366 analyzed smart

contracts. The flaws distribution is 5,411 (27.9%) smart contracts with Mishandled

Exceptions, 3,056 (27.9%) smart contracts with TOD, 83 (0.94%) smart contracts

with Timestamp Dependence, and 340 (3.85%) smart contracts with Re-entrancy

Vulnerability.

3.3 SmartCheck: Static Analysis of Ethereum

Smart Contracts [3]
SmartCheck focuses on security issues due to unfamiliar execution environ-

ment, new software stack, limitation on updating smart contract, anonymous attack-

ers, rapid pace of development, and sub-optimal high-level language while assum-

ing correctness of the Ethereum core infrastructure. Issues in smart contract source

code are classified into four types.
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1. Security issue : An issue that a malicious user can use for their own benefit.

The examples of this are strict balance equality check, unchecked external

call, re-entrancy, and the use of malicious third-party libraries.

2. Functional issue : This issue can cause a violation in the function called which

can make smart contracts incompletely execute or cause the EVM to fail.

Writing smart contracts without a withdrawal function and using improper

type for variables can make functions incorrectly execute. Mathematical prob-

lem such as divide by zero, integer overflow, and integer underflow are issues

that lead the EVM to fail.

3. Operational issue : This issue causes the EVM to have bad performance such

as using bytes instead of byte array and creating loops with high gas-cost func-

tion inside.

4. Development issue : This issue occurs when smart contract source code is

complex and difficult to comprehend. Examples are flexible compiler version,

private modifier, using improper code style, and implicit function visibility.

SmartCheck is a static analysis tool implemented in Java which detects is-

sues in smart contract source code written in Solidity. SmartCheck works by trans-

lating Solidity source code into an XML-based intermediate representation (IR)

using ANTLR and a custom Solidity grammar. Then, vulnerability patterns are

detected using XPath queries on the IR. 4,600 smart contracts was evaluated on

SmartCheck. SmartCheck shows that 99.9% of smart contracts have at least one

issue and 63.2% of smart contracts have critical issues. The most common issue

detected by SmartCheck is implicit visibility level which is found 81,160 times.

The related work focuses on analyzing smart contract vulnerabilities and se-

curity issues. These related works require smart contract source code to perform

the static analysis. Our work focuses on runtime errors from the EVM and analyzes

them to see transaction behaviour without using smart contract’s source code. In

addition, our work helps users avoid sending transaction that are likely to fail.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter IV

DESIGN
The main difference between our contribution and the related work is that

our work focuses on runtime errors of failed transactions. There are 7 types of

failed transaction that are thrown by the EVM as described in Section 2.5. We first

identify runtime errors and estimate the monetary waste from failed transactions

including transaction fees and block rewards. To reduce further failed transactions

and monetary waste, we propose Evitar, a warning algorithm for reducing Ethereum

smart contract runtime errors. Since Ethereum itself cannot prevent the occurrence

of failed transactions, Evitar tries to prevent them by warning users not to send

transactions that are likely to fail. An overview of how Evitar works, including the

components of Evitar, its algorithm to reduce failed transactions, and how to use

Evitar are described in this chapter.

4.1 Runtime error identification
In the Ethereum blockchain, we check a transaction’s result using the status in

the transaction receipt. However, the status only shows that a transaction is success-

ful or not without showing how much progress was made during execution. When

a transaction fails, a user cannot prevent further transactions on the same contract

from failure since the runtime error of a failed transaction is unknown. In this sec-

tion, we introduce the transaction trace that can be used to identify the runtime

error of a transaction. A transaction trace is a record that stores all information of

the transaction during its execution including the output state, amount of gas used

and the runtime error. The transaction trace is not stored directly in the blockchain

database but it can be obtained by requesting an Ethereum client such as Geth [37]

and Parity [38] to re-execute the transaction again. To re-execute a transaction, the

Ethereum client receives a transaction hash as input and queries global state before
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transaction execution. Then, the Ethereum client re-executes the transaction and

returns the transaction trace as a result. Since a transaction re-execution requires

global state, only clients running as archive nodes are able to re-execute transac-

tions. An archive node is a node that stores everything since the blockchain started.

The data stored includes blocks, transactions, and all historical state. We compare

transaction traces from Geth and Parity clients to determine the suitable client to use

for identifying the runtime error of a transaction. Finally, we propose constructing

trace trees, built from transaction traces obtained from the Parity client, for identi-

fying the runtime error of a transaction.

Geth Trace and Parity Trace Comparison
Transaction traces from Geth and Parity clients have different formats due to

their implementation. We compare the transaction trace format from both clients.

The client with a more readable format is selected to use as the source for runtime

error identification.

For the Geth client, the transaction trace is a list of EVM opcodes. The trace

stores every instruction code executed for the transaction. Figure 4.1 is the trace

structure from the Geth client. It shows instruction code information which contains

the program counter (pc) to represent the order of the opcode, the opcode called (op),

the gas cost to execute the opcode (gasCost), the remaining gas (gas), the current

depth of the execution (depth), the error message (error), and the current state of

stack, memory, and storage. Figure 4.2 shows a portion of the transaction trace,

when the EVM executes the DELEGATECALL opcode, jumps to a lower depth,

resets the pc, and continues the execution. The EVM jumps back to a higher depth

when the RETURN opcode is executed. In addition, the EVM can inherit an error

from a lower depth. The trace provided by the Geth client is difficult to comprehend

since it is in the form of an instruction list, not easily human readable.

On the other hand, the Parity client provides more readable traces with many

trace APIs such as trace_call for tracing a single call, trace_callMany for more
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Figure 4.1: Trace structure from tracing a transaction using the Geth client.

Figure 4.2: An example of Geth transaction trace.

than one trace in the same block, trace_rawTransaction for tracing a transaction

by re-executing the transaction using a raw transaction as a new transaction and

trace_replayTransaction for replaying a transaction again and return its trace as a

result. In this thesis, trace_replayTransaction is used since it contains important in-
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formation such as the error of the trace. Figure 4.3 shows the Parity trace structure

from the trace_replayTransaction API. The trace returned from the Parity client

consists of many important fields such as action that contains the transaction input

provided by the user (action), transaction block identifiers (blockHash and block-

Number), execution result of a transaction trace (result), number of subtraces that

a transaction trace called (subtraces), address of a transaction trace (traceAddress),

transaction’s hash (transactionHash), position of a transaction in a block (trans-

actionPosition), and transaction type which can be “create” or “call” (type). The

action field contains the call type such as CALL, CALLCODE and DELEGATE-

CALL (callType), trace caller (from), amount of remaining gas (gas), calling input

(input), target address for calling (to), and amount Ethers sent (value). The result

field shows the amount of (gas used in this trace (gasUsed), and the output return

from this trace (output).

Figure 4.3: Transaction trace structure from Parity.
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Parity Trace Extraction
We use the Parity client since it provides a more readable trace than the Geth

client. Transaction traces from the Parity client are used to identify runtime er-

rors of transactions. Figure 4.4 shows an example of a transaction trace extracted

from the Parity client to create a trace tree. To enable the Parity client to run the

trace_replayTransaction API, the Parity node is configured to run as a archive node

using the following flags:

• pruning : this flag must be set to ”archive” to give the Parity nodea permis-

sion to maintain all the state in the state-trie. The state is necessary for trac-

ing transactions because replaying transactions requires the knowledge of the

state at the time the transaction was executed. Without the pruning flag set to

archive, the Parity node stores only the state produced from the last few blocks

and prunes out the old state.

• fat-db : this flag must be set to “on” so that the Parity node can store additional

information such as the list of all accounts and their storage keys. Enabling

the fat-db flag results in double the storage size on the node.

• tracing : this flag must be set to “on” to enable the Parity node get traces of

each transaction from the EVM.

These three flags make Parity generates transaction traces. However, the draw-

back is that node storage grows extremely large compared to the default node. Fig-

ure 4.5 represents the growth of database for the default node and archive node.

