1As9N1S

N15158UN1SaULNBLESuUSaUNISad

FBIATING

AR

Un1sAne

nsnsssswiulaedalowmunasglddunaniagldiudnsia

dnludAsmiulasneUszaniondn
Both User-based and Item-based Collaborative Filtering

based on Autoencoders with Deep Neural Networks

ULAFNS UNAE WUUsEe3 593 36237 23

PIYNYTWNE WTNUEY LBUUTEINRNY 593 36432 23

ANAANANSLAZINYINISADUNUADS

A1977%1 ANYINSABUNUNDS

2562

ARIZINGIANENT JUIAINTAINNIINYSY

nsnsessaiulnednlomuuazdldunaniagldsndnea

anlulRTINAUlATINgUSTEN L ARNEAN

Wgaigna unAe

YIYNYING WAL

Tssuifudumiswasnmsfinunundngnsinemansiude
a1u1IYININTABUNILADT MATMANAMENTLaYINEINITABNNIADS
ANEINGIAANT THIAINTAIIN ANy
Unsfnw 2562

AUANSUDIPAINTAUNIING R

Both User-based and Item-based Collaborative Filtering based

on Autoencoders with Deep Neural Networks

Nattapon Napasai

Patcharapol Promanee

A Project Submitted in Partial Fulfillment of the Requirements
for the Degree of Bachelor of Science Program in Computer Science
Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2019
Copyright of Chulalongkorn University

PUDLATIU
Tne
AU

91159 US N IATIUNAN

217159MUT N IATIUTIU

nsnsessauiulnednlomuuazdlddunaninglds
W nluRsmiulAswIsUsEasuEn
WBIgNa U Fy

WIBHYITNA WINNA

WpnNAeNNIAeS

309A1@NT19150 AT.ASUYY wallsal

HYIEMEn519158 ATUUINE wadwily

AAIPIANAAIENTLALINYINITADNTUADS ANLINEIMIERT WIBINTAUIUNTINE G

audAlidulassnuaduiiludiunis vaanisf@nwimunangnsusyatuden Tusigie

2301499 1A5391UINYIAEAT (Senior Project)

___________________________________ FUTNAIAIVIALAAIEAS

(Fan319158 AT.Nqunly LHeuwl) LAZINYINTABUNUNDS

ALENTIUNTEBULATIY

el ¢ o
___________________________________ 9197159NUS N LATIUNAN

(309M@R519158 As.ASUgYY udilsan)

___________________________________ 91971597UT N IATIUIIU

(AR50 A5.UUIMS wadnia)

___________________________________ N3ITUNIT

({98ans1ansed 05.9751091 adindnm)

iv

wwaigna un1fe, weiswa wivudl : nsnsesTniulaednlowmunasglddundn
Ingleiansiasnlulfsiunulassineussamiisudn. (Both User-based and Item-based
Collaborative Filtering based on Autoencoders with Deep Neural Networks) 0. iUsnw
TAsauman : 5. as.asug udlsay, o fiusnwilasenusau : we. as.uwivg weswily, 58

P,

ISP

o & | o w v ¥ vy v a a a £ =
szuusugtdudddgyiviglvgldaunsalideyalnograiiuse@nsamuniu &

Q’lj QII o =3 Y ¥ Y o d‘ | Y3 ¥
szuuiingreuiazwunilewalviugldlaslddoyaannisnseviiniunnvesdgldies n1s

nsesufuAenisluisnsvesszuuiusilaslddoyaussinnisnisvesglavsodnuiunis

o v 1

AantuN1sTeAUATRRLY BeazintayawmaituniUIsuiisuseninadlovilaauiugliau q

Y

Aa o ¥ PN 1% = o 1 [y 1 [[A

NUANYUTUVDIVBLAVIARIABINU N1INT9TIWNUAIUITALUIDDNUY 2 Usennvian f AB
' [y = [[! 1Y = Y < [! (Y

ﬂ’]iﬂi@ﬁi?ﬂﬂﬂi@ﬁﬂ@l@mmL‘U‘Ll‘ViaﬂLLaﬂﬂWiﬂi@\‘li'JlIﬂuIG’I‘EJ‘EJ@E?LGULUUMaﬂ 1PuA1INTDITINAY

lnedadlddundnagldnssneiinauidsadoumiouiu sgovezlsndraiu Fnianses

swiulaedagldlundnagldndnnisillunmsdnamianiannnsldianfvesaudulunig

ALY d1uSunisnsessiudulaedalamudundnaldndnnisaaieduiinaniun

a 1 -

wutuuddsuangléidulewiy Jagtumuidess 0 nereudfiazdszyndlilasedne
Usgamifisuiunisnsestaufuddeiu seileuszendidismeiuudiazaliamisn
yhanedadrinfiiinisnsesiiufuamsniSeuslsiansdeyaiilasiadreteyadudadu
wiudlasnlasstneUssamionasiasliannsnifouidoyadilasadsdoyauuulale

Wadu s sadnludfiidmunglunisasideyalvdanteyadulvlldnvaeadeiuuin

] I

galagnsindeyaiidiunaniiialoyangnaniiaiarog idunaluazisazisendunand

Y Y
[

itugeusuiatuiludunannsaldluiumuvesyaidild mntuvenefifvestoyalu
Funadvililadeyadioenifidnuusaseiutoyaiy 91nnW3TennuLT 15 mudn ol
a a [y Y4 [(Y] [A =) < (Y] =] A

finsfiarsananuduiusvesldidmunedugldnudugvislowiudmuneiuleuauduy q
FapMuduRuUSa I UToRvNATANITNTDITINAY F9tU L51F0IN1TUELelULAATEUY
wuzihndudsiadaludfiioSsusmununuansinuuzanuaae sy i dmineiu
dldauau 9 waglowudmunedulowudu q gameiislavihnisneasiwaznuinlunaiie

LY

L@UpIUTZANSAIMNINATIULAADU &) VDNUITUTINIUG U1
. o
ARV ANNANERSLALINGINISABNNLADS Anellatanan W %mfﬁl
=) d‘ aa
angleveld@n.

5933623723, 5933643223 : MAJOR COMPUTER SCIENCE
KEYWORDS : RECOMMENDER SYSTEM, USER-BASED
COLLABORATIVE FILTERING, ITEM-BASED COLLABORATIVE
FILTERING, IMPLICIT FEEDBACK, NEURAL COLLABORATIVE
FILTERING
NATTAPON NAPASAI, PATCHARAPOL PROMANEE : BOTH USER-
BASED AND ITEM-BASED COLLABORATIVE FILTERING BASED
ON AUTOENCODERS WITH DEEP NEURAL NETWORKS.
ADVISOR : ASSOC. PROF. SARANYA MANEEROJ, Ph.D., CO-
ADVISOR : ASST. PROF. MONNAT PONGPANICH, Ph.D., 58 pp.

Recommender systems have a major contribution, that is, it allows users to
interact with content efficiently. A recommender system advises users by filtering items
based on users’ previous actions. Collaborative filtering (CF) is one of the recommender
system algorithms which is built on explicit feedback (e.g., user ratings) and implicit
feedback (e.g., number of clicks and purchases). It compares a target user with others
who have similar preferences. Further, there are two well known types of CF: user-
based CF and item-based CF. User-based CF assumes that people who have similar
tastes tend to react to items similarly. For item-based CF, it tries to find look-alike items
instead of look-alike users. Nowadays, many research attempt to apply the neural
network into CF because there is a limitation in CF that CF can learn only linear
representation, but the neural network can learn both linear and non-linear
representation. Autoencoder reconstructs the input data in the output layer by encoding
the input data into a low dimensional middle layer called the hidden layer to form latent
representation, and then the output from the hidden layer is decoded by the output layer
to reconstruct the data. From previous works, we have noticed that relations between a
target user (item) and other users (other items) were not utilized and this relationship is
a plus point for collaborative filtering technique. Therefore, we have proposed the
autoencoder recommender system model that learns a representation of similarity
between a target user (item) and other users (items). Finally, the experimental results

have shown that the proposed model performs better than state of the art methods.

Vi

vii

ACKNOWLEDGEMENTS

This "Both user-based and item-based collaborative filtering based on
autoencoders with deep neural networks" project has been completed. We would like to
thank the individuals and groups for giving us advice and the best assistance. Both in
academic and research operations, which are

My project supervisors, Assoc. Prof. Dr. Saranya Maneeroj and Asst. Prof. Dr.
Monnat Pongpanich for providing advice and guidance for the research. As well as
helping to review this report for completeness and encouragement for us always.

Asst. Prof. Dr. Dittaya Wanvarie for collaboration with AWS, which has a great
impact on our project's success.

