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Recommender systems have a major contribution, that is, it allows users to 

interact with content efficiently. A recommender system advises users by filtering items 

based on users’ previous actions. Collaborative filtering (CF) is one of the recommender 

system algorithms which is built on explicit feedback (e.g., user ratings) and implicit 

feedback (e.g., number of clicks and purchases). It compares a target user with others 

who have similar preferences. Further, there are two well known types of CF: user-

based CF and item-based CF. User-based CF assumes that people who have similar 

tastes tend to react to items similarly. For item-based CF, it tries to find look-alike items 

instead of look-alike users. Nowadays, many research attempt to apply the neural 

network into CF because there is a limitation in CF that CF can learn only linear 

representation, but the neural network can learn both linear and non-linear 

representation. Autoencoder reconstructs the input data in the output layer by encoding 

the input data into a low dimensional middle layer called the hidden layer to form latent 

representation, and then the output from the hidden layer is decoded by the output layer 

to reconstruct the data. From previous works, we have noticed that relations between a 

target user (item) and other users (other items) were not utilized and this relationship is 

a plus point for collaborative filtering technique. Therefore, we have proposed the 

autoencoder recommender system model that learns a representation of similarity 

between a target user (item) and other users (items). Finally, the experimental results 

have shown that the proposed model performs better than state of the art methods. 
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CHAPTER I 
INTRODUCTION 

1.1 Background and rationale 
With the growing size of information, the recommender system (RS) plays an 

important role, that is, allowing users to interact with content efficiently [1]. The 

recommender system advises users by filtering items based on users’ previous actions. 

It has been employed by many sites (e.g., Netflix, Amazon, and Spotify) to suggest their 

products or services for customers to raise their incomes. There are three main types of 

recommender systems: content-based filtering (CBF), collaborative filtering (CF), and 

hybrid methods. CBF aims to recommend other similar items to users based on item 

features (e.g., item descriptions) from users’ previous actions. However, sometimes 

item features cannot be gathered, so it is not possible to use CBF. 

  CF came to fix this limitation [2]. CF is built on explicit feedback (e.g., user 

ratings) and implicit feedback (e.g., number of clicks and purchases). It predicts user’s 

ratings on items based on their past activities. Further, there are two well known types 

of CF: user-based CF and item-based CF. User-based CF (UBCF) assumes that people 

who have similar tastes tend to react to items similarly. This approach calculates the 

target user rating by using the user rating who has the highest similarity among users. 

Item-based CF (IBCF) tries to find items that look alike instead of look-alike users.   

  Nowadays, many research attempt to apply the neural network with CF. He et 

al. [9] proposed neural collaborative filtering (NCF) that can learn relations between 

users and items for rating prediction. Because there is a limitation in CF that CF can 

learn only data with the linear pattern, but the neural network can learn both data with 

the linear and non-linear pattern. A neural network can learn input features in both 

supervised and unsupervised ways. Besides CF, a neural network has been showing its 

capability in many fields, such as computer vision and natural language processing.  

Meanwhile, an autoencoder is one of the most popular neural network models 

in the recommender system. Sedhain et al. [4] proposed autorec which took advantage 

of autoencoders for the CF framework. There are two well known types of 

autoencoders: (1) denoising autoencoder (DAE); (2) stacked denoising autoencoder 

(SDAE). Wu et al. [5] proposed collaborative denoising autoencoder (CDAE) which 
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took the corrupted input data and this allowed the model to perform better. Strub et al. 

proposed a hybrid recommender system based on autoencoders (CFN) which fed the 

corrupted input with side information to the autoencoder resulting in reducing cold-start 

problems. SDAE is the extended version of DAE by adding layers symmetrically. 

Encoding layers of SDAE are corrupted to make the model have better performance 

than DAE. Dong et al. [7] used SDAE for user representation and item representation 

with integrating side information for matrix factorization. Liu et al. [8] used two SDAE 

for user representation and item representation from auxiliary information to form user 

and item latent vectors then fed to the NCF framework for the rating prediction.  

