CHAPTER II
PRELIMINARIES

In this chapter, we present some background in probability theory and Hilbert
spaces, which will be used in this work.

2.1 Fundamental Results in Probability

In this section, we review some definitions and theorems in probability theory.

Definition 2.1. Let !be any set. A subset 7 of the power set of !is called a
a—algebra if

(i) o e7,
(i) ifE6 7, then ECe 7,
(i) ifEl, +1..67, then Ei€7.

Definition 2.2. Let !be a nonempty set and 7 be a a—algebra. A probability
measure p on (!, 7) is a function p : 7 —»[0,1] satisfying

(i p(0)=0
(ii) if Al, Az, +evare disjoint members of 7, so that Al Aj = 0 for all pairs i,]

satisfying 1 +* ], then
p( *J=>0),

The triple (1,7, p), comprising a set ! a <—algebra 7 of subsets of !and a
probability measure p on (!, 7), is called a probability space. The set !is the
sample space and elements of 7 are called events.
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Definition 2.3. Let (fl,x, p) be a probability space. A (real-valued) random
variable is a function A ©  —R with the property that for every Borel set B in
R,

X-1(B) = {cjla () eB} eF.

Note that the p ({ IX (e A}) is always denoted by P (X e A).

Theorem 2.4. If X is a random variable and f is a Borel measurable function,
then f (X) is a random variable,

Definition 2.5. Let x be a random variable on (f',x,P) and FX : R — [0,]]
be defined by FX (x) = p (x <X) for X e R. Then FX is called the distribution
function of X .

Definition 2.6. The collection of random variables {xi, 1< i< } is called in-
dependent if for all xi e R,i —1,2.,...,

An infinite sequence {xn, > 1} is called independent if for each positive integer
the collection of random variables [xi1l < 1< }isindependent.

Definition 2.7. Let A be a random variable and § : R =R be a measurable
function. The expectation of the random variable ¢ (X) is defined as

EQ(X) = ] g0x)ee.

Definition 2.8. Let Abe a positive integer and ¢ be a constant. If E (X —C)k
exists, we call it the moment of order k about the point ¢. If we take ¢ —E (A),
we call E (A —E (X))k the central moment of order k

Theorem 2.9. Letx and v be random variables and a,b e R. Then the following
are true.

() IfE(A) and E (y) arefinite, then E (aX + bY) = aE (A) + bE (V).



() IfX <Y, then E{X) < E(Y).
(ii)) \E (X)\<E(\X\).
(iv) 1fX and Y are independent random variables, then E (xy) = E (x) E(v).

Theorem 2.10. Forany random variable x , if E (xm) exists, so does E (x") for
<m.

Definition 2.11. If E (X2) exists, we call E (X —E (X))2the variance of X, and

denoted by Var (X). The quantity \JVar (X) is called the Standard deviation of
X.

Definition 2.12. Let X and Y be random variables. Then we define the covari-
ance of X and Y, denoted as COV(X,y), by

Cov(x,Y)=E[x =Ex) (Y -E (y))

Theorem 2.13. LetX,y andz be random variables. Then
() Var{X) < E(x2).
() Cov(X,y)=E(xy) —=E(X)E(y).
(ii) Cov (X,y )= Cov(y, x)
(iv) Cov (ax + bY,Z) = aCov (X, Z) + bCov y, ) for all a, b GR.
(v) Cov (X, X) = Var(X).
(vi) IfX and Y are independent random variables, then Cov(X,Y) =

Definition 2.14. Let {Xn, > 1} be a sequence of random variables defined on
a probability space ( !, IF,P).

(i) We say that Xn converges in probability to a random variable X if for every
e> 0,
lig P(Xn-X | > ¢ =
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(i) We say that Xn converges almost surely (a.s.) to a random variable X if
p(ﬂli_rg Xn:X) =1
(i) We say that Xn converges in distribution to a random variable X if
lip,P(Xn< %) = P{X < x).