The project Examination Committee, Asst. Prof. Dr. Jaruloj Chongstitvatana
and Asst. Prof. Dr. Krung Sinapiromsaran for the suggestions that made this project
development even more complete.

Finally, we would like to express my gratitude towards my parents for
supporting, advising and encouraging us throughout the research process.

CONTENTS

Page

ABSTRACT IN THAI Lt iv
ABSTRACT IN ENGLISH ...t v
ACKNOWLEDGEMENTS ... vilii
CONTENTS Lttt sttt et s ie e be e bn e e ne e nee e viii
LIST OF TABLES ...ttt X
LIST OF FIGURESottt Xi
CHAPTER | INTRODUCTION ...ttt 1
1.1 Background and rationale............cccooviiriiiiiiniieee e 1
I O o =Tt £ YT S UOUSSSTS 2
L3 S0P . ittt 2
1.4 PrOJECT ACHIVITIES ...vviuveiiieieeie ettt te et e st e e e e sneeneesnaenne s 3
1.5 BeNETIES. e 4
1.6 REPOM OULHINES ...c.veeiiiieeciece ettt ae s 5
CHAPTER I RELATED WORKS..... .o 6
2.1 RECOMMENUET SYSTEIMSviiiieiiieieeiiesiee sttt sttt ns 6
2.2 Content based MEtNOGS...........cceiiiiiiiiiieee e 7
2.3 COSINE SIMIAMTLY ..ot 7
2.4 Collaborative filtering Methods..........ccoviiiiiiiieee s 8
2.5 Deep learning in the recommender SYSTEMcoceviririeiieienenenese e 10
2.6 Neural collaborative filteringccoccooiieieiiie 11
2.7 AULOBNCOUET ...ttt bbbt 12

2.8 Recommender system evaluation............cccovvvieiieeirsie e 15

Page

CHAPTER HHI METHODOLOGY ..ottt 17
Bl MOGEL s 17
CHAPTER IV EXPERIMENTAL EVALUATIONooiiiiiieeeee e 22
4.1 DAASEL.......oiiiiiiiic 22
4.2 EValuation MELIICS . ..c..ooviieiiiiieiisieie e 23
4.3 EXPerimental reSUILS.........cccooiiiiiiiece e 24
CHAPTER V CONCLUSION ..ottt s 29
5.1 CONCIUSION.....comiiiiitiicieteete s 29
ST o o =T o o USSR 29
REFERENCES ...t 30

LIST OF TABLES

Table 1.1 The gantt chart that explains the processes of methods in the timeline......... 3
Table 4.1 The comparison between DHA-RS and UICF-AEccccooveviiiciieennenn, 28
Table A.1 The gantt chart that explains the processes of methods in the timeline42

LIST OF FIGURES

Page
Figure 2.1 Example of company that use a recommender SyStems..........cccceevververreenne. 6
Figure 2.2 Types of recommender systems algorithms............c.ccccooevieveiicciccc e, 7
Figure 2.3 Content-based FIlter. ..o e 7
Figure 2.4 CoSIiNe SIMIAITLYooviiiiiiiiiiee e 8
Figure 2.5 Measuring the similarity between tWo USErS.........ccccevveieieereciieseesie e 8
Figure 2.6 Explicit feedback fOrm..........cccooiiiiicii e 9
Figure 2.7 Implicit feedback fOrm.........ccooiiiiiiii e 9
Figure 2.8 User-based collaborative filtering..........c.ccoovvviiiniciii 10
Figure 2.9 Item-based collaborative filteringcccccveviiieieiie e 10
Figure 2.10 Neural collaborative filtering modelcccccooviveiiiiiicie i 11
Figure 2.11 Multi-layer perceptron formula...........ccocoviiiiiiiiiiiniie e 12
FIQUre 2.12 AULOBNCOUET ..ottt bbb 13
Figure 2.13 The autoreC MOdel.........ccov i 13
Figure 2.14 AULOIeC QUALIONcviiieiieeie ettt se et e e e re e e e nre s 14
Figure 2.15 A novel deep hybrid recommender system framework based on
T 10 1=] 00100 (< USSP 15
Figure 2.16 Normalized discounted cumulative gain formula............ccccccoeviveiienns 16

Figure 3.1 Both user-based and item-based collaborative filtering based on

autoencoders with deep neural networks model............ccoocooiiiiiiiiic 18
Figure 3.2 The user/item representation 1€arning..........c.ccocvvvvvveieieneienenenesesenns 19
Figure 3.3 The user/item similarity representation learningccccevveviveveniennnns 20

Figure 3.4 User profile from a concatenation user representation and user similarity
(=TT =R =T 1 =[] PRSP 20

Figure 3.5 Item profile from a concatenation item representation and item similarity

=T] (=R=T 1 =[] S 21
Figure 3.6 NCF frameWOrKccoiiiiiic e 21
Figure 4.1 The movielens dataset LMcccccoiiiieiinin i 22
Figure 4.2 The number of hidden layers effect on HR@10...........ccccvevveiieeiiencnnn, 25

Figure 4.3 The number of hidden layers effect on NDCG@10cccoovvvrerrevnnnnnns 26

Page
Figure 4.4 The number of the output layer dimensions effect on HR@10 27
Figure 4.5 The number of the output layer dimensions effect on NDCG@10 27
Figure AL USer-Dased CF ... 35
Figure A.2 1tem-DaSEd CF ...t s 35

Figure A.3 Two approaches of autorec: user-based autorec (left) which takes user-item
rating vector as the inputs and item-based autorec (right) which takes item-user rating
VECTOr @S the TNPUL......eiiiieie e ettt reeae s 37
Figure A.4 Both user-based and item-based collaborative filtering based on

autoencoders with deep neural NEtWOIKS..........ccceiiiieiieere e 39

CHAPTER |
INTRODUCTION

1.1 Background and rationale

With the growing size of information, the recommender system (RS) plays an
important role, that is, allowing users to interact with content efficiently [1]. The
recommender system advises users by filtering items based on users’ previous actions.
It has been employed by many sites (e.g., Netflix, Amazon, and Spotify) to suggest their
products or services for customers to raise their incomes. There are three main types of
recommender systems: content-based filtering (CBF), collaborative filtering (CF), and
hybrid methods. CBF aims to recommend other similar items to users based on item
features (e.g., item descriptions) from users’ previous actions. However, sometimes
item features cannot be gathered, so it is not possible to use CBF.

CF came to fix this limitation [2]. CF is built on explicit feedback (e.g., user
ratings) and implicit feedback (e.g., number of clicks and purchases). It predicts user’s
ratings on items based on their past activities. Further, there are two well known types
of CF: user-based CF and item-based CF. User-based CF (UBCF) assumes that people
who have similar tastes tend to react to items similarly. This approach calculates the
target user rating by using the user rating who has the highest similarity among users.
Item-based CF (IBCF) tries to find items that look alike instead of look-alike users.

Nowadays, many research attempt to apply the neural network with CF. He et
al. [9] proposed neural collaborative filtering (NCF) that can learn relations between
users and items for rating prediction. Because there is a limitation in CF that CF can
learn only data with the linear pattern, but the neural network can learn both data with
the linear and non-linear pattern. A neural network can learn input features in both
supervised and unsupervised ways. Besides CF, a neural network has been showing its
capability in many fields, such as computer vision and natural language processing.

Meanwhile, an autoencoder is one of the most popular neural network models
in the recommender system. Sedhain et al. [4] proposed autorec which took advantage
of autoencoders for the CF framework. There are two well known types of
autoencoders: (1) denoising autoencoder (DAE); (2) stacked denoising autoencoder

(SDAE). Wu et al. [5] proposed collaborative denoising autoencoder (CDAE) which

2

took the corrupted input data and this allowed the model to perform better. Strub et al.
proposed a hybrid recommender system based on autoencoders (CFN) which fed the
corrupted input with side information to the autoencoder resulting in reducing cold-start
problems. SDAE is the extended version of DAE by adding layers symmetrically.
Encoding layers of SDAE are corrupted to make the model have better performance
than DAE. Dong et al. [7] used SDAE for user representation and item representation
with integrating side information for matrix factorization. Liu et al. [8] used two SDAE
for user representation and item representation from auxiliary information to form user
and item latent vectors then fed to the NCF framework for the rating prediction.

According to previous methods, there are two ways of using an autoencoder in
the recommender system: predicting rating from the user-item rating matrix and
learning either user representation or item representation at the bottleneck layer. The
uses of autoencoders in the second approach have shown that there was no information
of other users or other items considered because of the scope of mini-batch training,
which could not get the information of all users and items at the same time. This means
they did not consider the relations among users or among items which are the UBCF
and the IBCF advantages, respectively.