The archive node use around 14-16 times more storage than the default node. With

these flags set, the Parity node is ready for tracing transactions in the blockchain.

The next step for obtaining transaction traces is to extract necessary data from the

Parity node. Since this thesis focuses on smart contract transactions and ignores

Ether transfer transactions, all smart contracts in the blockchain are extracted first.

Next, smart contract called transactions and their receipt are extracted by checking
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Figure 4.4: An example of Parity transaction trace including its subtrace.

that to_address field is in the smart contract list or not. Then, transactions’ hash

are used as input for extracting transaction traces. Transaction traces are grouped

by transaction hashes and are used to build a trace tree to identify the runtime error.

Finally, the transaction status is checked with the runtime error to confirm whether

or not the transaction failed. Some transactions contain subtraces that fail but do

not result in the transaction itself failing.

Trace Tree
The trace tree is an n-ary tree that shows the transaction execution steps. A

node in the trace tree represents the trace execution result and each trace can trigger

other traces using CALL, CALLCODE, and DELEGATECALL opcodes. The traces
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Figure 4.5: The growth of the database for Parity default node and Parity
archive node.

called by their parent trace are displayed as childs node and are connected to their

parent node ordered by the called time. There are several fields in the transaction

trace required to build a trace tree such as trace_address and error. Trace_address,

a string list, is used to locate the position of a node in the trace tree. Length of

trace_address list refers to the depth of a trace tree while the value refers to the

position of a node and its parent nodes. Error is the execution result of that trace.

The trace tree is built by gathering all traces of a transaction. The starter node is a

trace with no trace_address value (null value) and the value of a node is the runtime

error from the trace (null value in error field means that trace is executed success-

fully). Then, other subtraces are connected to their parent. When all subtraces are

connected together, the trace tree is formed and ready to identify the runtime error

of the transaction. After the runtime error is identified, the transaction_status from

transaction receipt is used to check if a transaction resulted in an error or not. As

shown in Figure 4.6(a), the trace tree shows a Revert error in branch 1-2 and the

transaction status is zero. So, their upward parents also resulted in failure and the

transaction is marked as Revert. However, in Figure 4.6(b) the trace tree is the same

as the previous example, but the transaction status is one. This means that the trans-

action is successful and the error at this child node does not result in the transaction

failing.
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(a) Trace tree with transaction status
equal to 0.

(b) Trace tree with transaction status
equal to 1.

Figure 4.6: Trace tree.

4.2 Monetary Waste from Failed Transactions
In this section, we estimate the monetary waste from failed transactions dis-

tributed by runtime errors. We will use the trace tree to identify the error distri-

bution of the Ethereum network. The waste from failed transactions is calculated

from wasted transaction fees and block rewards measured in both Ethers and dol-

lars (using the daily exchange rate). The transaction fee is the amount of Ethers that

is provided by users as a fee for miners who validate the transaction. Transaction

fee waste is calculated by multiplying transaction gas used with the gas price set

by the user at sending time. The block reward waste is calculated from number of

the blocks needed to store these failed transactions multiplied by the amount of the

block reward. In the Ethereum blockchain, the block reward is set to 5 Ethers per

block. There have been two block reward reductions since the genesis block. The

first reduction was at the Byzantium HF at block 4,370,000, when the block reward

was decreased to 3 Ethers per block. The second reduction was at the Constantino-

ple HF at block 7,280,000, when the block reward was decreased to 2 Ethers per

block.

In this work, we measure waste from block 4,370,000, at the Byzantium HF

when transaction status was first enabled, to block 10,600,000, a rounded-up block

number of the experiment date (August 5, 2020). During this period, there are 425.2

million smart contract-related transactions with 18.9 million (4.45%) failed trans-
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actions. We present the distribution of runtime errors for smart contract-related

transactions in Figure 4.7 in log scale. The figure shows that the revert error is the

most common runtime error compared to other runtime errors, followed by Out-

of-Gas, Invalid-Opcode, Invalid-Jump, Stack-Underflow, Mutable-Call-In-Static-

Context, and Stack-Overflow. The revert error is the most common because it is

used to check if conditions meet the requirements of the smart contract function.

Table 4.1 represents the transaction fee waste from failed transactions including gas

used, and transaction fee in Ethers and dollars. The waste from the transaction fee

is around 30,430 Ethers or $13 million if it is converted to dollars using the daily

exchange rate.

Figure 4.7: Distribution of runtime errors for smart contract transactions.

We estimate the block reward waste from the amount of gas used by failed

transactions. These failed transactions need around 0.78 million blocks (387,575

Byzantium block and 396,510 Constantinople block) to store them. These blocks

generate Ethers as block rewards equal to 1.96 million Ethers ($621.2 million). The

total monetary waste from failed transactions is 2 million Ethers or $634.2 million.
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Table 4.1: Transaction fee waste from failed smart contract transactions.

Runtime error
Gas used
(million)

Transaction fee
(Ethers)

Transaction fee
(Dollars)

Reverted 575,593 12,399.39 4,237,397.34

Out of Gas 377,353 7,918.16 2,846,269.15

Invalid Opcode 265,429 5,410.07 2,496,913.07

Invalid Jump 179,917 4,625.18 3,428,937.86

Stack Underflow 3,671 68.82 43,748.41

Mutable Call in

Static Context
488 6.19 1,141.38

Stack overflow 339 2.28 378.80

Total 1,402,791.39 30,430.08 13,054,786.01

These failed transactions cause users to pay a large amount of money for trans-

action fees without any benefit. In addition, these failed transactions are stored per-

manently in the blockchain and cannot be removed due to the immutable property

of the blockchain. To prevent future monetary waste from failed transactions, trans-

actions that are likely to result in failure must not be sent. Evitar helps users know

that they are going to call a method with a high failure rate, so that they can avoid

calling that method.
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4.3 Evitar Overview
Evitar is an algorithm which dynamically analyzes mined transactions from

the Ethereum blockchain and gives out a warning if the user requests for it. Fig-

ure 4.8 shows the overall workflow of Evitar. Evitar consists of three modules. First

is the TX-Processer module which is a module for extracting data from the Ethereum

blockchain, identifying runtime errors of transactions using the trace tree, and pro-

cessing CSV files. Second is the Warning algorithm module, a module for analyzing

mined transactions and marking a method status as a method with a high failure rate

using two parameters: windowsize(wnd) and threshold(thresh). The Warning algo-

rithm module detects methods with a high failure rate by analyzing, in real-time, a

window of mined transactions of size wnd for each contract method called. After

every wnd mined-but-not-yet-analyzed transactions have passed, the Warning algo-

rithm module performs its analysis by analyzing the transaction error ratio observed

at the end of the window. If the total error ratio is above the threshold thresh, the

Warning algorithm module marks the method as a method with a high failure rate.

Last is the Server module. This module stores the warning status from the Warning

algorithm module and provides a RestAPI for users to check any method’s status.

In addition, Evitar suggests that users always send transactions with the maximum

gas limit to avoid an Out of Gas error.

TX-Processer
Transactions, transaction receipts, and transaction traces of a method are used

by Evitar to identify a warning status. This data is extracted from the Ethereum

blockchain in this module. Then, we identify runtime errors of transactions using

transaction receipts and transaction traces. Transactions and their runtime errors are

the output of this module and are sent to the Warning algorithm module to check

the warning status. There are two parts in this module: the Ethereum-ETL [39] and

the Evitar Utils.

The Ethereum-ETL is a tool for extracting data from the Ethereum blockchain
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Figure 4.8: An overview of Evitar.

into a convenient format such as CSV files. This tool works by connecting to an

Ethereum client to extract the blockchain data. The Ethereum-ETL can extract

blocks, transactions, transaction receipts, transaction logs, transaction traces, as

well as advanced data such as smart contracts, ERC20 [40, 41] and ERC721 [42, 43]

tokens, and token transfers of which the schema are represented in Appendix B. The

Ethereum network has two types of transactions: Ethers transfer transactions for

sending Ethers between users and smart contract transactions for executing smart

contracts. This module only focuses on smart contract transaction extraction espe-

cially smart contract called transactions which are used to execute smart contracts.

