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ABSTRACT

Atom transfer radical addition (ATRA) and cyclization (ATRC) has been recognized as
one of the most worthwhile reactions for carbon-carbon bond formation in organic
chemistry. In order to develop an active catalyst for this reaction under visible light, ligands
analogous to tris(pyridin-2-ylmethylamine (TPMA) were designed, synthesized and
characterized (compound 1-4). Their copper complexes were studied in the photocatalyzed
ATRA between styrene and carbon tetrachloride or chloroform under irradiation of white
light (CFL 32 W) in the presence of azobisisobutyronitrile (AIBN) as a reducing agent. For
carbon tetrachloride addition, high yields of styrene adduct was observed with over 80%
yield at 8 h when TPMA, 1, 2 and 4 were used as the ligands. For a less active alkyl halide,
chloroform, only ligand 1 gave over 80% yield of the styrene adduct after 24 h.
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The designed ligand for ATRA study in this project

KEYWORDS: Photocatalyst, 8-aminoquinoline, Atom transfer radical addition
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CHAPTER |

INTRODUCTION

1.1 Background and Motivation
1.1.1 Atom transfers radical addition (ATRA) reaction

The center of current challenge for organic synthesis is the improvement of ‘Green’
reaction especially the reaction that is achievable by ereen energy source, employment of
catalytic process and solvents under mild conditions. Atom-transfer radical addition (ATRA)
and cyclization (ATRC) has been recognized as one of the most worthwhile reactions for
carbon-carbon bond formation in organic chemistry according to its advantages such as
benign conditions, simple set up and minimal byproducts.[1, 2] This type of reactions
provides variety of halogenated compounds which can be used for further synthesis of
advanced materials, natural products and pharmaceuticals.[3, 4] The development of photo-
catalysts used in ATRA and ATRC have been focused on several types of transition metal

complexes such as iridium, ruthenium, nickel, iron and copper.[5-7]

/\R Rz
2
R T R R1\/\x

X = X
ATRC >

Scheme 1.1 Different types of atom transfer process

Copper complexes become one of the most accessible choices for ATRA due to its
lower cost and toxicity. The major study is based on nitrogen-based ligands such as
phenanthroline[8], pyridine[9, 10], trispicolylamine[11, 12], and pyrazolylborate[13, 14]. Ones
of the most active ligands for copper mediated photoreaction are based on phenanthroline
due to its ability to effectively transfer an electron to metal center upon the
photoexcitation.[8] In this study, quinoline, a simpler heterocyclic ring, will be explored as a
photon absorber for photo-catalyzed ATRA reaction. It will be incorporated into a nitrogen-
based ligand such as tris-(2-pyridylmethyl)amine, TPMA. Cu-TPMA complex has been used in
conjunction with radical initiator such as AIBN as a reducing agent for thermally catalyzed

ATRA reactions.[4, 12] Although their catalytic activity under photo-irradiation has been



2
observed, the role of light is to photo-activate the reducing agent. The aim of this
investigation is to use quinoline to improve the photo-catalytic activity of this type ligand
which may potentially avoid the use of radical initiator. A series of 8-aminoquinoline ligands
will be synthesized and their copper complexes will be evaluated for photo-catalytic activity

in ATRA reactions.

1.1.2  Mechanism of atom transfers radical addition reaction

The commonly accepted mechanism for ATRA had been proposed (Scheme 1.2). The
initial step is metal-induced homolytic cleavage of the carbon-halogen bond. This step
generates a metal-halide and alkyl radical. The generated alkyl radical then adds to a double
bond to afford another alkyl radical intermediate which rapidly abstracts halogen atom from
the metal-halide to regenerate the active metal species for the next reaction cycle. [15] The
desired addition product is continuously formed. However, the combination or
polymerization of the alkyl radicals can lead to competitive products and disturb the

catalytic cycles.

R.
R-X R — |R-R
ka?
Kay
M+ Mn+'1x Kadd /\’R*
ka2
K,
x/ /| X R

R’ p
. | /_S_/R’
R R R | R
Pt i R
monoadduct % % =)
. telomer
R |k

R{’ﬁ%\.’ﬂ

R’ R Rl
polymer R>

Scheme 1.2 Proposed mechanism for copper catalyzed ATRA

In order to achieve selective ATRA reaction, Matyjaszewski has suggested 3 factors for
suspicious concern in this reaction. First, the overall radical concentration in reaction must
be low (ky; and kg, >> k,; and k,,) to avoid the radical-radical combination. Second, the
product activation must be slower than starting material activation (k,; >> k,,) to prevent
further activation of mono-adduct. Third, the oxidation must be faster than propagation

(k> >> k) to avoid a polymerization.[2] These criteria implied that the active species of the
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metal catalyst must be present at low concentration at all time but continuously generated

in the reaction.