In this work, we chose to extend the use of autoencoders in the second approach
because autoencoders have a powerful representation learning. We included the
advantages of UBCF and IBCF which incorporate user and item relations in order to

increase the accuracy of the recommendation.

1.2 Objectives

1. To propose two more autoencoders that aim to learn user similarity
representation and item similarity representation from user-user similarity matrix and
item-item similarity matrix, respectively.

2. To use the NCF framework: Multi-Layer Perceptron (MLP) to learn user-item

relations and predict the rating.

1.3 Scope
1. Using a dataset named MovielLens-1M, which contains 6040 users, 3706
items, and a million ratings. The max rating is 5. The min rating is 1. Zero means there

is no rating for the movie.

2. Eval

3

uation metrics are the hit rate (HR) and the normalized discounted

cumulative gain (NDCG).

3. The dataset has to contain users, items, and ratings.

1.4 Project

activities

A. project Plan

1.

2
3
4.
5
6
7

Do a literature review on the recommender system.

Identify the problems and limitations of previous works.

Design and analyze the improved method of the recommender system.
Implement the proposed system.

Evaluate the accuracy of the proposed system.

. Analyze and discuss the experimental results.

Do the documentation.

B. Schedule
Table 1.1 :The gantt chart that explains the processes of methods in the

timelin

e.

Project

Activities

Year 2019 Year 2020

Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr.

papers and
academic
articles about
the
recommender
system.

1. Read research

problems and
limitations of

2. ldentify the

previous works.

3. Design and
analyze the
improvement

method of the

recommender

system.

4. Develop and

test the

efficiency of the

proposed
system.

5. Experiment
to evaluate the
accuracy of the

proposed
system.

6. Analyze and

discuss the
experiment
result.

7. Provide the

report

documentation.

1.5 Benefits

151

1.5.2

Benefits for users

1. Users have a new recommender system, which has better accuracy
than the previous work.

2. Possibly increase the product sales.

3. Possibly increase the income of the user's company.

4. Users can possibly access the content efficiently.

Benefits for the system developers

1. Achieved both theoretical and practical knowledge in the
recommender system field.

2. Learn new tools and programs, which are significant to develop the
system.

3. Practice how to plan the work properly.

4. Improve problem-solving skills.

1.6 Report outlines
This report consists of five chapters as follows:
In chapter I, motivation, objective and scope of this project is described.
In chapter I1, we review the technical knowledge and related work.
In chapter 111, we present the methodology including how we preprocess the dataset and
train the model.
In chapter 1V, we present results and evaluate the performance.
In chapter V, we conclude and discuss our work.

CHAPTER II
LITERATURE REVIEW

2.1 Recommender systems

Recommender systems [10] are algorithms that aim to suggest relevant items to
users and allow users to interact with content efficiently (items coud be anything
depending on industries, for example, items can be movies to watch, text to read,
products to buy etc.) by filtering items based on users’ previous actions. Many
companies use recommender systems to suggest their products or services for customers
to raise their incomes. Examples of companies that use the recommender systems are

Amazon, Netflix, Facebook, and Google (Figure 2.1).

Figure 2.1 : Examples of companies that use recommender systems

Recommender systems can be divided into three main types: content based
methods, collaborative filtering methods and hybrid methods (Figure 2.2).
Collaborative filtering methods can be divided into two main types: user-based and
item-based. Hybrid method is a combination of both methods.

Recommender Systems

Content based methods Collaborative filtering methods Hybrid method

User-based Item-based

Figure 2.2 : Types of RS algorithms

2.2 Content based methods

Content based methods [11] are algorithms that aim to recommend other similar
items to users based on item features (e.g., item descriptions) from users’ previous
actions. From figure 2.3, this user has watched some movies, the system will find a
movie which is most similar to the previously watched movies from all movies in the

system for recommending to the user.

watched
by the user

recommended
to the user

Figure 2.3 : Content-based filtering

2.3 Cosine similarity
Cosine similarity [12] measures the similarity between two vectors from
an inner product space. It is often used to measure movies or user similarity in

recommender system. From Figure 2.4, this is a formula of cosine similarity where A

8

and B are vectors with equal dimensions. From Figure 2.5, this is an example of finding
cosine similarity between user 1 and user 2 based on a user rating matrix (left) to get a

user-user similarity matrix (right).

Figure 2.4 : Cosine similarity

0 5 4 1 0 1 0.7776

5 5 3 2 0 \
o _ (0%5) + (5#5) + (4+3) + (1*2) + (0+0)
CosineSim (userl, user2) = VO02+52442412402V524524324+22402 0.77761579136

Figure 2.5 : Measuring the similarity between two users

2.4 Collaborative filtering methods

Collaborative filtering methods [13] are built on explicit feedback e.g., user
ratings (Figure 2.6) and implicit feedback e.g., number of clicks and purchases (Figure
2.7). It compares the target user with others who have similar preferences. It is based
on the logic that if people similar to person A (judging from the past) like this, so should
the person A. There are two well known types of CF: UBCF and IBCF.

Figure 2.6 : Explicit feedback form

Figure 2.7 : Implicit feedback form

2.4.1 User-based collaborative filtering

UBCF assumes that people who have similar tastes tend to react to items
similarly. For example, in Figure 2.8, when we want to recommend a movie to a target
user, we need to search for the user who has the highest similarity (blue square on the
right of figure 2.8). This can be done by calculating cosine similarity between the target
user and other users. After we get the user who has the highest similarity, UBCF
recommends a target item which is the movie that the target user did not watch before
to the target user.

10

Target-Item Target-Item

Target-User Target-User

0 \Recommend! 0
—

0

o |
[

=

—

0

. . :

Figure 2.8 : User-based collaborative filtering

2.4.2 Item-based collaborative filtering
For IBCEF, it tries to find items that look alike instead of look-alike users to
recommend to the target user. In Figure 2.9, the approach focuses on using the reacted
items which are items rated by the target user (the red square of Figure 2.9) to calculate
cosine similarity between the item that the target user reacted with other items to search
the item which has the highest similarity (blue column on the right of figure 2.9). The
unreacted item with highest similarity to items found in the previous step (red ellipse in

Figure 2.9) of the target user will be used to recommend to the target user.

Target-ltem Target-ltem

Movie Movie Movie movie Movie Movie Movie Movie Movie Movie Movie movie
User 1 2 3 4 5 User 1 2 3 4 5

0 1 1

Target-Use

0 0 1 0 1 Recommend 1

0 0 1 i 1 1 1

0 1 1 1 1 1 1
—_—

Figure 2.9 : Item-based collaborative filtering

2.5 Deep learning in the recommender system

The three types of the mentioned recommender systems have a limitation,
namely only being able to learn data with the linear pattern but deep learning can learn
both data with the linear and non-linear pattern. Therefore, deep learning plays an
important role in the recommender system because it helps the model to learn more on

non-linearly separable data. There are two main models that are commonly used in the

11

recommender system to predict ratings are neural collaborative filtering [9] and

autoencoder.

2.6 Neural collaborative filtering

Neural collaborative filtering [9] came to fix the data with the non-linear pattern
inseparable limitation of the collaborative filtering by adding part of the neural network
for learning data with the non-linear pattern. Figure 2.10 shows the general framework
of NCF which uses two types of input: (1) a user identity vector (one-hot encoding of
user ID which is a binary vactor whose dimension is equal to the number of users, where
a value of one appears only one time and the rest of the values are zero) from the user
identity matrix and (2) an item identity vector (one-hot encoding of item ID which is a
binary vactor whose dimension is equal to the number of items, where a value of one
appears only one time and the rest of the values are zero) from the item identity matrix.
Then, a user identity vector and an item identity vector are embedded to form a user
latent vector and an item latent vector, respectively. A user latent vector is a vector
which has meaning in terms of interaction among users. On the other hand, an item

latent vector is a vector which has meaning in terms of interaction among items.

Figure 2.10 : Neural collaborative filtering model

12

After that, a concatenated vector between a target user latent vector and an target
item latent vector is fed into a Multi-Layer Perceptron, which is called Neural CF Layers
(Figure 2.10) in this work, which can extract the interaction between a target user and a
target item from the concatenated vector. Finally, a rating prediction can be obtained
from the last layer of MLP as in equations shown in Figure 2.11

Figure 2.11 : Multi-layer perceptron formula

where z; is a concatenated vector from a user latent vector and an item latent vector
@, is a concatenation between two vectors,

Py OF by (Figure 2.10) is a user latent vector,

q; or q;;, (Figure 2.10) is an item latent vector,

W, is a weight of layer L,

b, is a bias of layer L,

a; is an activation function of layer L,

o is a sigmoid function,

h is a weight of an output layer,

Vi 1S a rating prediction,

v, (Figure 2.10) is a target rating which is the real rating to use for comparison with

the rating prediction in the training part.

