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ABSTRACT (THAI) 
 สุทิวสั ญาณชโลทร : การตรวจจบัวตัถุในระดบัพิกเซลแบบทนัทีและการสกดัพิกดัสามมิติส าหรับอาหารญ่ีปุ่ นโดย

ใชก้ลอ้ง RGB-D. ( REAL-TIME INSTANCE SEGMENTATION AND 

POINT CLOUD EXTRACTION FOR JAPANESE FOOD USING RGB-

D CAMERA) อ.ท่ีปรึกษาหลกั : ดร.ณฐัพล ด ารงคพ์ลาสิทธ์ิ, อ.ท่ีปรึกษาร่วม : ศ. ดร.ฮายาชิ อิจิ 
  

ในปัจจุบนันวตักรรมส่งผลให้เกิดการพฒันาอุตสาหกรรมอาหาร สังเกตไดจ้ากความนิยมท่ีเพิ่มข้ึนของการวิจารณ์อาหารบน
อินเตอร์เน็ตและธุรกิจการจดัส่งอาหารแบบรวดเร็ว ในท านองเดียวกนักระบวนการผลิตและกระบวนการบรรจุอาหารใส่บรรจุภณัฑจ์ะ
เปล่ียนจากใชแ้รงงานคนเป็นอตัโนมติัโดยใชหุ่้นยนตเ์ขา้มาแทนท่ีอยา่งแพร่หลาย การเปล่ียนเปลงน้ีจะท าให้ผูผ้ลิตสามารถควบคุมคุณภาพ
อาหารและเพิ่มประสิทธิภาพในกระบวนการผลิตได ้อย่างไรก็ตามปัจจยัท่ีส าคญัอยา่งหน่ึงท่ีจะท าใหส่ิ้งน้ีเป็นไปไดคื้อความสามารถในการ
ตรวจจบัและแยกประเภทของอาหารจากภาพถ่ายอยา่งแม่นย  าดว้ยความเร็วสูง 

ในงานวิจยัน้ีเราจะศึกษาการตรวจจบัวตัถุอาหารแบบทนัทีโดยใชภ้าพจากกลอ้งวดัความลึก วิธีท่ีเลือกใชคื้อการตรวจจบัวตุัใน
ระดับพิกเซลโดยใช้การเรียนรู้แบบอตัโนมติัท่ีมีโครงข่ายประสาทหลายชั้นเพื่อตรวจจับช้ินอาหารญ่ีปุ่นในระดับพิกเซล ในท่ีน้ีจะใช้
แบบจ าลอง 2 แบบ คือ Cascade Mask R-CNN และ Hybrid Task Cascade โดยแบบจ าลองทั้งหมดจะเรียนรู้ดว้ยตวั
มนัเองบนทั้งหมดสองแพลตฟอร์ม คือ บนเคร่ืองคอมพิวเตอร์ และบนบริการคลาวด ์จากนั้นไดท้ าการศึกษาแบบจ าลองท่ีสร้างข้ึนในสภาวะ
ต่าง ๆ นอกจากน้ีจะน าขอ้มูลความลึกท่ีไดจ้ากกลอ้งมาประสานกบัขอ้มูลการตรวจจบัวตัถุท่ีไดจ้ากขั้นตอนแรกเพื่อสกดัขอ้มูลพิกดัสามมิติ
ของวตัถุอาหารซ่ึงจะสามารถน ามาใชป้ระโยชน์ในกระบวนการผลิตอาหารแบบอตัโนมติั  เช่น การหยิบและวางช้ินอาหารซ่ึงมีรูปร่างและ
ขนาดท่ีหลากหลายไดอ้ยา่งแม่นย  า 

จากผลการทดลองพบวา่แบบจ าลอง HTC มีความแม่นย  าสูงกวา่แบบจ าลอง Cascade Mask R-CNN บนทั้งสอง
แพลตฟอร์มท่ีใช้ในการเรียนรู้อตัโนมติั แต่ในทางกลบักนัแบบจ าลอง HTC จะมีความเร็วในการตรวจจับท่ีช้ากว่า จากนั้นยงัพบว่า
ความเร็วในการตรวจจบัวตัถุของทั้งสองแบบจ าลองมีแนวโนม้จะลดลงเม่ือจ านวนวตัถุในภาพเพิ่มข้ึนและเม่ือความละเอียดของภาพเพิ่มข้ึน 

ยิ่งไปกวา่นั้นผลการทดลองแสดงให้เห็นวา่การเปล่ียนแปลงสภาพแวดลอ้ม ไดแ้ก่ การเปล่ียนสีพื้นหลงั การปรับลดความสวา่ง การวางวตัถุ
อาหารซอ้นทบั และการใชอ้าหารท่ีไม่สมบูรณ์ ส่งผลใหค้วามแม่นย  าของแบบจ าลอง HTC ลดลง หลงัจากนั้นไดท้ าการสกดัพิกดัสามมิติ
ของวตัถุอาหารออกมาโดยมีความเร็วเฉล่ียอยูท่ี่ 6.71 เฟรมต่อวินาที 

 

สาขาวิชา ระบบกายภาพท่ีเช่ือมประสานดว้ย
เครือข่ายไซเบอร์ 

ลายมือช่ือนิสิต ................................................ 

ปีการศึกษา 2563 ลายมือช่ือ อ.ท่ีปรึกษาหลกั .............................. 
  ลายมือช่ือ อ.ท่ีปรึกษาร่วม ............................... 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 iv 

 
ABSTRACT (ENGLISH) 

# # 6270375221 : MAJOR CYBER-PHYSICAL SYSTEM 

KEYWORD: Object detection, Instance segmentation, 3D point cloud, Food automation, 

Artificial Intelligence, Depth camera 

 Suthiwat Yarnchalothorn : REAL-TIME INSTANCE SEGMENTATION AND 

POINT CLOUD EXTRACTION FOR JAPANESE FOOD USING RGB-D 

CAMERA. Advisor: NATTAPOL DAMRONGPLASIT, Ph.D. Co-advisor: Prof. 

Hayashi Eiji, Ph.D. 

  

Innovation in technology is playing an important role in the development of food 

industry, as is indicated by the growing number of food review and food delivery 

applications. Similarly, it is expected that the process of producing and packaging food itself 

will become increasingly automated using a robotic system. The shift towards food 

automation would help ensure quality control of food products and improve production line 

efficiency. One key enabler for such automated system is the ability to detect and classify 

food object with great accuracy and speed. 

In this study, we explore real-time food object segmentation using RGB-D depth 

camera. Instance segmentation based on 2D RGB data is used to classify Japanese food 

objects at a pixel-level with Cascade Mask R-CNN and Hybrid Task Cascade deep learning 

models. The model is trained on both local GPU and cloud service. The precision and recall 

values for classifying food objects under different scenario conditions are investigated. 

Furthermore, we construct 3D point cloud of food objects using depth information from the 

camera, which will help facilitate food automation operation such as precision grasping of 

food object with numerous shapes and sizes. 

The result shows that the trained HTC model has better precision than Cascade 

Mask R-CNN model, albeit at a lower detection speed. The inference speed of both models 

monotonically decreases as the number of food objects and image resolution of the processed 

image increase. In addition, it is found that that the accuracy of the HTC detection can be 

quite sensitive to environmental factors such as background colors, low brightness, and 

having an incomplete object. The 2D segmentation result is combined with 3D point cloud 

extraction to realize real-time 3D segmentation of Japanese food objects with an average 

framerate of 6.71 fps. 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

Food industry is an important part of the economy for many countries. It 

represents a large portion of the country’s GDP, and it is made up of various business 

sectors that provide food supply to the population, including agriculture, 

manufacturing, food processing, and food services, just to name a few. By incorporating 

innovative technologies to these existing sectors, the overall efficiency can be 

improved, while the operating cost can be reduced. One such example is the use of 

automation in the food production process. Automating food production can help to 

improve consistency in the appearance and quality of the food being produced, as well 

as to minimize unnecessary waste by using minimum amount of ingredients. Although 

the benefit of automation in food production is clear, there has not been a wide-scale 

adoption of such technology in the food industry, as one might observe in other 

industries like car or industrial manufacturing. One reason has to do with the ability to 

manipulate the components of the object being produced. Unlike other industries where 

the components are usually uniform in size and weight, the ingredients that go into food 

production are often of diverse size, shape, weight, and texture, making it difficult to 

develop a line automation using traditional methods [1].  

Computer vision may help solve these challenging problems, however. The 

technology mimics how human sees and perceives things. One important aspect of 

computer vision is image recognition, which involves different processes such as object 

detection, classification, and segmentation. A particular technique, called instance 

segmentation, has been used to detect distinct objects in an image in real-time and the 

classification is done at a pixel-level using deep learning model. Previous studies have 

shown this approach to be effective and reliable in detecting food objects [2-4].  

In addition to the output RGB data from a camera sensor, depth camera 

technology can also provide 3D depth information which can be advantageous for 

analyzing 3D objects in a surrounding environment. By combining segmented RGB 

data and 3D depth information together, automatic detection and classification of food 

object can be done more accurately, allowing for better estimation of its shape, weight, 

size and, even calories.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2 

In this study, we use the data from a single stereo depth camera mounted on a 

robot end-effector which is used for performing tasks involving food automation. The 

camera outputs are RGB color data and depth information. We perform instance 

segmentation on RGB data by using Cascade Mask R-CNN and HTC (without semantic 

segmentation) which are deep learning architectures based on mmdetection [5] 

benchmark results. The Cascade Mask R-CNN method is a combination of Cascade R-

CNN [2] and Mask R-CNN [3], which allows classification of RGB data at a pixel level. 

Then, we combine the processed data with depth information to achieve 3D object 

segmentation. All of the output information from our proposed process is published on 

a robot system network that can later be used in path planning or grasping posture 

estimation. Moreover, the resulting output can be generalized to other systems as well, 

such as warehouse inventory tracking or human activity monitoring, not just limited to 

a robotic system.   

1.2 Objectives and Scope 

1.2.1 Objectives 

1) Develop and apply instance segmentation model to detect Japanese food 

objects at a pixel-level. 