1.2 Literature review

Since the discovery of anti-Markovnikov in addition reaction of hydrogen bromide to
unsymmetrical alkenes by peroxide initiators through the radical process in early 1940s, the
addition of alkyl halides to olefins in the presence of radical initiators or light were
investicated and later well-known as Kharasch reaction. Although the reaction efficiency
proceeded under the presence of peroxide or light, the reaction need a highly active and
excess of alkyl halide to provide an optimum yield.[16, 17] In 1956, Kochi suggested the
termination process of intermediated radical in the presence of metal halides (CuCl, or
FeCl,) through the inner sphere electron transfer mechanism which indicated the significant
role of metal salts for addition reaction.[18] This study consistent with the discovery of iron
leaching to addition reaction by Minisci’s group which can increase the chain transfer
constant. They explained that iron could be oxidized by chlorine radical and gave
iron(ll)chloride as byproduct. A year later Minisci and Vofsi and Asscher first described
transition metal catalyzed atom transfer radical addition or TMC-ATRA[19, 20] which is
currently studied with various metals such as ruthenium([21], iridium[22], copper[23], iron[24],
niobium[25] and nickel[26] (Figure 1.1) under heat, light or ambient temperature. The most
common catalysts for ATRA reaction are based on ruthenium and copper of which the

conversions between the active and inactive oxidation states are highly reversible.

. \CFs
JOAFS
. Ii\N P
EPh3 % l Bu
F #cr,
[Cp*RUCl(PPhs),] Ir[(dF(CF3)- ppy)(dtbbpy)IPF¢ [Cu(Phen),]

Ar—N_ N @ /N\
k‘\ Fe Ni\Br
1 1

& el L N7
[NbCL(Ql- diimine)] [(CsHs)2Fe] [Ni'{CeHa(CH,NMe,),-2,61Br]

Figure 1.1 Transition metal complexes used as catalysts in ATRA reaction
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Copper is one of the most attractive choices for metal center of ATRA catalysts.
Copper-mediated intramolecular ATRA or ATRC provided carbon-carbon cyclic compounds
which benefit for synthesizing natural products and pharmaceuticals. The pioneer work was
found in the synthesis of V-lactones and VY-lactams by Tsuji’'s and Clack’s group
respectively.[27, 28] They suggested that copper(l) chloride efficiently produced cyclic
compounds in single pot (Scheme 1.3). Nevertheless, the limitations of these catalyst are the
requirement for a large amount of the copper salt. In addition, the requirement of high
temperature is unsuitable for intermolecular addition of readily polymerizable alkenes such
as methyl methacrylate (MMA), methyl acrylate (MA), styrene, vinyl acetate (VA) and

acrylonitrile (AN) due to the competitive polymerization.

Cl
Cl | Cl
Cl 30 mol% CuCl (]
C'i f MeCN, 140 °C
P L3
070" TMe O0=™No" ""Me

60% Yield, de 78%
Scheme 1.3 Copper catalyzed intramolecular ATRA or ATRC reaction

Copper complexes with bipyridine (bpy) is one of primary active catalysts used in
ATRA and ATRC reactions. This catalyst showed high activity for catalyzing the addition of
chloromethylketones to olefins. In 2006, Yang and co-worker investigated the ATRC reaction
of unsaturated O-chloro B-keto esters to obtained a various cyclic compounds in moderate
to high yield.[9] Furthermore, a recent study by Hu and co-worker suggested the addition of
o, 0L, 0-trichlromethyl ketones to styrene derivatives under low temperature and benign
condition in high yield (Scheme 1.4). However, in both studies at least 1 equivalent of copper

complex was needed.[10]

o cl ¢l Cl
= 1 eg. CuClb R
/\@ . RJ'I\CC| q py -
3 CH,Cl, 0°C Ar, 15h 0
2 eq. 0.5eq 71% yield

Scheme 1.4 ATRA of A-chloro ,B—keto esters to alkenes by using of CuCl and bipyridine as a
catalyst

Currently, phenanthroline derivatives are ones of the most active ligands for photo-
mediated ATRA reactions due to its ability to harvest energy from UV-visible light and
stabilize the generated copper (I) complexes in excited state. These allowed the activation of

less active alkylhalides and expansion the scopes of the alkene substrates. The well-known
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ligands in this family are bis-phenathroline derivatives. The mixed ligand copper(l) complexes
of phenanthroline and wide-bite-angle bidentate phosphine ligand studied by Oliver’s group
improved both the photophysical properties of the complexes and catalytic activity between

the alkyl halides and alkenes (scheme 1.5).[8]

O O Catalyst (0.5 mol%), LiBr
LEDqss Boc CO,Et
Boc~ & + EO oft T > N ?
H Br DMF:H,0 (1:4), 7.5 h, rt H B Coukt
catalyst =
A3 = R ,IN ;

Scheme 1.5 Photo-mediated ATRA reaction studied by Oliver group

Another appealing approach for modern ATRA reaction is the use of activator for
regenerating active catalyst. This process was termed as initiators for continuous activator
regeneration, ICAR process. In 2007 Tomislav’s group reported ICAR-ATRA reaction of CCly
and CHCl; to alkenes by using in-situ cucl and Cu”CLZ complexes with tris(2-pyridylmethyl)
amine, TPMA as a catalyst in the presence of AIBN as an activator under heating at 60 °C
(scheme 1.6). The process produced the addition product in moderated yield by using as low

as 0.01 equivalent.