2.7 Autoencoder

Nowadays, an autoencoder [14] plays a major role in the recommender system.
The autoencoder is an unsupervised model of the neural network. It tries to reduce the
dimension of input data by encoding the input data into a low dimensional middle layer
called the hidden layer (bottleneck) to form a latent representation, and then the output

from the hidden layer is decoded by reconstructing the data from the hidden layer as in

13

Figure 2.12. There are two main ways of using the autoencoder for recommender
systems: using the autoencoder to predict rating and using the autoencoder for learning

either user representation or item representation.

Figure 2.12 : Autoencoder

2.7.1 Using autoencoder to predict
Many works attempt to apply the autoencoder into recommender systems by
using it to predict a rating for a target user and a target item. From Figure 2.13, autorec
[4] is a model that uses an autoencoder that takes) which is a user-item rating vector

constructed from the user-item rating matrix as an input.

NO

Figure 2.13 : The autorec model

14

A user-item rating vector is fed into an autoencoder and the output from the
reconstruction of the autoencoder is the new rating from the rating prediction as the

equation in Figure 2.14.

Figure 2.14 : Autorec equation

where h(r;0) or #® (Figure 2.13) is the new rating reconstructed from the
autoencoder,
r@ is a user-item rating vector,

7 is a weight of encoding part,

W is a weight of decoding part,

w is a bias of encoding part,

b is a bias of decoding part,

g is an activation function of encoding part,

f is an activation function of decoding part.

2.7.2 Using autoencoder to predict

The second way for using the autoencoder in the recommender system is using
the autoencoder for learning either user representation or item representation at the
bottleneck layer. A novel deep hybrid recommender system framework based on
autoencoders (DHA-RS) [8] uses SDAE that takes a target user and a target item side
information vector (a vector showing attributes associated with users or items such as
gender, age, etc.) from a given user-item side-information matrix as an input for
features-extraction to get user representation and item representation by minimizing
errors between the output and the original user-item features. Then, a concatenation
between the embedding of the user ID one-hot vector and the user representation forms
the user profile and a concatenation between the embedding of the item ID one-hot
vector and the item representation forms the item profile as shown in Figure 2.15 in part
(i) feature extraction and 1D embedding module. Then, they fed both the user profile and
the item profile into DHA-RS framework to learn input to get user-item relation and

15

predict the rating from the last layer of Neural CF layers as Figure 2.15 in part (ii) neural

collaborative filtering module.

Figure 2.15 : A novel deep hybrid recommender system framework based on

autoencoders

2.8 Recommender system evaluation

In the evaluation of the recommender system, there are several evaluation
methods such as loss, accuracy. There are the two main evaluation measures that most
researchers use to evaluate results of the recommender system: hit rate and normalized

discounted cumulative gain.

2.8.1 Hitrate

The hit rate [15] is an evaluation of the recommender system that generates a
top k recommendation list by sorted rating from given data. Similarly to prediction, a
rating of all items associated with a target user is predicted. Then, a top k prediction list
is generated by sorted rating prediction. After that, if each item in the top k prediction
list is found in the top k recommendation list, HR will be increased by one. Finally, we
repeat the process with all users to generate an average HR as a final HR score which

is called HR@k score because the number of top ranking used is k.

16

2.8.2 Normalized discounted cumulative gain

The normalized discounted cumulative gain [16] is an evaluation of the
recommender system that generates a top k recommendation list by sorted rating from
given similarly with HR but the difference is HR does not consider positions in top k
that is HR increased when a predicted item is found in the top k recommendation list,

but the NDCG considers positions in top k as follows (Figure 2.16).

DG DCGP
n = —
? IDCG,

E rel:

DCG, = _—
P ; log, (i + 1)

|RELyp rel;
IDCG, = 2 L

1 logz (i’ + 1)

5‘:

Figure 2.16 : Normalized discounted cumulative gain formula
where rel; is a value of the rating,
i is an index,
p is the number of ranks,

REL, is the number of ranks in descending order by the values.

As equation above, NDCG takes an index of a prediction item which is found in
the top k recommendation list as a divisor. After that, we repeat the process with all
users to generate an average NDCG as a final NDCG score which is called NDCG@k

score, similar to HR.

According to previous research, the use of an autoencoder in the second
approach (learning to get user representation or item representation), has shown that
information from other users or other items is not considered because of the scope of
mini-batch training, which could not get the information from all users and items at the
same time. This means it did not consider the relations among users or among items
which are the advantage of UBCF and IBCF, respectively. In the next chapter, we will

explain the models that we propose to solve these problems.

CHAPTER Il1
METHODOLOGY

We propose a new autoencoder recommendation model that applies two more
autoencoders which include advantages of UBCF and IBCF. The added autoencoders
aim to learn user similarity representation from the user-user similarity matrix and item
similarity representation from the item-item similarity matrix to form the user profile
and the item profile. Consequently, the model should yield a more accurate predicted

rating.

3.1 Model

We incorporated the user similarity representation and the user representation
which form the UBCF latent-vector or user profile, and incorporated item similarity
representation and the item representation which form the IBCF latent-vector or item
profile. From Figure 3.1, we proposed both user-based and item-based collaborative
filtering based on autoencoders with deep neural networks model (UICF-AE) which
divided into two parts: (1) an autoencoder for learning the representation of the
user/item and the user/item similarity and (2) a deep neural network for rating prediction

part.

18

Figure 3.1 : Both user-based and item-based collaborative filtering based on

autoencoders with deep neural networks model

First, we illustrate the overview of UICF-AE which integrates the latent feature
representation of a user and an item with the deep neural network. From Figure 3.1, as
previously mentioned, the proposed model is composed of the learning representation
part and the deep neural network part. The first part is composed of the user/item
representation learning part and the user/item similarity learning part. The first subpart
of the learning representation part are the user/item representation learning which
consists of two autoencoders. From number 1 in Figure 3.1, the first autoencoder takes
a user-item rating vector constructed from the user-item rating matrix as the input. From
number 4, Figure 3.1, the second autoencoder takes an item-user vector constructed
from the item-user rating matrix as the input. The second sup-parts of the learning
representation part is the user/item similarity representation learning which consists of
two autoencoders. From number 2 in Figure 3.1, the first autoencoder takes a user-user
similarity vector constructed from the user-user similarity matrix as the input. From
number 5 in Figure 3.1, the second autoencoder takes an item-item similarity vector
constructed from the item-item similarity matrix as the input. We incorporated two sub-
parts of the learning representation part to form the user latent vector (Number 3 in
Figure 3.1) and the item latent vector respectively (Number 4 in Figure 3.1). From
number 7 in Figure 3.1, the second part is the rating predict part which is the deep neural
network that takes the user latent vector and the item latent vector to predict rating.

19

3.1.1 The representation learning by autoencoder

We now explain each subpart in more detail. Each part has different objectives
as follows:

1) The user/item representation learning

The learning representation consists of two autoencoders (Figure 3.2). From
Figure 3.2 number 1, as previously mentioned, the first autoencoder takes a user-item
rating vector from the user-item rating matrix as the input. From Figure 3.2 number 4,
the second autoencoder takes an item-user vector from the item-user rating matrix as
the input. For each autoencoder, once the input is fed into the autoencoder,
representation of the input is learned in the hidden layer by minimizing the errors
between the output and the input (Loss). If loss is very low, the representation is very
good because it can reconstruct the original input even using a smaller feature

dimension.

Figure 3.2 : The user/item representation learning

2) The user/item similarity representation learning

The learning representation consists of two autoencoders. From Figure 3.3
number 2, as previously mentioned, the first autoencoder takes a user-user similarity
vector from the user-user similarity matrix (calculated by cosine similarity between
user-item rating matrix) as the input. From Figure 3.3 number 5, The second
autoencoder takes an item-item similarity vector from the item-item similarity matrix
(calculated by cosine similarity between item-user rating matrix) as the input. The user-

user similarity matrix and the item-item similarity matrix are matrices based on the

20

cosine similarity formula as discussed in chapter two. For each autoencoder, once the
input is fed into the autoencoder, the representation of the input is learned in the hidden
layer by minimizing the errors between the output and the input (Loss). If loss is very
low, the representation is very good because it can reconstruct the original input using

a smaller feature dimension.

Figure 3.3 : The user/item similarity representation learning

3.1.2 Rating prediction with the deep neural network
After we get the user representation, the item representation, the item similarity
representation, and the user similarity representation, we concatenate the user
representation and the user similarity representation defined as the user profile (Figure
3.4) and concatenate the item representation and the item similarity representation

defined as the item profile (Figure 3.5).

