

โครงการ

การเรียนการสอนเพื่อเสรมิประสบการณ

ชื่อโครงการ การกรองรวมกันโดยยึดไอเทมและผูใชเปนหลักโดยใชตัวเขารหัส

อัตโนมัติรวมกับโครงขายประสาทเทียมลึก

Both User-based and Item-based Collaborative Filtering

based on Autoencoders with Deep Neural Networks

ชื่อนิสิต นายณัฐพล นภาศัย เลขประจําตัว 593 36237 23

 นายพัชรพล พรหมณี เลขประจําตัว 593 36432 23

ภาควิชา คณิตศาสตรและวิทยาการคอมพิวเตอร

สาขาวิชา วิทยาการคอมพิวเตอร

ปการศึกษา 2562

คณะวิทยาศาสตร จุฬาลงกรณมหาวิทยาลัย

การกรองรวมกันโดยยึดไอเทมและผูใชเปนหลักโดยใชตัวเขารหัส

อัตโนมัติรวมกับโครงขายประสาทเทียมลึก

นายณัฐพล นภาศัย

นายพัชรพล พรหมณ ี

โครงงานน้ีเปนสวนหน่ึงของการศึกษาตามหลักสูตรวิทยาศาสตรบัณฑิต

สาขาวิชาวิทยาการคอมพิวเตอร ภาควิชาคณิตศาสตรและวิทยาการคอมพิวเตอร

คณะวิทยาศาสตร จุฬาลงกรณมหาวิทยาลยั

ปการศึกษา 2562

ลิขสิทธ์ิของจุฬาลงกรณมหาวิทยาลัย

Both User-based and Item-based Collaborative Filtering based

on Autoencoders with Deep Neural Networks

Nattapon Napasai

 Patcharapol Promanee

A Project Submitted in Partial Fulfillment of the Requirements

for the Degree of Bachelor of Science Program in Computer Science

Department of Mathematics and Computer Science

Faculty of Science

 Chulalongkorn University

Academic Year 2019

Copyright of Chulalongkorn University

หัวขอโครงงาน การกรองรวมกันโดยยึดไอเทมและผูใชเปนหลักโดยใชตัว

 เขารหัสอัตโนมัติรวมกับโครงขายประสาทเทียมลึก

โดย นายณัฐพล นภาศัย

 นายพัชรพล พรหมณี

สาขาวิชา วิทยาการคอมพิวเตอร

อาจารยที่ปรึกษาโครงงานหลัก รองศาสตราจารย ดร.ศรันญา มณีโรจน

อาจารยที่ปรึกษาโครงงานรวม ผูชวยศาสตราจารย ดร.มนนัทธ พงษพานิช

ภาควิชาคณิตศาสตรและวิทยาการคอมพิวเตอร คณะวิทยาศาสตร จุฬาลงกรณมหาวิทยาลัย

อนุมัติใหนับโครงงานฉบับน้ีเปนสวนหน่ึง ของการศึกษาตามหลักสูตรปริญญาบัณฑิต ในรายวิชา

2301499 โครงงานวิทยาศาสตร (Senior Project)

 หัวหนาภาควิชาคณิตศาสตร

(ศาสตราจารย ดร.กฤษณะ เนียมมณี) และวิทยาการคอมพิวเตอร

คณะกรรมการสอบโครงงาน

 อาจารยที่ปรึกษาโครงงานหลัก

(รองศาสตราจารย ดร.ศรันญา มณีโรจน)

 อาจารยที่ปรึกษาโครงงานรวม

(ผูชวยศาสตราจารย ดร.มนนัทธ พงษพานิช)

 กรรมการ

(ผูชวยศาสตราจารย ดร. กรุง สินอภิรมยสราญ)

 กรรมการ

(ผูชวยศาสตราจารย ดร.จารุโลจน จงสถิตยวัฒนา)

iv

นายณัฐพล นภาศัย, นายพัชรพล พรหมณ ี: การกรองรวมกันโดยยึดไอเทมและผูใชเปนหลัก

โดยใชตัวเขารหัสอัตโนมัติรวมกับโครงขายประสาทเทียมลึก. (Both User-based and Item-based

Collaborative Filtering based on Autoencoders with Deep Neural Networks) อ.ที่ปรึกษา

โครงงานหลัก : รศ. ดร.ศรันญา มณีโรจน, อ.ที่ปรึกษาโครงงานรวม : ผศ. ดร.มนนัทธ พงษพานิช, 58

หนา.

ระบบแนะนําเปนสวนสําคัญที่ชวยใหผูใชสามารถใชขอมูลไดอยางมีประสิทธิภาพมากขึ้น ซึ่ง

ระบบน้ีพยายามที่จะแนะนําไอเท็มใหกับผูใชโดยใชขอมูลจากการกระทําที่ผานมาของตัวผูใชเอง การ

กรองรวมกันคือหน่ึงในวิธีการของระบบแนะนําโดยใชขอมูลประเภทเรทติงของผูใชหรือจํานวนการ

คลิกในการซื้อสินคาของผูใช ซึ่งจะนําขอมูลเหลาน้ันมาเปรียบเทียบระหวางผูใชหน่ึงคนกับผูใชอ่ืน ๆ

ที่มีลักษณะของขอมูลที่คลายคลึงกัน การกรองรวมกันสามารถแบงออกเปน 2 ประเภทหลัก ๆ คือ

การกรองรวมกันโดยยึดไอเทมเปนหลักและการกรองรวมกันโดยยึดผูใชเปนหลัก โดยการกรองรวมกัน

โดยยึดผูใชเปนหลักจะใชตรรกะที่วาคนที่มีรสนิยมเหมือนกัน จะชอบอะไรคลายกัน ซึ่งการกรอง

รวมกันโดยยึดผูใชเปนหลักจะใชหลักการน้ีในการคํานวณหาเรทติงจากการใชเรทติงของคนอ่ืนในการ

คํานวณรวมดวย สําหรับการกรองรวมกันโดยยึดไอเทมเปนหลักก็ใชหลักการคลายกับที่กลาวมา

เชนกันแตเปลี่ยนจากผูใชเปนไอเท็ม ปจจุบันงานวิจัยตาง ๆ พยายามที่จะประยุกตใชโครงขาย

ประสาทเทียมกับการกรองรวมกันเขาดวยกัน เพราะเมื่อประยุกตเขาดวยกันแลวจะชวยใหสามารถ

ทําลายขีดจํากัดที่วาการกรองรวมกันสามารถเรียนรูไดเฉพาะขอมูลที่มีโครงสรางขอมูลเปนเชิงเสน

เทาน้ันเน่ืองจากโครงขายประสาทเทียมจะชวยใหสามารถเรียนรูขอมูลที่มีโครงสรางขอมูลแบบไมใช

เชิงเสน ตัวเขารหัสอัตโนมัติมีเปาหมายในการสรางขอมูลใหมจากขอมูลเดิมใหมีลักษณะคลายกันมาก

ที่สุดโดยการนําขอมูลนําเขามาลดมิติลงซึ่งขอมูลที่ถูกลดมิติลงจะอยูที่ช้ันกลางและเราจะเรียกช้ันกลาง

น้ีวาช้ันซอนเรนซึ่งช้ันน้ีเปนสวนที่สามารถใชเปนตัวแทนของมูลนําเขาได จากน้ันขยายมิติของขอมูลใน

ช้ันกลางซึ่งทําใหไดขอมูลสงออกที่มีลักษณะคลายกับขอมูลเดิม จากงานวิจัยที่ผานมา เราพบวา ยังไม

มีการพิจารณาความสัมพันธของผูใชเปาหมายกับผูใชคนอ่ืนๆหรือไอเท็มเปาหมายกับไอเท็มคนอ่ืน ๆ

ซึ่งความสัมพันธเหลาน้ีเปนขอดีของเทคนิคการกรองรวมกัน ดังน้ัน เราตองการนําเสนอโมเดลระบบ

แนะนําจากตัวเขารหัสอัตโนมัติเพ่ือเรียนรูตัวแทนที่แสดงลักษณะความคลายระหวางผูใชเปาหมายกับ

ผูใชคนอ่ืน ๆ และไอเท็มเปาหมายกับไอเท็มอ่ืน ๆ สุดทายน้ีเราไดทําการทดลองและพบวาโมเดลที่เรา

เสนอมีประสิทธภาพมากกวาโมเดลอ่ืน ๆ ของงานวิจัยที่ผานๆ มา

ภาควิชา คณิตศาสตรและวิทยาการคอมพิวเตอร ลายมือช่ือนิสิต

 ลายมือช่ือนิสิต

สาขาวิชา วิทยาการคอมพิวเตอร ลายมือช่ือ อ.ที่ปรึกษาโครงงานหลัก

ปการศึกษา 2562 ลายมือช่ือ อ.ที่ปรึกษาโครงงานรวม

v

5933623723, 5933643223 : MAJOR COMPUTER SCIENCE

KEYWORDS : RECOMMENDER SYSTEM, USER-BASED

COLLABORATIVE FILTERING, ITEM-BASED COLLABORATIVE

FILTERING, IMPLICIT FEEDBACK, NEURAL COLLABORATIVE

FILTERING

NATTAPON NAPASAI, PATCHARAPOL PROMANEE : BOTH USER-

BASED AND ITEM-BASED COLLABORATIVE FILTERING BASED

ON AUTOENCODERS WITH DEEP NEURAL NETWORKS.