2) Develop a point cloud extraction method of food objects in real-time 

using RGB-D camera 

1.2.2 Scope 

The experiment is performed using only one stereo depth camera 

mounted on a manipulator’s end-effector or a stationary frame. The camera is 

connected to a PC equipped with a local GPU, or has access to Google Colab, 

to perform image processing tasks.  

The Japanese food dataset will be curated and labeled by-hand in 

COCO-style. It will contain images taken from the web and those captured by 

the researcher. 

Detection model for Japanese food will be developed to detect, classify, 

and segment food objects in real-time using RGB information. The refinement 

of the models will be accomplished through modifying and tuning of different 
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parameters such as datasets, training batch size, deep learning architectures, and 

activation functions. Different scenario condition that could impact the accuracy 

and robustness of the model will also be explored. 

The RGB segmentation result will be fused with depth information from 

depth camera to extract point cloud of food objects in real-time. Inference speed 

will be evaluated for different extraction methods. 

1.3 Timeline 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Task assigned                         

Learn and Practice 

object detection                         

Create datasets                         

Train instance 

segmentation 

models                         

Point cloud 

extraction                         

Experiments                         

Improve datasets                         

Thesis paper                         

Conference paper                         

Proposal Exam                         

SICE 2020                         

 

1.4 Expected Outcome 

• Gain a comprehensive understanding in regards to object detection and related 

methods in the field of computer vision. 

• Establish an object detection framework that can detect Japanese food objects. 

• Establish a module that can extract point cloud of food objects in real-time. 

• Able to evaluate and compare accuracies between models, as well as to assess 

how different environmental conditions might impact those models.

Table  1: Thesis plan for 2020 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2 LITERATURE REVIEW 

2.1 Object Detection and Instance Segmentation 

Object Detection, Semantic Segmentation, and Instance Segmentation are some 

of the most popular and important fields in Computer Vision [6, 7]. Object Detection 

is a method of classifying and localizing all the objects in an image. It locates the exact 

positions of objects and labels them into classes. The position of an object is usually 

located by a bounding box, which is represented by a rectangular enclosing region. 

Semantic Segmentation is the process of identifying every single pixel in an image into 

a class, including objects and background such as sky and grass. Unlike object 

detection, this process only identifies pixels in an image. It does not consider a cluster 

of pixels as an object. Instance Segmentation, on the other hand, can be viewed as a 

combination of Object Detection and Semantic Segmentation. It assigns a class to each 

pixel and treats them as an object. Instance Segmentation also treats multiple objects of 

the same class as individual objects that have separate entities.  

 

There are many essential concepts associated with Object Detection such as 

Bounding Box, Anchor Boxes, Intersection over Union (IoU). They will be explained 

in this section. 

First, Bounding Box is a rectangular-shaped box that can be described by 4 

parameters; bx, by, bw, and bh where (bx, by) is the center position of the box and bw 

and bh are the width and the height of the bounding box, respectively. 

Fig. 1 Object Detection and its related methods 
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Next, Anchor Boxes are a set of predefined bounding boxes. They are defined 

to detect the aspect ratio of specific objects based on object sizes in the training dataset. 

The anchor boxes are moved across the entire image and then the neural network 

predicts the probability such as IoU to filter only potential boxes. 

 

Intersection over Union (IoU) is a metric used to evaluate the accuracy of the 

predicted bounding box. It is a ratio of area of intersection to area of union between the 

prediction and ground-truth bounding boxes. The IoU value of more than 0.5 is 

considered a good prediction. 

 

Binary mask is a 2D array which has the same shape as the image. Each data 

point is either 1 or 0 (True or False) to define whether it belongs to the predicted 

instance. 

Fig. 2 Anchor boxes example 

Fig. 3 IoU examples. Here the red bounding box represents 

ground-truth while the green bounding box represents 

prediction by the model. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 6 

 

Lastly, Mean Average Precision, or mAP is an evaluation metric used to 

measure the accuracy of an object detector. The precision value equals to the number 

of true positives divided by the number of all positives. mAP is the average precision 

value over IoU of 0.5 to 0.95 with a step size of 0.05 and it is expressed as a percentage 

value. 

2.1.1 Region-based CNNs 

Region-based convolutional neural networks or regions with CNN features (R-

CNNs) are pioneering approaches that apply deep learning models to object detection. 

Fast R-CNN, Faster R-CNN [4], and Mask R-CNN are some of the models that are 

developed as part of the improvement to the original R-CNN model [6]. 

R-CNNs 

First, this model selects multiple proposed regions from an input image and then 

label their categories and bounding boxes. After that, it performs CNN forward 

computation to extract features from each proposed region and then predicts their 

categories and bounding boxes. The architecture of R-CNN is shown in Fig. 5. 

 

Fig. 4 Binary mask example 

Fig. 5 R-CNN model 
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This model effectively uses pre-trained CNNs to extract image features, but its 

main drawback is the slow speed because the number of forward computations depend 

on the number of proposed regions. 

Fast R-CNN 

Fast R-CNN only performs CNN forward computation on a whole image once, 

solving the performance issue associated with the original R-CNN model. It introduces 

regions of interests pooling (RoI pooling) to extract features of the same shapes and a 

fully connected layer is needed to transform the output to a specific shape.  

 

Faster R-CNN 

The selective search in Fast R-CNN generally generates many proposed 

regions. Faster R-CNN replaces selective search with a region proposal network to 

reduce the number of proposed regions generated and ensure accurate object detection 

at the same time. The other parts of the model are unchanged.  

 

Fig. 6 Fast R-CNN model 

Fig. 7 Faster R-CNN model 
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Mask R-CNN 

Mask R-CNN replaces RoI pooling layer in Faster R-CNN with RoI alignment 

layer to retain spatial information on feature map. This makes Mask R-CNN more 

suitable for pixel-level predictions. Then, it uses an additional fully convolutional 

network to predict pixel-level positions of objects.  

 

2.1.2 Cascade R-CNN 

Cascade R-CNN [2] is a multi-state object detection architecture developed 

from Faster R-CNN which is explained in the previous section. This model is proposed 

to solve 2 main problems: overfitting in training and inference-time mismatch between 

the IoUs for which the detector is optimal and those of the input hypotheses. These two 

main factors largely contribute to a performance degradation during detection. 

This model decomposes difficult bounding box regression task into a sequence 

of simpler processes. The architectures are shown in Fig. 9. 

 

Fig. 8 Mask R-CNN model 

  (a) Faster R-CNN                 (b) Cascade R-CNN 

Fig. 9 The architecture of Cascade R-CNN comparing with Faster R-CNN 
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“I” is input image, “conv” is backbone convolutions, “pool” is region-wise feature 

extraction, “H” is network head, “B” is bounding box, and “C” is classification. “B0” 

is proposal in all architectures. 

2.1.3 Hybrid Task Cascade 

One of the most successful instance segmentation models, Cascade Mask R-

CNN is the combination of the previous explained models: Cascade R-CNN and Mask 

R-CNN. It exploits the advantages of cascade architectures and to achieve better result. 

Hybrid Task Cascade (HTC) [8] improves on this Cascade Mask R-CNN by fully 

leveraging the reciprocal relationship between detection and segmentation. It 

interweaves these two branches to form a multi-state processing instead of performing 

them separately. Moreover, it creates a direct path to reinforce the information flow 

between mask branches and adds an additional semantic segmentation branch, which 

can ensure better background distinguishing abilities. The development of HTC from 

Cascade Mask R-CNN is shown in Fig. 10. 

 

      2.2 Components of Deep Neural Network 

2.2.1 Region Proposal Networks (RPN) 

The RPN consists of a fully convolution network that shares convolutional 

features with the detection network. An image of any size is taken as an input of a 

Region Proposal Network (RPN). The outputs from this network are a set of bounding 

boxes with a score of objectness for each box. The network is trained end-to-end to 

generate many different region proposals with high accuracy.  

(c) Mask information flow  (d) Hybrid Task Cascade 

(a) Cascade Mask R-CNN   (b) Interleaved execution 

Fig. 10 The evolution from Cascade Mask R-CNN to Hybrid Task Cascade 
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The selective search in Fast R-CNN is replaced by this network and the results 

show that it can reduce computational costs, while still keeping the same effectiveness 

in terms of accuracy. The Faster R-CNN architecture explained in previous section is 

developed by merging the Fast R-CNN with RPN. 

2.2.2 Residual Network (ResNet) 

In deep convolutional neural networks, multiple levels of extracted features can 

be satisfied by adding more layers to the networks. As the number of layers in a deep 

neural network increases, the difficulty in training also increases due to higher training 

error. 

One way to solve this problem is to implement residual functions with reference 

to the input layers. A residual learning framework is proposed to enable deeper neural 

network training. Previous studies [9] have shown that neural network depth can be as 

deep as 152 layers in ImageNet [10], or 8 times deeper than VGG nets [11]. Other 

analysis on CIFAR-10 dataset also shows network depth with 100 and 1000 layers [12]. 

 

2.2.3 Fully Convolutional Networks (FCN) 

In image classification, an image goes through convolutional layers followed 

by fully connected layers. During that process, the image is downsized and is output as 

one predicted label. On the other hand, in semantic segmentation, the fully connected 

layers before the end of the CNN must be adjusted to convolutional layers. Therefore, 

it is called Fully Convolutional Networks (FCN) [13, 14]. After the convolutional 

layers, the output must be upsampling via deconvolution because the output size is 

scaled down in CNN. Then, the features extracted from different levels in CNN are 

combined to create a semantic segmentation result.  

Fig. 11 A block of residual learning 
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2.3 3D Computer Vision 

2.3.1 Depth Camera Technologies 

Standard digital cameras provide us with output that is represented by a 2D grid 

of pixels, where each pixel contains several numeral values. For a common RGB color 

space, each pixel will have information pertaining to Red, Green, and Blue channel 

separately. Usually, an 8-bit integer is used to represent data for each channel, and 

hence, the integer value can vary from 0-255 in an (R, G, B) format. As an example, 

for a completely white pixel, the values must be (255, 255, 255), or a fully bright green 

pixel must be (0, 255, 0).  The mixing between the different values of each color channel 

will give rise to the different colors that we can observe in photographs. In contrast, a 

depth camera has pixel which contains information representing the spatial distance (or 

“depth”) of that pixel to the camera itself. In some depth cameras, a pixel may contain 

both the RGB and depth information - these are often referred to as RGB-D cameras, 

where each pixel contains 4 values which are Red, Green, Blue, and Depth values.  