Catalyst

Cl
0.05 mol AIBN
M + CCly - \/\)\/CCIB
MeOH
4 eq. 60 °C, 24h

@ Ci2

[Cu(TPMA)CU [Cu'(TPMA)CUCL
Scheme 1.6 ICAR-ATRA reaction in the presence of AIBN as a reducing agent
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Based on the development of new 8-quinoline compounds in our group, we found
that the compounds strongly coordinated with copper and their fluorescence signal were
quenched. With higher absorptivity at longer wavelength and electron transfer ability of
quinoline ring, we designed four nitrogen based ligands for ATRA study. In compound 1, one
of the pyridinylmethyl groups in TPMA was replaced by a quinoline ring. Compound 2 has
two pyridine rings in compound 1 replaced by two 2-quinolylmethyl group. This compound
is known as effective anticancer drugs but never be used in photo-catalyst area. [29]
Compound 3 has two pyridine rings substituted with electron donating methoxy and methyl
pycolyl groups. This based on previous studied that trisimethoxy-methyl pycolylamine),
TPMA* is more active catalyst for ATRP.[30, 31] Finally, compound 4 was designed by
replaced all of the pyridinylmethyl groups in TPMA with three quinoline rings.

\ \

/ / /

1 2 3 4
Figure 1.2 The designed ligand for ATRA study in this project

1.3 Objectives

1. To synthesize and characterize a series of ligands and copper complexes
containing 8-aminogionoline derivatives.

2. To study the photo physical property of ligands and complexes.

3. To investigate the photo-catalysis of synthesized complexes for atom transfer

radical addition.



CHAPTER Il

EXPERIMENTS

2.1 Instruments
1. Balance (AB204-S, Mettler Toledo)
Rotary Evaporator (BUCHI Rotavapor R-114)
Nuclear Magnetic Resonance Spectrometer (Varian Mercury 400MHz)

Mass Spectrometer (micrOTOF-Q i)

AR R A

UV-Visible Spectrophotometer (Agilent Technologies 8453)

2.2 Chemicals

Chemical name Abbreviation Supplier Grade / purity
8-Aminoquinoline TCl 98%
2-(chloromethyl)pyridine TCl 97%
Potassium iodide Kl Merck 99.5%
Potassium carbonate Ko,COs CARLOERBA 99%
Acetonitrile ACN RCl Labscan AR.
Dichloromethane DCM RCl Labscan CG.
Ethyl acetate EtOAC RCl Labscan CG.
Dimethyl sulfoxide DMSO RCl Labscan AR.
Dimethyl sulfoxide-dg DMSO-dg CIL 99.9%
2-(chloromethyl)-4-methoxy-3,5- TCl 98%
dimethylpyridine
Methanol MeOH RCl Labscan AR.
Methanol-d, MeOH-d, CIL 99.8%
Hydrochloric acid HCL Merck AR.
Sodium nitrite NaNO, Merck 99%
Sodium hydroxide NaOH Merck 99%
Hexane RCl CG.
Copper(i) iodide Cul Merck 98%
L-proline Sigma-Aldrich 99%
Tris(pyridin-2-ylmethylamine TPMA Sigma-Aldrich 98%
Azobisisobutyronitrile AIBN Chemieliva 99%
Styrene Fluka AR.




Chemical name Abbreviation Supplier Grade / purity
Chloroform CHCl4 RClI Labscan 99.5%
Carbon tetrachloride CCl, Sigma-Aldrich
Alumina Oxide 90 active neutral Merck
Silica gel 60 Merck
2.3 Synthesis procedure
2.3.1  Compound 1: 8-[bis(2-pyridinylmethyl)amino]quinoline

AN
NH, > @
N Kl, Ko,CO4
=g R
ACN Ny A
2 eq. | OF
43% yield

Scheme 2.1 Synthesis of compound 1

A mixture of 8-aminoquinoline (0.500 ¢, 3.468 mmol), 2-(chloromethyl)pyridine

(1.4221 ¢, 8.670 mmol), potassium iodide (0.1726 ¢, 1.040 mmol) and potassium carbonate

(0.5991 ¢, 4.335 mmol) in a pressure tube was dissolved in acetonitrile (5 mL) and water (3

mL). The solution was stirred at 90 °C for 96 h. After solvent evaporation, the dark brown

crude was dissolved in dichloromethane (30 mL) and extracted with water (5 x 30 mL) and

dried with anhydrous sodium sulfate. The solvent was evaporated and eluted through an

alumina column with 10% ethyl acetate/dichloromethane. After solvent evaporation, the

pure product was obtained as a yellow solid. Yield: 0.4963 g, 439%; "H NMR (400 MHz, DMSO)

0 8.84 (dd, J = 4.0, 1.5 Hz, 1H), 8.47 (d, J = 4.5 Hz, 2H), 8.27 (dd, J = 8.2, 1.5 Hz, 1H), 7.67 (m,
2H), 7.52 (d, J = 8.0 Hz, 2H), 7.49 (m, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.30 (m, 1H), 7.20 (m, 2H),

7.06 (d, J = 7.6 Hz, 1H), g 4.89 (s, 4H); "C-NMR (101 MHz, DMSO) O 159.18, 148.68, 147.48,
146.08, 141.92, 136.49, 136.34, 129.42, 126.37, 121.90, 121.87, 121.08, 120.06, 117.06, 58.67;
ESI-MS: calculated for CyHigNgNa: 349.14292, Mass found: 349.15659 [M+Na]'".