A smart contract created transactions is sent only a single time per smart contract.

For extracting transaction traces, the Ethereum client must run as an archive node.

The Ethereum-ETL supports both Geth and Parity client and the exported schema

are in the same format except transaction traces. Since we use transaction traces
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from the Parity client, the Ethereum-ETL is used to extract data from the Parity

client.

The Evitar Utils contains useful functions to process data for Evitar. There

are three functions in the Evitar Utils as follows:

• combine_csv : a function for combining multiple csv files into a single file,

mostly used when Ethereum-ETL is run in multiple batches and results in

multiple files.

• extract_csv_column : a function for stripping out unnecessary columns such

as block_hash and block_timestamp.

• trace_runtime_error : a function for identifying the runtime error of a trans-

action. This function receives transaction traces, generates a trace tree, and

returns a runtime error as a result.

Warning Algorithm
The Warning algorithm module is a key module in Evitar since it analyzes

the warning status to prevent future failed transactions. This module receives a

newly mined transaction and its runtime error from the Tx-Processer module, then

analyzes the transaction’s method to see if it is a method with high failure rate or

not by using two parameters: window size (wnd) and threshold (thresh).

• Window size (wnd) : a window of mined transactions of size wnd for each

smart contract contract method called. After every wnd mined-but-not-yet-

analyzed transactions have passed, we perform our analysis. We compute the

transaction error ratio observed at the end of the window. Wnd is a positive

integer. A high value of wnd makes the Warning algorithm wait too long

before analyzing a method status. A low value makes the Warning algorithm

analyzes a method status too frequently. For example, when the wnd is set to
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1, a method is marked as a method with a high failure rate immediately if the

first transaction failed.

• Threshold (thresh) : thresh is the maximum error ratio acceptable for sending

transactions to a method. If the error ratio for any type of error is above the

threshold thresh, we mark that method as a method with a high failure rate

and warn the user not to send the transaction. Otherwise, we suggest that

users send the transaction using the maximum gas limit. Thresh is a float

value that can be set between 0 and 1. If thresh is set with a high value, a low

number of failed transactions can lead to the method being marked as having

a high failure rate. However a low value of thresh leads to the method not

being marked as having a high failure rate even when there are a high number

of failed transactions. A value of 1 marks a method as one with a high failure

rate.

When this module receives a mined-but-not-yet-analyzed transaction from the

TX-Processer module, it checks if the total mined-but-not-yet-analyzed transaction

in the method reaches the wnd or not. If it does not reaches wnd, the method is

ignored and waits for further transactions. Otherwise, this module compares the

error ratio for any type of error with the thresh value. If the error ratio is more than

the thresh value, the Warning algorithm marks that method as a method with a high

failure rate. Then it updates the warning status of the method in the Server module.

Server
This module is an endpoint for users to check the warning status before calling

that method. As shown in Figure 4.8, the Server module is implemented in the Go

Programming Language (Golang) using PostgreSQL as a database. The Server’s

database contains three tables. The first table is the evitar table that stores Evitar

configuration parameters with different thresh and wnd values. Each Evitar con-

figuration can result in different warning status for the same method. The second
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table is the method_status table that stores transaction status such as the number

of successful, reverted, and consumed-all-gas transactions, and the warning sta-

tus of all methods in all smart contracts. This table also contains an evitar field

which whether that the warning is the result from which Evitar configuration. The

last table is the method_runtime_error that stores all runtime errors of all methods

for all smart contracts. This table can be used to determine the runtime error dis-

tribution of any method. The Server module provides RestAPIs so that users can

query a method’s warning status and transaction behavior. Users can request for the

available Evitar configurations parameters, all the methods in a smart contract, the

warning status of a method in a smart contract, and the runtime error distribution

of a method in a smart contract. The Server’s RestAPI specification is described in

Appendix C.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter V

EVALUATION
Evitar’s performance is evaluated by extracting smart contract transactions

from the Ethereum public network and replaying them in our Ethereum private net-

work. We first evaluate the number of failed transaction reduced from warning

against sending transactions. Then, the amount of saved gas consumption is esti-

mated to measure Evitar’s performance. Finally, we estimate the storage saved from

sending transactions using Evitar.

5.1 Replay Transactions
To evaluate the performance of Evitar, we extract smart contract called trans-

actions from the Ethereum public network. Next, we replay these transactions by

sending them under Ethereum’s default behavior and sending them using Evitar.

Then, the number of failed transactions from both replays are compared to evaluate

whether sending transactions with Evitar can reduce failed transactions. However,

when replaying these transactions, we have to pretend to be the original transactions’

senders. Senders’ private keys are required since they are used to sign transactions

before sending. However, private keys are kept secret by their owner. Because we

do not have the access to the original sender’s private key, we cannot replay trans-

actions in the Ethereum public network.

Therefore, we replay transactions in an Ethereum private network instead. An

Ethereum private network or private network is an isolated Ethereum network that

runs the same protocol as the Ethereum public network but does not share the same

database. In a private network, we change the original transactions’ senders to our

own accounts of which we have access to the accounts’ private keys.
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Setup Private network
Since a private network is isolated from the Ethereum public network, we can

configure the settings to improve the replay performance. The Ethereum default

configuration does not support replaying a lot of transactions in a short period. We

modify the Ethereum client to have a constant block time and modify the genesis

file to increase the block size. In addition, the genesis file is also modified to enable

our private network to use the later hard fork features and initialize specific accounts

with funds.

The Parity client is not integrated with a miner module, so we replay transac-

tions using the Geth client that contains a miner module instead. The Parity client

(archive node) is then synced with the Geth client (default node) after the replay is

done to extract transaction data. We select the Geth client version 1.9.0-stable and

the Parity client version 2.7.2-stable and modify the block difficulty calculation.

The block difficulty depends on the time to generate a new block (block time). We

set the block difficulty calculation to a constant value of 1,000,000 to fix the block

time. As difficulty does not affect the logic of the smart contract execution, a static

difficulty value is acceptable for reducing replay time.

We also need to modify the genesis file, a configuration file for generating

the first block of the blockchain. There are three main purposes for modifying the

genesis file. The first purpose is to increase the block gas limit which enables a

block to store more transactions. Thus, the network can process a larger number

of transactions per block during the replay than default. The second purpose is to

supply initial funds to our accounts for replaying transactions. Because sending a

transaction requires Ethers to pay the gas fee, initial funds allow us to skip the need

to mine empty blocks to fund these accounts. The last purpose is to activate the

later hard fork features such as transaction status in transaction receipt and revert

error from the Byzantium HF at the first block in our private network instead of the

much later real hard fork block. The fields modified in the genesis file are described

as follows:



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

34

• config : This field contains the basic setting of the network. We set chainId

to 1. We set homesteadBlock, eip150Block, eip155Block, eip158Block,

eip160Block, and byzantiumBlock to 0. This configuration makes the Home-

stead HF, Byzantium HF and other EIP start at block 0. The last config, dao-

ForkSupport is set to true to confirm that the node accepts the DAO HF.

• alloc : This field is used to allocate initial Ethers to specific accounts. There

are two main purposes to fund accounts. The first is to initiate built-in ac-

counts to replay smart contract transactions. The second purpose is to allocate

Ethers to these accounts to use for creating and calling smart contracts. Each

account is allocated 400 million Ethers to guarantee that there are sufficient

Ethers for replaying transactions.

• difficulty : This field configures the difficulty of block 0. The difficulty value

in the genesis file is important to an unmodified client since it is the starter

difficulty of the network. A value too high can lead to long block time. This

field is set to 0 to achieve the fastest block time.

• gasLimit : This field sets the maximum gas limit for blocks. GasLimit is the

total maximum gas limit that all transactions inside a block are allowed to con-

sume. A higher value of gasLimit allows a block to store more transactions.