According to previous methods, there are two ways of using an autoencoder in 

the recommender system: predicting rating from the user-item rating matrix and 

learning either user representation or item representation at the bottleneck layer. The 

uses of autoencoders in the second approach have shown that there was no information 

of other users or other items considered because of the scope of mini-batch training, 

which could not get the information of all users and items at the same time. This means 

they did not consider the relations among users or among items which are the UBCF 

and the IBCF advantages, respectively. 

In this work, we chose to extend the use of autoencoders in the second approach 

because autoencoders have a powerful representation learning. We included the 

advantages of UBCF and IBCF which incorporate user and item relations in order to 

increase the accuracy of the recommendation. 

 

1.2 Objectives 
 1. To propose two more autoencoders that aim to learn user similarity 

representation and item similarity representation from user-user similarity matrix and 

item-item similarity matrix, respectively.  

2. To use the NCF framework: Multi-Layer Perceptron (MLP) to learn user-item 

relations and predict the rating.  

 

1.3 Scope  
1. Using a dataset named MovieLens-1M, which contains 6040 users, 3706 

items, and a million ratings. The max rating is 5. The min rating is 1. Zero means there 

is no rating for the movie. 
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2. Evaluation metrics are the hit rate (HR) and the normalized discounted 

cumulative gain (NDCG). 

3. The dataset has to contain users, items, and ratings. 

 

1.4 Project activities 
A. project Plan 

1. Do a literature review on the recommender system. 

2. Identify the problems and limitations of previous works. 

3. Design and analyze the improved method of the recommender system. 

4. Implement the proposed system. 

5. Evaluate the accuracy of the proposed system. 

6. Analyze and discuss the experimental results. 

7. Do the documentation. 

 

B. Schedule 

Table 1.1 :The gantt chart that explains the processes of methods in the 

timeline. 

Project 

Activities 

Year 2019 Year 2020 

Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. 

1. Read research 
papers and 
academic 
articles about 
the 
recommender 
system. 

          

2. Identify the 
problems and 
limitations of 
previous works. 
 

          

3. Design and 
analyze the 
improvement 
method of the 
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recommender 
system. 
 

4. Develop and 
test the 
efficiency of the 
proposed 
system. 

          

5. Experiment 
to evaluate the 
accuracy of the 
proposed 
system. 

          

6. Analyze and 
discuss the 
experiment 
result. 

          

7. Provide the 
report 
documentation. 

          

 

1.5 Benefits 

1.5.1  Benefits for users 

  1. Users have a new recommender system, which has better accuracy  

than the previous work. 

2. Possibly increase the product sales. 

3. Possibly increase the income of the user's company. 

4. Users can possibly access the content efficiently. 

 

1.5.2  Benefits for the system developers 

1. Achieved both theoretical and practical knowledge in the 

recommender system field. 

2. Learn new tools and programs, which are significant to develop the 

system. 

3. Practice how to plan the work properly. 

4. Improve problem-solving skills. 
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1.6 Report outlines 
 This report consists of five chapters as follows:  

In chapter I, motivation, objective and scope of this project is described.  

In chapter II, we review the technical knowledge and related work.  

In chapter III, we present the methodology including how we preprocess the dataset and 

train the model.  

In chapter IV, we present results and evaluate the performance.  

In chapter V, we conclude and discuss our work. 

 

 

 
 
 
 
 
 
 
 
 

 
 

 

 

 



 
 

CHAPTER II 

LITERATURE REVIEW 

2.1 Recommender systems 
Recommender systems [10] are algorithms that aim to suggest relevant items to 

users and allow users to interact with content efficiently (items coud be anything 

depending on industries, for example, items can be movies to watch, text to read, 

products to buy etc.) by filtering items based on users’ previous actions. Many 

companies use recommender systems to suggest their products or services for customers 

to raise their incomes. Examples of companies that use the recommender systems are 

Amazon, Netflix, Facebook, and Google (Figure 2.1). 

 

 

 

 

 

 

 

Figure 2.1 : Examples of companies that use recommender systems 
 

Recommender systems can be divided into three main types: content based 

methods, collaborative filtering methods and hybrid methods (Figure 2.2). 