Definition 2.15. ([9]) Let {an, > 1} and {bn, > 1} be any sequences of real
numbers. A sequence of random variables {X1, > 1} is said to converge com-

pletely to a constant 9if »  anP (\Xn- 9 > ebn) < oo for all e > 0

Definition 2.16. ([4]) Let {Xn, > 1} be a sequence of random variables and
an>0,n>0and >0 If

oo
ZanE [b,’ll | Xl = e]i < oo for all € > 0.

n=1

The above result is called the complete moment convergence, where Xg¢ = (X)q
and X+ = max{x,0}.

Lemma 2.17. (Borel-Cantelli Lemma) Let (!, F, p) be a probability space and
{An, >1} be a sequence of events in T.

(i) ]fz P (A,) < oo, then

n=1

(i) E P (An)—oo and {An, > 1} is independent, then
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Theorem 2.18. Let {Xn, > 1} be a sequence of random variables such that
{X, > 1} converge completely to 6. Then {Xn, > 1} converges almost surely
09

Proof. Fore> 0, let An= {\Xn—91> ¢} . Then

Y /P(An)=Y [P(\Xn-6\>e)<00.

By Borel-Cantelli Lemma, P (/P'll( AnJ =0and so {Xn, >1} converges
C=l wn=k |/
almost surely to 6. n I

Theorem 2.19. (Markov’ Inequality). Let X be a random variable. Then, for
any a > 0 and non-negative increasing function f such that f(a) » o,

Theorem 2.20. (Holder’ Inequality). Let X and Y be random variables such
that £ (\X\Q < o and E (Jy|9) < for any pairp, q such that 0 < p,q <. and
—+ =1 Then

E(IXYV)<(EW\py>(EYIH)<,

2.2 Fundamental Results in Hilbert Spaces

In this section, we review some knowledge in Hilbert spaces.

Definition 2.21. A metric (or distance) ona nonempty set m isamapd: M XM —R

satisfying
(i) d(xy)>0forallxys6 Ml
(i) d(xy)=d(y,X) forall Xy £ M,
(i) d(x,y) = 0ifand only if X=y for all x, y € M,
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(iv) d(xy) <d(xz)+d(zy) foral x,y,z 6 M.
The pair (M, d) is called a metric space.

Definition 2.22. A metric space (M,d) is said to be complete if every Cauchy
sequence in M converges.

Definition 2.23. Let (M.d) be a metric space. A subset D ¢ M is called dense
if for all XG M, {¢GM 1d(xy)<e} D0 foralle>0

Definition 2.24. A metric space (M, d) is called separable if it contains a countahle
dense subset.

Definition 2.25. Let M be a vector space over R. A function IIl : M —[0,00)
is said to be a norm on M if

(i) £ =0ifand onlyifXx=0,
(ii) Jlcx| = || 1L+l for any X 6 M and ¢ GR,
(ili) Na + yh< UTH+ |ly|| for any Xy G M.
A vector space equipped with a norm is called a normed linear space.

Definition 2.26. Let M be a vector space over M. An inner product on M is a
map (+1-): M X M —R satisfying

(i) (x,x) > 0forany X GM,
i

)
(i) (xy) = (y,x) for each . /6 M,

(ili) (ax,y) = a(x,y) for each Xy GM and a GR,
(iv) (x+Yy,2) = (X12) + (y,2) for each X,y,Z G M,
(v) if (x,X) = 0, then X=0.

A real vector space equipped with an inner product is called a (real) inner product
Space.
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Definition 2.27. A Hilbert space is a complete inner product space.

Definition 2.28. Let S be a subset of a vector space M. Then the smallest
subspace containing s called the subspace of M generated by or the Subspace
of M spanned by , denoted by ( ). 1f () = M, we say that M is spanned hy
or spans M.