We set the value of this field to two billion to increase the block capacity and

reduce the number of blocks generated during the replay. Increasing transac-

tions per block can reduce the replay time, since in Evitar, a failed transaction

that is sent with the maximum gas limit reduces the number of transactions

per block to 1.

Starter Node Preparation
After the Ethereum client and the genesis file are modified, we can run a node

to replay transactions. We deploy smart contracts to this node by using them as tar-

gets for smart contract called transactions. The node with smart contracts deployed

is called the starter node.
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To deploy smart contracts in the starter node, Tx-Processer is used to ex-

tract smart contract created transactions from the Ethereum public network. Then,

only certain smart contract created transactions are replayed as follows. First, Tx-

Processer extracts all smart contracts except for ERC20 and ERC721 smart contracts

that are used for transferring digital tokens built on the Ethereum blockchain. The

usage of token transfer is to send tokens between accounts by calling the smart con-

tract and providing the receiver address in the transaction input. This means that the

private key of the sender is required for signing and sending transactions, otherwise

all token transfer transactions will logically result in failure. Obtaining those pri-

vate keys for replaying transactions is impossible because they are privately stored

by their owners. So we exclude these smart contracts from our evaluation. Next,

we select smart contracts created by users and omit smart contracts created by other

smart contracts because the original address of the smart contract is needed. Smart

contracts created by users start with the “0x60” PUSH opcode, which is used for

pushing variables into the stack for execution. Smart contracts that do not activate

the Warning algorithm in Evitar are removed as they are called less than 100 times

and have lower than 25% failure rate. After these steps, we obtain a list of smart

contracts to replay and the corresponding created transactions. The number of con-

tracts and transactions are shown in Table 5.1 After we filter smart contracts with

these filter, we have 7,087 smart contracts to be deployed on the starter node.

Table 5.1: Number of smart contracts from block 1 to 10,600,000 selected
for evaluation.

Smart contract Selection Number of
smart contracts

Non ERC20 and ERC721 smart contract 28,512,369

User created smart contract 2,816,204

Called > 100 times and failure rate ≥ 25%
smart contract 7,087

After smart contract created transactions are extracted, they are deployed on

the starter node using our account as the sender. We deploy smart contract cre-
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ated transactions using Web3 python [44], a python library for interacting with the

Ethereum client. The deployed smart contracts in our private network have dif-

ferent addresses compared to the original addresses since their addresses are ran-

domly generated at the creation time. We keep a map of the new smart contract

addresses and the original addresses and owners. This map is used as a target for

smart contract called transactions to be sent. If these transactions are sent to their

original addresses, the smart contract will not be executed since the addresses do

not matched. When smart contracts are deployed and their addresses have been

mapped, the starter node is ready to replay transactions. After smart contract cre-

ated transactions are deployed, 5,953 out of 7,807 smart contracts are successfully

deployed. The remaining fail due to specific conditions required in the source code

such as the block number, address of creator, etc. A total of 72,056,308 transac-

tions to these 5,953 smart contracts are extracted and are used as input for replaying

transactions.

Transaction Input Modification
After smart contracts are deployed in the starter node and the transactions for

replaying are extracted, we can replay transactions to evaluate Evitar’s performance.

To imitate the the Ethereum public network behavior, transactions are replayed in

order using block_number and transaction_index of the original transactions. In ad-

dition, the original block gas limit of all blocks are also extracted from the Ethereum

public network to use in our network to send transactions with the same maximum

gas limit during replay. However, some transaction input are modified to make these

transactions replayable in the private network as follows:

• from_address (modified) : The sender who signs and sends a transaction to

the Ethereum network. This field is changed to our accounts since we do not

have access to the original sender’s private key. If the transaction sender is

the smart contract owner, the from_address is changed to the account which

deployed the smart contract. Otherwise, it is changed to one of our other
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accounts.

• to_address (modified) : The smart contract address which is the target of the

transaction. Since a smart contract address is a hash value that is newly gen-

erated when deployed, this field is changed to the contract’s new address. We

map the original smart contract address to the new smart contract address.

• nonce (modified) : This is a value that represents the number of transactions

sent by the user. Changing this value affects the overall process. A transaction

with a jump in nonce is a pending transaction that has to wait for a transaction

with a lower nonce to be mined first. Transactions with a lower nonce cannot

be sent to the network. So, we change this field to the nonce of our accounts.

• gas (modified) : The amount of gas provided to the EVM to execute the trans-

action. Since Evitar suggests users to send transactions with the maximum

gas limit, this field is set to the maximum gas limit. The maximum gas limit

for transactions can be found in the gasLimit field of the transaction’s block.

• gas_price (modified) : The price that the user is willing to pay to the miner for

each unit of gas. A higher value is a higher incentive for miners to select the

transaction to mine. However, gas_price does not affect the replay process

because transactions are replayed in their original order. So, it is set to a

constant value.

• input (not modified) : The input of the transaction which is used by the EVM

to execute a smart contract method. There are two types of inputs for smart

contract-related transactions: input for creating and input for calling as men-

tioned in Section 2.4. The input of the transaction is not modified so we do

not change the logic or the intention of the transaction during the replays.

• value (not modified) : The amount of Ethers that users provide in order to send

to a smart contract or pay for something to reach a smart contract agreement.

The value of transactions is not modified because of the same reason as input.
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Evitar heuristics
Evitar proposes two heuristics to reduce the number of failed transactions in

the Ethereum network. The first heuristics is termed MaxGas. MaxGas is based

on simply sending all transactions using the maximum gas limit which enables the

EVM able to continue its execution to reach a final outcome. This is a simple al-

gorithm that can avoid most Out of Gas errors but has a drawback. The transaction

may end up using more gas compared to sending transactions with its original gas

value, if that transaction results in failure. The second heuristic is the Warning algo-

rithm, an algorithm for analyzing the warning status of each smart contract method

using thresh and wnd. We replay transactions with different heuristics to evaluate

Evitar’s performance as follows’:

1. Baseline : This heuristic replays transactions without using the Warning algo-

rithm and the maximum gas limit. The transactions sent by this heuristic use

the original input, except for our emulated sender and receiver (smart contract)

addresses.

2. MaxGasOnly : This heuristic replays transactions with MaxGas but does not

use the Warning algorithm. This heuristic is compared to the Baseline heuris-

tic to evaluate the performance of reducing Out of Gas errors.

3. Evitar : This heuristic uses MaxGas along with the Warning algorithm to

detect when to avoid sending transactions to methods using two parameters

thresh and wnd. If the Warning algorithm does not warn against sending trans-

actions, they are sent with the maximum gas limit. To evaluate Evitar’s perfor-

mance, we run Evitar with various parameters to identify the best parameter

value.

Replay transactions with each Evitar configuration consumes a lot of comput-

ing resource and storage. So, we first run Evitar in a smaller dataset to pre-

evaluate Evitar’s performance with different parameters configuration. Our

small dataset consists of the top 500 called smart contracts that have more
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than 25% failure rate from block 4,370,000 to block 8,650,000, and includes

2.6 million transactions that call them. To evaluate the parameter configura-

tion, 3 settings with same thresh value and 3 settings with same wnd value

are used. In total, we run Evitar with 5 different parameter configurations as

shown in Table 5.2 on our small dataset and the result is used to select Evitar’s

parameter configuration for running the full dataset. The results are shown in

Table 5.2.

The result shows the number of successful and failed transactions of each

Evitar configuration. Evitar1 (thresh=0.9), Evitar2 (thresh=0.5), and,

Evitar3 (thresh=0.25) are used to compare the performance of thresh when

using a constant wnd value of 50. The result shows that a high thresh value

leads to a slight increase in successful transactions, but significant increase

in failed transactions. A low thresh value can reduce failed transactions, but

trades off with significantly reduced successful transactions. So, Evitar2 with

0.5 thresh performs the best result among these 3 Evitar settings. For the per-

formance of wnd, we use Evitar2 (wnd=50), Evitar4 (wnd=25), and, Evitar5

(wnd=10) for comparison and fix the thresh value to 0.5. The result shows

that lowering wnd can reduce failed transactions and retain more successful

transactions. Our experiments show that Evitar5 is the best parameter config-

uration for Evitar.