ADVISOR : ASSOC. PROF. SARANYA MANEEROJ, Ph.D., CO-

ADVISOR : ASST. PROF. MONNAT PONGPANICH, Ph.D., 58 pp.

Recommender systems have a major contribution, that is, it allows users to

interact with content efficiently. A recommender system advises users by filtering items

based on users’ previous actions. Collaborative filtering (CF) is one of the recommender

system algorithms which is built on explicit feedback (e.g., user ratings) and implicit

feedback (e.g., number of clicks and purchases). It compares a target user with others

who have similar preferences. Further, there are two well known types of CF: user-

based CF and item-based CF. User-based CF assumes that people who have similar

tastes tend to react to items similarly. For item-based CF, it tries to find look-alike items

instead of look-alike users. Nowadays, many research attempt to apply the neural

network into CF because there is a limitation in CF that CF can learn only linear

representation, but the neural network can learn both linear and non-linear

representation. Autoencoder reconstructs the input data in the output layer by encoding

the input data into a low dimensional middle layer called the hidden layer to form latent

representation, and then the output from the hidden layer is decoded by the output layer

to reconstruct the data. From previous works, we have noticed that relations between a

target user (item) and other users (other items) were not utilized and this relationship is

a plus point for collaborative filtering technique. Therefore, we have proposed the

autoencoder recommender system model that learns a representation of similarity

between a target user (item) and other users (items). Finally, the experimental results

have shown that the proposed model performs better than state of the art methods.

vii

Department : Mathematics and Computer Science Student’s Signature

Student’s Signature

Field of Study : Computer Advisor’s Signature

Academic Year : 2019 Co-advisor’s Signature

vii

ACKNOWLEDGEMENTS

This "Both user-based and item-based collaborative filtering based on

autoencoders with deep neural networks" project has been completed. We would like to

thank the individuals and groups for giving us advice and the best assistance. Both in

academic and research operations, which are

My project supervisors, Assoc. Prof. Dr. Saranya Maneeroj and Asst. Prof. Dr.

Monnat Pongpanich for providing advice and guidance for the research. As well as

helping to review this report for completeness and encouragement for us always.

Asst. Prof. Dr. Dittaya Wanvarie for collaboration with AWS, which has a great

impact on our project's success.

The project Examination Committee, Asst. Prof. Dr. Jaruloj Chongstitvatana

and Asst. Prof. Dr. Krung Sinapiromsaran for the suggestions that made this project

development even more complete.

Finally, we would like to express my gratitude towards my parents for

supporting, advising and encouraging us throughout the research process.

CONTENTS

Page
ABSTRACT IN THAI .. iv

ABSTRACT IN ENGLISH .. v

ACKNOWLEDGEMENTS .. viiii

CONTENTS ... viii

LIST OF TABLES ... x

LIST OF FIGURES ... xi

CHAPTER I INTRODUCTION .. 1

1.1 Background and rationale ... 1

1.2 Objectives ... 2

1.3 Scope .. 2

1.4 Project activities ... 3

1.5 Benefits ... 4

1.6 Report outlines ... 5

CHAPTER II RELATED WORKS.. 6

2.1 Recommender systems ... 6

2.2 Content based methods ... 7

2.3 Cosine similarity .. 7

2.4 Collaborative filtering methods .. 8

2.5 Deep learning in the recommender system .. 10

2.6 Neural collaborative filtering ... 11

2.7 Autoencoder ... 12

2.8 Recommender system evaluation ... 15

ix

Page

CHAPTER III METHODOLOGY ... 17

3.1 Model ... 17

CHAPTER IV EXPERIMENTAL EVALUATION .. 22

4.1 Dataset .. 22

4.2 Evaluation metrics .. 23

4.3 Experimental results ... 24

CHAPTER V CONCLUSION ... 29

5.1 Conclusion .. 29

5.2 Suggestion .. 29

REFERENCES ... 30

APPENDIX A The Project Proposal of Course 2301399 Project Proposal Academic

Year 2019 ... 34

BIOGRAPHY ... 46

LIST OF TABLES

Page

Table 1.1 The gantt chart that explains the processes of methods in the timeline.........3

Table 4.1 The comparison between DHA-RS and UICF-AE 28

Table A.1 The gantt chart that explains the processes of methods in the timeline 42

LIST OF FIGURES

Page

Figure 2.1 Example of company that use a recommender systems 6

Figure 2.2 Types of recommender systems algorithms .. 7

Figure 2.3 Content-based filter. .. 7

Figure 2.4 Cosine similarity ... 8

Figure 2.5 Measuring the similarity between two users ... 8

Figure 2.6 Explicit feedback form .. 9

Figure 2.7 Implicit feedback form .. 9

Figure 2.8 User-based collaborative filtering ... 10

Figure 2.9 Item-based collaborative filtering ... 10

Figure 2.10 Neural collaborative filtering model ... 11

Figure 2.11 Multi-layer perceptron formula ... 12

Figure 2.12 Autoencoder .. 13

Figure 2.13 The autorec model ... 13

Figure 2.14 Autorec equation ... 14

Figure 2.15 A novel deep hybrid recommender system framework based on

autoencoders ... 15

Figure 2.16 Normalized discounted cumulative gain formula 16

Figure 3.1 Both user-based and item-based collaborative filtering based on

autoencoders with deep neural networks model ... 18

Figure 3.2 The user/item representation learning ... 19

Figure 3.3 The user/item similarity representation learning 20

Figure 3.4 User profile from a concatenation user representation and user similarity

representation ... 20

Figure 3.5 Item profile from a concatenation item representation and item similarity

representation ... 21

Figure 3.6 NCF framework .. 21

Figure 4.1 The movielens dataset 1M .. 22

Figure 4.2 The number of hidden layers effect on HR@10 25

Figure 4.3 The number of hidden layers effect on NDCG@10 26

xiii

Page

Figure 4.4 The number of the output layer dimensions effect on HR@10 27

Figure 4.5 The number of the output layer dimensions effect on NDCG@10 27

Figure A.1 User-based CF .. 35

Figure A.2 Item-based CF .. 35

Figure A.3 Two approaches of autorec: user-based autorec (left) which takes user-item

rating vector as the inputs and item-based autorec (right) which takes item-user rating

vector as the input ... 37

Figure A.4 Both user-based and item-based collaborative filtering based on

autoencoders with deep neural networks .. 39

CHAPTER I
INTRODUCTION

1.1 Background and rationale
With the growing size of information, the recommender system (RS) plays an

important role, that is, allowing users to interact with content efficiently [1]. The

recommender system advises users by filtering items based on users’ previous actions.

It has been employed by many sites (e.g., Netflix, Amazon, and Spotify) to suggest their

products or services for customers to raise their incomes. There are three main types of

recommender systems: content-based filtering (CBF), collaborative filtering (CF), and

hybrid methods. CBF aims to recommend other similar items to users based on item

features (e.g., item descriptions) from users’ previous actions. However, sometimes

item features cannot be gathered, so it is not possible to use CBF.

 CF came to fix this limitation [2]. CF is built on explicit feedback (e.g., user

ratings) and implicit feedback (e.g., number of clicks and purchases). It predicts user’s

ratings on items based on their past activities. Further, there are two well known types

of CF: user-based CF and item-based CF. User-based CF (UBCF) assumes that people

who have similar tastes tend to react to items similarly. This approach calculates the

target user rating by using the user rating who has the highest similarity among users.

Item-based CF (IBCF) tries to find items that look alike instead of look-alike users.

 Nowadays, many research attempt to apply the neural network with CF. He et

al. [9] proposed neural collaborative filtering (NCF) that can learn relations between

users and items for rating prediction. Because there is a limitation in CF that CF can

learn only data with the linear pattern, but the neural network can learn both data with

the linear and non-linear pattern. A neural network can learn input features in both

supervised and unsupervised ways. Besides CF, a neural network has been showing its

capability in many fields, such as computer vision and natural language processing.

Meanwhile, an autoencoder is one of the most popular neural network models

in the recommender system. Sedhain et al. [4] proposed autorec which took advantage

of autoencoders for the CF framework. There are two well known types of

autoencoders: (1) denoising autoencoder (DAE); (2) stacked denoising autoencoder

(SDAE). Wu et al. [5] proposed collaborative denoising autoencoder (CDAE) which

2

took the corrupted input data and this allowed the model to perform better. Strub et al.

proposed a hybrid recommender system based on autoencoders (CFN) which fed the

corrupted input with side information to the autoencoder resulting in reducing cold-start

problems. SDAE is the extended version of DAE by adding layers symmetrically.