When it comes to calculating depth, there are several technologies being used 

by today’s depth camera such as structured light and coded light, stereo depth, and time-

of-flight and LiDAR, just to name a few. The working principle for each technology 

will be discussed below, as well as their advantages and shortcomings. 

 

 

 

 

Fig. 12 Fully convolutional networks 
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Structured Light and Coded Light 

Structured light and coded light depth cameras rely on projecting a specific 

pattern of light, such as a series of stripes or dots, in an infrared range [15] onto a scene. 

If the scene contains some sort of a topology or a three-dimensional shaped surface, 

pattern light that was projected will appear to have a deformed pattern. The distance 

from the camera to the scene can be calculated based on the discrepancy between the 

actual image and the expected image of the patterned light. Unfortunately, these types 

of camera are sensitive to noises in the environment due to inference from other cameras 

or devices that also emit infrared light. Therefore, they tend to work best indoors and 

over a short range. Such technology is often used in gesture recognition and background 

segmentation. Some of the new cellphone camera relies on this technique to 

authenticate user when unlocking the phone using facial recognition [16]. 

 

Stereo Depth 

Stereo depth cameras rely on two sensors and a small space between them. 

Given the known distance between the two sensors, the two images gathered from each 

sensor can be compared to estimate the distance of the target object from the camera. 

Interestingly, this technique is similar to how human eyes perceive depth from our two 

eyes, or how astronomers measure the distance of a star. Since the stereo technique does 

not rely on projecting a patterned light, this kind of camera can work well in most 

lightning conditions, including indoor and outdoor usage. Moreover, there are no 

Fig. 13 Demonstration of structured light and coded light depth cameras. Note 

how the patterned light is deformed when 3D object is presence in a scene 
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interference with other cameras, which opens up the possibility of using multiple 

cameras at same time.  

 

 

Time-of-Flight (ToF) and LiDAR (Light Detecting And Ranging) 

A typical ToF or LiDAR emits a light of a certain wavelength onto a scene. 

Then, it detects how long does it take for that light to bounce off the different objects 

and be reflected to the sensor. Since the speed of light is known, the sensor can calculate 

distance traveled between the camera and the object. LiDAR offers some of the best 

resolution for measuring depth, with accuracy of up to millimeter in some cases [17]. 

It has become one of the main sensors used for 3D environment mapping and ADAS 

(Advanced driver-assistance systems) [18]. Like coded light and structured light 

cameras, time of flight cameras are vulnerable to noises in the surroundings. For 

examples, the sensors might be affected by the light traveling from another camera or 

sunlight. 

Fig. 14 Demonstration of stereo depth cameras. Images gather from 

sensor 1 and sensor 2 are used to calculate depth information 
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2.3.2 Depth Image vs 3D Point Cloud 

Depth image and 3D point cloud can be obtained from a depth sensor or a depth 

camera. These two data representations contain the same information but are not 

identical. In a depth image, each (x, y) pixel represents a distance measured from an 

object in the scene to the camera. This measurement is often referred to as the depth 

value (z), which has a unit of length, whereas the x and y values are in pixel unit. On 

the other hand, a 3D point cloud is a set of (x, y, z) points in space, where the X, Y, Z 

coordinates all represent unit of length that measure the distance from those individual 

points to the camera.  

Depth image can be visualized in a 2D image by using a heatmap with false 

color, or an 8-bit greyscale, corresponding to a particular depth value, as it represents a 

certain viewpoint of a 3D scene. The visualization for a 3D point cloud is different, 

however. The 3D point cloud can be visualized as a depth map in three-dimensional 

space that represents the external surface of the scene. In addition, the point cloud can 

display the true color value of a particular point in a scene, while the depth image 

cannot. It is worth noting that a depth image can also store color values, but it is not 

able to represent both the color data and depth data at the same time in a 2D image. Fig. 

16 shows the visualization of these two types of data representation of the same scene. 

Fig. 15 Demonstration of time of flight cameras 
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2.3.3 Centroid of a 3D point cloud 

There are several different ways to compute the center of a centroid of a 3D 

point cloud cluster. The most common techniques are central feature, mean center, and 

median center. The central feature selects the center point to be the point which has the 

shortest accumulative distance to all the other points belonging to the point cloud. This 

can be found by iterating through all the points in the cluster and calculating the sum 

of distances of each point to all the other points and selecting the point with the least 

sum. The mean center technique is quite simple - it can be found simply by calculating 

average values of each x, y, and z components belonging to the cluster. The median 

center technique is similar to the mean center, but it finds the median of each coordinate 

components instead of finding the average values. The mean and median center 

techniques are different from the central feature in that the calculated centroid of these 

two techniques may or may not correspond to an actual point in the point cloud cluster. 

For a 3D point cloud which only has texture data of an external surface of an object or 

a hollow object, the centroid should be calculated using the latter two techniques since 

the calculation using the first method would yield an actual point on the surface, which 

is obviously not the correct centroid for these types of object. 

(a) Depth map 

(b) 3D Point cloud 

Fig. 16 Visualization of a Depth map and a 3D point cloud 
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2.4 Framework 

 2.4.1 Deep Learning Frameworks 

At this time, there are many existing deep learning frameworks such as 

TensorFlow, PyTorch, Keras, MXNet, Microsoft CNTK, Deeplearning4j, and Caffe. 

Most of them are open-source. Each framework has its own specific applications, 

advantages, and disadvantages. In this section, we will give a brief overview of some 

of the most popular and widely used deep learning frameworks. The comparison 

between them is summarized in Table 2. 

TensorFlow 

TensorFlow is the most famous deep learning library written in Python and C++ 

developed by Google. It uses dataflow graphs, which are structures that define how data 

flow through a series of processing nodes. Each node represents a mathematical 

operation, and the connection between nodes is a multi-dimensional array called 

Tensor. Moreover, it offers TensorBoard [19] for data monitoring and visualization. 

This can be used to track the loss and accuracy of the model being considered. Many 

companies - like Uber, Airbnb, and Twitter - have employed TensorFlow in their 

platforms [20]. 

 

 

 

 

 

 

Fig. 17 Example of TensorBoard 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 17 

PyTorch 

PyTorch is a machine learning framework based on Torch which is an open-

source package, but Python language is used instead of Lua [21, 22]. The data structure 

is also a tensor, which is very similar to NumPy arrays, yet it can be accelerated with 

GPU. In addition, this framework allows us to define our graph dynamically unlike 

other packages. PyTorch is flexible and fast, so it is suitable for deep learning research. 

It is developed and used by the social media giant, Facebook. Moreover, this framework 

is used in research by Oxford and IBM, and it can also work effectively with cloud 

platform like Amazon Web Services (AWS). 

Microsoft CNTK 

 Microsoft CNTK, or Microsoft Cognitive Toolkit, is developed by Microsoft. It 

is used in popular Microsoft products such as Xbox, Cortana, Skype, and Windows 

Operating System. The CNTK provides neural networks in the form of directed graphs 

by using a series of computational steps. It also supports various programming 

languages such as C#, C++, Python, and Java. 

 TensorFlow PyTorch CNTK 

Developer Google Facebook Microsoft 

Supported 

languages 

C++, Python, Java, 

JavaScript, Go, Swift 

C++, Python C++, Python, C#, 

Java, .NET 

Main advantages It offers Tensorboard 

for data monitoring 

and visualization and 

it has large 

community support. 

It has various pre-

trained models, 

powerful debugger 

tools, and a user-

friendly design. It 

also supports 

distributed training. 

It is easy to 

integrate in most 

enterprises and has 

reliable 

performance. 

Main drawbacks It is relatively slow 

comparing to other 

frameworks and also 

difficult to debug. 

It has less 

community support 

and does not have 

visualization tools. 

It has less 

community support. 

 

Table  2 : Comparison of popular deep learning frameworks 
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2.4.2 MMDetection 

 Open MMLab Detection or MMDetection [5] is an open-source object detection 

toolbox and benchmark based on PyTorch [21]. It is developed by Multimedia 

Laboratory, CUHK. This framework has modular design and up to date, so it can be 

effectively used in object detection researches. A great number of architectures are 

implemented in this framework including the state-of-the-art models. Moreover, it has 

been approved to be highly efficient comparing to other popular frameworks. 

2.4.3 Robot Operating System (ROS) 

In a robot system, a lot of software tools are needed to control, drive, and 

perform computer vision tasks. A Robot Operating System, or ROS, attempts to gather 

all these tools together into a unified framework. The main goal of ROS is to support 

code reuse in robotics research and development [23]. The processes or computations 

in ROS are executed individually in each node. A node represents a set of runtime 

processes performing computation. These nodes can be combined to form a package, 

which is the main unit for organizing software in ROS. It is proven to be a very suitable 

tool in many robotic researches.  

ROS has three levels of concepts: [24] Filesystem level, Computation Graph 

level, and Community level. These three levels are briefly explained below. 

First, a Filesystem level concept involves ROS materials we meet on disk 

including packages which are the main unit for managing software in ROS. ROS 

runtime processes, ROS-dependent library, datasets, or anything else may be contained 

in a package hence they can be effectively managed together. Other than the packages, 

Message types (which define data structure of messages) and Service types (which 

define the request and respond data structures) are also parts of a Filesystem level 

concept. 