2.3.2  Compound 2: N,N-bis(quinolin-2-ylmethyl)quinolin-8-amine

| AN
NH2 N
N N Kl, K,COj
| A + Cl | N —_— N
P . ACN N
N =
| N
2 eq. _
43% yield

Scheme 2.2 Synthesis of compound 2

This compound was synthesized using a procedure similar to the Compound 1 by
starting from 8-aminoquinoline (0.72 g, 5.00 mmol), 2-(chloromethyl)quinoline (2.50 g, 11.70
mmol), potassium iodide (0.66 g, 3.98 mmol) and potassium carbonate (2.00 g, 14.47 mmol).
After purification by alumina column chromatography eluted with dichloromethane and
solvent evaporation,. The desired product was obtained as a yellow solid. Yield: 1.0323 g,
43%; 1H NMR (400 MHz, DMSO) 0 8.89 (d, J =29 Hz, 1H), 8.29 (d, J = 8.3 Hz, 1H), 8.25(d, J =
8.5 Hz, 2H), 7.95 (d, J = 8.4 Hz, 2H), 7.87 (m, 4H), 7.71 (t, J = 7.5 Hz, 2H), 7.54 (m, 3H), 7.41 (d,
J=80Hz, 1H), 7.29 (t, J = 7.8 Hz, 1H), 7.19 (d, J = 7.5 Hz, 1H), 5.10 (s, aH); "C NMR (101 MHz,
DMSO) o) 160.29, 147.72, 147.00, 146.20, 142.05, 136.61, 136.30, 129.51, 129.38, 128.43,
127.73, 126.93, 126.40, 126.03, 121.22, 120.38, 120.35, 117.38, 59.52; ESI-MS: calculated for
CooHosNg: 427.19227, Mass found: 427.19210 [M+H] .

2.3.3  Compound 3: N,N-bis((4-methoxy-3,5-dimethylpyridin-2-yUmethyl)quinolin-8-amine

/O N
Cl |
NH2 Z N
N Kl, K,CO3
AN » N2
(0 00 522 ey
Z = o~ ACN N N =
| N
2 eq. =
49% yield

Scheme 2.3 Synthesis of compound 3

This compound was synthesized using a procedure similar to the Q2P by starting from
8-aminoquinoline (0.72 g, 5.00 mmol), 2-(chloromethyl)-4-methoxy-3,5-dimethylpyridine (2.58
g, 11.62 mmol), potassium iodide (0.66 g, 3.98 mmol) and potassium carbonate (2.00 g, 14.47
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mmol). After purification by silica column chromatography eluting with 10% methanol in
ethyl acetate and solvent evaporation, the desied product was obtained as a yellow solid.
Yield: 1.2707 g, 49%; "H NMR (400 MHz, DMSO) © 8.90 (dd, J = 4.0, 1.3 Hz, 1H), 8.30 (d, J = 8.3
Hz, 1H), 8.10 (s, 1H), 7.58 (s, 1H), 7.56 (s, 1H), 7.50 (dd, J = 8.3, 4.0 Hz, 1H), 7.42 (m, 1H), 7.32
(d, J = 7.4 Hz, 1H), 4.79 (s, 4H), 3.63 (s, 3H), 3.57 (s, 3H), 2.11 (s, 3H), 1.80 (s, 3H), 1.86 (s, 3H),
1.65 (s, 3H); PC NMR (101 MHz, DMSO) O 176.35, 163.12, 157.00, 148.21, 148.13, 146.93,
143.73, 143.02, 139.77, 136.65, 129.13, 126.39, 124.44, 124.21, 124.06, 123.28, 122.86, 121.32,
121.06, 59.50, 54.73, 50.92, 13.60, 12.74, 11.13, 10.10.; ESI-MS: calculated for C,7H33N4Oy:
443.24470, Mass found : 443.24478 [M+H] .

2.3.4  Compound 4: tris(8-quinolinyl)lamine

a. Synthesis of 8-iodoquinoline

NH, '
AN NaNO,, K N
> |
Z HCI Z
69% yield

Scheme 2.4 Synthesis of 8-iodoquinoline

The reaction was setup according to the reported procedure. [32] A mixture of 8-
aminoquinoline (1.00 g, 6.94 mmol) in water (3.0 mL) and ice (3.0 g) was gradually added by
concentrated hydrochloric acid (3.0 ml) during stirring, which formed a red solution. The
solution was chilled in an ice bath and an ice-cool sodium nitrite (0.52 ¢, 7.54 mmol) in
water (3.0 ml) was added to the solution portionwise with stirring. After stirring for 10 minutes
the solution of potassium iodide (1.25 g, 7.54 mmol) in water (2.5 mL) was added to the
mixture portionwise. Bubbles were formed during the addition and the solution turned to
dark brown. After stirring overnight, the solution was heated for 10 minutes. After cooling,
black precipitate was filtered out, the filtrate was neutralized by sodium hydroxide until the
solution turned basic; the light red oil was noticed at the bottom of the beaker. The
dichloromethane (5 x 30 mL) was added to the mixture. After solvent evaporation, the dark
crude was obtained. The product was purified by column chromatography on alumina
eluting with 10% ethyl acetate in hexane, the yellow oil was received Yield: 1.24 g, 69%; "H
NMR (400 MHz, DMSO) 0 8.98 (d, J = 2.2 Hz, 1H), 8.39 (dd, J = 12.8, 7.6 Hz, 2H), 8.04 (d, J =
7.5 Hz, 1H), 7.62 (dd, J = 7.9, 4.1 Hz, 1H), 7.39 (t, J = 7.4 Hz, 1H); ESI-MS: calculated for CoH7IN:
255.96232, Mass found : 255.96765 [M+H] .
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b. Synthesis of compound 4