Encoding layers of SDAE are corrupted to make the model have better performance

than DAE. Dong et al. [7] used SDAE for user representation and item representation

with integrating side information for matrix factorization. Liu et al. [8] used two SDAE

for user representation and item representation from auxiliary information to form user

and item latent vectors then fed to the NCF framework for the rating prediction.

According to previous methods, there are two ways of using an autoencoder in

the recommender system: predicting rating from the user-item rating matrix and

learning either user representation or item representation at the bottleneck layer. The

uses of autoencoders in the second approach have shown that there was no information

of other users or other items considered because of the scope of mini-batch training,

which could not get the information of all users and items at the same time. This means

they did not consider the relations among users or among items which are the UBCF

and the IBCF advantages, respectively.

In this work, we chose to extend the use of autoencoders in the second approach

because autoencoders have a powerful representation learning. We included the

advantages of UBCF and IBCF which incorporate user and item relations in order to

increase the accuracy of the recommendation.

1.2 Objectives
 1. To propose two more autoencoders that aim to learn user similarity

representation and item similarity representation from user-user similarity matrix and

item-item similarity matrix, respectively.

2. To use the NCF framework: Multi-Layer Perceptron (MLP) to learn user-item

relations and predict the rating.

1.3 Scope
1. Using a dataset named MovieLens-1M, which contains 6040 users, 3706

items, and a million ratings. The max rating is 5. The min rating is 1. Zero means there

is no rating for the movie.

3

2. Evaluation metrics are the hit rate (HR) and the normalized discounted

cumulative gain (NDCG).

3. The dataset has to contain users, items, and ratings.

1.4 Project activities
A. project Plan

1. Do a literature review on the recommender system.

2. Identify the problems and limitations of previous works.

3. Design and analyze the improved method of the recommender system.

4. Implement the proposed system.

5. Evaluate the accuracy of the proposed system.

6. Analyze and discuss the experimental results.

7. Do the documentation.

B. Schedule

Table 1.1 :The gantt chart that explains the processes of methods in the

timeline.

Project

Activities

Year 2019 Year 2020

Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr.

1. Read research
papers and
academic
articles about
the
recommender
system.

2. Identify the
problems and
limitations of
previous works.

3. Design and
analyze the
improvement
method of the

4

recommender
system.

4. Develop and
test the
efficiency of the
proposed
system.

5. Experiment
to evaluate the
accuracy of the
proposed
system.

6. Analyze and
discuss the
experiment
result.

7. Provide the
report
documentation.

1.5 Benefits

1.5.1 Benefits for users

 1. Users have a new recommender system, which has better accuracy

than the previous work.

2. Possibly increase the product sales.

3. Possibly increase the income of the user's company.

4. Users can possibly access the content efficiently.

1.5.2 Benefits for the system developers

1. Achieved both theoretical and practical knowledge in the

recommender system field.

2. Learn new tools and programs, which are significant to develop the

system.

3. Practice how to plan the work properly.

4. Improve problem-solving skills.

5

1.6 Report outlines
 This report consists of five chapters as follows:

In chapter I, motivation, objective and scope of this project is described.

In chapter II, we review the technical knowledge and related work.

In chapter III, we present the methodology including how we preprocess the dataset and

train the model.

In chapter IV, we present results and evaluate the performance.

In chapter V, we conclude and discuss our work.

CHAPTER II

LITERATURE REVIEW

2.1 Recommender systems
Recommender systems [10] are algorithms that aim to suggest relevant items to

users and allow users to interact with content efficiently (items coud be anything

depending on industries, for example, items can be movies to watch, text to read,

products to buy etc.) by filtering items based on users’ previous actions. Many

companies use recommender systems to suggest their products or services for customers

to raise their incomes. Examples of companies that use the recommender systems are

Amazon, Netflix, Facebook, and Google (Figure 2.1).

Figure 2.1 : Examples of companies that use recommender systems

Recommender systems can be divided into three main types: content based

methods, collaborative filtering methods and hybrid methods (Figure 2.2).

Collaborative filtering methods can be divided into two main types: user-based and

item-based. Hybrid method is a combination of both methods.

7

Figure 2.2 : Types of RS algorithms

2.2 Content based methods
Content based methods [11] are algorithms that aim to recommend other similar

items to users based on item features (e.g., item descriptions) from users’ previous

actions. From figure 2.3, this user has watched some movies, the system will find a

movie which is most similar to the previously watched movies from all movies in the

system for recommending to the user.

Figure 2.3 : Content-based filtering

2.3 Cosine similarity
 Cosine similarity [12] measures the similarity between two vectors from

an inner product space. It is often used to measure movies or user similarity in

recommender system. From Figure 2.4, this is a formula of cosine similarity where A

watched
by the user

recommended
to the user

8

and B are vectors with equal dimensions. From Figure 2.5, this is an example of finding

cosine similarity between user 1 and user 2 based on a user rating matrix (left) to get a

user-user similarity matrix (right).

Figure 2.4 : Cosine similarity

Figure 2.5 : Measuring the similarity between two users

2.4 Collaborative filtering methods
Collaborative filtering methods [13] are built on explicit feedback e.g., user

ratings (Figure 2.6) and implicit feedback e.g., number of clicks and purchases (Figure

2.7). It compares the target user with others who have similar preferences. It is based

on the logic that if people similar to person A (judging from the past) like this, so should

the person A. There are two well known types of CF: UBCF and IBCF.

CosineSim (user1,user2) =

9

Figure 2.6 : Explicit feedback form

Figure 2.7 : Implicit feedback form

 2.4.1 User-based collaborative filtering
UBCF assumes that people who have similar tastes tend to react to items

similarly. For example, in Figure 2.8, when we want to recommend a movie to a target

user, we need to search for the user who has the highest similarity (blue square on the

right of figure 2.8). This can be done by calculating cosine similarity between the target

user and other users. After we get the user who has the highest similarity, UBCF

recommends a target item which is the movie that the target user did not watch before

to the target user.

10

Figure 2.8 : User-based collaborative filtering

 2.4.2 Item-based collaborative filtering
For IBCF, it tries to find items that look alike instead of look-alike users to

recommend to the target user. In Figure 2.9, the approach focuses on using the reacted

items which are items rated by the target user (the red square of Figure 2.9) to calculate

cosine similarity between the item that the target user reacted with other items to search

the item which has the highest similarity (blue column on the right of figure 2.9). The

unreacted item with highest similarity to items found in the previous step (red ellipse in

Figure 2.9) of the target user will be used to recommend to the target user.

Figure 2.9 : Item-based collaborative filtering

2.5 Deep learning in the recommender system
The three types of the mentioned recommender systems have a limitation,

namely only being able to learn data with the linear pattern but deep learning can learn

both data with the linear and non-linear pattern. Therefore, deep learning plays an

important role in the recommender system because it helps the model to learn more on

non-linearly separable data. There are two main models that are commonly used in the

11

recommender system to predict ratings are neural collaborative filtering [9] and

autoencoder.

2.6 Neural collaborative filtering
Neural collaborative filtering [9] came to fix the data with the non-linear pattern

inseparable limitation of the collaborative filtering by adding part of the neural network

for learning data with the non-linear pattern. Figure 2.10 shows the general framework

of NCF which uses two types of input: (1) a user identity vector (one-hot encoding of

user ID which is a binary vactor whose dimension is equal to the number of users, where

a value of one appears only one time and the rest of the values are zero) from the user

identity matrix and (2) an item identity vector (one-hot encoding of item ID which is a

binary vactor whose dimension is equal to the number of items, where a value of one

appears only one time and the rest of the values are zero) from the item identity matrix.

Then, a user identity vector and an item identity vector are embedded to form a user

latent vector and an item latent vector, respectively. A user latent vector is a vector

which has meaning in terms of interaction among users. On the other hand, an item

latent vector is a vector which has meaning in terms of interaction among items.

Figure 2.10 : Neural collaborative filtering model

12

 After that, a concatenated vector between a target user latent vector and an target

item latent vector is fed into a Multi-Layer Perceptron, which is called Neural CF Layers

(Figure 2.10) in this work, which can extract the interaction between a target user and a

target item from the concatenated vector. Finally, a rating prediction can be obtained

from the last layer of MLP as in equations shown in Figure 2.11

Figure 2.11 : Multi-layer perceptron formula

where 𝑧𝑧1 is a concatenated vector from a user latent vector and an item latent vector

∅1 is a concatenation between two vectors,

𝑝𝑝𝑢𝑢 or 𝑝𝑝𝑢𝑢𝑢𝑢 (Figure 2.10) is a user latent vector,

𝑞𝑞𝑖𝑖 or 𝑞𝑞𝑖𝑖𝑖𝑖 (Figure 2.10) is an item latent vector,

𝑊𝑊𝐿𝐿 is a weight of layer L,

𝑏𝑏𝐿𝐿 is a bias of layer L,

𝑎𝑎𝐿𝐿 is an activation function of layer L,

σ is a sigmoid function,

ℎ is a weight of an output layer,

𝑦𝑦�𝑢𝑢𝑢𝑢 is a rating prediction,

𝑦𝑦𝑢𝑢𝑢𝑢 (Figure 2.10) is a target rating which is the real rating to use for comparison with

the rating prediction in the training part.