Next, the Computation Graph level covers the peer-to-peer network in ROS 

processes which transfer data between one another. The basic computation graph 

concepts are ROS nodes, master, messages, services, topics, bags, and anything else 

that provides data to the network. Each ROS node can be viewed as a process that is 

tasked with performing a specific type of function. For examples, one node might 

control the motors of a robot, and another node might localize the robot, while another 
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node might perform path planning. ROS master enables the communication of nodes in 

a computation graph by providing name registration. It also contains the parameter 

server which allows data to be stored by key in a central location. ROS topic acts like 

a strongly typed message bus, allowing nodes to send or receive certain types of ROS 

messages through publishing and subscribing to the topic. A single topic allows 

multiple publishers or subscribers to access concurrently. ROS nodes connect to the 

other nodes directly while the ROS master only gives lookup information (similar to 

DNS server). The subscribers will request connections to the publishers and connection 

will be initiated over an agreed protocol. The most common protocol used in ROS is 

TCPROS, which uses standard TCP/IP sockets. Another important concept in this level 

is ROS bags. These are mechanism for saving and playing back ROS message data such 

as those outputted from a sensor, which can be retrieved and visualized at a later time. 

 

Finally, the ROS Community level concept is ROS materials that allow users 

and developers to exchange software and knowledge. These concepts include 

distributions, repositories, the ROS wiki, etc. 

In addition to the three levels of concept, ROS also states 2 types of names, 

which are Graph Resource Name and Package Resource Name. The first type of names 

provides hierarchical naming structures, which is used in the ROS Computation Graph 

including nodes, topics, services, and parameters. This kind of naming structure is 

useful, especially when ROS system grows larger and becomes more complicated. The 

other type of names, Package Resource Name, is used in the ROS Filesystem level for 

referring to files and data types on a disk with an abbreviated notation. It can simply be 

constructed by listing the name of a package, followed by a name of a resource that you 

want to access. For examples, a package resource name of “std_msgs/PointCloud2” is 

a shorthand version for “absolute/path/to/std_msgs/PointCloud2.msg”.

Fig. 18 Demonstration of ROS nodes communication 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 METHODOLOGY 

3.1 Hardware 

The robot system used in this experiment is a 7-Axis articulated arm robot 

system from Yaskawa Electric Corporation, Japan, with a model name Motoman SIA5F 

[25]. It supports many applications such as assembling, machine tending, material 

handling, part transferring, and picking-and-placing with a payload of up to 5.0 kg. It 

has a horizontal reach of 559 mm and a vertical reach of 1007 mm. The controller model 

is FS100. The robotic arm is connected to and controlled by several computers used for 

performing different tasks such as path planning and gripper controlling. The entire 

robot system is operated and communicated on Robot Operating System (ROS) 

network [23].  Several depth cameras are set up in the system to perform workspace 

calibration and computer vision. One of the cameras fixed near the end-effector is a 

stereo depth camera. It is used for computer vision to enhance object manipulation task 

like pick-and-place with a robotic arm. The model of the depth camera used is Intel 

RealSense D435i [26]. It is connected via a USB to a desktop computer running high 

performance GPU, Nvidia GeForce RTX 2080Ti [27], which is suited for performing 

high computation tasks like deep learning. The data flow for the image processing of 

our system is shown in Fig.19. Computer A directly receives the raw data from the 

depth camera which include RGB and depth data. The RGB data are used for instance 

segmentation and then combined with depth data to create 3D point cloud information. 

The processed data are sent to other computers in the network to be used in other 

processes like path planning and grasp posture optimization.  

This work focuses on the data flow starting from the acquisition of RGB and 

depth data via depth camera to the processed data generated by Computer A, as depicted 

in Fig. 19. 
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CPU Intel Core i9-9900K 

RAM DDR4 32 GB 

GPU Nvidia GeForce RTX 2080Ti 

 

 

3.2 Deep Learning Implementation 

In order to achieve a detector which is able to classify and localize food objects, 

we use deep learning as a method to develop instance segmentation model. The model 

starts with the initial weights and goes through the training and evaluation to obtain 

Table  3: Specifications of the desktop computer used in the robot system 

Fig. 19 Data flow example of image processing part in a robot system 

Fig. 20 Manipulator and the camera used for computer vision: (a) Motoman 

SIA5F Manipulator, (b) Depth camera mounted at the end-effector, (c) Intel 

RealSense D435i Depth camera 

(a) 

(b) 

(c) 
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better weights according to the training dataset. Finally, we will be able to classify 

different food objects from images, which is one of our main objectives. 

3.2.1 MMDetection Toolbox 

In this experiment, we use OpenMMLab Detection Toolbox and Benchmark, or 

mmdetection [5] as a framework for performing deep learning and instance 

segmentation. This framework provides tools and python APIs for model training, 

evaluating, and testing and is open-source. Moreover, it offers a lot of competitive 

models to use including backbones, methods, and the state-of-the-art models. 

MMDetection uses distributed training which splits the training workload and shares 

them among multiple processors. 

This toolbox implements a contemporary and popular deep learning framework, 

PyTorch [21] as its backend which provides various deep learning APIs and also offers 

a lot of pre-trained models and powerful debugger tools. 

This framework can be run either locally on a desktop computer with a GPU, or 

on a cloud-based service such as Google Colaboratory (Colab) [28]. In this study, we 

perform all operations of this framework using both local computer and Google Colab 

platform. For the local computer use case, we need to install all the necessary 

dependencies needed for MMDetection such as Torch, Mmcv, and Numpy on the disk. 

All of the APIs and tools are ready to be used once you have installed the framework 

correctly. For Google Colab use, a python notebook needed to be created in order to 

use the framework’s functionalities.  The Colab provides basic dependencies for deep 

learning such as Torch and Matplotlib, so we do not need to install them, but 

MMDetection is still needed to be setup every time before using the notebook. 

3.2.2 Deep Learning Architectures 

We select two deep learning architectures designed for instance segmentation 

tasks to train detector models in this study, namely, Cascade Mask R-CNN and Hybrid 

Task Cascade [8] since both of them are in the top-ranking for instance segmentation 

on COCO test-dev benchmark [29]. These two models are quite similar because they 

are based on cascade architectures. The second model, HTC, was developed based off 

Cascade Mask R-CNN, which is the combination of Cascade R-CNN [2] and Mask R-

CNN [3]. The development of HTC from Cascade Mask R-CNN is shown in Fig. 10. 

Evaluating using COCO average precision, the HTC achieves the box AP of 43.2% and 
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the mask AP of 38.0%, which exceeds that of Cascade Mask R-CNN having the box 

AP and the mask AP of 42.5% and 36.5%, respectively. 

Cascade R-CNN has multiple stages of bounding box regressions where the 

output bounding boxes from a previous stage are taken as new region proposals and 

inputs of a current stage. However, the 3-stage Cascade R-CNN is commonly used 

because researchers found that increasing more than 3 stages does not further enhance 

the effectiveness. Cascade Mask R-CNN is developed from Cascade R-CNN by adding 

segmentation branches in parallel to the bounding box regression and classification 

[30]. In this case, the mask branches in each cascade stage do not affect one another as 

shown in Fig. 10a.  

HTC, on the other hand, improves Cascade Mask R-CNN by eliminating this 

problem. It uses interleaved execution for bounding box branches and mask branches, 

then adds a direct mask information flow to connect between mask branches. Finally, 

it includes semantic segmentation branch to the model. This last step differentiates HTC 

from Cascade Mask R-CNN because this now requires extra training due to the 

supplement. In this study, we use the HTC architecture without the semantic 

segmentation branch, so we do not need to acquire extra training data. 

 

3.3 Model Training 

In the MMDetection toolbox, a config file contains a structure of an architecture 

and also other values such as location of the dataset, number of training epochs, and 

many important parameters. We select the methods or the architectures for training by 

specifying a path of a config file. Before training, we need to make sure that we have 

specified all the desired parameters. Once the dataset is prepared, we can perform 

training using the train script provided in the toolbox. 

In this experiment, we perform model training with the same dataset for both 

Cascade Mask R-CNN and HTC architectures on both local PC and Colab. The selected 

training parameters are the same values as shown in Table 4.  
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Training Parameter Value 

Backbone ResNet-50 

Style PyTorch 

Learning Rate Scheduler 1x 

 

For the local training, a single high-performance GPU, Nvidia GeForce RTX 

2080Ti is used and the models are trained for 1000 epochs. For Colab training, the GPU 

used is Nvidia Tesla T4 provided by Google Colab and is trained for 300 epochs for 

each architecture. 

 

3.4 Datasets 

The deep learning is conducted on our own images dataset which is annotated 

in the same style as COCO dataset [31]. The dataset consists of 807 images, of which 

765 images are annotated, while the rest are images of the laboratory environment. 

There are 13 categories in the dataset: Japanese lunch box (Bento Box), bologna 

sausage, potato chip, Japanese fried chicken (Karaage), Japanese rice ball (Onigiri), and 

8 different kinds of sushi which are shrimp (Ebi), squid (Ika), red caviar (Ikura), 

salmon, Japanese omelette (Tamago), tuna, eel (Unagi), and sea urchin roe (Uni). These 

categories are chosen based on food commonly found in Japanese supermarkets. 

The annotations are done via a software called COCO-Annotator [32] where all 

the images are annotated by hand. First, we input sets of images to a certain directory 

and then the application locates and displays all the images in that directory on the GUI 

of the software. The categories must be defined in the program before we can label 

using a polygon tool image by image. After that, the COCO annotation file can be 

exported in JSON format. 

We split this dataset into train set and validation set, consisting of 720 images 

and 87 images, respectively. The average width and height of the images are 695 pixels 

by 527 pixels. The detail of the dataset is summarized in Table 5. Examples of annotated 

images of the food objects belonging to the different categories are shown in Fig. 21. 