NH, |
+
Z Z L-proline, DMSO \
2 eq

4

33% yield
Scheme 2.5 Synthesis of Compound 4

The reaction was setup according to reported Ullman-type aryl-amination. [33] A
mixture of 8-aminoquinoline (0.3494 g, 2.42 mmol), 8-iodoquinoline (1.36 g, 5.33 mmol),
potassium carbonate (1.338 ¢, 9.68 mmol), copper iodide (0.0922 ¢, 0.484 mmol) and L-
proline (0.1115 ¢, 0.968 mmol) in pressure tube was dissolved in DMSO (4 mL). After that the
solution was stirred at 150 °C for 96 hours. The dark brown crude was extracted after solvent
evaporation with dichloromethane and water for five times and dried with anhydrous sodium
sulfate. The product was purified by column chromatography on alumina eluting with 50%
hexane in ethyl acetate, After solvent evaporation, the yellow solid was received Yield:
0.3187 ¢, 33%. "H NMR (400 MHz, DMSO) O 837 (d, J = 3.9 Hz, 1H), 8.27 (d, J = 8.2 Hz, 1H),
7.61(d, J = 8.0 Hz, 1H), 7.41 - 7.28 (m, 2H), 7.00 (d, J = 7.5 Hz, 1H); "C NMR (101 MHz, DMSO)
o) 148.15, 147.70, 142.70, 135.91, 129.28, 126.47, 124.24, 122.73, 120.84. ESI-MS: calculated
for Co7HyoNg: 399.16097, Mass found: 399.16802 [M+H] .

2.4 Study of photoredox ATRA catalysis
2.4.1 Ligand evaluation

Stock solutions of copper(ll) chloride (0.1 M), each ligand (TPMA and 1-4, 0.1 M) and
azobisisobutyronitrile (AIBN) were all prepared in methanol-dg. A reaction was setup by using
of styrene and carbontetrachloride as starting materials, AIBN as a reducing agent and the
copper-ligand complex generated in-situ as a catalyst in NMR-tube with total volume of 500
pL. The final concentrations of the reactants are presented in Table 2.1. The small magnetic
bar was added to each tube. The reaction tubes were purged with argon for 30 s, capped

with a rubber stopper and sealed with parafilm. The reaction tubes were placed under white

light (CFL 32 W) at ~ 10 cm distance from the bulk, for 24 h. A cooling fan was used to

maintain the reaction temperature at 40 + 2 °C. After 24 h the magnetic bar was removed
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and the product yield was determined by "4 NMR. The reactions between styrene and

chloroform were also studied using the same procedure.

Table 2.1 Concentrations of reagents used in ligand evaluation

Concentration (M)

Run Styrene CCl, AIBN CuCl, Ligand
or CHCl,
1-5 1.00 1.50 0.05 0.01 0.01

2.4.2  Study of reagent significance in photoredox catalysis

Reagent significance in photoredox catalysis was studied from the reaction of styrene
and chloroform. The presence of AIBN reducing agent, copper complex and light were
evaluated against their respective blank control using the same methodology as the previous

section. The final concentration of reactants are presented in Table 2.2.

Table 2.2 Concentrations of reagents used in study of reagent significance

Concentration (M)

Run Styrene Chloroform AIBN CuCl, Compound 1
1 1.00 1.50 0.05 0.01 0.01
2 1.00 1.50 0.00 0.01 0.01
3 1.00 1.50 0.05 0.00 0.01
al 1.00 1.50 0.05 0.01 0.00
5 (Dark) 1.00 1.50 0.05 0.01 0.01

2.5 Photophysical property study
251 UV-Visible spectroscopy

The stock solution of 1 mM copper(ll) chloride and ligands in methanol were
prepared. The absorption spectra of all ligands and copper complexes were recorded from

methanol solutions (10 uM) in the wavelength range of 230-700 nm at ambient temperature.
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2.5.2 Molar absorptivity coefficients (€)

Molar absorptivity coefficients (€) of all licands and copper complexes in methanol
were estimated from UV-vis absorption spectra in the concentrations range of 10-50 uM. The
intensities at maximum absorption wavelength of each compound were plotted against the
concentration. Each plot is set to be a straight line going through the 0 origin. Molar
absorptivity coefficients (€) can be obtained from the slopes of these plots according to the
following equation:

A = EbC
*b is the cell path length.