2.7 Autoencoder
Nowadays, an autoencoder [14] plays a major role in the recommender system.

The autoencoder is an unsupervised model of the neural network. It tries to reduce the

dimension of input data by encoding the input data into a low dimensional middle layer

called the hidden layer (bottleneck) to form a latent representation, and then the output

from the hidden layer is decoded by reconstructing the data from the hidden layer as in

13

Figure 2.12. There are two main ways of using the autoencoder for recommender

systems: using the autoencoder to predict rating and using the autoencoder for learning

either user representation or item representation.

Figure 2.12 : Autoencoder

 2.7.1 Using autoencoder to predict
Many works attempt to apply the autoencoder into recommender systems by

using it to predict a rating for a target user and a target item. From Figure 2.13, autorec

[4] is a model that uses an autoencoder that takes 𝑟𝑟(𝑖𝑖) which is a user-item rating vector

constructed from the user-item rating matrix as an input.

Figure 2.13 : The autorec model

𝑟̂𝑟(𝑖𝑖)

14

A user-item rating vector is fed into an autoencoder and the output from the

reconstruction of the autoencoder is the new rating from the rating prediction as the

equation in Figure 2.14.

Figure 2.14 : Autorec equation

where ℎ(𝑟𝑟; 𝜃𝜃) or 𝑟̂𝑟(𝑖𝑖) (Figure 2.13) is the new rating reconstructed from the
autoencoder,
𝑟𝑟(𝑖𝑖) is a user-item rating vector,

𝑉𝑉 is a weight of encoding part,

𝑊𝑊 is a weight of decoding part,

𝜇𝜇 is a bias of encoding part,

𝑏𝑏 is a bias of decoding part,

𝑔𝑔 is an activation function of encoding part,

𝑓𝑓 is an activation function of decoding part.

 2.7.2 Using autoencoder to predict
The second way for using the autoencoder in the recommender system is using

the autoencoder for learning either user representation or item representation at the

bottleneck layer. A novel deep hybrid recommender system framework based on

autoencoders (DHA-RS) [8] uses SDAE that takes a target user and a target item side

information vector (a vector showing attributes associated with users or items such as

gender, age, etc.) from a given user-item side-information matrix as an input for

features-extraction to get user representation and item representation by minimizing

errors between the output and the original user-item features. Then, a concatenation

between the embedding of the user ID one-hot vector and the user representation forms

the user profile and a concatenation between the embedding of the item ID one-hot

vector and the item representation forms the item profile as shown in Figure 2.15 in part

(i) feature extraction and ID embedding module. Then, they fed both the user profile and

the item profile into DHA-RS framework to learn input to get user-item relation and

15

predict the rating from the last layer of Neural CF layers as Figure 2.15 in part (ii) neural

collaborative filtering module.

Figure 2.15 : A novel deep hybrid recommender system framework based on

autoencoders

2.8 Recommender system evaluation
In the evaluation of the recommender system, there are several evaluation

methods such as loss, accuracy. There are the two main evaluation measures that most

researchers use to evaluate results of the recommender system: hit rate and normalized

discounted cumulative gain.

2.8.1 Hit rate
The hit rate [15] is an evaluation of the recommender system that generates a

top k recommendation list by sorted rating from given data. Similarly to prediction, a

rating of all items associated with a target user is predicted. Then, a top k prediction list

is generated by sorted rating prediction. After that, if each item in the top k prediction

list is found in the top k recommendation list, HR will be increased by one. Finally, we

repeat the process with all users to generate an average HR as a final HR score which

is called HR@k score because the number of top ranking used is k.

16

2.8.2 Normalized discounted cumulative gain
The normalized discounted cumulative gain [16] is an evaluation of the

recommender system that generates a top k recommendation list by sorted rating from

given similarly with HR but the difference is HR does not consider positions in top k

that is HR increased when a predicted item is found in the top k recommendation list,

but the NDCG considers positions in top k as follows (Figure 2.16).

Figure 2.16 : Normalized discounted cumulative gain formula

where 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 is a value of the rating,

𝑖𝑖 is an index,

𝑝𝑝 is the number of ranks,

𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝 is the number of ranks in descending order by the values.

As equation above, NDCG takes an index of a prediction item which is found in

the top k recommendation list as a divisor. After that, we repeat the process with all

users to generate an average NDCG as a final NDCG score which is called NDCG@k

score, similar to HR.

According to previous research, the use of an autoencoder in the second

approach (learning to get user representation or item representation), has shown that

information from other users or other items is not considered because of the scope of

mini-batch training, which could not get the information from all users and items at the

same time. This means it did not consider the relations among users or among items

which are the advantage of UBCF and IBCF, respectively. In the next chapter, we will

explain the models that we propose to solve these problems.

CHAPTER III

METHODOLOGY

We propose a new autoencoder recommendation model that applies two more

autoencoders which include advantages of UBCF and IBCF. The added autoencoders

aim to learn user similarity representation from the user-user similarity matrix and item

similarity representation from the item-item similarity matrix to form the user profile

and the item profile. Consequently, the model should yield a more accurate predicted

rating.

3.1 Model
We incorporated the user similarity representation and the user representation

which form the UBCF latent-vector or user profile, and incorporated item similarity

representation and the item representation which form the IBCF latent-vector or item

profile. From Figure 3.1, we proposed both user-based and item-based collaborative

filtering based on autoencoders with deep neural networks model (UICF-AE) which

divided into two parts: (1) an autoencoder for learning the representation of the

user/item and the user/item similarity and (2) a deep neural network for rating prediction

part.

18

Figure 3.1 : Both user-based and item-based collaborative filtering based on

autoencoders with deep neural networks model

First, we illustrate the overview of UICF-AE which integrates the latent feature

representation of a user and an item with the deep neural network. From Figure 3.1, as

previously mentioned, the proposed model is composed of the learning representation

part and the deep neural network part. The first part is composed of the user/item

representation learning part and the user/item similarity learning part. The first subpart

of the learning representation part are the user/item representation learning which

consists of two autoencoders. From number 1 in Figure 3.1, the first autoencoder takes

a user-item rating vector constructed from the user-item rating matrix as the input. From

number 4, Figure 3.1, the second autoencoder takes an item-user vector constructed

from the item-user rating matrix as the input. The second sup-parts of the learning

representation part is the user/item similarity representation learning which consists of

two autoencoders. From number 2 in Figure 3.1, the first autoencoder takes a user-user

similarity vector constructed from the user-user similarity matrix as the input. From

number 5 in Figure 3.1, the second autoencoder takes an item-item similarity vector

constructed from the item-item similarity matrix as the input. We incorporated two sub-

parts of the learning representation part to form the user latent vector (Number 3 in

Figure 3.1) and the item latent vector respectively (Number 4 in Figure 3.1). From

number 7 in Figure 3.1, the second part is the rating predict part which is the deep neural

network that takes the user latent vector and the item latent vector to predict rating.

19

 3.1.1 The representation learning by autoencoder
We now explain each subpart in more detail. Each part has different objectives

as follows:

1) The user/item representation learning

The learning representation consists of two autoencoders (Figure 3.2). From

Figure 3.2 number 1, as previously mentioned, the first autoencoder takes a user-item

rating vector from the user-item rating matrix as the input. From Figure 3.2 number 4,

the second autoencoder takes an item-user vector from the item-user rating matrix as

the input. For each autoencoder, once the input is fed into the autoencoder,

representation of the input is learned in the hidden layer by minimizing the errors

between the output and the input (Loss). If loss is very low, the representation is very

good because it can reconstruct the original input even using a smaller feature

dimension.

Figure 3.2 : The user/item representation learning

2) The user/item similarity representation learning

The learning representation consists of two autoencoders. From Figure 3.3

number 2, as previously mentioned, the first autoencoder takes a user-user similarity

vector from the user-user similarity matrix (calculated by cosine similarity between

user-item rating matrix) as the input. From Figure 3.3 number 5, The second

autoencoder takes an item-item similarity vector from the item-item similarity matrix

(calculated by cosine similarity between item-user rating matrix) as the input. The user-

user similarity matrix and the item-item similarity matrix are matrices based on the

20

cosine similarity formula as discussed in chapter two. For each autoencoder, once the

input is fed into the autoencoder, the representation of the input is learned in the hidden

layer by minimizing the errors between the output and the input (Loss). If loss is very

low, the representation is very good because it can reconstruct the original input using

a smaller feature dimension.

Figure 3.3 : The user/item similarity representation learning

 3.1.2 Rating prediction with the deep neural network
After we get the user representation, the item representation, the item similarity

representation, and the user similarity representation, we concatenate the user

representation and the user similarity representation defined as the user profile (Figure

3.4) and concatenate the item representation and the item similarity representation

defined as the item profile (Figure 3.5).