Figure 3.4 : User profile from a concatenation user representation

and user similarity representation

21

Figure 3.5 : Item profile from a concatenation item representation

and item similarity representation

NCF is applied to learn user-item relations and predict the rating by feeding the
user profile and the item profile into the NCF framework (Figure 3.6) based on the
Multi-Layer Perceptron formula as discussed in chapter two. Weights and bias are used

in calculations in each layer to reconstruct the input.

Figure 3.6 : NCF framework

CHAPTER IV
EXPERIMENTAL EVALUATION

We want to evaluate the proposed model by comparing it with the previous
research which does not have the advantages of UBCF and IBCF. This chapter shows

the details of the dataset, evaluation metrics and experimental results.

4.1 Dataset

We trained the model with MovieLens dataset 1M which is the benchmark
dataset used in the previous work and retrieved from the Department of Computer
Science and Engineering at the University of Minnesota. This dataset contains
1,000,209 anonymous ratings of approximately 3,900 movies made by 6,040
MovieLens users who joined MovieLens in 2000. Each record consists of a user ID, a
movie ID and its rated value (Figure 4.1).

userId movieId rating timestamp

0 1 1193 5 978300760
1 1 661 3 978302109
2 1 914 3 978301968
3 1 3408 4 978300275
4 1 2355 5 978824291
5 1 1197 3 978302268
6 1 1287 5 978302039
7 1 2804 5 978300719
8 1 594 4 978302268
9 1 919 4 978301368

Figure 4.1 : The movielens dataset 1M

We chose to use implicit feedback data because the implicit feedback data is
much easier to collect in real-world applications [9]. We preprocessed ratings to implicit
feedback by the condition that for each movie, if a movie has been rated by a user, then

we set the rating to one, else we set the rating to zero. After that, we split the dataset

23

into 994169 rows for the train set and 6040 rows for the test set. The test set is
constructed using a leave-one-out evaluation method since we want to recommend a
rank-list as much as possible for each user. We used HR and NDCG which are rank-list

evaluation metrics to evaluate the proposed model [15, 16].

4.2 Evaluation metrics

The recommender system that applied the neural network is difficult to evaluate
accuracy of the predicted rating. Therefore, we evaluated recommendation rank lists
which are a measure of ranking quality instead of evaluating accuracy. We chose the
normalized discounted cumulative gain [16] and the hit rate [15] because they were the
rank list metrics which are used in real life scenarios and also previous research. In our
test set, there are 6040 records, one record per user with a rated movie value. We use
negative sampling, that is, from the test set, we obtained a record from one user at a
time (a movie in this record has been rated) and random sampling 99 movies that haven’t

been rated by this user.

4.2.1 The hit rate method

For the hit rate method [15], we fed the negative sampling data into the model and
obtained predicted ratings from the model. Next, we sorted the predicted ratings and
obtained the hit rate. If the movie ID that has been rated shows up in the top ten, we
incremented the hit rate value by one. We repeat this process until all users have been
sampled to get HR@10 which is an HR score from using the top ten rankings. For
example, in a test set, we use one record which has user ID 0 and rated movie ID 47.
We random 99 movie ID which is not rated to listas [1, O, O, O, O, 0,..., 0]. After that,
the model will predict the rating from the negative sampling data, then get the new
rating as [0.955, 0.456, 0.432, 0.0123,..., 0.998]. We sort the list by predicted rating.
Next, we checked if the top ten movie IDs in the sorted predicted rating list match with
the rated movie ID in the negative sampling data. If a match occurs, we incremented the
hit rate value by one. Finally, we repeat this process until all users have been sampled
and divided by the number of tests set to get HR@10.

24

4.2.2 The normalized discounted cumulative gain method

For the normalized discounted cumulative gain (NDCG) [16], we fed negative
sampling data into the proposed model to get a result similar to the hit rate. We sorted
predicted ratings and calculated DCG. If the movie has not been rated before, a term
contributing to DCG value will be zero. If the movie has been rated before, a term is
calculated according to the formula. As previously mentioned in chapter two, from the
formula of IDCG in NDCG, our data set has an implicit feedback type that is binary
data; therefore, we do not need to calculate IDCG because it will always be one.
Therefore, it calculates only DCG to get NDCG@10 which is an NDCG score from
using the top ten rankings. For example, we construct a test set from a record with user
ID 0 and rated movie ID 47 then we random 99 movie ID which has not been rated to
formalistas[1, 0,0, 0, 0, O, ..., 0]. After that, the model will predict the rating for the
previous list and predicted ratings are obtained which might look like e.g., [0.955, 0.456,
0.432,0.0123, ..., 0.998]. We sort the list by predicted ratings. Next, we checked if the
top ten movie IDs in the sorted predicted rating list match with the rated movie ID in
the negative sampling data. If a match occurs, we incremented the NDCG value by one
and divide the NDCG value by the position of the movie ID 47 in the top ten list. Finally,
we repeat this process until all users have been sampled and divided by the number of
tests set to get NDCG@10.

4.3 Experimental results

We want to compare results between the proposed model (UICF-AE) which uses
4 autoencoders to extract the representation of user, item, user similarity (which shows
the relation between users and takes advantage of UBCF) and item similarity (which
shows the relation between items and takes advantage of IBCF). The four
representations are fed to MLP to predict rating with a novel deep hybrid recommender
system framework based on autoencoders model (DHA-RS) [8] which uses two
autoencoders to extract representation of user and item and uses embedding of the user
ID and the item ID to show the relation between users and between items but their
method did not fully utilize the strength of CF. Therefore, we use the same evaluation
methods as DHA-RS that are HR and NDCG to compare the performance of models.
Further, we began by setting the hyperparameters based on DHA-RS [8] best

hyperparameters. We set an adam optimizer to optimize the model and set the learning

25

rate to 0.0001, set the number of hidden layers of each autoencoder to 128 dimensions
since autorec [4] experimental results have shown that the loss of autoencoder
dramatically reduces when the number of hidden layers is more than 100, set the
regularization to 100 and the loss parameter to 100 because DHA-RS [8] experimental
results have shown that the model is not sensitive to this values, and set the batch size
to 512. We refer to these sets of parameters as the base parameter model. For activation
functions, we used relu activation function to all hidden layers in the proposed model
because relu can reduce the vanishing gradient problem unlike sigmoid, relu is
appropriate with sparse data, and relu allows the model to be less likely overfitting [9].
Except for the output layer of MLP we used sigmoid activation function to predict the

implicit rating.

4.3.1 The multi-layer perceptron layers

We want to test how the number of MLP layers affects the model's performance.
We set the output layer to 64 dimensions and tested on the number of MLP layers with
one, two, three and four layers. For example, if the number of hidden layers is one, the
MLP dimensions of each layer are 64 and 1, respectively. If the number of hidden layers
is two, the MLP dimensions of each layer are 128, 64 and 1, respectively. We use the
base parameter model to test and compare with DHA-RS to get the result shown in
Figure 4.2 and Figure 4.3.

0.74
0.73

0.72 ._/‘/.

0.71 e=@=J|CF-AE
0.7 e=@== DHA-RS

0.69

0.68

HR@10

0.67

0.66
1 2 3 4

Number of layers

Figure 4.2 : The number of hidden layers effect on HR@10

26

0.46
0.45
0.44

o 043 —@—UICF-AE

® 0.42 «=@=—DHA-RS
0.41

NDCG

0.4
0.39

0.38
1 2 3 4

Number of layers

Figure 4.3 : The number of hidden layers effect on NDCG@10

From Figure 4.2, the best result of HR@10 of the proposed model on test set is
MLP with four layers which has HR@10 of 0.7274 while DHA-RS has the highest
HR@10 value less than 0.71 followed by MLP with three layers and MLP with two
layers that have HR@10 values 0.7183 and 0.7113, respectively.

From Figure 4.3, the best result of NDCG@10 of the proposed model on the test
set is MLP with four layers which has NDCG@10 of 0.4549 while DHA-RS has the
highest NDCG@10 value less than 0.44 followed by MLP with three layers and MLP
with two layers that have the NDCG@10 values 0.4400 and 0.4381, respectively.

4.3.2 The output layer dimensions of multi-layer perceptron

After we get the number of layers of MLP, we want to test how the number of
the output dimensions of MLP layers affects the model's performance. We set the layer
of MLP to 4 layers from the previous results (Section 4.2.1) and tested for the number
of output layer dimensions of MLP with 64, 32, 16 and 8. For example, if the output
layer dimensions of MLP has 64 dimensions, each layer of the MLP has dimensions
with 512, 256, 128 and 64 respectively. If the output layer dimensions of MLP have 32
dimensions, each layer of the MLP has dimensions with 256, 128, 64 and 32
respectively. We use the base parameter model to test and compare with DHA-RS to

get the result shown in Figure 4.4 and Figure 4.5.