2.6 Metals detection

The stock solutions of (Ba(NOs),, Ca(NOs),, Mg(NO3),, KNOs, NaNOs, LINO3, Cu(NOs),,
Ni(NO3),, Co(NOs),, Fe(NO3)s, Cr(NO3)s, Na,HAsO4, CA(NO3),, AgNOs, PH(NO3),, AUNO;)s, Zn(NO3),,
FeCl,, RuCls, CuCl,, ZrClg, Mn(NO3), and PdCl,) at 10 mM were prepared in Milli-Q water. The
stock solution of 10 mM TPMA and compound 1-4 were prepared in dimethylsolfoxide. A
pair of the metal ion solution (10 pL) and the compound 1-4 or TPMA solution (10 pL) was
individually added to 96-well plate and adjust by adding acetonitrile to obtain the final

concentrations of metal ion and ligand of 0.001 M.



Chapter llI

Results and discussion

In this study, a series of 8-aminoquinoline derivatives was synthesized and studied as
a ligand in Cu-mediated atom transfer radical addition (ATRA) reaction in comparison with
TPMA. The structures of the licands are shown along with TPMA in Figure 3.1. These ligands
are designed with the purpose to investigate the effect of replacing the pyridylmethyl group
in TPMA with 8-quinolyl groups which should coordinate with Cu(ll) ion with similar geometry
but different electronic property. Compound 1 has one of the pyridylmethyl groups in TPMA
replaced with 8-quinolyl group. Compound 2 has two pyridine rings in compound 1 replaced
by two 2-quinolylmethyl group. Compound 3 has two pyridine rings substituted with
electron donating methoxy and methyl groups. Compound 4 has all three pyridylmethyl
groups in TPMA replaced by 8-quinolyl groups. Compound 1-4 were characterized by -

NMR, °C NMR and MS.
AN
(;

| 7 | 5 1\
N N N N N
N
N I\ N I\ N I\ N |\ N I\
N N =2 N N\~ N — N N _ = N N =
— o
3 4

TPMA 1 2

Figure 3.1 Structures of ligands

3.1 Synthesis of ligands

Compounds 1-3 were synthesized from alkylation of 8-aminoquinoline with 2-
(chloromethylpyridine,  2-(chloromethyl)quinoline  and  2-(chloromethyl)-d-methoxy-3,5-
dimethylpyridine, respectively with Kl as a catalyst and K,CO5; as a base (Scheme 3.1). The
reactions underwent Sy2 mechanism as shown in Scheme 3.2. The iodide ion acts as a
nucleophile attacking alkylchloride to generate the more reactive alkyliodide intermediate
which is in turn attacked twice by the amino nucleophile of quinoline to form the products

1-3 in 43%, 43% and 49% yields, respectively.
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R

| Ny Kl K,COy NN
= ACN N\
|/

2 eq.

NS
Compound 1: R = | > Compound 2: R = T\D Compound 3: R =

Scheme 3.1 Synthesis of compounds 1-3

R—/y
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: Cl N
|/\‘(\/ NS & s HN” R ~ N R
R | —> N e
= | B N\
P 5
PN N
Compound 1: R = ]T\) Compound 2: R = | 23 Compound 3: R = =
SN

Scheme 3.2 52 mechanism in the synthesis of compounds 1-3

Compound 4 was synthesized in two steps; In the first step, 8-iodoquinoline was
synthesized via the diazotizonium salt generated from 8-aminoquinoline (Scheme 3.3). The
protonation by concentrated HCl increased the solubility of 8-aminoquinoline in water that
allow a conversion of the amino group to diazonium salt upon addition of sodium nitrite.
The diazo group is a strong electron withdrawing group and is a very good leaving group that

facilitate the attack by the iodide anion via an SyAr mechanism.
+.N

NH +NHj HC/N"
N I
AN Hel NS NaNO, N
| B | Ry
Z Z Z
Kl

'f'
NaOH +N\
| - | 5 + N2

Scheme 3.3 Reaction mechanism for 8-iodoquinoline synthesis
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In the second step, compound 4 was synthesized from Ullman-type aryl-amination
reaction between 8-iodoquinoline and 8-aminoquinoline. The mechanism of this reaction is
proposed in Scheme 3.4. Starting from Cu(l) complexation, the oxidative addition reaction of
Cu()-(L-proline) with 8-iodoquinoline generated Cu(lll) intermediate. Next, the ligand
exchange of iodide ion with 8-aminoquinoline, with an elimination of HI, followed by
reductive elimination of diquinolylamine. The reaction cycle is repeated to generate
compound 4 in moderate yield. [34]

| cu(l)

L -proline |

u(l)- (L proline) I\ %
L -proline \ f

A Cu(l)-(L-proline)
E ] |||)£ |
W)
Luproline %/ L b/ CQ
N (|||)
N NH> NLprohne
| > HI
=