Figure 3.4 : User profile from a concatenation user representation

and user similarity representation

21

Figure 3.5 : Item profile from a concatenation item representation

and item similarity representation

NCF is applied to learn user-item relations and predict the rating by feeding the

user profile and the item profile into the NCF framework (Figure 3.6) based on the

Multi-Layer Perceptron formula as discussed in chapter two. Weights and bias are used

in calculations in each layer to reconstruct the input.

Figure 3.6 : NCF framework

22

CHAPTER IV
EXPERIMENTAL EVALUATION

We want to evaluate the proposed model by comparing it with the previous

research which does not have the advantages of UBCF and IBCF. This chapter shows

the details of the dataset, evaluation metrics and experimental results.

4.1 Dataset
We trained the model with MovieLens dataset 1M which is the benchmark

dataset used in the previous work and retrieved from the Department of Computer

Science and Engineering at the University of Minnesota. This dataset contains

1,000,209 anonymous ratings of approximately 3,900 movies made by 6,040

MovieLens users who joined MovieLens in 2000. Each record consists of a user ID, a

movie ID and its rated value (Figure 4.1).

Figure 4.1 : The movielens dataset 1M

 We chose to use implicit feedback data because the implicit feedback data is

much easier to collect in real-world applications [9]. We preprocessed ratings to implicit

feedback by the condition that for each movie, if a movie has been rated by a user, then

we set the rating to one, else we set the rating to zero. After that, we split the dataset

23

into 994169 rows for the train set and 6040 rows for the test set. The test set is

constructed using a leave-one-out evaluation method since we want to recommend a

rank-list as much as possible for each user. We used HR and NDCG which are rank-list

evaluation metrics to evaluate the proposed model [15, 16].

4.2 Evaluation metrics
The recommender system that applied the neural network is difficult to evaluate

accuracy of the predicted rating. Therefore, we evaluated recommendation rank lists

which are a measure of ranking quality instead of evaluating accuracy. We chose the

normalized discounted cumulative gain [16] and the hit rate [15] because they were the

rank list metrics which are used in real life scenarios and also previous research. In our

test set, there are 6040 records, one record per user with a rated movie value. We use

negative sampling, that is, from the test set, we obtained a record from one user at a

time (a movie in this record has been rated) and random sampling 99 movies that haven’t

been rated by this user.

 4.2.1 The hit rate method
For the hit rate method [15], we fed the negative sampling data into the model and

obtained predicted ratings from the model. Next, we sorted the predicted ratings and

obtained the hit rate. If the movie ID that has been rated shows up in the top ten, we

incremented the hit rate value by one. We repeat this process until all users have been

sampled to get HR@10 which is an HR score from using the top ten rankings. For

example, in a test set, we use one record which has user ID 0 and rated movie ID 47.

We random 99 movie ID which is not rated to list as [1, 0, 0, 0, 0, 0,..., 0]. After that,

the model will predict the rating from the negative sampling data, then get the new

rating as [0.955, 0.456, 0.432, 0.0123,..., 0.998]. We sort the list by predicted rating.

Next, we checked if the top ten movie IDs in the sorted predicted rating list match with

the rated movie ID in the negative sampling data. If a match occurs, we incremented the

hit rate value by one. Finally, we repeat this process until all users have been sampled

and divided by the number of tests set to get HR@10.

24

 4.2.2 The normalized discounted cumulative gain method

For the normalized discounted cumulative gain (NDCG) [16], we fed negative

sampling data into the proposed model to get a result similar to the hit rate. We sorted

predicted ratings and calculated DCG. If the movie has not been rated before, a term

contributing to DCG value will be zero. If the movie has been rated before, a term is

calculated according to the formula. As previously mentioned in chapter two, from the

formula of IDCG in NDCG, our data set has an implicit feedback type that is binary

data; therefore, we do not need to calculate IDCG because it will always be one.

Therefore, it calculates only DCG to get NDCG@10 which is an NDCG score from

using the top ten rankings. For example, we construct a test set from a record with user

ID 0 and rated movie ID 47 then we random 99 movie ID which has not been rated to

form a list as [1, 0, 0, 0, 0, 0, ..., 0]. After that, the model will predict the rating for the

previous list and predicted ratings are obtained which might look like e.g., [0.955, 0.456,

0.432, 0.0123, ..., 0.998]. We sort the list by predicted ratings. Next, we checked if the

top ten movie IDs in the sorted predicted rating list match with the rated movie ID in

the negative sampling data. If a match occurs, we incremented the NDCG value by one

and divide the NDCG value by the position of the movie ID 47 in the top ten list. Finally,

we repeat this process until all users have been sampled and divided by the number of

tests set to get NDCG@10.

4.3 Experimental results
 We want to compare results between the proposed model (UICF-AE) which uses

4 autoencoders to extract the representation of user, item, user similarity (which shows

the relation between users and takes advantage of UBCF) and item similarity (which

shows the relation between items and takes advantage of IBCF). The four

representations are fed to MLP to predict rating with a novel deep hybrid recommender

system framework based on autoencoders model (DHA-RS) [8] which uses two

autoencoders to extract representation of user and item and uses embedding of the user

ID and the item ID to show the relation between users and between items but their

method did not fully utilize the strength of CF. Therefore, we use the same evaluation

methods as DHA-RS that are HR and NDCG to compare the performance of models.

Further, we began by setting the hyperparameters based on DHA-RS [8] best

hyperparameters. We set an adam optimizer to optimize the model and set the learning

25

rate to 0.0001, set the number of hidden layers of each autoencoder to 128 dimensions

since autorec [4] experimental results have shown that the loss of autoencoder

dramatically reduces when the number of hidden layers is more than 100, set the

regularization to 100 and the loss parameter to 100 because DHA-RS [8] experimental

results have shown that the model is not sensitive to this values, and set the batch size

to 512. We refer to these sets of parameters as the base parameter model. For activation

functions, we used relu activation function to all hidden layers in the proposed model

because relu can reduce the vanishing gradient problem unlike sigmoid, relu is

appropriate with sparse data, and relu allows the model to be less likely overfitting [9].

Except for the output layer of MLP we used sigmoid activation function to predict the

implicit rating.

4.3.1 The multi-layer perceptron layers
We want to test how the number of MLP layers affects the model's performance.

We set the output layer to 64 dimensions and tested on the number of MLP layers with

one, two, three and four layers. For example, if the number of hidden layers is one, the

MLP dimensions of each layer are 64 and 1, respectively. If the number of hidden layers

is two, the MLP dimensions of each layer are 128, 64 and 1, respectively. We use the

base parameter model to test and compare with DHA-RS to get the result shown in

Figure 4.2 and Figure 4.3.

Figure 4.2 : The number of hidden layers effect on HR@10

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

1 2 3 4

HR
@

10

Number of layers

UICF-AE

DHA-RS

26

Figure 4.3 : The number of hidden layers effect on NDCG@10

From Figure 4.2, the best result of HR@10 of the proposed model on test set is

MLP with four layers which has HR@10 of 0.7274 while DHA-RS has the highest

HR@10 value less than 0.71 followed by MLP with three layers and MLP with two

layers that have HR@10 values 0.7183 and 0.7113, respectively.

From Figure 4.3, the best result of NDCG@10 of the proposed model on the test

set is MLP with four layers which has NDCG@10 of 0.4549 while DHA-RS has the

highest NDCG@10 value less than 0.44 followed by MLP with three layers and MLP

with two layers that have the NDCG@10 values 0.4400 and 0.4381, respectively.

 4.3.2 The output layer dimensions of multi-layer perceptron
After we get the number of layers of MLP, we want to test how the number of

the output dimensions of MLP layers affects the model's performance. We set the layer

of MLP to 4 layers from the previous results (Section 4.2.1) and tested for the number

of output layer dimensions of MLP with 64, 32, 16 and 8. For example, if the output

layer dimensions of MLP has 64 dimensions, each layer of the MLP has dimensions

with 512, 256, 128 and 64 respectively. If the output layer dimensions of MLP have 32

dimensions, each layer of the MLP has dimensions with 256, 128, 64 and 32

respectively. We use the base parameter model to test and compare with DHA-RS to

get the result shown in Figure 4.4 and Figure 4.5.

0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

1 2 3 4

N
DC

G@
10

Number of layers

UICF-AE

DHA-RS

27

Figure 4.4 : The number of the output layer dimensions effect on HR@10

Figure 4.5 : The number of the output layer dimensions effect on NDCG@10

From Figure 4.4, the best result of HR@10 of the proposed model on the test set

is the output layer dimensions with 64 dimensions which has HR@10 of 0.7274 while

DHA-RS has the highest HR@10 value less than 0.71 followed by the dimension of the

output layers with 32 dimensions and the dimension of the output layers with 16

dimensions that have HR@10 values 0.7112 and 0.6958, respectively.