Table 5.2: Successful and failed transaction count (thousand) using Evitar
with different thresh and wnd values in our small dataset.

Evitar wnd thresh Successful Failed

Evitar1 50 0.9 498.32 126.76

Evitar2 50 0.5 486.99 88.46

Evitar3 50 0.25 438.99 70.77

Evitar4 25 0.5 486.92 68.94

Evitar5 10 0.5 485.57 54.86

For the full dataset, we evaluate Evitar with 3 different parameter config-

urations based on the results from these earlier experiments to evaluate the
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performance of thresh and wnd. The selected parameters for evaluation are

shown as follows:

• Evitar2: wnd = 50, thresh = 0.5

• Evitar3: wnd = 50, thresh = 0.25

• Evitar5: wnd = 10, thresh = 0.5

We omit Evitar1 because thresh=0.9 resulted in 126.76 thousand failed

transactions which is 38.3 thousand more failed transactions (43.30%) than

Evitar2. Despite that,the gain in the number of successful transactions is only

from 486.99 to 498.32 (2.33%). We omit Evitar4 because the result from

Evitar5 is more effective at reducing failed transactions. Evitar5 has only

54.86 failed transactions which is 25.67% less than Evitar4 while trading off

with only 1.35 thousand (0.28%) fewer successful transactions.

5.2 Failed Transactions Reduction
We evaluate the reduction of failed transactions by comparing the number of

transactions from each replay heuristic. We define three types of transaction status,

success, revert, and consumed all gas. The first two transaction statuses directly

refer to transactions that result in success and Revert error respectively. Consumed

all gas status is a transaction that results in other runtime errors excluding the Revert

error.

The results comparing the number of success, revert and consumed all gas

from replaying transactions with all heuristics are shown in Figure 5.1. The

number of successful transactions is roughly the same across all heuristics. The

MaxGasOnly heuristic sees a reduction in consumed all gas by 3.55% or around 0.63

million transactions compared to baseline, and 0.34 million transactions are con-

verted into success while the rest resulted in revert. The result from MaxGasOnly

shows that sending transactions with the maximum gas limit can prevent gas ex-

haustion during smart contract execution. However, using MaxGasOnly does not
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always result in transaction success since other conditions may not be met during

further execution. Meanwhile, using Evitar2, the number of reverts is reduced from

44.20 million to 0.52 million (-98.82%) and consumed all gas is reduced from 17.80

million to 0.15 million (-99.14%). The number of successes increases from 10.06

million to 10.35 million (2.87%) compared to Baseline. This means that around

61.04 million transactions are prevented from being sent because they are detected

as calls to methods with high failure rates. In addition, Evitar5 can reduced more

failed transactions compared to all other replay heuristics. It can reduce revert from

44.20 million to 0.22 million (-99.49%) and reduce consumed all gas from 17.80

million to 0.07 million (-99.60%) compared to Baseline. However, Evitar5 also

reduces the success rate from 10.06 million to 9.88 million (-1.78%). Evitar can

prevent users from sending transactions to methods that are likely to fail.

Figure 5.1: Number of transactions from replaying transactions using Evitar
different heuristics.

To be able to understand the impact of thresh and wnd value better, we eval-

uate Evitar with three different parameter configurations. Table 5.3 shows the per-

centage of the amount of transaction changed in each transaction status of Evitar3

and Evitar5 compared to Evitar2. In terms of thresh, the results from Evitar2
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(thresh=0.5) and Evitar3 (thresh=0.25) are used for comparison. Successful trans-

actions are reduced by 6.77% when we lower the thresh value from 0.5 to 0.25.

Revert transactions and consume all gas transactions are reduced by 31.61% and

42.73% respectively. The result is satisfying since lowering thresh value can re-

duce a large number of failed transactions, trading off with a small reduction in

successful transactions. For the wnd value, the results from Evitar2(wnd=50) and

Evitar5(wnd=10) are used for comparison. Evitar5 reduces reverts by 57.08% and

consume all gas transactions by 53.68% trading off with only a 4.52% reduction

of successful transactions. Lowering both wnd and thresh can reduce failed trans-

actions, trading off with a reduction in successful transactions However, the result

from lowering wnd shows better performance compared to lowering thresh, since it

can reduce more failed transactions and trades off with less successful transactions.

Evitar5 performs the best performance compared to other configurations of Evitar.

Table 5.3: The percentage of the transactions changed for Evitar3 and Evitar5
compared to Evitar2.

Evitar Compared to
Evitar2

(wnd=50, thresh=0.25)

Success Revert Consumed
all gas

Evitar3

(wnd=50, thresh=0.25)
-6.77% -31.61% -42.73%

Evitar5

(wnd=10, thresh=0.5)
-4.52% -57.08% -53.68%

We have shown in that Evitar has the potential to reduce failed transactions

without hurting successful transactions. The number of failed transactions pre-

vented are the result from using both the warning algorithm and the MaxGas heuris-

tic. The next section will discuss the performance of the MaxGas heuristic.

5.3 MaxGas performance
Evitar suggests users send transactions with MaxGas, if a method called is not

a method with a high failure rate. This is to prevent transactions from resulting in
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an Out of Gas error. However, Section 5.2 shows that the number of consumed all

gas transactions is reduced by only 3.55% in MaxGasOnly compared to Baseline.

On the other hand, Evitar5 can reduce consumed all gas transactions up to 99.60%

compared to Baseline. In this section, consumed all gas transactions are distributed

by their runtime errors. Then, the amount of Out of Gas error is used to evaluate

the Out of Gas error saved using MaxGas heuristic.

Table 5.4: Transaction error distribution of Baseline, MaxGasOnly and
Evitar5, including successful transactions.

Runtime Error Baseline MaxGasOnly Evitar5

Success 10,056,781 10,398,002 9,877,454

Revert 44,193,674 44,487,717 224,005

Out of Gas 634,982 4,740 216

Invalid Opcode 8,283,817 8,272,809 68,147

Invalid Opcode 8,283,817 8,272,809 68,147

Invalid Jump 8,887,054 8,893,040 2,739

Stack Underflow 0 0 0

Mutable Call in
Static context 0 0 0

Stack Overflow 0 0 0

Consumed all gas error refers to many types of errors including Out of Gas,

Invalid Opcode, Invalid Jump, Stack overflow, Stack underflow and Mutable Call in

Static Context. So, the number of consumed all gas transactions saved cannot be di-

rectly referred as the number of Out of Gas error saved. To evaluate MaxGas heuris-

tic’s performance, we identify the runtime errors of consumed all gas transactions

using the Trace tree. Table 5.4 shows the runtime error distribution of Baseline,

MaxGasOnly, and Evitar5. Evitar5 is chosen instead of the other Evitar setting as

it has the best performance. The table shows that MaxGasOnly can reduce Out of

Gas error from 634,982 to 4,740 (99.25%) compared to Baseline. However, the

reduction for other consumed all gas errors are considered insignificant as it only

reduces around 0.07-0.13%. On the other hand, Evitar5 significantly reduces all
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type of errors since it prevents sending transactions to methods that have a high

failure rate.

The number of transactions prevented and saved is not the only factor we used

to evaluate Evitar’s performance. Gas consumption is also an important factor to

measure. The next section will show the Evitar’s performance in saving gas con-

sumption.

5.4 Gas Consumption Saved
Although Evitar can prevent failed transactions from being sent into the net-

work, other transactions are still being sent with MaxGas. Without careful con-

sideration, this may increase overall gas consumption. So, gas consumption is an

important factor for evaluation. In this section, we evaluate the gas consumption of

Evitar in comparison to Baseline and MaxGasOnly.