\ Compound4
Scheme 3.4 Mechanism of Ullman-type aryl-amination reaction

3.2 Product characterization

For NMR characterization, "H NMR spectra of compound 1-4 are shown in Figure 3.2.
The proton signals of aminoquinoline moiety (a-f) of all compounds showed similar pattern
around 7.0-9.0 ppm with some difference in chemical shifts of the individual protons. The
proton signals of compound 4 are the most upfield probably due to the anisotropy shielding
effect from the ring-current of the quinoline propeller. In compounds 1-3, the signals of
methylene groups (g) were found around 4.5-5.0 ppm while the signals of pyridyl and 2-
quinolyl groups (h-1) were consistently found around 7.0-8.7 ppm. Interestingly, the signals of
methyl and methoxy substituents (x-z and x’-z') as well as the aromatic protons (h and h')
on the two pyridine rings in compound 3 were separated into two sets found around 1.5-3.7

ppm presumably due to the restricted rotation of the highly steric substituted pyridine rings.
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Figure 3.2 "H NMR characterization of compound 1-4

Study of Cu-photocatalyzed ATRA

A well accepted mechanism of Cu-photocatalyzed atom transfer radical addition

(ATRA) reaction is shown in Scheme 3.5. The initial step is metal induced homolytic cleavage

of the carbon-halogen bond. This step generates a metal-halide and alkyl radical. The

generated alkyl radical then adds to a double bond to afford another alkyl radical

intermediate which rapidly abstracts halogen atom from the metal-halide to regenerate the

active metal species for the next reaction cycle. The desired addition product is continuously

formed.
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Ny
\/ N=N ( /rl<4CN
A

NC CN
Cl-Cu'-Ligand
Cl,XC-CXCl,
CN
+
Cu'-Ligand = > CI-Cu'"Ligand + CXCl,
cxcl, CI-CXCl,
CXCl
Cl 2 =
Cl-Cu'-Ligand +

Scheme 3.5 Mechanism of Cu-photocatalyzed atom transfer radical addition (ATRA) reaction

3.3.1 Ligand evaluation

The synthesized compounds were evaluated as a potential ligand, in comparison with
TPMA, for Cu-photocatalyzed ATRA reaction of styrene with CCl; and CHCls. The addition
reactions were conducted under white light with copper(ll) complexes generated in-situ and
in the presence of AIBN as a reducing agent (Scheme 3.6). The reaction progress was studied

by "H NMR spectra acquired at the reaction time of 8 and 24 hr.

CXCl,
= 1.0 %mol CuCl,/Ligand Cl
5.0 %mol AIBN

Y

+ Kibol
CFL 32 W, Ar, 8 or 24 h, 40 °C

X=CILH
Scheme 3.6 Cu-photocatalyzed ATRA reaction of styrene

The yields of the addition products were determined from the 'H NMR signal

integration of the selected proton in the styrene adduct and styrene starting material

according to the equation: %yield = 100 X I/(lo+ls). 1, and I are the integrations of the
selected proton in the styrene adduct and styrene starting material respectively. From the
typical 1H NMR spectrum shown in Figure 3.3, the signals of proton a’, b’, ¢’, d’ and a, b, c
were selected for the product and starting material, respectively. The %yields shown in

Figure 3.4 are the average from three repetitive reactions.
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Figure 3.3 "H NMR spectrum of %yields calculation

For CClg, high yields of styrene adduct was observed with over 80% yield at 8 h when
TPMA, 1, 2 and 4 were used as the ligands. With 3 as the ligand, a low yield of only around
35% was observed. This low yield may be attributed to the steric hindrance of the ligands.
For a less active alkyl halide, CHCls, only licand 1 gave over 80% vyield of the styrene adduct
after 24 hr. TPMA gave moderate yield of 58% while ligand 2-4 gave low yields of less than
30%. These results suggested that the replacement of one pyridylmethlyl group with
quinolyl group can enhance the photocatalytic property of the copper complex for ATRA
reaction. The explanation for this effect will need further investigation including the structure

of copper-ligand complex.
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Figure 3.4 Yield of product from Cu-photocatalyzed ATRA of styrene with CCl; and CHCl;
using 1.0 % mol of CuCl,-ligand (TPMA and 1-4) in the presence of 5.0 % mol AIBN.

3.3.2  Study of reagent significance in Cu-photocatalyzed ATRA

CHCI,
Y 1.0 %mol CuCl,/Compound 1 Cl
5.0 %mol AIBN
+ CHCI; >
CFL 32 W, Ar, 8 or 24 h, 40 °C

Scheme 3.5 Cu-photocatalyzed ATRA reaction used in study of reagent significance

The significance of Cu(ll) ion, ligand, AIBN and light in ATRA reaction of styrene with
chloroform were studied and the results are shown in Table 3.1. Only Run 1, in which Cu(ll)
ion, ligand, AIBN and light are present, gave high yield of product of over 88% implied that
all of these reagents are important for this ATRA reaction. In the absence of AIBN (Run 2), the
reaction gave moderate yield of 54% that confirmed the significance of AIBN. In this reaction,
AIBN presumably photo-decomposes to form 2-cyanoprop-2-yl which reduces the initial Cu(ll)
complex to the active Cu(l) complex. Without AIBN, either the ligand itself or solvent may
serve as the reducing agent. If the ligand acts as the reducing agent, it may be deprived from

the Cu-complex. In the absence of copper or ligand showed no reaction (Run 3-4). This
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indicates the significant role of in situ complex as catalyst. In the absence of light (Run 5), the
reaction gave low yield of 16% that is probably due to an inefficient decomposition of AIBN
to 2-cyanoprop-2-yl at 40 °C used in this study. This also implied the role of light for excite

the copper () complex in this reaction.