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

8 16 32 64

HR
@

10

Dimensions of the output layer

UICF-AE

DHA-RS

0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

8 16 32 64

N
DC

G@
10

Dimensions of the output layer

UICF-AE

DHA-RS

28

From Figure 4.5, the best result of NDCG@10 of the proposed model the on test

set is the output layer dimensions with 64 dimensions which has HR@10 of 0.4549

while DHA-RS has the highest HR@10 value less than 0.44 followed by the dimension

of the output layers with 32 dimensions and the dimension of the output layers with 16

dimensions that have HR@10 values 0.4307 and 0.4203, respectively.

Table 4.1 : The comparison between DHA-RS and UICF-AE

Model Evaluation method

HR@10 NDCG@10

DHA-RS 0.7076 0.4320

UICF-AE 0.7274 0.4549

From Table 4.1, the results show that when we switch from embedding user ID

and item ID to using the representation similarity of items and users by adding

autoencoders, it makes our model outperforms DHA-RS because DHA-RS did not

consider the relations among users or among items but they used only embedding of the

user ID and the item ID for showing the relations among users or among items. It is a

relationship among users and among items in terms of positions which can not extract

representation of other users that are similar with target users but, our model uses

autoencoder to find the representation of similarity which utilizes the advantages of

UBCF and IBCF. For this reason, the efficiency of our model is higher than DHA-RS.

CHAPTER V
CONCLUSION

5.1 Conclusion
In this work, we proposed UICF-AE which utilize the advantages of UBCF and

IBCF by applying two more autoencoders to learn representations of similarity between

a target user (Item) and other users (Items). UICF-AE consists of four autoencoders: (1)

a user representation learning autoencoder, (2) an item representation learning

autoencoder, (3) a user similarity representation learning autoencoder and (4) an item

similarity representation learning autoencoder. Then, we concatenated the user

representation and the user similarity representation to form a user profile and the item

representation and the item similarity representation to form an item profile. After that,

we fed a concatenated vector of the user profile and the item profile to MLP for rating

prediction. Finally, the experimental results have shown that UICF-AE outperforms

previous work for both metrics; HR is 2.8% higher and NDCG is 5.3% higher.

5.2 Suggestion
1. We find the similarities of each user and each item using only the cosine

similarity method. There are many ways to find similarities, which may affect model

performance.

 2. From results 4.1.1, the performance of the model depends on the number of

layers which tends to increase continuously with the number of layers.

3. From results 4.1.2, the performance of the model depends on the number of

dimensions of the output layer which tends to increase continuously with the number of

dimensions of the output layer.

4. In the NCF framework, we use only the multi-layer perceptrons. DHA-RS has

shown that using generalized matrix factorization (GMF) is more efficient than MLP.

However, our method outperformed DHA-RS when using MLP. This suggested that if

GMF alone or both GMF and MLP are employed, a higher performance should be

achieved.

REFERENCES

[1] Dawen Liang; Rahul G. Krishnan; Matthew D. Hoffman; and Tony Jebara, Los

Gatos, Cambridge, San Francisco, Variational Autoencoders for Collaborative

Filtering. Proceedings of the 2018 World Wide Web Conference, 23–27 April, 2018,

Lyon, France. Copyright 2018 ACM ISBN 978-1-4503-5639-8/18/04.

[2] Hao Wang; Naiyan Wang; and Dit-Yan Yeung, Hong Kong University of Science

and Technology, Collaborative Deep Learning for Recommender Systems. Proceedings

of the 21th ACM SIGKDD International, 10-13 August, 2015, Sydney, NSW, Australia.

Copyright 2015 ACM ISBN 978-1-4503-3664-2/15/08.

[3] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2018. Deep Learning based

Recommender System: A Survey and New Perspectives. Journal of ACM Computing

Survey. 1, 1, Article 1 (July 2018), 35 pages.

[4] Suvash Sedhain; Aditya Krishna Menon; Scott Sanner; and Lexing Xie, Australian

National University/NICTA, AutoRec: Autoencoders Meet Collaborative Filtering.

Proceedings of the 24th International Conference on World Wide Web, 18-22 May,

2015, Florence, Italy. Copyright 2015 ACM 978-1-4503-3473-0/15/05.

[5] Yao Wu; Christopher DuBois; Alice X. Zheng; and Martin Ester, Simon Fraser

University, Dato Inc., Collaborative Denoising Auto-Encoders for Top-N

Recommender Systems. Proceedings of the Ninth ACM International Conference on

Web Search and Data Mining, 22-25 February, 2016, San Francisco, California, USA.

Copyright 2016 ACM ISBN 978-1-4503-3716-8/16/02.

[6] Florian Strub; Jer´emie Mary; and Romaric Gaudel, Hybrid Recommender System

based on Autoencoders. Proceedings of the 1st Workshop on DLRS 2016, 15-15

September, 2016, Boston, MA, USA. Copyright 2016 ACM ISBN 978-1-4503-4795-

2/16/11.

31

[7] Xin Dong; Lei Yu; Zhonghuo Wu; Yuxia Sun; Lingfeng Yuan; and Fangxi Zhang,

A Hybrid Collaborative Filtering Model with Deep Structure for Recommender

Systems. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,

04-09 February, 2017, San Francisco, California, USA. Copyright 2017, Association

for the Advancement of Artificial Intelligence (www.aaai.org).

[8] Yu Liu, Shuai Wang, M. Shahrukh Khan, and Jieyu He. 2018. A novel deep hybrid

recommender system based on auto-encoder with neural collaborative filtering. Journal

of Big Data Mining and Analytics. 1, 3, Article 1 (September 2018), 211-221 pages.

[9] Xiangnan He; Lizi Liao; and Hanwang Zhang, Neural Collaborative Filtering.

Proceedings of the 26th International Conference on WWW '17, 03-07 April, 2017,

Perth, Australia. Copyright 2017 ACM 978-1-4503-4913-0/17/04.

[10] Hemang Vyas. (2018). Code Your Own Popularity Based Recommendation

System WITHOUT a Library in Python. Retrieve from https://hackernoon.com/

popularity-based-song-recommendation-system-without-any-library-in-python-

12a4fbfd825e [20 January2019]

[11] Emma Grimaldi. (2018). How to build a content-based movie recommender

system with Natural Language Processing. Retrieve from https://towardsdatascience

.com/how-to-build-from-scratch-a-content-based-movie-recommender-with-natural-

language-processing-25ad400eb243 [22 January2019]

[12] Selva Prabhakaran. (2018). Cosine Similarity – Understanding the math and how

it works (with python codes). Retrieve from https://www.machinelearningplus.com

/nlp/cosine-similarity/ [25 January2019]

[13] Manish Barnwal. (2018). Types of data in recommender systems. Retrieve from

https://medium.com/theboredhuman/types-of-data-in-recommender-systems-

7a1d76969137 [29 January2019]

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8254253
https://www.machinelearningplus.com/author/selva86/

32

[14] Artem Oppermann. (2018). Deep Autoencoders For Collaborative Filtering.

Retrieve from https://towardsdatascience.com/deep-autoencoders-for-collaborative-

filtering-6cf8d25bbf1d [30 January2019]

[15] Susan Li. (2019). Evaluating A Real-Life Recommender System, Error-Based

and Ranking-Based. Retrieve from https://towardsdatascience.com/evaluating-a-real-

life-recommender-system-error-based-and-ranking-based-84708e3285b [30

January2019]

[16] Pranay Chandekar. (2013). Evaluate your Recommendation Engine using

NDCG. Retrieve from https://towardsdatascience.com/evaluate-your-

recommendation-engine-using-ndcg-759a851452d1 [30 January2019]

https://towardsdatascience.com/@artem.oppermann?source=post_page-----6cf8d25bbf1d----------------------

APPENDICES

APPENDIX A

The Project Proposal of Course 2301399 Project Proposal

Academic Year 2019

Project Title (Thai) การกรองรวมกันโดยยึดไอเทมและผูใชเปนหลักโดยใชตัวเขารหัส

อัตโนมัติรวมกับโครงขายประสาทเทียมลึก
Project Title (English) Both User-based and Item-based Collaborative Filtering based

On Autoencoder with Deep Neural Networks

Project Advisor 1. Assoc. Prof. Dr. Saranya Maneeroj

 2. Asst. Prof. Dr. Monnat Pongpanich

By 1. Patcharapol Promanee 5933643223

 2. Nattapon Napasai 5933623723

 Computer Science Program, Department of Mathematics and

Computer

Science, Faculty of Science, Chulalongkorn University

Background and Rationale

 With the growing size of information, the recommender system plays an

important role, that is, allowing users to interact with content efficiently [1]. The

recommender system tries to advise users by filtering items based on users’ previous

actions. It has been employed by many sites (e.g., Netflix, Amazon, and Spotify) to

provide their products or services for customers to raise their incomes. There are three

main types of recommender systems: content-based filtering (CBF), collaborative

filtering (CF), and hybrid methods. CBF aims to recommend other similar items to users

based on item features (e.g., item descriptions) from users’ previous actions. However,

item features sometimes can not be gathered, so it is not possible to use CBF. CF came

to fix this limitation [2]. CF are built on explicit feedback (e.g., user ratings) and implicit

feedback (e.g., number of clicks and purchases). It compares the target user with others

who have similar preferences. It is based on the logic that people like you (judging from

the past) like this and so should you. Further, they are two well known types of CF:

35

user-based and item-based. User-based CF assumes that people who have similar tastes

tend to react to items similarly. This approach calculates the target user rating by using

other users’ rating (Figure A.1). In this figure, among other users (red square on the left

of figure A.1), we used users who have the highest similarity (blue square on the right

of figure A.1) to the target user to calculate the rating. For item-based CF, it tries to find

items that look alike instead of users look alike (Figure A.2). In this figure, the approach

focuses on using the reacted items (the red square on the left of figure A.2) of the target

user. The highest similarity items (the blue square on the right of figure A.2) to the

unreacted item of the target user will be used to calculate the rating of the unreacted

item of the target user. The hybrid method is a combination of CBF and CF.