Definition 2.29. Let M be a vector space over R and  a subset of M. We say
that s linearly dependent if there exist distinct elements 1, \2,... ,vn G and
scalars K\, ke, ... 1kn GR, not all zero, such that K'Ui + k&, + eee+ knvn= 0.

We say that is linearly independent if ~is not linearly dependent. In
other words, is linearly independent if and only if for any distinct elements
V2. dnGoand any K\K2, ... kn GR, if KIVi + kd2+ oot knvn= o, then
ki=oforalli=1.2,.1.

Definition 2.30. A subset of a vector space M is called a basis for M if
(i)  spans M, and
(i) s linearly independent.

Definition 2.31. Let M be an inner product space. We say that ,VGM are
orthogonal if ( ,\) = 0.

Definition 2.32. A nonempty collection 0 = {eQla Gp}ofelements in-an inner
product space is said to be an orthogonal Set if (ea,ep) = 0 foralla (in A,
If, in addition, eQ has norm one for all d GA then we say that the set O is an
orthonormal set.

Theorem 2.33. A Hilbert space is separable if and only if it has a countable
orthonormal hasis.

Theorem 2.34. Let B = {ej}°I1be an orthonormal set in a real Hilbert space H.
Then the following statements are equivalent:

(i) B is an orthonormal hasis for H,
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() x= (Xgcjpej foreachx GH,
(wi) (xy) = "2{x.e]) -{y.ej) for each x,y £ 1/
i=i

I4I2= X |(x,ej)|2 for every x e H.
3=1

2.3 Probability in Hilbert Spaces

In this section, let ( ,p, P) be a probability space, let // be a real Hilbert
space with the norm IFll generated by inner product (+1-) and let {ej,j > 1} be
an orthonormal basis in H. Let B be the a—algebra generated by the class of all
open subsets of H.

Définition 2.35. ([16]) A mapping X : —> H is called an H—valued random
vector if X is B—measurable, that is, for every E € B

X-1{E) = { |X(w) e E}eE.
Proposition 2.36. ([16]) Let H ke a separable Hilbert space and let X ke an

Il —valued random, vector. Then il is a (real-valued) random, vector.

Definition 2.37. ([19]) Let X be an //—valued random vector. We say that X
has meanm e H if E((X, h)) = (m, h) for all he H.

Remark 2.38. Let X be an //—valued random vector. Then X has mean zero if
and only if E (vYb/) = 0 where yb) denote the inner product (X ,ej).

Definition 2.39. Let {Xn, > 1} be a sequence of //—valued random vectors.

(i) The sequence |x,, > 1} issaid to converges in probability to an //—valued
random vector X if, for every €> 0,

Jim p (IXn=X|| > ¢ =0.
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(ii) The sequence {x,, > 1} is said to converges almost surely (a..) to an
[l—valued random vector X if

P (i) 1.

2.4 Dependence structure

In this section, we discuss the relationship of some dependence structures of
random variables.

The independence assumption used in many results on probability limit the-
orems is too restricted in some applications. Therefore, some researchers have
introduced new concepts relexing the independence structure. For example, Alam
and Sexena [1] introduced the definition of negatively associated random variables
as the following.

Definition 2.40. ([1]) A finite sequence of random variables {Xi, 1 < i < }
is said to be negatively associated (NA). if for every disjoint subsets A and B of
{1,2,.. ., }, we have

Cov(f(Xi,i GA),g(Xj,j GB)) < o,

whenever [ on and g on are coordinatewise nondecreasing functions and
covariance exists. An infinite sequence of random variables is NA if every finite
subfamily is NA.

The following is an example of a sequence of NA random variahles.

Example 2.41. Let {A, 1< i< } beasequence of random variables taking
values in {0, 1} such that " Xi = 1 Then a sequence of random variables

o, 1< 1< Yis NA, More details of the proof can be seen in [5].