 

 

Table  4: Training parameters 
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Category Images Annotations 

Train Val Train Val 

Bento box 142 17 142 17 

Bologna 27 3 195 23 

Potato chip 55 9 82 11 

Ebi nigiri 105 11 139 17 

Ika nigiri 101 10 138 13 

Ikura nigiri 49 6 84 9 

Karaage 104 16 474 59 

Onigiri 96 10 325 27 

Salmon nigiri 103 13 197 21 

Tamago nigiri 98 10 159 19 

Tuna nigiri 53 4 117 7 

Unagi nigiri 49 5 118 11 

Uni nigiri 49 6 104 12 

Surroundings 38 4 - - 

 

 

Table  5: Dataset detail 

Fig. 21 Examples of annotated images 
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3.5 Point Cloud Extraction 

3.5.1 Via Depth Topic 

The depth camera streams data which consist of RGB and depth frames that can 

be used to generate point cloud ROS message. We use realsense2_camera package to 

access data from the camera. The package’s node, called /camera/realsense2_camera, 

publishes raw camera data which are RGB, depth, and camera information to different 

ROS topics. The /pointcloud_masking node subscribes to these topics and accepts the 

data as inputs which will then be transformed into point cloud information of food 

objects. The subscriptions are done via callback functions. The RGB data are used to 

perform inference with the trained model, providing detection and segmentation 

information (mask) of the food objects being detected. These masks are binary masks 

in an array structure with the same dimension as the original RGB image, but the values 

in the array are stored in Boolean format as true or false instead. The true value indicates 

that the pixel is in a segmented object, and vice versa. This binary mask is then applied 

to the depth data from the subscribed depth topic. The depth data is an array consisting 

of depth value for each pixel and it has the same dimension as the binary mask array. 

This processing step is demonstrated with a 6x8 size image as shown in Fig.22, where 

Fig.22a represents an RGB frame, Fig.22b represents a mask array, Fig.22c represents 

a depth frame, and Fig.22d represents the resulting depth frame after applying the mask 

array. 

 

(c) 6x8 depth frame  (d) The depth frame after applying mask 

F F F F F F F F

F F F T T F F F

F F T T T T F F

F F T F T T F F

F F F F F F F F

F F F F F F F F

P11 P12 P13 P14 P15 P16 P17 P18

P21 P22 P23 P24 P25 P26 P27 P28

P31 P32 P33 P34 P35 P36 P37 P38

P41 P42 P43 P44 P45 P46 P47 P48

P51 P52 P53 P54 P55 P56 P57 P58

P61 P62 P63 P64 P65 P66 P67 P68

(a) 6x8 RGB frame    (b) 6x8 mask array 

Z11 Z12 Z13 Z14 Z15 Z16 Z17 Z18

Z21 Z22 Z23 Z24 Z25 Z26 Z27 Z28

Z31 Z32 Z33 Z34 Z35 Z36 Z37 Z38

Z41 Z42 Z43 Z44 Z45 Z46 Z47 Z48

Z51 Z52 Z53 Z54 Z55 Z56 Z57 Z58

Z61 Z62 Z63 Z64 Z65 Z66 Z67 Z68

0 0 0 0 0 0 0 0

0 0 0 Z24 Z25 0 0 0

0 0 Z33 Z34 Z35 Z36 0 0

0 0 Z43 0 Z45 Z46 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Fig. 22 The demonstration of applying mask to a depth frame 
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The depth values in the array are in millimeters and its actual dimensions are H 

x W x 1, where H and W are height and width of the image, respectively. After applying 

the mask to the depth frame, the values at the pixels which are not in the segmentation 

window will become zero. At this point, we have retained only the depth information 

of the desired area. The resulting depth frame is then transformed from a pixel 

coordinate into a metric coordinate in order to create 3D point cloud. To accomplish 

this, we need the camera intrinsic parameters which are used to map camera coordinates 

into image plane (world points). The camera intrinsic parameters are obtained from 

/camera/color/camera_info ROS topic via a callback function. The metric coordinate 

can be calculated according to Eq. (1). 

 

𝑧 = 𝑑𝑒𝑝𝑡ℎ 1000⁄   

𝑥 = 𝑧(𝑢 − 𝐾13) 𝐾11⁄  (1) 

𝑦 = 𝑧(𝑣 − 𝐾22) 𝐾21⁄   

 

, where x, y, z are the metric coordinates of a point, u and v are the horizontal 

and vertical pixel coordinates of a point, and K is the camera intrinsic matrix, 

respectively.  Once we have obtained a set of 3D points in metric coordinates, we are 

able to create sensor_msgs/PointCloud2 to publish the information in the ROS system. 

In this case, the point cloud information of each category is published on different 

topics. For examples, /pointcloud_1 is a point cloud topic for category one, and 

/pointcloud_2 is a point cloud topic for category two. Furthermore, we can colorize the 

point cloud for each category to enhance visualization by adding a floating RGB value 

to each point in the set of 3D points, so that each point will now contain x, y, z, and an 

RGB value. The ROS diagram for this node is shown in Fig.23. 
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3.5.2 Via Point Cloud Topic 

We explained a method to obtain food object’s point cloud information and 

publish that information in a ROS environment. There is also an alternative method that 

can be used to extract point cloud as outlined in Fig.24. 

 

 

 

This second method differs from the first method in the way that it subscribes 

to the point cloud topic instead of the depth topic. One advantage of using this second 

method is that it simplifies the calculation in the /pointcloud_masking node. If the point 

cloud topic provides the depth registered point cloud message, we can easily obtain the 

Fig. 23 Point cloud extraction in ROS via Depth Topic 

Fig. 24 Second method for point cloud extraction in ROS via Point Cloud topic 
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point cloud of the desired objects by applying the mask array to the point cloud array 

directly. The depth registered point cloud is an array with a dimension of H x W x 4. 

The number 4 implies each point has 4 attributes, which are x, y, z, and RGB values of 

a point. With this kind of point cloud information, we can apply a mask to it in a similar 

manner as previously shown in Fig.22. However, if the point cloud is not depth 

registered, we will need to perform an additional calculation. For example, after the 

inference step, we find all the possible contours (in a closed form) in the mask image 

and pick out the largest contour. Next, we generate a polygon of this contour, consisting 

of a set of vertices of the contour boundary. Then, we filter the desired points by 

determining only the points in the points array that reside in the polygon. Each point in 

the point cloud has its original RGB color from the camera’s RGB data, hence we can 

see the object color as we see in a 2D RGB frame instead of a mono color as was seen 

when using the first method for point cloud extraction. 

 

3.5.3 Centroid of Point Cloud 

In the previous section, we discussed how individual point clouds are extracted 

from a depth camera data. Using the extracted point cloud data, we can calculate the 

centroid position of a point cloud by simply taking the average values of each 

coordinates x, y, and z values belonging to the segmented object. Then, we publish the 

centroid position of the segmented object in a ROS topic using 

/visualization_msgs/Marker ROS message. This information is especially useful for 

food automation involving pick-and-place operation. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4 EXPERIMENTAL RESULTS AND DISCUSSION 

In this experiment, we separate the results into 2 main parts, namely, 2D 

segmentation and 3D point cloud extraction. For 2D segmentation part, we evaluate 

and compare between the trained Cascade Mask R-CNN and HTC models. We then 

test the trained HTC model under different scenario conditions to assess the accuracy 

and robustness of the model. For 3D point cloud extraction part, we show the point 

cloud extraction result in 3D visualization and compare the two methods used in the 

extraction process. 

 4.1 2D Segmentation 

4.1.1 Model Evaluation 

After training the models with 2 different instance segmentation architectures 

which are Cascade Mask R-CNN and HTC on both local pc and Google Colab cloud 

service, we plot the training loss curves comparing these 2 models as shown in Fig. 25. 

 

As you can see in Fig.25a and Fig.25b, the loss curves for HTC using local 

training and Google Colab, are slightly lower than that of Cascade Mask R-CNN after 

200 epochs. Notice that the loss curve that was run on Google Colab only contains 300 

epochs as compared to 1000 epochs when running on a local computer.  

Next, we test the models using the test script provided by the toolbox. These 

models are evaluated using COCO average precision metric (mAP) that evaluate over 

IoU (Intersection over Union) of 0.5 to 0.95 with a step size of 0.05 and it is expressed 

(a) Local training    (b) Colab training 

 Fig. 25 Training loss comparison 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 31 

as a percentage value. The bounding box APs and the mask APs of each model are 

summarized in Table 6. 

Model Local Training (1000 epochs) Colab Training (300 epochs) 

Box mAP (%) Mask mAP (%) Box mAP (%) Mask mAP (%) 

Cascade Mask R-CNN 66.9 68.7 67.8 68.5 

HTC without semantic 67.4 73.8 69.6 73.0 

 

The results show that the HTC models always have higher mean average 

precisions than the Cascade Mask R-CNN models in both bounding box and mask 

branches, and the results reveal the same characteristics for both local training and 

Colab training. Even though we train the models with a smaller number of epochs on 

Colab, the bounding box mAPs for both architectures are higher than those of local 

training. However, the mask mAPs for both architectures on local training are still 

higher. In this case, we might not have to train with such a large number of epochs 

because the performance of the models does not improve that much further. This will 

allow additional saving of computation power and time.  The relationship between 

model evaluation and epochs for Colab training is shown in Fig.26. 

 

 

Fig.26a and Fig.26b show that mAP for both box and mask branches are 

saturated after approximately 50 epochs of training for both architectures. The box 

mAPs of these two architectures are approximately the same, but the box mAP of 

Cascade Mask R-CNN tends to slightly decrease as the number of epochs increases. 

Table  6: Model Evaluation 

(a) BBox mAP     (b) Mask mAP 

 Fig. 26 Model evaluation for each epoch for Colab training 
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The results of mask mAP show that the HTC has better mask mAP than the Cascade 

Mask R-CNN. These results suggest that the number of training epochs for these two 

architectures on this dataset do not have to be as many as 300 or 1000 since the 

precisions of the models do not improve after 50 epochs. In this case, we could train 

the models for 100 epochs or less instead. 

 

4.1.2 Segmentation Results of the test dataset 

Examples of segmentation results are shown in the following figures. These 

results were obtained by testing images in the test set of the dataset using the test script. 

Both models are trained locally. The results show that the Cascade Mask R-CNN model 

has more overlapping bounding boxes and more false positive detections than the HTC 

model as shown in Fig. 27 where the yellow arrows show the occurrences of false 

positives. This is because the precision of the HTC is higher than the Cascade Mask R-

CNN as we stated in 4.1.1. However, these two models show similar results in some 

segmentation images (Fig. 28). 
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HTC Cascade Mask R-CNN 

Fig. 27 Examples of segmentation results of Cascade Mask R-CNN (Left) 

and HTC (Right) 
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4.1.3 Scenario Impacts on HTC model 

As part of the model evaluation, we also perform experiments to test how 

different scenario conditions might impact the result when using the HTC model. For 

this experiment, we construct a stationary frame for attaching Intel RealSense d435i 

camera to obtain a fixed field of view (FOV) throughout our test. We position the 

camera to be facing down from the top fixture to create a top-down view of the test 

condition. The base of the frame is made out of a thin wood plate that serves as a 

background for the scene. This background color can be changed simply by clamping 

different color papers to it. A brightness-adjustable LED light is also attached to the top 

fixture next to the camera, which allows for brightness adjustment in the experiment. 