Figure A.1 : User-based CF

Figure A.2 : Item-based CF

 Nowadays, many pieces of research attempt to apply the neural network into CF

(neural network based CF) because there is a limitation in CF that CF can learn only

36

linear representation, but the neural network can learn both linear and non-linear

representation [1]. A neural network can learn input features in both supervised and

unsupervised ways. Besides CF, a neural network has been showing its capability in

many fields, such as computer vision and natural language processing [9].

 Autoencoder is one of the most popular neural network models in the

recommender system. Autoencoder is an unsupervised model, which aims to

reconstruct the input data in the output layer by encoding the input data into the middle

layer called the hidden layer to form latent representation, and then the output from the

hidden layer is decoded by the output layer to reconstruct the data. There are two well

known types of autoencoder: (1) Denoising Autoencoder (DAE); (2) Stacked Denoising

Autoencoder (SDAE). DAE takes the corrupted input data by adding noise, then the

output layer aims to reconstruct the real input data from the latent representation of

corrupted data to make the model robust. SDAE is the extended version of DAE by

adding more layers symmetrically. Encoding layers of SDAE are corrupted to make the

model more robust than DAE.

There are two ways of using autoencoders in the recommender system:

predicting rating from the user-item rating matrix and learning either user representation

or item representation at the bottleneck layer [3]. In the first approach, Sedhain et al.

(2015) proposed AutoRec [4] which takes user-item rating vectors or item-user rating

vectors as input and reconstructs it in the output layer to fill missing values in the rating

matrix (Figure A.3). This figure shows two approaches which are depending on the

input: user-based AutoRec takes user-item rating vector as the input (the green square

on the left of figure A.3) and item-based AutoRec takes item-user rating vector as the

input (the orange square on the right of figure A.3).

37

Figure A.3 : Two approaches of autorec: user-based AutoRec (left) which takes

user-item rating vector as the inputs and item-based AutoRec (right) which takes item-

user rating vector as the input

Another model called CDAE (Collaborative Denoising Auto-Encoders) [5],

proposed after AutoRec, uses DAE to corrupt input data, which is implicit feedback

instead of the rating. The output layer aims to reconstruct the real input data from the

latent representation of corrupted data. An extension from CDAE called CFN (Hybrid

Recommender System based on Autoencoders) [6] takes the input similar to AutoRec,

but a corrupted version. It also incorporates side information (e.g., user profiles and item

descriptions) to increase the prediction accuracy.

In the second approach, there are many models proposed. First, Hybrid

Collaborative Filtering Model with Deep Structure for Recommender [7] aimed to learn

user representation from user-item rating matrix and item representation from item-user

rating matrix for Matrix Factorization Recommender using SDAE. Second, DHA-RS

(A Novel Deep Hybrid Recommender System Framework based on Autoencoders) [8]

improved recommendation accuracy by using SDAE to learn latent representation from

users and items side information, and then they concatenated the embedding of the user

ID one-hot vector with the user representation to form the user profile and the

embedding of the item ID one-hot vector with the item representation to form the item

profile. They fed the user profile and item profile to DHA-RS framework: GMF++

(Generalized Matrix Factorization++) and MLP++ (Multi-Layer Perceptron++) to learn

user-item relation and predict the rating.

According to previous methods, the uses of autoencoder in the recommender

system have shown that they used only the target user data and the target item data, but

38

there was no information of other users or other items considered. This means they did

not consider the relations among users or among items.

In this work, we extend the use of autoencoder for user and item representation

by including the advantages of user-based CF and item-based CF. Therefore, we

propose to apply two more autoencoders that aim to learn user similarity representation

and item similarity representation on user-user similarity matrix and item-item

similarity matrix respectively (Figure A.4). The user-user similarity matrix is the matrix

of cosine similarity between user-user ratings, and the item-item similarity matrix is the

matrix of cosine similarity between item-item ratings. The first autoencoder aims to

learn the user representation from the user-item rating matrix (Figure A.4, top left). The

second autoencoder, which is the main part of the proposed model, aims to learn the

user similarity representation from the user-user similarity matrix (Figure A.4, top

right). The output vectors from the first autoencoder and the second autoencoder are

concatenated to form the user profile. The third autoencoder aims to learn the item

representation from the item-user rating matrix (Figure A.4, bottom left). The fourth

autoencoder aims to learn the item similarity representation from the item-item

similarity matrix (Figure A.4, bottom right). The output vectors from the third

autoencoder and the fourth autoencoder are concatenated to form the item profile. Then,

we do concatenation on the user profile and the item profile. After that, we feed the

concatenated vector in the NCF [9] framework: MLP (Multi-Layer Perceptron) to learn

user-item relations and predict the rating. Finally, we use Hit Rate (HR) and Normalized

Discounted Cumulative Gain (NDCG) as the evaluation metrics to measure the

accuracy of the model.

39

Figure A.4 : Both user-based and item-based collaborative filtering based on

Autoencoders with deep neural networks

In this section, we will breakdown through the calculation of the proposed

model. From figure A.4, we split the proposed model into two modules: Learning

representation module and NCF framework module. The learning representation

consists of four autoencoders; all of them generate the output as in equation 1:

O𝑙𝑙 = σ(𝑊𝑊𝑙𝑙
𝑇𝑇O𝑙𝑙−1 + b𝑙𝑙) (1)

where O𝑙𝑙, σ, W𝑙𝑙, O𝑙𝑙−1 and b𝑙𝑙 denote the output of autoencoder at layer l,

activation function, the weight matrix at layer l, the output of autoencoder from the

previous layer and the bias vector at layer l, respectively. For the first layer, the

computation will be defined as in equation 2:

O1 = σ(𝑊𝑊1
𝑇𝑇𝑋𝑋 + b1) (2)

where 𝑋𝑋 is the input which is different among the four autoencoders. 𝑋𝑋 is the

user-item rating vector for the first autoencoder, user-user similarity vector for the

second autoencoder, item-user rating vector for the third autoencoder and item-item

40

similarity vector for the fourth autoencoder. The loss function of autoencoders can be

defined as in equation 3:

L𝐴𝐴𝐴𝐴 = �𝑂𝑂𝑦𝑦 − 𝑋𝑋�
𝐹𝐹
2 + λ𝑊𝑊‖𝑊𝑊‖𝐹𝐹2 + λ𝑏𝑏‖𝑏𝑏‖𝐹𝐹2 (3)

where L𝐴𝐴𝐴𝐴 is the loss of autoencoder at number n (Figure A.4), 𝑂𝑂𝑦𝑦 is the output

from last layer of the autoencoder, λ𝑊𝑊 and λ𝑏𝑏 is a regularization-term parameter of

weight matrix and bias vector, respectively.

The NCF framework module consists of MLP which is used to learn user-item

relations and predict the rating. The calculation of the NCF can be defined as in equation

4:

Z = [U ; I]

O1 = σ(𝑊𝑊1
𝑇𝑇𝑍𝑍 + b1)

O2 = σ(𝑊𝑊2
𝑇𝑇O1 + b2)

 … (4)

O𝑙𝑙 = σ(𝑊𝑊𝑙𝑙
𝑇𝑇O𝑙𝑙−1 + b𝑙𝑙)

r�𝑢𝑢𝑢𝑢 = σ(𝐻𝐻𝑇𝑇O𝑙𝑙)

where Z is the concatenated vector between user profile (U) and item profile (I),

O𝑙𝑙 is the output of MLP at layer l, W𝑙𝑙 is the weight matrix at layer l, b𝑙𝑙 is the bias vector

at layer l, σ is the activation function, 𝐻𝐻𝑇𝑇 is the weight matrix of rating prediction layer

and r�𝑢𝑢𝑢𝑢 is the predicted rating of user U and item I. The loss function of NCF is defined

as equation 5:

L𝑁𝑁𝑁𝑁𝑁𝑁 = ∑ (1 − 𝑟𝑟𝑢𝑢𝑢𝑢) log2(1 − r�𝑢𝑢𝑢𝑢)(𝑢𝑢,𝑖𝑖)𝜖𝜖𝜖𝜖∪𝑅𝑅− + 𝑟𝑟𝑢𝑢𝑢𝑢 log2(r�𝑢𝑢𝑢𝑢) + λ𝜃𝜃‖𝜃𝜃‖𝐹𝐹2 (5)

which is a binary cross-entropy, where 𝑅𝑅 is the set of observed ratings, 𝑅𝑅− is the

set of unobserved ratings, λ𝜃𝜃 is a regularization-term of parameters, 𝜃𝜃 is the parameters,

𝑟𝑟𝑢𝑢𝑢𝑢 is an actual rating of user U and item I. Therefore, the total loss is defined as equation

6:

41

L𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = L𝑁𝑁𝑁𝑁𝑁𝑁 + 𝛼𝛼L𝐴𝐴1 + 𝛽𝛽L𝐴𝐴2 + 𝛾𝛾L𝐴𝐴3 + δL𝐴𝐴4 (6)

 where 𝛼𝛼, 𝛽𝛽, 𝛾𝛾 and δ denote the hyperparameters of the loss function.