27

0.74
0.73

0.72
0.71

0.7 «=@=— UICF-AE
0.69

HR@10

0.68 =@=DHA-RS
0.67
0.66

0.65
8 16 32 64

Dimensions of the output layer

Figure 4.4 : The number of the output layer dimensions effect on HR@10

0.46
0.45
0.44
o 043
é') 0.42 =@— UICF-AE
8 .
o 041
z =@==DHA-RS
0.4
0.39
0.38

8 16 32 64
Dimensions of the output layer

Figure 4.5 : The number of the output layer dimensions effect on NDCG@10

From Figure 4.4, the best result of HR@10 of the proposed model on the test set
is the output layer dimensions with 64 dimensions which has HR@10 of 0.7274 while
DHA-RS has the highest HR@10 value less than 0.71 followed by the dimension of the
output layers with 32 dimensions and the dimension of the output layers with 16
dimensions that have HR@10 values 0.7112 and 0.6958, respectively.

28

From Figure 4.5, the best result of NDCG@10 of the proposed model the on test
set is the output layer dimensions with 64 dimensions which has HR@10 of 0.4549
while DHA-RS has the highest HR@10 value less than 0.44 followed by the dimension
of the output layers with 32 dimensions and the dimension of the output layers with 16
dimensions that have HR@10 values 0.4307 and 0.4203, respectively.

Table 4.1 : The comparison between DHA-RS and UICF-AE

Model Evaluation method

HR@10 | NDCG@10

DHA-RS 0.7076 0.4320

UICF-AE 0.7274 0.4549

From Table 4.1, the results show that when we switch from embedding user ID
and item ID to using the representation similarity of items and users by adding
autoencoders, it makes our model outperforms DHA-RS because DHA-RS did not
consider the relations among users or among items but they used only embedding of the
user ID and the item ID for showing the relations among users or among items. It is a
relationship among users and among items in terms of positions which can not extract
representation of other users that are similar with target users but, our model uses
autoencoder to find the representation of similarity which utilizes the advantages of
UBCF and IBCF. For this reason, the efficiency of our model is higher than DHA-RS.

CHAPTER V
CONCLUSION

5.1 Conclusion

In this work, we proposed UICF-AE which utilize the advantages of UBCF and
IBCF by applying two more autoencoders to learn representations of similarity between
a target user (Item) and other users (Items). UICF-AE consists of four autoencoders: (1)
a user representation learning autoencoder, (2) an item representation learning
autoencoder, (3) a user similarity representation learning autoencoder and (4) an item
similarity representation learning autoencoder. Then, we concatenated the user
representation and the user similarity representation to form a user profile and the item
representation and the item similarity representation to form an item profile. After that,
we fed a concatenated vector of the user profile and the item profile to MLP for rating
prediction. Finally, the experimental results have shown that UICF-AE outperforms
previous work for both metrics; HR is 2.8% higher and NDCG is 5.3% higher.

5.2 Suggestion

1. We find the similarities of each user and each item using only the cosine
similarity method. There are many ways to find similarities, which may affect model
performance.

2. From results 4.1.1, the performance of the model depends on the number of
layers which tends to increase continuously with the number of layers.

3. From results 4.1.2, the performance of the model depends on the number of
dimensions of the output layer which tends to increase continuously with the number of
dimensions of the output layer.

4. In the NCF framework, we use only the multi-layer perceptrons. DHA-RS has
shown that using generalized matrix factorization (GMF) is more efficient than MLP.
However, our method outperformed DHA-RS when using MLP. This suggested that if
GMF alone or both GMF and MLP are employed, a higher performance should be

achieved.

REFERENCES

[1] Dawen Liang; Rahul G. Krishnan; Matthew D. Hoffman; and Tony Jebara, Los
Gatos, Cambridge, San Francisco, Variational Autoencoders for Collaborative
Filtering. Proceedings of the 2018 World Wide Web Conference, 23-27 April, 2018,
Lyon, France. Copyright 2018 ACM ISBN 978-1-4503-5639-8/18/04.

[2] Hao Wang; Naiyan Wang; and Dit-Yan Yeung, Hong Kong University of Science
and Technology, Collaborative Deep Learning for Recommender Systems. Proceedings
of the 21th ACM SIGKDD lInternational, 10-13 August, 2015, Sydney, NSW, Australia.
Copyright 2015 ACM ISBN 978-1-4503-3664-2/15/08.

[3] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2018. Deep Learning based
Recommender System: A Survey and New Perspectives. Journal of ACM Computing
Survey. 1, 1, Article 1 (July 2018), 35 pages.

[4] Suvash Sedhain; Aditya Krishna Menon; Scott Sanner; and Lexing Xie, Australian
National University/NICTA, AutoRec: Autoencoders Meet Collaborative Filtering.
Proceedings of the 24th International Conference on World Wide Web, 18-22 May,
2015, Florence, Italy. Copyright 2015 ACM 978-1-4503-3473-0/15/05.

[5] Yao Wu; Christopher DuBois; Alice X. Zheng; and Martin Ester, Simon Fraser
University, Dato Inc., Collaborative Denoising Auto-Encoders for Top-N
Recommender Systems. Proceedings of the Ninth ACM International Conference on
Web Search and Data Mining, 22-25 February, 2016, San Francisco, California, USA.
Copyright 2016 ACM ISBN 978-1-4503-3716-8/16/02.

[6] Florian Strub; Jer’'emie Mary; and Romaric Gaudel, Hybrid Recommender System
based on Autoencoders. Proceedings of the 1st Workshop on DLRS 2016, 15-15
September, 2016, Boston, MA, USA. Copyright 2016 ACM ISBN 978-1-4503-4795-
2/16/11.

31

[7] Xin Dong; Lei Yu; Zhonghuo Wu; Yuxia Sun; Lingfeng Yuan; and Fangxi Zhang,
A Hybrid Collaborative Filtering Model with Deep Structure for Recommender
Systems. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
04-09 February, 2017, San Francisco, California, USA. Copyright 2017, Association
for the Advancement of Artificial Intelligence (www.aaai.org).

[8] Yu Liu, Shuai Wang, M. Shahrukh Khan, and Jieyu He. 2018. A novel deep hybrid
recommender system based on auto-encoder with neural collaborative filtering. Journal
of Big Data Mining and Analytics. 1, 3, Article 1 (September 2018), 211-221 pages.

[9] Xiangnan He; Lizi Liao; and Hanwang Zhang, Neural Collaborative Filtering.
Proceedings of the 26th International Conference on WWW '17, 03-07 April, 2017,
Perth, Australia. Copyright 2017 ACM 978-1-4503-4913-0/17/04.

[10] Hemang Vyas. (2018). Code Your Own Popularity Based Recommendation
System WITHOUT a Library in Python. Retrieve from https://hackernoon.com/

popularity-based-song-recommendation-system-without-any-library-in-python-
12a4fbfd825e [20 January2019]

[11] Emma Grimaldi. (2018). How to build a content-based movie recommender

system with Natural Language Processing. Retrieve from https://towardsdatascience

.com/how-to-build-from-scratch-a-content-based-movie-recommender-with-natural -
language-processing-25ad400eb243 [22 January2019]

[12] Selva Prabhakaran. (2018). Cosine Similarity — Understanding the math and how

it works (with python codes). Retrieve from https://www.machinelearningplus.com

Inlp/cosine-similarity/ [25 January2019]

[13] Manish Barnwal. (2018). Types of data in recommender systems. Retrieve from

https://medium.com/theboredhuman/types-of-data-in-recommender-systems-
7a1d76969137 [29 January2019]

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8254253
https://www.machinelearningplus.com/author/selva86/

32

[14] Artem Oppermann. (2018). Deep Autoencoders For Collaborative Filtering.