The total gas consumed by transactions for all transaction statuses across all

heuristics are shown in Figure 5.2. Although the MaxGasOnly heuristic can reduce

the number of consumed all gas transactions compared to Baseline, but the amount

of total gas used is significantly more than Baseline. Transactions with consumed

all gas status in Baseline consumes only 5,385.33 billion gas while MaxGasOnly

consumes 140,693.48 billion gas which is around 135,308.15 billion or 2,512.53%

more than Baseline. For other transaction statuses, MaxGasOnly gas consumption

is also more than Baseline. There are 2131.38 billion reverts (58.43% increase), and

811 811.74 billion successes (40.14% increase) This result shows that MaxGasOnly

is the worst heuristic because it only reduces some consumed all gas errors in ex-

change for a large amount of gas used. This is because this type of error consumes

all gas and we set the gas to maximum possible value based on the block gas limit

resulting in more gas being consumed overall.

For Evitar, total gas consumption for revert and consumed all gas transaction
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statuses are lower than Baseline. Compared to Baseline, the amount of gas con-

sumed byEvitar2 is 15.56 billion (-98.98%) reduction for revert and 1,277.17 billion

(-76.28%) reduction for consumed all gas. For successful transactions, Evitar has

higher gas consumption at 1,075.44 (109.97% increase). The increase in gas con-

sumption for successful transactions comes from some previously Out of Gas trans-

actions that eventually changed into successful transactions. In addition, Evitar5

consumed less gas than all other Evitar settings. Evitar5 consumes 6.70 billion gas

in revert and consumes 594.40 billion gas in consumed all gas which are 99.69%

and 88.96% less than Baseline, respectively. Evitar can prevent users from sending

transactions that may result in failure and does not impact transaction processing

performance like MaxGasOnly.

Figure 5.2: The amount of gas consumed from replaying transactions using
different heuristics.

In order to understand the impact of thresh and wnd value on gas consumption

Evitar with three different parameters is evaluated. Results from Table 5.5 show

the percentage of gas consumption changed for Evitar3 and Evitar5 compared to

Evitar2. Evitar2 (thresh=0.5) and Evitar3 (thresh=0.25) are used to compare per-

formance of thresh value. Gas cost for successful transactions in Evitar3 is 25.97%
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lower than Evitar2 due to the reduction in the amount of successful transactions.

Gas consumption for revert and consumed all gas errors in Evitar3 are reduced by

28.97% and 40.96% compared toEvitar2. For thewnd value, we compare the results

from Evitar2(wnd=50) and Evitar5(wnd=10). The gas consumption of success, re-

vert and consumed all gas are reduced by 28.32%, 56.92% and 53.46% respectively

when we lower the wnd value from 50 to 10. Lowering wnd can save more gas com-

pared to lowering thresh in all transaction statuses especially in revert transactions.

This can concluded that Evitar5 can save more gas compared to other configurations

of Evitar.

Table 5.5: The percentage of gas consumption changed of Evitar3 and
Evitar5 compared to Evitar2.

Evitar Compared to
Evitar2

(wnd=50, thresh=0.25)

Success Revert Consumed
all gas

Evitar3

(wnd=50, thresh=0.25)
-25.97% -28.97% -40.96%

Evitar5

(wnd=10, thresh=0.5)
-28.32% -56.92% -53.46%

Evitar5 performs the best in term of failed transactions reduction and gas con-

sumption saved compared to other configurations of Evitar. So, we can conclude

that Evitar5 with thresh=0.5 and wnd=10 is the best configuration.

5.5 Storage Saved
Evitar can prevent users from sending transactions that are likely to fail. So,

these transactions are not being stored in nodes resulting in less storage used. In

this section, we calculate the storage saved in the Geth default node and the Parity

archive node by comparing the node size of Baseline and Evitar5.

Figure 5.3 shows that node size of Geth default node and Parity archive node

which are replayed with Baseline and Evitar5. For Geth default node, the node
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size of Baseline and Evitar5 are 18.27 GB and 3.23 GB respectively which means

that Evitar5 uses 15.04 GB (82.32%) less storage compared to Baseline. For Par-

ity archive node, node sizes of Baseline and Evitar5 are 34.02 GB and 16.98 GB

respectively. So, Evitar5 uses 17.04 GB (50.09%) less storage. We conclude that

Evitar5 can reduce the storage used in Ethereum nodes because Evitar5 prevents

users from sending transactions that are likely to fail. Because of that, Ethereum

nodes store less failed transactions.

Figure 5.3: Size of Geth default node and Parity archive node replayed with
Baseline and Evitar5 heuristics.

Storage saved estimation
To evaluate the amount of storage saved, we need to replay transactions and

observe the actual node size which requires a significant amount of computation re-

sources. Instead, we could also estimate the storage saved without replaying trans-

actions by calculating the amount of transaction and gas consumption saved.

Estimated storage saved is the sum of the amount of blocks storage saved for

blocks and transactions.

EstimatedStorageSaved = BlocksStorageSaved+TransactionsStorageSaved (5.1)

The amount of storage saved for blocks is calculated by multiplying the num-
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ber of blocks required to store all the transactions that were avoided (blocks saved)

with the block size.

BlocksStorageSaved = BlocksSaved ∗BlockSize (5.2)

Blocks saved can be computed as the ratio between the total gas saved and the

block gas limit.

BlocksSaved =
TotalGasSaved

BlockGasLimit
(5.3)

In general, transaction storage saved can be calculated by multiplying the num-

ber of transactions saved with the average transaction size (avgTxSize).

TransactionsStorageSaved = TransactionSaved ∗AvgTxSize (5.4)

For example, we estimate the amount of storage saved using Evitar5 compared

to Baseline. First, we find the BlocksSaved and the BlockSize for calculating the

BlocksStorageSaved shown in equation (5.2). The BlocksSaved is calculated from

equation (5.3) using TotalGasSaved and BlockGasLimit. For the former, we use the

total gas saved from Figure 5.2 which is 11.1 trillion gas saved. The latter is set to

12.5 million which is the block gas limit of block 10,600,000. So, the BlocksSaved

is around 483.71 thousand blocks. Next, we find that the BlockSize is 538 bytes

by mining an empty block in the private network. With the BlocksSaved and the

BlockSize, the BlocksStorageSaved is 0.26 GB.

Second, the TransactionsStorageSaved is calculated from the Transaction-

sSaved and the AvgTxSize using equation (5.4). The former is the total transactions

saved from Figure 5.1 which is around 61.9 million transactions saved. For the lat-

ter, we estimate the average transaction size using the block size and transactions

per block from the Ethereum public network. As a result, the average transaction

size is 180 bytes per transaction. This means that the TransactionsStorageSaved is

around 11.14 GB.
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Finally, we can calculate the EstimatedStorageSaved using BlocksStorage-

Saved and TransactionsStorageSaved as shown in equation (5.1). The Estimated-

StorageSaved is 11.40 GB.

We compared the storage saved from the calculation with the actual storage

saved of 15.04 GB as discussed in the previous section. The estimated storage saved

is 3.64 GB less than the actual storage saved because the global state which is also

stored in nodes is not calculated in our estimate. We can estimate the storage saved

using the mentioned formula above along with the estimated number of transactions

and total gas saved.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter VI

CONCLUSION

6.1 Conclusion
Blockchain is an immutable distributed ledger technology that is disrupt-

ing computing in many sectors. However, its immutability presents new software

engineering challenges in designing good code and executing successful transac-

tions. Particularly, mined transactions that fail are processed no differently than

successful transactions, this leads to a waste of computation, storage and transac-

tion fees. So in this thesis, failed transactions that call smart contracts in Ethereum

are dynamically analyzed to design a mechanism to avoid and reduce runtime er-

rors, resulting in less overall system waste. This thesis proposes Evitar, an algo-

rithm that dynamically analyzes transactions in the Ethereum network and gives

out a warning status for smart contract methods that have a high failure rate. Evitar

suggests users to avoid sending transactions to a method with a high failure rate. If

a method has a high enough success rate, Evitar suggests sending transactions using

the maximum gas limit. We evaluate Evitar’s performance by replaying transactions

in a private network with various heuristics. As a result, Evitar5 can reduce revert

and consumed all gas errors up to 99.49% and 99.60% respectively compared to

Baseline, trading off with only a 1.78% reduction in successful transactions. For

gas consumption, Evitar5 consumes less gas than Baseline, saving 99.56% for re-

vert and 88.96% for consumed all gas transactions. Next, sending transactions using

MaxGas can reduce Out of Gas errors by 99.25% compared to sending with normal

gas. In addition, Evitar5 can store less data compared to Baseline, up to 82.32% for

the default node and 50.09% for the archive node.
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6.2 Future work
In this thesis, we run Evitar with a selected set of thresh and wnd values to

evaluate Evitar’s performance. However, other combinations of parameters may

result in better performance than Evitar5 (thresh=0.5 and wnd=10). Determining

the combination of parameters that has the best performance further experiments

with more combinations of thresh and wnd value.