The constructed stationary frame, camera attachment, and LED lighting are displayed 

in Fig. 29.  

 The food objects in our test are divided into 2 sets. The first set consists of 3 

different types of sushi: salmon sushi, egg sushi, and boiled shrimp sushi – all of which 

are different in colors and each have its own detection classes. The second set consists 

of multiple pieces of potato chips, which have similar color and are belonged to the 

HTC Cascade Mask R-CNN 

Fig. 28 Examples of segmentation results of Cascade Mask R-CNN (Left) 

and HTC (Right) 
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same detection class. Examples of the experimental setup with two sets of food objects 

placed under test are shown in Fig.30. 

 

 

 

The experiment consists of six scenarios to test the detection of HTC model under 

various conditions, including luminosity, background colors, addition of non-food 

objects, placements and positioning, incomplete food objects, and image resolutions. 

We capture multiple images of each scenario using both sets of food objects with the 

camera attached on the test setup. The image resolution used is 640 pixels by 480 pixels, 

(a) Framework  (b) RGB-D camera and LED light attachment 

Fig. 29 Experimental framework for scenario impacts on the HTC model 

(a) Sushi   (b) Potato chips 

Fig. 30 Experiments of food objects on the test framework with white 

background color 
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which is same resolution that we use to perform video streaming. The captured images 

are tested with the HTC model which is trained on Google Colab for 300 epochs. We 

perform inference on Colab with Nvidia Tesla T4 GPU using the developed scripts to 

automatically test the model, save output images, and log the prediction details of each 

image with score threshold is set to 0.5. Finally, the results are analyzed based on 

Precision and Recall values, which are briefly explained below.  

I. Precision 

A precision value is a ratio of true positives (TP) to the total number of predicted 

positives. It measures the accuracy of the model predictions and expresses how many 

percent of the prediction are correct. The precision is calculated according to Eq. (2). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

II. Recall 

A recall value or a true positive rate (TPR) is a ratio of true positives to the total 

number of ground truth positives. It measures the ability to find all of the ground truth 

positives of the model. It can be calculated as shown in Eq. (3). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

, where TP is the number of true positives or number of predictions that are 

correct, FP is the number of false positives of number of predictions that are incorrect, 

and FN is the number of false negatives of number of ground truth objects that are not 

predicted [33]. These concepts can also be visualized as shown in Fig. 31. 

 

 

Fig. 31 Precision and Recall explanation 
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Having established the definition for the proposed metrics, we will use these 

metrics to evaluate the performance of our model under the different scenario 

conditions. 

 

4.1.3.1 Luminosity 

 We postulate that the brightness of a scene captured by a camera may affect the 

performance of the prediction. Using the brightness-adjustable LED light attached on 

top of the framework, three different levels of brightness are defined: 

1) Minimum level : LED turned off 

2) Medium level  : LED at half brightness 

3) Maximum level : LED at full brightness 

We perform this experiment on white background color and adjust the 

brightness using these 3 levels settings. 10 photos of 10 different scenes for each 

brightness level and each set of objects are performed. For the potato chips set, we 

randomly place 10 identical potato chips with random spacing between each one in a 

scene. Therefore, there are a total of 100 potato chips that are used in this experiment. 

For the sushi set, we use 3 different sushi of different types in a scene (total of 30 sushi). 

Some example images, along with their prediction results, are shown in Fig.32-33, 

Table 7, and Table 8 below. 

 

 

(a) Maximum   (b) Medium   (c) Minimum 

 Fig. 32 Examples of potato chips detection results for 3 levels of brightness setting 
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Maximum Medium Minimum 

chip,0.9999 

chip,0.9999 

chip,0.9999 

chip,0.9999 

chip,0.9999 

chip,0.9999 

chip,0.9999 

chip,0.9999 

chip,0.9999 

chip,0.9999 

 

chip,0.9999 

chip,0.9999 

chip,0.9999 

chip,0.9999 

chip,0.9999 

chip,0.9999 

chip,0.9999 

chip,0.9999 

chip,0.9999 

chip,0.9999 

 

onigiri,0.5004 

chip,0.9995 

chip,0.9990 

chip,0.9982 

chip,0.9981 

chip,0.9917 

chip,0.9890 

chip,0.9873 

chip,0.9795 

chip,0.9094 

chip,0.7818 

 

Maximum Medium Minimum 

ebi,0.9335 

salmon,0.9997 

tamago,0.9996 

salmon,0.9978 

tamago,0.9980 

bentobox,0.5471 

karaage,0.8931 

 

 With this example set of images, the results from the potato chip show that 

object detections using maximum level (Fig.32a) and medium level (Fig.32b) of 

brightness show completely correct result. The minimum level of brightness also 

Table  7: Class predictions with IoU scores for 3 levels of 

brightness of potato chip set 

Table  8: Class predictions with IoU scores for 3 levels of brightness of the sushi set 

(a) Maximum   (b) Medium   (c) Minimum 

 Fig. 33 Examples of sushi detection results for 3 levels of brightness setting 
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detects all of the ground truth positives but there is a false positive in which the model 

predicts an onigiri class (Japanese rice ball).  

 For the sushi set, the detection using maximum brightness level still gives 100% 

correct result. At a medium brightness level, there are three positives, with one of them 

being a false positive (bento box was detected), while the other two classifications are 

correct. The model fails to predict a positive result on ebi (shrimp) sushi, hence there is 

one false negative in the medium brightness level. Lastly, the results with minimum 

brightness level only produces one positive, which also turns out to be a false positive. 

 Based on these observations, the overall precisions and recalls are calculated by 

counting TP, FP, and FN of every images in the experiment. The results are tabulated 

and presented in Table 9 and Fig.34. 

Set Brightness 

level 

Total 

objects 

TP FP Total 

positives 

FN Precision 

(%) 

Recall 

(%) 

Chip Max 100 100 0 100 0 100.00 100.00 

Med 100 0 100 0 100.00 100.00 

Min 100 3 103 0 97.09 100.00 

Sushi Max 30 26 7 33 0 78.79 100.00 

Med 28 7 35 1 80.00 96.55 

Min 14 7 21 15 66.67 48.28 

 

 

Table  9: Evaluation of the HTC model for 3 levels of brightness 
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As indicated by the result shown in Fig.34, luminosity only has a slight impact 

on the detection of the potato chip set. For the sushi set, maximum and medium level 

of brightness also give comparable results in precision and recall. However, when 

minimum level of brightness is used for a sushi set, there is a noticeable drop in both 

precision and, even more so, in the recall value. We can conclude that the lack of proper 

luminosity can affect the performance of this detection model, especially for objects 

similar to sushi, which come in different colors, shapes, and sizes. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 34 Evaluation of the HTC model for 3 levels of brightness setting 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 41 

4.1.3.2 Background Colors 

Most of the images in the training set of our dataset contain white backgrounds. 

In this scenario, 6 different background colors are provided, including white, blue, 

green, orange, red, and yellow to see the effects that these background colors may have. 

Different color paper is attached to the wood plate base of the testing setup to perform 

this part of the experiment. For each background color, 10 photos are captured for the 

potato chip and sushi sets. The number of potato chips and sushi used per scene are the 

same as the previous scenario, hence there are a total of 100 potato chips and a total of 

30 sushi pieces for the potato chips and sushi set, respectively. Examples of image and 

result are shown in Fig.35-38 and their prediction details are visualized in Table 10-11. 

 

Fig. 35 Examples of potato chips detection results for different background colors: 

white (Left), blue (Middle), and green (Right) 
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Fig. 36 Examples of potato chips detection results for different background colors: 

orange (Left), red (Middle), and yellow (Right) 

Fig. 37 Examples of sushi detection results for different background colors: white 

(Left), blue (Middle), and green (Right) 
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White Blue Green Orange Red Yellow 

chip,0.9999 

chip,0.9999 

chip,0.9999 

chip,0.9999 

chip,0.9999 

chip,0.9999 

chip,0.9999 

chip,0.9999 

chip, 0.9999 

chip, 0.9989 

chip,0.9983 

chip,0.9344 

chip,0.8168 

bologna,0.9808 

bologna,0.9798 

bologna,0.9629 

bologna,0.9536 

bologna,0.9535 

bologna,0.9491 

bologna,0.8397 

salmon,0.9160 

salmon,0.7223 

salmon,0.5746 

chip, 0.9999 

chip, 0.9998 

chip, 0.9997 

chip, 0.99818 

chip, 0.9549 

chip, 0.7584 

chip, 0.7348 

bologna,0.8103 

bologna,0.5805 

bologna, 0.7271 

bologna, 0.5663 

bologna,0.5414 

bologna,0.5348 

bologna,0.9782 

bologna,0.9593 

bologna,0.9474 

bologna,0.9396 

bologna,0.9075 

bologna,0.8391 

bologna,0.7936 

salmon, 0.7343 

chip, 0.7963 

bologna, 0.9801 

bologna, 0.9756 

bologna, 0.9739 

bologna, 0.9701 

bologna, 0.8445 

bologna, 0.8187 

bologna, 0.7820 

White Blue Green Orange Red Yellow 

ebi,0.9890 

salmon,0.9998 

tamago,0.9967 

tuna,0.9311 

uni,0.9233 

salmon,0.7488 

uni,0.9309 

bologna,0.9269 

bologna,0.8889 

bologna,0.684 salmon,0.8977 

salmon,0.8714 

tamago,0.6672 

 

 

  

 

Table  10: Class predictions with IoU scores for 6 different background colors of potato 

chip set 

 Table  11: Class prediction with IoU scores for 6 different background colors of 

sushi set 

Fig. 38 Examples of sushi detection results for different background colors: orange 

(Left), red (Middle), and yellow (Right) 
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As you can see from the above figures, the difference in background colors can 

cause a significant change in the detection performance of the models. To quantize 

these results, precision and recall values are tabulated in Table 12 and plotted in Fig. 