Retrieve from https://towardsdatascience.com/deep-autoencoders-for-collaborative-
filtering-6¢f8d25bbfld [30 January2019]

[15] Susan Li. (2019). Evaluating A Real-Life Recommender System, Error-Based

and Ranking-Based. Retrieve from https://towardsdatascience.com/evaluating-a-real-

life-recommender-system-error-based-and-ranking-based-84708e3285b [30
January2019]

[16] Pranay Chandekar. (2013). Evaluate your Recommendation Engine using

NDCG. Retrieve from https://towardsdatascience.com/evaluate-your-

recommendation-engine-using-ndcg-759a851452d1 [30 January2019]

https://towardsdatascience.com/@artem.oppermann?source=post_page-----6cf8d25bbf1d----------------------

APPENDICES

APPENDIX A
The Project Proposal of Course 2301399 Project Proposal
Academic Year 2019

Project Title (Thai) ~ nmsnsessauiulnednlowmunarylfdundniagldiudisfa

gnluifsunulasneUszamineuan
Project Title (English) Both User-based and Item-based Collaborative Filtering based

On Autoencoder with Deep Neural Networks
Project Advisor 1. Assoc. Prof. Dr. Saranya Maneeroj
2. Asst. Prof. Dr. Monnat Pongpanich
By 1. Patcharapol Promanee 5933643223
2. Nattapon Napasai 5933623723
Computer Science Program, Department of Mathematics and
Computer

Science, Faculty of Science, Chulalongkorn University

Background and Rationale

With the growing size of information, the recommender system plays an
important role, that is, allowing users to interact with content efficiently [1]. The
recommender system tries to advise users by filtering items based on users’ previous
actions. It has been employed by many sites (e.g., Netflix, Amazon, and Spotify) to
provide their products or services for customers to raise their incomes. There are three
main types of recommender systems: content-based filtering (CBF), collaborative
filtering (CF), and hybrid methods. CBF aims to recommend other similar items to users
based on item features (e.g., item descriptions) from users’ previous actions. However,
item features sometimes can not be gathered, so it is not possible to use CBF. CF came
to fix this limitation [2]. CF are built on explicit feedback (e.g., user ratings) and implicit
feedback (e.g., number of clicks and purchases). It compares the target user with others
who have similar preferences. It is based on the logic that people like you (judging from

the past) like this and so should you. Further, they are two well known types of CF:

35

user-based and item-based. User-based CF assumes that people who have similar tastes
tend to react to items similarly. This approach calculates the target user rating by using
other users’ rating (Figure A.1). In this figure, among other users (red square on the left
of figure A.1), we used users who have the highest similarity (blue square on the right
of figure A.1) to the target user to calculate the rating. For item-based CF, it tries to find
items that look alike instead of users look alike (Figure A.2). In this figure, the approach
focuses on using the reacted items (the red square on the left of figure A.2) of the target
user. The highest similarity items (the blue square on the right of figure A.2) to the
unreacted item of the target user will be used to calculate the rating of the unreacted

item of the target user. The hybrid method is a combination of CBF and CF.

Target-Item Target-Item

Target-User

Figure A.1 : User-based CF

Target-Item Target-ltem

Movie Movie Movie movie Movie Movie Movie Movie Movie Movie Movie movie
User 3 4 5 User 1 2 3 4 5

0 1 1 1 1
1 0 4] 1 1 1 1
Target-Use
0 0 1 0 1 Recommend 1
0 0 1 1 1 1 1
0 1 1 1 1 1 1

Figure A.2 : Item-based CF

Nowadays, many pieces of research attempt to apply the neural network into CF

(neural network based CF) because there is a limitation in CF that CF can learn only

36

linear representation, but the neural network can learn both linear and non-linear
representation [1]. A neural network can learn input features in both supervised and
unsupervised ways. Besides CF, a neural network has been showing its capability in
many fields, such as computer vision and natural language processing [9].

Autoencoder is one of the most popular neural network models in the
recommender system. Autoencoder is an unsupervised model, which aims to
reconstruct the input data in the output layer by encoding the input data into the middle
layer called the hidden layer to form latent representation, and then the output from the
hidden layer is decoded by the output layer to reconstruct the data. There are two well
known types of autoencoder: (1) Denoising Autoencoder (DAE); (2) Stacked Denoising
Autoencoder (SDAE). DAE takes the corrupted input data by adding noise, then the
output layer aims to reconstruct the real input data from the latent representation of
corrupted data to make the model robust. SDAE is the extended version of DAE by
adding more layers symmetrically. Encoding layers of SDAE are corrupted to make the
model more robust than DAE.

There are two ways of using autoencoders in the recommender system:
predicting rating from the user-item rating matrix and learning either user representation
or item representation at the bottleneck layer [3]. In the first approach, Sedhain et al.
(2015) proposed AutoRec [4] which takes user-item rating vectors or item-user rating
vectors as input and reconstructs it in the output layer to fill missing values in the rating
matrix (Figure A.3). This figure shows two approaches which are depending on the
input: user-based AutoRec takes user-item rating vector as the input (the green square
on the left of figure A.3) and item-based AutoRec takes item-user rating vector as the

input (the orange square on the right of figure A.3).

37

Figure A.3 : Two approaches of autorec: user-based AutoRec (left) which takes
user-item rating vector as the inputs and item-based AutoRec (right) which takes item-

user rating vector as the input

Another model called CDAE (Collaborative Denoising Auto-Encoders) [5],
proposed after AutoRec, uses DAE to corrupt input data, which is implicit feedback
instead of the rating. The output layer aims to reconstruct the real input data from the
latent representation of corrupted data. An extension from CDAE called CFN (Hybrid
Recommender System based on Autoencoders) [6] takes the input similar to AutoRec,
but a corrupted version. It also incorporates side information (e.g., user profiles and item
descriptions) to increase the prediction accuracy.

In the second approach, there are many models proposed. First, Hybrid
Collaborative Filtering Model with Deep Structure for Recommender [7] aimed to learn
user representation from user-item rating matrix and item representation from item-user
rating matrix for Matrix Factorization Recommender using SDAE. Second, DHA-RS
(A Novel Deep Hybrid Recommender System Framework based on Autoencoders) [8]
improved recommendation accuracy by using SDAE to learn latent representation from
users and items side information, and then they concatenated the embedding of the user
ID one-hot vector with the user representation to form the user profile and the
embedding of the item ID one-hot vector with the item representation to form the item
profile. They fed the user profile and item profile to DHA-RS framework: GMF++
(Generalized Matrix Factorization++) and MLP++ (Multi-Layer Perceptron++) to learn
user-item relation and predict the rating.

According to previous methods, the uses of autoencoder in the recommender

system have shown that they used only the target user data and the target item data, but

38

there was no information of other users or other items considered. This means they did
not consider the relations among users or among items.

In this work, we extend the use of autoencoder for user and item representation
by including the advantages of user-based CF and item-based CF. Therefore, we
propose to apply two more autoencoders that aim to learn user similarity representation
and item similarity representation on user-user similarity matrix and item-item
similarity matrix respectively (Figure A.4). The user-user similarity matrix is the matrix
of cosine similarity between user-user ratings, and the item-item similarity matrix is the
matrix of cosine similarity between item-item ratings. The first autoencoder aims to
learn the user representation from the user-item rating matrix (Figure A.4, top left). The
second autoencoder, which is the main part of the proposed model, aims to learn the
user similarity representation from the user-user similarity matrix (Figure A.4, top
right). The output vectors from the first autoencoder and the second autoencoder are
concatenated to form the user profile. The third autoencoder aims to learn the item
representation from the item-user rating matrix (Figure A.4, bottom left). The fourth
autoencoder aims to learn the item similarity representation from the item-item
similarity matrix (Figure A.4, bottom right). The output vectors from the third
autoencoder and the fourth autoencoder are concatenated to form the item profile. Then,
we do concatenation on the user profile and the item profile. After that, we feed the
concatenated vector in the NCF [9] framework: MLP (Multi-Layer Perceptron) to learn
user-item relations and predict the rating. Finally, we use Hit Rate (HR) and Normalized
Discounted Cumulative Gain (NDCG) as the evaluation metrics to measure the

accuracy of the model.

39

1 0 1 0 0
0 1 1 0 0
0 0 0 1 1
1 1 1 0 0
0 0 0 0 1

Figure A.4 : Both user-based and item-based collaborative filtering based on

Autoencoders with deep neural networks

In this section, we will breakdown through the calculation of the proposed
model. From figure A.4, we split the proposed model into two modules: Learning
representation module and NCF framework module. The learning representation

consists of four autoencoders; all of them generate the output as in equation 1:

0, =o(W 0,4 + b)) (1)

where 0;, o, W;, 0;_; and b; denote the output of autoencoder at layer 1,
activation function, the weight matrix at layer I, the output of autoencoder from the
previous layer and the bias vector at layer |, respectively. For the first layer, the

computation will be defined as in equation 2:
0; = o(W{X +by) (2)
where X is the input which is different among the four autoencoders. X is the

user-item rating vector for the first autoencoder, user-user similarity vector for the

second autoencoder, item-user rating vector for the third autoencoder and item-item

40

similarity vector for the fourth autoencoder. The loss function of autoencoders can be

defined as in equation 3:

Lan = [0y = X||2 + A W12 + 2, 1113 3)

where Ly, is the loss of autoencoder at number n (Figure A.4), 0,, is the output
from last layer of the autoencoder, A, and A, is a regularization-term parameter of
weight matrix and bias vector, respectively.

The NCF framework module consists of MLP which is used to learn user-item
relations and predict the rating. The calculation of the NCF can be defined as in equation
4.