Next, Evitar suggests that users send transactions with the maximum gas al-

lowed and avoid sending transactions to methods with high failure rates. Rather

than using the maximum gas, one could try to send the optimal gas cost for each

method. Sending transactions with the maximum gas limit can avoid insufficient

gas problems during the EVM execution. However, this mechanism reduces the

number of transactions processed per block to only one, if the transaction results in

failure with any runtime error except the revert error. This is because the amount

of gas consumed is equal to the block gas limit, so the block has no more space for

other transactions. If the optimal gas cost is known, a transaction can be sent with

lower gas compared to the maximum gas limit without impacting the transaction

result. The optimal gas cost is the amount of gas that is exactly sufficient to make

the EVM execute transactions successfully. However, it is difficult to estimate the

optimal because methods in smart contracts work differently and the amount of gas

consumed for each method is not equal. Each method must have its own optimal

gas cost.
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Appendix I

EVM GAS TABLE
Table A.1: EVM Opcode gas cost.

Opcode Name Description Gas
0x00 STOP Halts execution 0

0x01 ADD Addition operation 3

0x02 MUL Multiplication operation 5

0x03 SUB Subtraction operation 3

0x04 DIV Integer division operation 5

0x05 SDIV Signed integer division operation (truncated) 5

0x06 MOD Modulo remainder operation 5

0x07 SMOD Signed modulo remainder operation 5

0x08 ADDMOD Modulo addition operation 8

0x09 MULMOD Modulo multiplication operation 8

0x0a EXP Exponential operation (exp == 0) ? 10 :
(10 + 10 * (1 +
log256(exp)))

0x0b SIGNEX-
TEND

Extend length of two’s complement signed
integer

5

0x0c -
 0x0f

Unused Unused

0x10 LT Less-than comparison 3

0x11 GT Greater-than comparison 3

0x12 SLT Signed less-than comparison 3

0x13 SGT Signed greater-than comparison 3

0x14 EQ Equality comparison 3

0x15 ISZERO Simple not operator 3

0x16 AND Bitwise AND operation 3

0x17 OR Bitwise OR operation 3

0x18 XOR Bitwise XOR operation 3

0x19 NOT Bitwise NOT operation 3

0x1a BYTE Retrieve single byte from word 3

0x1b SHL Shift Left 3

0x1c SHR Logical Shift Right 3

0x1d SAR Arithmetic Shift Right 3
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Table A.2: EVM Opcode gas cost(cont).

Opcode Name Description Gas
0x20 SHA3 Compute Keccak-256 hash 30 + 6 * (size of

input in words)

0x21 -
 0x2f

Unused Unused

0x30 ADDRESS Get address of currently executing account 2

0x31 BALANCE Get balance of the given account 700

0x32 ORIGIN Get execution origination address 2

0x33 CALLER Get caller address 2

0x34 CALLVALUE Get deposited value by the instruction/
transaction responsible for this execution

2

0x35 CALLDAT-
ALOAD

Get input data of current environment 3

0x36 CALLDATA-
SIZE

Get size of input data in current environment 2 + 3 * (number of
words copied,

rounded up)

0x37 CALLDATA-
COPY

Copy input data in current environment to
memory

3

0x38 CODESIZE Get size of code running in current
environment

2

0x39 CODECOPY Copy code running in current environment to
memory

2 + 3 * (number of
words copied,

rounded up)

0x3a GASPRICE Get price of gas in current environment 2

0x3b EXTCODE-
SIZE

Get size of an account’s code 700

0x3c EXTCODE-
COPY

Copy an account’s code to memory 700 + 3 * (number
of words copied,

rounded up)

0x3d RETURN-
DATASIZE

Pushes the size of the return data buffer onto
the stack

2

0x3e RETURN-
DATACOPY

Copies data from the return data buffer to
memory

3

0x3f EXTCODE-
HASH

Returns the keccak256 hash of a contract’s
code

700

0x40 BLOCKHASH Get the hash of one of the 256 most recent
complete blocks

20

0x41 COINBASE Get the block’s beneficiary address 2

0x42 TIMESTAMP Get the block’s timestamp 2

0x43 NUMBER Get the block’s number 2

0x44 DIFFICULTY Get the block’s difficulty 2

0x45 GASLIMIT Get the block’s gas limit 2

0x46 CHAINID Returns the current chain’s EIP-155 unique
identifier

2

0x47 -
 0x4f

Unused -
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Table A.3: EVM Opcode gas cost(cont).

Opcode Name Description Gas
0x50 POP Remove word from stack 2

0x51 MLOAD Load word from memory 3*

0x52 MSTORE Save word to memory 3*

0x53 MSTORE8 Save byte to memory 3

0x54 SLOAD Load word from storage 800

0x55 SSTORE Save word to storage ((value != 0) &&
(storage_location
== 0)) ? 20000 :

5000

0x56 JUMP Alter the program counter 8

0x57 JUMPI Conditionally alter the program counter 10

0x58 GETPC Get the value of the program counter prior to
the increment

2

0x59 MSIZE Get the size of active memory in bytes 2

0x5a GAS Get the amount of available gas, including the
corresponding reduction the amount of
available gas

2

0x5b JUMPDEST Mark a valid destination for jumps 1

0x5c -
 0x5f

Unused -

0x60 PUSH1 Place 1 byte item on stack 3

0x61 PUSH2 Place 2-byte item on stack 3

0x62 PUSH3 Place 3-byte item on stack 3

0x63 PUSH4 Place 4-byte item on stack 3

0x64 PUSH5 Place 5-byte item on stack 3

0x65 PUSH6 Place 6-byte item on stack 3

0x66 PUSH7 Place 7-byte item on stack 3

0x67 PUSH8 Place 8-byte item on stack 3

0x68 PUSH9 Place 9-byte item on stack 3

0x69 PUSH10 Place 10-byte item on stack 3

0x6a PUSH11 Place 11-byte item on stack 3

0x6b PUSH12 Place 12-byte item on stack 3

0x6c PUSH13 Place 13-byte item on stack 3

0x6d PUSH14 Place 14-byte item on stack 3

0x6e PUSH15 Place 15-byte item on stack 3

0x6f PUSH16 Place 16-byte item on stack 3

0x70 PUSH17 Place 17-byte item on stack 3

0x71 PUSH18 Place 18-byte item on stack 3

0x72 PUSH19 Place 19-byte item on stack 3

0x73 PUSH20 Place 20-byte item on stack 3

0x74 PUSH21 Place 21-byte item on stack 3
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Table A.4: EVM Opcode gas cost(cont).