Objectives

1. To propose to apply two more autoencoders that aim to learn to get user

similarity representation and item similarity representation from user-user

similarity matrix and item-item similarity matrix respectively.

2. To use the NCF framework: MLP (Multi-Layer Perceptron) to learn to get user-

item relations and predict the rating.

Scope

1. Using a dataset named MovieLens-1M, which contains 6040 users, 3706 items,

and a million ratings. The max rating is 5. The min rating is 1. Zero means there

is no rating for the movie.

2. Evaluation metrics are HR and NDCG.

3. The dataset has to contain users, items, and ratings.

Project Activities

A. project Plan

1. Do a literature review on the recommender system.

2. Identify the problems and limitations of previous works.

3. Design and analyze the improved method of the recommender system.

4. Implement the proposed system.

5. Evaluate the accuracy of the proposed system.

6. Analyze and discuss the experimental results.

7. Do the documentation.

42

B. Schedule

Table A.1 : the Gantt Chart that explains the processes of methods in the

timeline.

Method Year 2019 Year 2020

Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr.

1. Read research
papers and
academic
articles about
the
recommender
system.

2. Identify the
problems and
limitations of
previous works.

3. Design and
analyze the
improvement
method of the
recommender
system.

4. Develop and
test the
efficiency of the
proposed
system.

5. Experiment
to evaluate the
accuracy of the
proposed
system.

6. Analyze and
discuss the
experiment
result.

43

7. Provide the
report
documentation.

Benefits

1. Benefits for users

1.1 Users get a new recommender system, which should be better in accuracy

than the previous work.

1.2 Increase the product sales.

1.3 Increase the income of the user's company.

1.4 Users can access the content efficiently.

2. Benefits for the system developers

2.1 Achieved both theoretical and practical knowledge in the recommender

system field.

2.2 Learn new tools and programs, which are significant to develop the system.

2.3 Practice how to plan the work properly.

2.4 Improve problem-solving skills.

Equipment
1. Hardware

1.1 Dell Inspiron 7559 with Windows 10 64-bit Operating System, 2.30 GHz

Intel ® Core (TM) i5-6300HQ Processor, 8 GB Ram, and 1 TB HDD Storage.

1.2 Personal Computer with Windows 10 64-bit Operating System, 3.40 GHz

quad-core Intel Core I5 Processor, 16 GB Ram, and 1 TB HDD Storage.

1.3 Macbook Pro 2017 with macOS Mojave Operating System, 2.30 GHz

dual-core Intel Core I5, 8 GB Ram, and 256 GB SSD Storage.

2. Software

 2.1 Jupyter Notebook

 2.2 Google Colab

 2.3 sagemaker on AWS

44

Budget

1. SSD 500 GB 3070 Baht

2. Apple Airpods 4708 Baht

Buy Total 7778 Baht

References

[1] Dawen Liang; Rahul G. Krishnan; Matthew D. Hoffman; and Tony Jebara, Los

Gatos, Cambridge, San Francisco, Variational Autoencoders for Collaborative

Filtering. Proceedings of the 2018 World Wide Web Conference, 23–27 April, 2018,

Lyon, France. Copyright 2018 ACM ISBN 978-1-4503-5639-8/18/04.

[2] Hao Wang; Naiyan Wang; and Dit-Yan Yeung, Hong Kong University of Science

and Technology, Collaborative Deep Learning for Recommender Systems. Proceedings

of the 21th ACM SIGKDD International, 10-13 August, 2015, Sydney, NSW, Australia.

Copyright 2015 ACM ISBN 978-1-4503-3664-2/15/08.

[3] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2018. Deep Learning based

Recommender System: A Survey and New Perspectives. Journal of ACM Computing

Survey. 1, 1, Article 1 (July 2018), 35 pages.

[4] Suvash Sedhain; Aditya Krishna Menon; Scott Sanner; and Lexing Xie, Australian

National University/NICTA, AutoRec: Autoencoders Meet Collaborative Filtering.

Proceedings of the 24th International Conference on World Wide Web, 18-22 May,

2015, Florence, Italy. Copyright 2015 ACM 978-1-4503-3473-0/15/05.

[5] Yao Wu; Christopher DuBois; Alice X. Zheng; and Martin Ester, Simon Fraser

University, Dato Inc., Collaborative Denoising Auto-Encoders for Top-N

Recommender Systems. Proceedings of the Ninth ACM International Conference on

Web Search and Data Mining, 22-25 February, 2016, San Francisco, California, USA.

Copyright 2016 ACM ISBN 978-1-4503-3716-8/16/02.

[6] Florian Strub; Jer´ emie Mary; and Romaric Gaudel, Univ. Lille, CNRS, Centrale

Lille, Inria, Hybrid Recommender System based on Autoencoders. Proceedings of the

45

1st Workshop on DLRS 2016, 15-15 September, 2016, Boston, MA, USA. Copyright

2016 ACM ISBN 978-1-4503-4795-2/16/11.

[7] Xin Dong; Lei Yu; Zhonghuo Wu; Yuxia Sun; Lingfeng Yuan; and Fangxi Zhang,

Ctrip Travel Network Technology (Shanghai) Co., Limited., A Hybrid Collaborative

Filtering Model with Deep Structure for Recommender Systems. Proceedings of the

Thirty-First AAAI Conference on Artificial Intelligence, 04-09 February, 2017, San

Francisco, California, USA. Copyright 2017, Association for the Advancement of

Artificial Intelligence (www.aaai.org).

[8] Yu Liu, Shuai Wang, M. Shahrukh Khan, and Jieyu He. 2018. A novel deep hybrid

recommender system based on auto-encoder with neural collaborative filtering. Journal

of Big Data Mining and Analytics. 1, 3, Article 1 (September 2018), 211-221 pages.

[9] Xiangnan He; Lizi Liao; and Hanwang Zhang, National University of Singapore,

Columbia University, Neural Collaborative Filtering. Proceedings of the 26th

International Conference on WWW '17, 03-07 April, 2017, Perth, Australia. Copyright

2017 ACM 978-1-4503-4913-0/17/04.

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8254253

46

BIOGRAPHY

Nattapon Napasai

Department of Mathematics and Computer Science

Faculty of Science, Chulalongkorn University

Email : Nattapon.n4p@gmail.com

Patcharapol Promanee

Department of Mathematics and Computer Science

Faculty of Science, Chulalongkorn University

Email : nut3870@hotmail.com

	COVER (THAI)
	COVER (ENGLISH)
	ACCEPTED
	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER I INTRODUCTION
	1.1 Background and rationale
	1.2 Objectives
	1.3 Scope
	1.4 Project activities
	1.5 Benefits
	1.6 Report outlines

	CHAPTER II LITERATURE REVIEW
	2.1 Recommender systems
	2.2 Content based methods
	2.3 Cosine similarity
	2.4 Collaborative filtering methods
	2.4.1 User-based collaborative filtering
	2.4.2 Item-based collaborative filtering
	2.5 Deep learning in the recommender system
	2.6 Neural collaborative filtering
	2.7 Autoencoder
	2.7.1 Using autoencoder to predict
	2.7.2 Using autoencoder to predict
	2.8 Recommender system evaluation

	CHAPTER III METHODOLOGY
	3.1 Model
	3.1.1 The representation learning by autoencoder
	3.1.2 Rating prediction with the deep neural network

	CHAPTER IV EXPERIMENTAL EVALUATION
	4.1 Dataset
	4.2 Evaluation metrics
	4.2.1 The hit rate method
	4.2.2 The normalized discounted cumulative gain method
	4.3.2 The output layer dimensions of multi-layer perceptron

	CHAPTER V CONCLUSION
	5.1 Conclusion
	5.2 Suggestion

	REFERENCES
	APPENDIX A The Project Proposal of Course 2301399 Project Proposal Academic Year 2019
	BIOGRAPHY