Z=1[U; 1]
0, =o(W{Z +b,)
0, = (W0, + b,)
(4)
0, = o(W; 0,1 + b))
fu = o(H0)

where Z is the concatenated vector between user profile (U) and item profile (1),
0, is the output of MLP at layer I, W, is the weight matrix at layer I, b; is the bias vector
at layer |, o is the activation function, H” is the weight matrix of rating prediction layer
and t,; is the predicted rating of user U and item I. The loss function of NCF is defined

as equation 5:
Lyvcr = qwierur-(1 = 1) logy (1 — 1) + 1y log, () + 261160117 (5)

which is a binary cross-entropy, where R is the set of observed ratings, R~ is the
set of unobserved ratings, A is a regularization-term of parameters, 6 is the parameters,
ry; 1S an actual rating of user U and item I. Therefore, the total loss is defined as equation
6:

41

Leotar = Lver + aligg + BLay + vLys + 6Ly (6)

where a, f, vy and & denote the hyperparameters of the loss function.

Objectives

1. To propose to apply two more autoencoders that aim to learn to get user

similarity representation and item similarity representation from user-user

similarity matrix and item-item similarity matrix respectively.

2. To use the NCF framework: MLP (Multi-Layer Perceptron) to learn to get user-

item relations and predict the rating.

Scope

1. Using a dataset named MovieLens-1M, which contains 6040 users, 3706 items,

and a million ratings. The max rating is 5. The min rating is 1. Zero means there

is no rating for the movie.
2. Evaluation metrics are HR and NDCG.

3. The dataset has to contain users, items, and ratings.

Project Activities
A. project Plan

1.

2
3
4.
5
6
7

Do a literature review on the recommender system.

Identify the problems and limitations of previous works.

Design and analyze the improved method of the recommender system.
Implement the proposed system.

Evaluate the accuracy of the proposed system.

Analyze and discuss the experimental results.

Do the documentation.

B. Schedule

42

Table A.1 : the Gantt Chart that explains the processes of methods in the

timeline.

Method

Year 2019

Year 2020

Jul.

Aug.

Sep. | Oct.

Nov.

Dec.

Jan.

Feb. | Mar.

Apr.

1. Read research
papers and
academic
articles about
the
recommender
system.

2. ldentify the
problems and
limitations of
previous works.

3. Design and
analyze the
improvement
method of the
recommender
system.

4. Develop and
test the
efficiency of the
proposed
system.

5. Experiment
to evaluate the
accuracy of the
proposed
system.

6. Analyze and
discuss the
experiment
result.

43

7. Provide the
report
documentation.

Benefits

1. Benefits for users
1.1 Users get a new recommender system, which should be better in accuracy
than the previous work.
1.2 Increase the product sales.
1.3 Increase the income of the user's company.
1.4 Users can access the content efficiently.

2. Benefits for the system developers
2.1 Achieved both theoretical and practical knowledge in the recommender
system field.
2.2 Learn new tools and programs, which are significant to develop the system.
2.3 Practice how to plan the work properly.

2.4 Improve problem-solving skills.

Equipment

1. Hardware
1.1 Dell Inspiron 7559 with Windows 10 64-bit Operating System, 2.30 GHz
Intel ® Core (TM) i5-6300HQ Processor, 8 GB Ram, and 1 TB HDD Storage.
1.2 Personal Computer with Windows 10 64-bit Operating System, 3.40 GHz
quad-core Intel Core 15 Processor, 16 GB Ram, and 1 TB HDD Storage.
1.3 Macbook Pro 2017 with macOS Mojave Operating System, 2.30 GHz
dual-core Intel Core 15, 8 GB Ram, and 256 GB SSD Storage.

2. Software
2.1 Jupyter Notebook
2.2 Google Colab
2.3 sagemaker on AWS

44

Budget
1. SSD 500 GB 3070 Baht
2. Apple Airpods 4708 Baht
Total 7778 Baht
References

[1] Dawen Liang; Rahul G. Krishnan; Matthew D. Hoffman; and Tony Jebara, Los
Gatos, Cambridge, San Francisco, Variational Autoencoders for Collaborative
Filtering. Proceedings of the 2018 World Wide Web Conference, 23-27 April, 2018,
Lyon, France. Copyright 2018 ACM ISBN 978-1-4503-5639-8/18/04.

[2] Hao Wang; Naiyan Wang; and Dit-Yan Yeung, Hong Kong University of Science
and Technology, Collaborative Deep Learning for Recommender Systems. Proceedings
of the 21th ACM SIGKDD lInternational, 10-13 August, 2015, Sydney, NSW, Australia.
Copyright 2015 ACM ISBN 978-1-4503-3664-2/15/08.

[3] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2018. Deep Learning based
Recommender System: A Survey and New Perspectives. Journal of ACM Computing
Survey. 1, 1, Article 1 (July 2018), 35 pages.

[4] Suvash Sedhain; Aditya Krishna Menon; Scott Sanner; and Lexing Xie, Australian
National University/NICTA, AutoRec: Autoencoders Meet Collaborative Filtering.
Proceedings of the 24th International Conference on World Wide Web, 18-22 May,
2015, Florence, Italy. Copyright 2015 ACM 978-1-4503-3473-0/15/05.

[5] Yao Wu; Christopher DuBois; Alice X. Zheng; and Martin Ester, Simon Fraser
University, Dato Inc., Collaborative Denoising Auto-Encoders for Top-N
Recommender Systems. Proceedings of the Ninth ACM International Conference on
Web Search and Data Mining, 22-25 February, 2016, San Francisco, California, USA.
Copyright 2016 ACM ISBN 978-1-4503-3716-8/16/02.

[6] Florian Strub; Jer” emie Mary; and Romaric Gaudel, Univ. Lille, CNRS, Centrale

Lille, Inria, Hybrid Recommender System based on Autoencoders. Proceedings of the

45

1st Workshop on DLRS 2016, 15-15 September, 2016, Boston, MA, USA. Copyright
2016 ACM ISBN 978-1-4503-4795-2/16/11.

[7] Xin Dong; Lei Yu; Zhonghuo Wu; Yuxia Sun; Lingfeng Yuan; and Fangxi Zhang,
Ctrip Travel Network Technology (Shanghai) Co., Limited., A Hybrid Collaborative
Filtering Model with Deep Structure for Recommender Systems. Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, 04-09 February, 2017, San

Francisco, California, USA. Copyright 2017, Association for the Advancement of

Acrtificial Intelligence (www.aaai.org).

[8] Yu Liu, Shuai Wang, M. Shahrukh Khan, and Jieyu He. 2018. A novel deep hybrid
recommender system based on auto-encoder with neural collaborative filtering. Journal
of Big Data Mining and Analytics. 1, 3, Article 1 (September 2018), 211-221 pages.

[9] Xiangnan He; Lizi Liao; and Hanwang Zhang, National University of Singapore,
Columbia University, Neural Collaborative Filtering. Proceedings of the 26th
International Conference on WWW '17, 03-07 April, 2017, Perth, Australia. Copyright
2017 ACM 978-1-4503-4913-0/17/04.

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8254253

46

BIOGRAPHY

Nattapon Napasai
Department of Mathematics and Computer Science
Faculty of Science, Chulalongkorn University

Email : Nattapon.n4dp@gmail.com

Patcharapol Promanee

Department of Mathematics and Computer Science
Faculty of Science, Chulalongkorn University
Email : nut3870@hotmail.com

	COVER (THAI)
	COVER (ENGLISH)
	ACCEPTED
	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER I INTRODUCTION
	1.1 Background and rationale
	1.2 Objectives
	1.3 Scope
	1.4 Project activities
	1.5 Benefits
	1.6 Report outlines

	CHAPTER II LITERATURE REVIEW
	2.1 Recommender systems
	2.2 Content based methods
	2.3 Cosine similarity
	2.4 Collaborative filtering methods
	2.4.1 User-based collaborative filtering
	2.4.2 Item-based collaborative filtering
	2.5 Deep learning in the recommender system
	2.6 Neural collaborative filtering
	2.7 Autoencoder
	2.7.1 Using autoencoder to predict
	2.7.2 Using autoencoder to predict
	2.8 Recommender system evaluation

	CHAPTER III METHODOLOGY
	3.1 Model
	3.1.1 The representation learning by autoencoder
	3.1.2 Rating prediction with the deep neural network

	CHAPTER IV EXPERIMENTAL EVALUATION
	4.1 Dataset
	4.2 Evaluation metrics
	4.2.1 The hit rate method
	4.2.2 The normalized discounted cumulative gain method
	4.3.2 The output layer dimensions of multi-layer perceptron

	CHAPTER V CONCLUSION
	5.1 Conclusion
	5.2 Suggestion

	REFERENCES
	APPENDIX A The Project Proposal of Course 2301399 Project Proposal Academic Year 2019
	BIOGRAPHY