Opcode Name Description Gas
0x75 PUSH22 Place 22-byte item on stack 3

0x76 PUSH23 Place 23-byte item on stack 3

0x77 PUSH24 Place 24-byte item on stack 3

0x78 PUSH25 Place 25-byte item on stack 3

0x79 PUSH26 Place 26-byte item on stack 3

0x7a PUSH27 Place 27-byte item on stack 3

0x7b PUSH28 Place 28-byte item on stack 3

0x7c PUSH29 Place 29-byte item on stack 3

0x7d PUSH30 Place 30-byte item on stack 3

0x7e PUSH31 Place 31-byte item on stack 3

0x7f PUSH32 Place 32-byte (full word) item on stack 3

0x80 DUP1 Duplicate 1st stack item 3

0x81 DUP2 Duplicate 2nd stack item 3

0x82 DUP3 Duplicate 3rd stack item 3

0x83 DUP4 Duplicate 4th stack item 3

0x84 DUP5 Duplicate 5th stack item 3

0x85 DUP6 Duplicate 6th stack item 3

0x86 DUP7 Duplicate 7th stack item 3

0x87 DUP8 Duplicate 8th stack item 3

0x88 DUP9 Duplicate 9th stack item 3

0x89 DUP10 Duplicate 10th stack item 3

0x8a DUP11 Duplicate 11th stack item 3

0x8b DUP12 Duplicate 12th stack item 3

0x8c DUP13 Duplicate 13th stack item 3

0x8d DUP14 Duplicate 14th stack item 3

0x8e DUP15 Duplicate 15th stack item 3

0x8f DUP16 Duplicate 16th stack item 3

0x90 SWAP1 Exchange 1st and 2nd stack items 3

0x91 SWAP2 Exchange 1st and 3rd stack items 3

0x92 SWAP3 Exchange 1st and 4th stack items 3

0x93 SWAP4 Exchange 1st and 5th stack items 3

0x94 SWAP5 Exchange 1st and 6th stack items 3

0x95 SWAP6 Exchange 1st and 7th stack items 3

0x96 SWAP7 Exchange 1st and 8th stack items 3

0x97 SWAP8 Exchange 1st and 9th stack items 3

0x98 SWAP9 Exchange 1st and 10th stack items 3

0x99 SWAP10 Exchange 1st and 11th stack items 3

0x9a SWAP11 Exchange 1st and 12th stack items 3
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Table A.5: EVM Opcode gas cost(cont).

Opcode Name Description Gas
0x9b SWAP12 Exchange 1st and 13th stack items 3

0x9c SWAP13 Exchange 1st and 14th stack items 3

0x9d SWAP14 Exchange 1st and 15th stack items 3

0x9e SWAP15 Exchange 1st and 16th stack items 3

0x9f SWAP16 Exchange 1st and 17th stack items 3

0xa0 LOG0 Append log record with no topics 375

0xa1 LOG1 Append log record with one topic 750

0xa2 LOG2 Append log record with two topics 1125

0xa3 LOG3 Append log record with three topics 1500

0xa4 LOG4 Append log record with four topics 1875

0xa5 -
 0xaf

Unused -

0xb0 JUMPTO Tentative libevmasm has different numbers

0xb1 JUMPIF Tentative

0xb2 JUMPSUB Tentative

0xb4 JUMPSUBV Tentative

0xb5 BEGINSUB Tentative

0xb6 BEGINDATA Tentative

0xb8 RETURNSUB Tentative

0xb9 PUTLOCAL Tentative

0xba GETLOCAL Tentative

0xbb -
 0xe0

Unused -

0xe1 SLOAD-
BYTES

Only referenced in pyethereum -

0xe2 SSTORE-
BYTES

Only referenced in pyethereum -

0xe3 SSIZE Only referenced in pyethereum -

0xe4 -
 0xef

Unused -

0xf0 CREATE Create a new account with associated code 32000

0xf1 CALL Message-call into an account Complicated

0xf2 CALLCODE Message-call into this account with alternative
account’s code

Complicated

0xf3 RETURN Halt execution returning output data 0

0xf4 DELEGATE-
CALL

Message-call into this account with an
alternative account’s code, but persisting into
this account with an alternative account’s code

Complicated

0xf5 CREATE2 Create a new account and set creation address
to sha3(sender + sha3(init code)) % 2**160
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Table A.6: EVM Opcode gas cost(cont).

Opcode Name Description Gas
0xf6 -
 0xf9

Unused -

0xfa STATICCALL Similar to CALL, but does not modify state 40

0xfb Unused -

0xfc TXEXECGAS Not in yellow paper FIXME -

0xfd REVERT Stop execution and revert state changes,
without consuming all provided gas and
providing a reason

0

0xfe INVALID Designated invalid instruction 0

0xff SELFDE-
STRUCT

Halt execution and register account for later
deletion

5000 + ((cre-
ate_new_account)

? 25000 : 0)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix II

ETHEREUM-ETL SCHEMA
Table B.1: Block schema.

Column Type

number bigint

hash hex_string

parent_hash hex_string

nonce hex_string

sha3_uncles hex_string

logs_bloom hex_string

transactions_root hex_string

state_root hex_string

receipts_root hex_string

miner address

difficulty numeric

total_difficulty numeric

size bigint

extra_data hex_string

gas_limit bigint

gas_used bigint

timestamp bigint

transaction_count bigint



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

64

Table B.2: Transaction schema.

Column Type

hash hex_string

nonce bigint

block_hash hex_string

block_number bigint

transaction_index bigint

from_address address

to_address address

value numeric

gas bigint

gas_price bigint

input hex_string

block_timestamp bigint
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Table B.3: Receipt schema.

Column Type

transaction_hash hex_string

transaction_index bigint

block_hash hex_string

block_number bigint

cumula-
tive_gas_used bigint

gas_used bigint

contract_address address

root hex_string

status bigint

Table B.4: Contract schema.

Column Type

address address

bytecode hex_string

function_sighashes string

is_erc20 boolean

is_erc721 boolean

block_number bigint
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Table B.5: Trace schema.

Column Type

block_number bigint

transaction_hash hex_string

transaction_index bigint

from_address address

to_address address

value numeric

input hex_string

output hex_string

trace_type string

call_type string

reward_type string

gas bigint

gas_used bigint

subtraces bigint

trace_address string

error string

status bigint

trace_id string



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix III

EVITAR API SPECIFICATION
Table C.1: ListEvitar API.

API Name ListEvitar

Method GET

URI /list-evitar

Description API for query list of all available Evitar with
different thresh and wnd

Request params -

Response body {
  “evitar_list”: [
    {
      “evitar”: “evitar_1”,
      “thresh”: 0.5,
      “wnd”: 50
    },
    {
      “evitar”: “evitar_2”,
      “thresh”: 0.25,
      “wnd”: 50
    },
  ]
}
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Table C.2: GetMethodsInSmartContract API.

API Name GetMethodsInSmartContract

Method GET

URI /get-method-in-smart-contract

Description API for query all available methods in the smart
contract

Request params 1. smart_contract_address (string)

Response body {
  “contract_address”: ”0x3D490ff9e5A7FF...”,
  “methods”: [
    “0xc12fba87”,
    “0x1b7faac3”
  ],
}

Table C.3: IsMethodWithHighFailureRate API.

API Name IsMethodWithHighFailureRate

Method GET

URI /is-method-with-high-failure-rate

Description API for checking the status of method in smart
contract

Request params 1. address (string)
2. method (string)
3. evitar (string)

Response body {
  “evitar”: “evitar_1”,
  “contract_address” : ”0x3D490ff9e5A7FF...”,
  “methods”: “0xc12fba87”,
  “method_with_high_failure_rated”: true,
  “successful”: 47,
  “revert”: 30,
  “consumed_all_gas”: 125
}
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Table C.4: GetMethodDetail API.

API Name GetMethodDetail

Method GET

URI /get-method-detail

Description API for checking the error distribution of
method in smart contract

Request params 1. address (string)
2. method (string)
3. evitar (string)

Response body {
  “evitar”: “evitar_1”,
  “contract_address” : ”0x3D490ff9e5A7FF...”,
  “methods”: “0xc12fba87”,
  “method_with_high_failure_rated”: true,
  “successful”: 47,
  “revert”: 30,
  “out_of_gas”: 23,
  “invalid_opcode”: 67,
  “invalid_jump”: 35,
  “stack_overflow”: 0,
  “stack_underflow”: 0
}
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