39. 

Set Background 

colors 

Total 

objects 

TP FP Total 

positives 

FN Precision 

(%) 

Recall 

(%) 

Chip White 100 100 0 100 0 100.00 100.00 

Blue 37 75 112 0 33.04 100.00 

Green 51 74 125 0 40.80 100.00 

Orange 0 41 41 80 0.00 0.00 

Red 0 64 64 46 0.00 0.00 

Yellow 11 77 88 13 12.50 45.83 

Sushi White 30 28 0 28 2 100.00 93.33 

Blue 3 17 20 14 15.00 17.65 

Green 15 14 29 5 51.72 75.00 

Orange 0 26 26 30 0.00 0.00 

Red 0 1 1 30 0.00 0.00 

Yellow 11 13 24 10 45.83 52.38 

 

 

Table  12: Evaluation of the HTC model for different background colors 

Fig. 39 Evaluation of the HTC model for different background colors 
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The results in Table 12 and Fig.39 show that the background colors severely 

affect the performance of the detection, causing the degradation of both precisions and 

recalls of the model. The results between the potato chip and sushi sets are also quite 

different because of the difference in object colors and textures under detection.  

 The precisions and recalls when using a white background color for detecting 

the 2 sets of food objects are the highest among all other colors. For both sets, the 

precisions and the recalls of orange and red backgrounds are zeros since there are no 

true positives predicted by the model. These two colors have the most serious effects 

on this detection model. One possible explanation might be that these two background 

colors are similar in color to the food object we are trying to detect such as ebi and 

salmon sushi. Moreover, these two colors might affect the auto white-balance 

adjustment of the camera. Another interesting observation is in the precision value of 

potato chip when yellow background is used. Compared to the result from the sushi set, 

the precision value for detecting a potato chip on a yellow background is lower than the 

case of sushi, which further reinforces the assumption that the similarity of color of the 

object being detected and the background color of the scene is may be to blame. 

However, the blue and green background affect the potato chip set in a different way. 

The recalls, or the ability to find positives, are at maximum values, but the precision 

shows a large drop. This means that the model detects all the potato chips as positives, 

but more than half of them is classified into wrong categories.  

 Based on the result, we can clearly see that background color in a scene can 

adversely affect the performance of our model in both the precision and recall values. 

One way to mitigate this problem is to add more images with different background 

colors into the training set, but this will certainly add to the overhead in the data-labeling 

step. Alternatively, for a control environment where the background of the scene 

remains more-or-less the same such as in a production line, we do not expect this to be 

a major problem as long as the background color of the training images are similar to 

the actual scene that the camera will capture. Being able to control some parts of the 

variables (i.e. background color) in the actual working environment can allow some 

requirements in the training data set to be relaxed, resulting in saved time and resources. 
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4.1.3.3 Addition of Non-Food Objects 

 In this scenario, we mix in non-food objects such as plastic plate, spoon, and 

chopsticks into a scene with the food objects to measure the performance of our 

detection model. This experiment is done on a white background color with maximum 

brightness level, and the added objects do not block or overlap with the food objects. 

The numbers of food objects used and the number of images taken are the same as the 

previous scenarios. For the potato chip set, we use total of 100 chips and for the sushi 

set, we use a total of 30 pieces of sushi. 

 The result and image examples from this testing scenario are shown in Fig.40 

and the evaluation is shown in Table 13. 

 

 

 

 

 

 

Table  13: Evaluation of the HTC model for addition of non-food objects scenario 

Set Total 

objects 

TP FP Total 

positives 

FN Precision 

(%) 

Recall 

(%) 

Chip 100 100 0 100 0 100.00 100.00 

Sushi 30 30 0 30 0 100.00 100.00 

Fig. 40 Examples of results with addition of non-food objects scenario: 

potato chip set (Left) and sushi set (Right) 
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The results show that adding non-food objects into the scene does not seem to 

affect the precision and recall values, or the performance of the detection model like 

what has been observed in the case of luminosity and the background colors.  This 

implies that this model can distinguish food objects from non-food objects, including 

the likes of plastic plate, plastic spoon, plastic folk, and chopsticks. 

 

4.1.3.4 Placement 

In this scenario, the food objects are arranged in three different configurations: 

normally-spaced, adjacent, and overlapping. For the overlapping configuration, we 

only consider the potato chip set is in our test case. The background is set to white and 

the luminosity is at the maximum level. We include 5 pieces of potato chips per image, 

and the number of sushi is kept the same as in the previous scenarios. The total number 

of images taken for each placement is 10. The image and detection result examples are 

shown in Fig.41-42 and their prediction details are shown Table 14-15. 

 

Fig. 41 Examples of potato chips detection results for different placements: normally 

spaced (Left), adjacent (Middle), and overlapping (Right) 
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Normally spaced Adjacent Overlapping 

chip,0.9999 

chip,0.9999 

chip,0.9999 

chip,0.9999 

chip,0.9999 

chip,0.9999 

chip,0.9999 

chip,0.9999 

chip,0.9999 

chip,0.9998 

bentobox,0.5316 

chip,0.7647 

Normally spaced Adjacent 

ebi,0.9951 

salmon,0.9999 

tamago,0.9987 

salmon,0.9994 

tamago,0.9966 

 

These examples show that the adjacent placement can have an effect on the 

prediction results. For example, in the adjacent placement of sushi objects, a false 

negative is present because the model fails to detect ebi sushi. In the case of an 

overlapping placement of potato chips, 2 false positives are observed: a bento box and 

a large chip which the model has mistakenly considered the 5 overlapping chips as one 

single chip.  Consequently, there are also 5 false negatives in this case since none of the 

individual chips are correctly detected.  

Table  14: Class predictions with IoU scores for different 

placements of potato chip set 

Table 15: Class predictions with IoU scores for 

different placements of sushi set 

Fig. 42 Examples of sushi detection results for different placements: 

normally spaced (Left), and adjacent (Right) 
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The detection result for this placement test is represented in Table 16 and Fig.43. 

Set Placement Total 

objects 

TP FP Total 

positives 

FN Precision 

(%) 

Recall 

(%) 

Chip Normally spaced 50 50 0 50 0 100.00 100.00 

Adjacent 50 0 50 0 100.00 100.00 

Overlapping 17 17 34 33 50.00 34.00 

Sushi Normally spaced 30 30 0 30 0 100.00 100.00 

Adjacent 25 3 28 2 89.29 92.59 

 

 

 

This evaluation shows that the adjacent configuration affects the precision and 

recall of the sushi set by causing a ~10% decrease, but such degradation is not observed 

for the potato chip set. The overlapping configuration generates a 50% and a 66% 

decrease in the precision and the recall, respectively, for the potato chip set. The result 

suggests that the HTC model is able to successfully distinguish normally-spaced and 

adjacent objects, but it can be prone to error when it comes to detecting overlapping 

objects. 

 

4.1.3.5 Incomplete objects 

 The next scenario that we test is to assess if the model can perform inference on 

an incomplete or partially-blocked objects. Only one piece of object is included per 

Table  16: Evaluation of the HTC model for different placements 

Fig. 43 Evaluation of the HTC model for different placements 
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image, and 30 photos were captured for each category of objects. Additionally, we also 

provide overall evaluation for the whole sushi set by combining the evaluation for each 

class. The background color is set to white and the brightness level is at maximum level. 

The image and detection result examples are shown in Fig.44-45. Then, we evaluate 

the model as shown in Table 17 and Fig.46. 

 

 

 

 

 

  

 

 

Fig. 44 Examples of incomplete potato chip detection: 

normal image (Left), and detection (Right) 

Fig. 45 Examples of incomplete sushi detection: ebi (Left), salmon 

(Middle), and tamago (Right) 
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The results show that the model can detect 100% of the incomplete potato chips 

with the accuracy of 93.75%. This high detection accuracy might be attributed to the 

fact that a potato chip has uniform color over the whole piece, even though its shape 

can be different. 

 In contrast, the result for the sushi data set under incomplete object testing 

scenario is relatively worse when compared to that of a potato chip. The least detected 

type of sushi is tamago (egg sushi) which is detected at only 28.57% recall value with 

66.67% precision, and the most detected class of sushi is salmon, which has the recall 

and precision of 64.29% and 90.0%, respectively. And overall precision and recall of 

the sushi set is calculated to be 78.0% and 48.15%, respectively. Among these three 

types of sushi, salmon is inherently more uniform in color and texture as compared to 

the other two categories, which might explain why it has the highest precision and recall 

value in its class.  

Set Category Total 

objects 

TP FP Total 

positives 

FN Precision 

(%) 

Recall 

(%) 

Chip 30 30 2 32 0 93.75 100.00 

Sushi Ebi 30 13 5 18 12 72.22 52.00 

Adjacent 30 18 2 20 10 90.00 64.29 

Tamago 30 8 4 12 20 66.67 28.57 

Total 90 39 11 50 42 78.00 48.15 

Table  17: Evaluation of the HTC model for incomplete objects scenario 

Fig. 46 Evaluation of the HTC model for incomplete objects 

scenario 
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 Depending on the situation, the ability to detect an incomplete object may or 

may not be beneficial to the system. For example, if the model is used as part of the 

robot perception system for picking and placing food object, it is undesirable to have 

the robot pick up incomplete or damaged object and place it in the final packaging. On 

the other hand, a defect-free object might appear to be incomplete due to being blocked 

by other objects. For this latter case, the failure to detect such object can result in an 

incorrect operation in the assembly line. 

 

4.1.3.6 Image Resolution 

 In last scenario condition that we explore in the study is the effect of image 

resolution, we perform inference of 9 different possible streaming resolutions from the 

RGB-D camera, including, 320x180, 320x240, 424x240, 640x360, 640x480, 848x480, 

960x540, 1280x720, and 1920x1080. Note that the background color is fixed to white 

color and the brightness is set to maximum level. We use 10 potato chips and 3 pieces 

of sushi. A total of 10 photos for each set and each image resolutions are captured and 

analyzed. Example images are shown in Fig.47-48 and the evaluation result is 

summarized in Table 18. 