In 1981, Ebrahimiand Ghosh [7] introduced other types of negative dependence.
The definition is given as follows.
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Definition 2.42. ([7]) A finite sequence of random variables {ATi, 1 < i <} issaid
to be negatively upper orthant dependent (NUOD) if for all .. GR,i=12,...1 ,

P (ﬂ{\ < iu}) < H P(X; < ;)
i=1 i=1

It is called negatively lower orthant dependent (NLOD) if for all «. GR,
I=1,21..., ,

P <ﬂ (X > .,,}) < H P(X;> ).
i=1 1=1

If it is both NUOD and NLOD, it is called negatively orthant dependent (NOD).
A sequence of random variables ¢x~, > 1} is said to be NUOD, NLOD or NOD
if for each positive integer , the sequence of random variables ¢xi,1< i< } s
NUOD, NLOD or NOD, respectively.

Joag-Dev and Proschan [12) also pointed out that NA random variables must
be NOD but NOD random variables are not necessarily NA.

In 2009, Liu [17] extended the concept of NOD to a more general dependence
structure, which is called extended negatively dependence. The definition is given
as follows.

Definition 2.43. ([17]) A finite sequence of random variables ¢xi, 1< i< }is
called lower extended negatively dependent (LEND) if there is some M > 0 such
that, forall i e Rii=12,..., |

P (ﬂ (X< I,}) <M H P(X: <),
1=1

It is called upper extended negatively dependent (UEND) if there is some M > 0
such that, for all i 6 R,i=12,..., ,

P (ﬂ [Xes .z:,}> <M H P(X:> i),

=1 =1

If it is both LEND and UEND, it is called extended negatively dependent (END).
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An infinite sequence of random variables ¢xn, > 1} iscall ceno, eno OF
e~ o If for each positive integer , the sequence random variables ¢xi, 1 <1<}
is LEND, UEND or END, respectively.

When M =1, a sequence of END random variables is induced to NOD.
In 2013, Wang et al. [20] introduced a more general dependence structure called
widely orthant dependence. The definition is given as follows.

Definition 2.44. ([20]) For a sequence of random variables ¢(x.1, > 1}:
(') if there exists a sequence of real numbers { (), > 1} such that for each
>land forall € Rand 1<i< |

P (m {Xy> .‘1‘1-}) < gu(n) II P(X; > ;) ,
$=1

1=l

then we say that the sequence {Xn, > 1} is widely upper orthant dependent
( OD) with dominating coefficients gu( ), > L
() if there exists a sequence of real numbers {gi( ), > 1} such that for each
> Land for all s GKand 1< i<

P (h {X < .1:,}) < gi(n) 1:[ P < ;) ,
1=1 i=1

then we say that the sequence {Xn, > 1} is widely lower orthant dependent
(WLOD) with dominating coefficients (( ), > L

(i) if{Xn, > 1} is both WUOD and WLOD, then we say that the sequence
{Xn, > 1} is widely orthant dependent (WOD) with dominating coefficients gu( )
and gi(n), > 1.

Wheng ()= (() =M for some M > 0, a sequence of WOD random
variables induced to END random variables.

From all above, we can see that WOD is more general than END, NOD, NA
and independence.
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The following properties of WOD random variables will be used in this work.
Denote g( ) = max {gu( ), gi( )} and logx = In(max {X, e}).

Lemma 2.45. ([¢]) Letp > 1« and {Yn, > 1} be a sequence of WOD random
variables with E (Yn) = 0 and E\Yn\p < o for each > 1 Then there exist
positive constants C\(p) and Ci{p) depending only on p such that

| P

E ma zy) < [clip) + Co{p)gf)logp ] EVY1p

1</c<

for1 <p<2, and

k

p " E{
E - max Z%) < C'i(p) logp "2 e \Y\p+ Cz(p)g( ) logp (;m‘-’)

forp > 2.
Proposition 2.46. ([21]) Let {Yn, > 1} be asequence of WOD random variables.

Iffn(-) are all nondecreasing (or all nonincreasing) forn > I, then {fn(Yn), >1}
is still WOD.
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