Table 3.1 Effect of reagents on ATRA reaction of styrene with CHCl,

Concentration (M)
Run %Yield
AIBN CuCl, Compound 1
1 0.05 0.01 0.01 88
2 0.00 0.01 0.01 54
3 0.05 0.00 0.01 0
4 0.05 0.01 0.00 0
5 (Dark) 0.05 0.01 0.01 16

3.4 Photophysical property study
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Figure 3.5 (a), (b), (), (d) and (e) spectra of ligands and copper complexes of 10 uM TPMA,

compound 1-4 respectively. (m == Ligand, Complex)

The normalized electronic absorption spectra of TPMA, compound 1-4 and their
copper complexes in methanol are shown in Figure 3.5 and their photophysical data are
summarized in table 3.2. TPMA showed a single absorption maximum at 262 nm

corresponding to the pi-pi* transition of the pyridine ring. The absorption of 1-4 showed two
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absorption maxima at the wavelength both shorter and longer than 300 nm. The absorption
maximum at the shorter wavelength cannot be attributed to the pi-pi* transition of pyridine
ring alone as the molar absorptivity of this peak in 1-4 is significantly higher than that of
TPMA which has three pyridine ring. The fact that very high molar absorptivity of this peak
observed for 4, which has only quinolyl group without pyridine ring, also confirms that this
peak is more likely to associate with the pi-pi* transition of the aminoquinoline moiety. The
absorption maximum at the longer wavelength may be attributed to either the pi-pi* or n-pi*
transition of the aminoquinoline moiety. Further investigation such as quantum calculation
may be used to identify the transition associated to this absorption.

The spectra of Culll) complexes of all ligands showed an absorption maximum
around 300 nm which is probably associated with the metal to licand charge transfer (MLCT,
dretat-Pi¥igana transition). As 1 and 4 the higher catalytic activity than TPMA might due to
better the absorption ability of quinoline moieties in its structure. While the molar

absorptivity plays less significant.

Table 3.2 Molar absorptivity coefficients (€) of TPMA and compound 1-4 and complexes

Ligand Copper complex

Wavelength Molar absorptivity Wavelength Molar absorptivity

(nm) (€) (nm) (€)
TPMA 262 8,700 257 8,687
311 1,446
Compound 1 255 21,407 257 12,765
341 3,521 314 4,935
Compound 2 255 s 304 10,193
317 9,022
Compound 3 276 17,720 282 13,929
315 2,459 - -
Compound 4 260 23,421 302 8,424
370 6,656

3.5 Metal ions sensing study

The photographs of metal ions sensing study of TPMA and 1-4 in acetronitrile are

shown in Figure 3.6. Compound 1 showed strong green emission with the addition of cd”
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ion. Compound 2 showed low emission response to all metal ions tested. Compound 3
showed interesting red emission to several metal ions. Compound 4 showed surprisingly
strong green emission with Na' ion under the tested condition. These screening results
suggested that 1, 3 and 4 are interesting for further sensitivity and selectivity study and

solvent optimization for metal ion sensing applications.

TPMA Compound 1 Compound 2 Compound 3 Compound 4

Ligand NI(NO,), AUNO,), I Ligand NI(NO,), AUNO,), Ligand NI(NO,), AUNO,), Ligand NI(NO,), AUNO,); Lerd Ni(NOdy (A((”Or’:

e ~db~J A7 e s Jla/@a

Q i !
~'¢ = =
Ba(NO,), Co(NO,), Zn(NO,), [|Ba(NOy), Co(NO,), Zn(NOY, I Ba(NO,), Co(NO,), 2 Ba(NO,), Co(NO,), Zn(NO,), Co(NDy )z Zo(o ;
- ] ;
! 1 . |
".é’g -
Fegl,

Ca(NO,), Fe(NO,), ecl, 2 Fe(NO,), - Ca(NO3). Fe(NO,), A 2 3 Fe(NO3)y
Mg(NO,), Cr(NO,), 5 2 A Mg(NO), cr(No,),

Na,HAsO, Na,HASO, 3 NaHASO,
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NaNO, Cd(NO,), 5 : PEatNO. N § 3 Cd(NO,),
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~— ~

Figure 3.6 Photographs of metal ions sensing study of TPMA and 1-4 in acetronitrile under

black light illumination.



CHAPTER IV

CONCLUSION

Four nitrogen based ligand derivatives (compound 1-4) of 8-aminoquinoline were
successfully synthesized and characterized. The copper complex with compound 1 obtained
highest yield over 80% in photocatalyzed ATRA between styrene and carbontetrachloride or
chloroform under irradiation of white Llight (CFL 32 W) in the presence of
azobisisobutyronitrile (AIBN) as a reducing agent. The significance of Cu(ll) ion, ligand, AIBN
and light were investigated for this reaction. In addition, further investigation of quantum
calculation and redox potential measurement might be used to explain catalytic activity of
synthesized complexes and design for more active catalyst. Furthermore, compound 1, 3

and 4 are promising for further study and optimization for metal ion sensing applications.
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