 

Fig. 47 Examples of the potato chip set detections in different image resolutions: 

320x180 (Left), 848x480 (Middle), and 1920x1080 (Right) 
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Set Placement Total 

objects 

TP FP Total 

positives 

FN Precision 

(%) 

Recall 

(%) 

Chip 320x180 100 100 0 100 0 100.00 100.00 

320x240 100 0 100 0 100.00 100.00 

424x240 100 0 100 0 100.00 100.00 

640x360 100 0 100 0 100.00 100.00 

640x480 100 0 100 0 100.00 100.00 

848x480 100 0 100 0 100.00 100.00 

960x540 100 0 100 0 100.00 100.00 

1280x720 100 0 100 0 100.00 100.00 

1920x1080 100 0 100 0 100.00 100.00 

Sushi 320x180 30 30 0 30 0 100.00 100.00 

320x240 30 0 30 0 100.00 100.00 

424x240 30 0 30 0 100.00 100.00 

640x360 30 0 30 0 100.00 100.00 

640x480 30 0 30 0 100.00 100.00 

848x480 30 0 30 0 100.00 100.00 

960x540 30 0 30 0 100.00 100.00 

1280x720 30 0 30 0 100.00 100.00 

1920x1080 29 0 29 1 100.00 96.67 

 

According to the evaluation in Table 18, we can conclude that different image 

resolutions show little to no effect on the precision and recall values of the HTC model. 

Table  18: Evaluation of the HTC model for different image resolutions 

Fig. 48 Examples of the sushi set detections in different image resolutions: 320x180 

(Left), 848x480 (Middle), and 1920x1080 (Right) 
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Since the images used in the training of the model are of low to medium resolutions, 

this implies that detection of high-resolution test images is still possible without the 

need to include high resolution images in the training data set. 

 Finally, we have been through all six test scenarios and observe how each one 

of them can impact the performance of the HTC model in our experimental setup. We 

have visualized the results and discussed them above. This would be beneficial to 

researchers who want to improve an object detection or instance segmentation to use in 

food automation. Next, we would like to show the performance of our trained models 

on different conditions. 

 

4.1.4 Inference Speed Analysis 

 In this section, we compare inference speed between the 2 models: Cascade 

Mask R-CNN and HTC without semantic segmentation. Two testing conditions are 

used in the comparison, namely, the number of objects presented in the image and 

resolution of the image being analyzed. The models used are the 300-epoch models that 

are trained on Google Colab. The testing is also completely done on Colab with Nvidia 

Tesla T4 GPU. We measure the inference speed by calculating the difference in time 

between before and after we execute the function, inference_detector, which is the 

function provided by the MMDetection toolbox, and is used to perform inference in the 

previous section.  

 

4.1.4.1 Number of objects 

 We perform the evaluation on the potato chip class by preparing 20 different 

images of potato chips where the number of potato chips in an image varies from 1 to 

20 potato chips. The inference is performed 30 times for each image and the average 

time is calculated to be the representative value for that particular image. The 

representative values of the inference speed (in frame per seconds) for Cascade Mask 

R-CNN and HTC model are shown in Fig.49. 
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As is evident in the figure, the inference speeds of both models tend to decrease 

as the number of objects increases, as expected. The HTC model decreases at a slightly 

faster rate than that of Cascade Mask R-CNN model. However, these two models share 

approximately the same values when the number of objects is small (4 objects or less 

in this experiment). 

 

4.1.4.2 Image Resolution 

 In this section, we perform inference for different resolutions of potato chip 

images, where each image contains 10 potato chips. For each image resolution, there 

are 10 different images. We conduct inference on all of the images, 30 times per image. 

We find the average values of 30 iterations and then calculate the final average values 

of among the 10 images. There are 9 different possible streaming resolutions including, 

320x180, 320x240, 424x240, 640x360, 640x480, 848x480, 960x540, 1280x720, and 

1920x1080. Most of them are in 16:9 scale, except for 320x240 and 640x480, which 

are in 4:3 ratio. 

The inference speed on different image resolutions with Cascade Mask R-CNN 

and HTC modes is shown in Fig.50.  

 

 

 

 

Fig. 49 Inference speed comparison between Cascade Mask R-CNN 

model and HTC model on different numbers of potato chips in an image 
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From the charts, the inference speed values tend to go down as the resolution, 

or the number of pixels, increases. Moreover, the inference speeds of Cascade Mask R-

CNN are higher than HTC for all image resolution tested here. Additionally, the result 

is consistent for both 16:9 and 4:3 ratio images. 

Fig. 50 Inference speed comparison between Cascade Mask 

R-CNN model and HTC model on 16:9 image resolutions 

Fig. 51 Inference speed comparison between Cascade Mask R-

CNN model and HTC model on 4:3 image resolutions 
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 We have measured and compared the inference speeds using two test 

conditions. We can conclude that the Cascade Mask R-CNN model generally shows a 

faster inference speed than the HTC model in a given condition. The results also 

indicate that the number of objects in an image affects the speed of the detection in both 

models. Additionally, the higher number of pixels or higher resolution will require more 

time to perform inference, and a 4:3 ratio images seem to have faster inference rate than 

16:9 ratio images even if they possess higher number of pixels. 

 In this section, we have discussed all of the 2D segmentation results, namely, 

model evaluation, segmentation results on test set, different scenario impacts on HTC 

model performance, and inference speed analysis. The result illustrates the ability of 

the model to detect food objects in many different conditions, but it also highlights the 

limitations and issues that occur in other cases. Nevertheless, the result and discussion 

presented here can serve as a guide towards improving 2D instance segmentation 

models in the future. 

 

4.2 3D Point cloud extraction 

 In this part, we will discuss our 3D point cloud extraction results and compare 

the two extraction methods that are used. 

4.2.1 Point Cloud Extraction Results 

Fig. 51 (Left) shows an RGB frame of the depth camera and Fig. 51 (Right) 

shows the corresponding extracted point cloud of that frame with the depth cloud of the 

surroundings. Using rviz for visualization, the point cloud messages of each object are 

published in different ROS topics with different colors and they can be visualized 

simultaneously. In this example image, there are 4 objects being detected: Japanese 

lunch box (blue), Japanese rice ball (green), potato chip (yellow), and Japanese fried 

chicken (red). 
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Fig.52 shows the extracted point cloud of a Japanese rice ball (onigiri) as seen 

from different perspectives. The left column shows the RGB images and the right 

column shows their corresponding point cloud information. The green cluster 

represents the point cloud of the detected object (onigiri) and the white cluster 

represents the depth information of the surroundings (plate and table). The point cloud 

information of each object is streamed in real-time as the camera raw data. 

 

Fig. 52 RGB frame of the depth camera (Left) and extracted point cloud 

visualization (Right) 

Fig. 53 Japanese rice ball point cloud visualization 
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4.2.2 Extraction Method Comparison 

Comparing between the two methods of point cloud extraction, the first extraction 

method using depth topic shows a faster processing time as compared to the second 

extraction method, which uses point cloud topic. The processing time comparison of 

their first thousand frames is shown in Fig 53. Measured using ‘timeit’ Python library, 

the average processing time of the first and the second extraction methods are 0.149 

and 0.211 seconds (6.71 and 4.74 fps), respectively. This translates to about a 1.4x 

faster processing time for the first extraction method. It is worth noting that although 

the second extraction method has worse performance, it is easier to understand and 

implement. Furthermore, the point cloud extracted using the second method comes with 

RGB information of the corresponding RGB frame, which could be beneficial to other 

types of analysis as well. 

Fig. 54 Comparison of processing time between two methods of 

point cloud extraction 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 5 CONCLUSION 

Food industry will continue to evolve as technology becomes more integrated 

as part of the daily operations to improve efficiency in productions, streamline 

distribution, and ensure quality control. Manual and repetitive tasks carried out by 

humans will gradually be replaced by automated machines and industrial robots. To 

this end, we anticipate that machine vision will play a key role in enabling such a 

transition. In this work, we have implemented instance segmentation models using 

Cascade Mask R-CNN and HTC models that are able to detect Japanese food using 2D 

RGB data. The 2D segmentation result is then combined with a point cloud information 

acquired using depth sensing camera to create a 3D segmentation that is essential for 

accomplishing tasks that involve grasping and picking-and-placing object.  

The segmentation result between Cascade Mask R-CNN and HTC models is 

evaluated. HTC model consistently shows higher mean average precision score and less 

false positive when compared to Cascade Mask R-CNN, but its inference speed tends 

to be slower, especially as more objects are added to the scene. In addition, we evaluate 

the performance of the HTC model under different scenario conditions, including 

luminosity, background colors, placement, resolution, addition of non-food objects, and 

having an incomplete object. In our experiment, it is observed that luminosity, 

background colors, and having an incomplete object show the most impact on the 

precision and recall values of an image segmentation.  

Two methods for point cloud extraction using depth sensing camera are 

presented. One is through subscription of a depth topic and the other is through point 

cloud topic. The depth topic method is able to achieve 6.71 fps, which is 1.4x higher 

frame rate as compared to the point cloud topic, but it also requires more post-

processing calculation. Once depth information is combined with previously segmented 

2D result, a centroid of each 3D segmented object can be calculated by taking the 

average value of the x, y, and z coordinates.        

 Our study shows the feasibility of using 2D RGB data for classifying and 

localization of complex, non-uniform food objects. To implement such system in the 

actual production line, careful consideration in regards to the environment must be 
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taken. As discussed previously, the backgrounds and surroundings of where the food 

objects are situated can have a significant impact on the classification. If the 

background and the environment can be well-controlled, it would reduce the burden of 

having to train the classification model on many different backgrounds, for example. A 

detection model tailored for a specific usage environment, instead of a universal one, 

would require less dataset to train without compromising on its real-world usage 

accuracy. In addition, instance segmentation does not necessarily have to rely only on 

2D RGB data. In fact, it should be possible to improve the performance of the 

segmentation model by incorporating depth information into the training process, or 

use it to isolate target objects from the background itself. 
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