Collaborative filtering methods can be divided into two main types: user-based and 

item-based. Hybrid method is a combination of both methods.  
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Figure 2.2 : Types of RS algorithms 

 

2.2 Content based methods 
Content based methods [11] are algorithms that aim to recommend other similar 

items to users based on item features (e.g., item descriptions) from users’ previous 

actions. From figure 2.3, this user has watched some movies, the system will find a 

movie which is most similar to the previously watched movies from all movies in the 

system for recommending to the user. 

 

 
Figure 2.3 : Content-based filtering 

 

2.3 Cosine similarity 
 Cosine similarity [12] measures the similarity between two vectors from 

an inner product space. It is often used to measure movies or user similarity in 

recommender system. From Figure 2.4, this is a formula of cosine similarity where A 

watched 
by the user 

recommended 
to the user 
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and B are vectors with equal dimensions. From Figure 2.5, this is an example of finding 

cosine similarity between user 1 and user 2 based on a user rating matrix (left) to get a 

user-user similarity matrix (right). 

 

 
Figure 2.4 : Cosine similarity 

 

 

 

 

 

 

 

 

 

Figure 2.5 : Measuring the similarity between two users 
 
 

2.4 Collaborative filtering methods 
Collaborative filtering methods [13] are built on explicit feedback e.g., user 

ratings (Figure 2.6) and implicit feedback e.g., number of clicks and purchases (Figure 

2.7). It compares the target user with others who have similar preferences. It is based 

on the logic that if people similar to person A (judging from the past) like this, so should 

the person A. There are two well known types of CF: UBCF and IBCF.  

 

 

 

 

 

 

 

CosineSim (user1,user2) =  
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Figure 2.6 : Explicit feedback form 

 

 
 
 

Figure 2.7 : Implicit feedback form 

 

 2.4.1 User-based collaborative filtering  
UBCF assumes that people who have similar tastes tend to react to items 

similarly. For example, in Figure 2.8, when we want to recommend a movie to a target 

user, we need to search for the user who has the highest similarity (blue square on the 

right of figure 2.8). This can be done by calculating cosine similarity between the target 

user and other users. After we get the user who has the highest similarity, UBCF 

recommends a target item which is the movie that the target user did not watch before 

to the target user. 
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Figure 2.8 : User-based collaborative filtering 

 

 2.4.2 Item-based collaborative filtering 
For IBCF, it tries to find items that look alike instead of look-alike users to 

recommend to the target user. In Figure 2.9, the approach focuses on using the reacted 

items which are items rated by the target user (the red square of Figure 2.9) to calculate 

cosine similarity between the item that the target user reacted with other items to search 

the item which has the highest similarity (blue column on the right of figure 2.9). The 

unreacted item with highest similarity to items found in the previous step (red ellipse in 

Figure 2.9) of the target user will be used to recommend to the target user. 

 

 

 

 

 

 

 

 

Figure 2.9 : Item-based collaborative filtering  

 

2.5 Deep learning in the recommender system 
The three types of the mentioned recommender systems have a limitation, 

namely only being able to learn data with the linear pattern but deep learning can learn 

both data with the linear and non-linear pattern. Therefore, deep learning plays an 

important role in the recommender system because it helps the model to learn more on 

non-linearly separable data. There are two main models that are commonly used in the 
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recommender system to predict ratings are neural collaborative filtering [9] and 

autoencoder. 

 

2.6  Neural collaborative filtering  
Neural collaborative filtering [9] came to fix the data with the non-linear pattern 

inseparable limitation of the collaborative filtering by adding part of the neural network 

for learning data with the non-linear pattern. Figure 2.10 shows the general framework 

of NCF which uses two types of input: (1) a user identity vector (one-hot encoding of 

user ID which is a binary vactor whose dimension is equal to the number of users, where 

a value of one appears only one time and the rest of the values are zero) from the user 

identity matrix and (2) an item identity vector (one-hot encoding of item ID which is a 

binary vactor whose dimension is equal to the number of items, where a value of one 

appears only one time and the rest of the values are zero) from the item identity matrix. 

Then, a user identity vector and an item identity vector are embedded to form a user 

latent vector and an item latent vector, respectively. A user latent vector is a vector 

which has meaning in terms of interaction among users. On the other hand, an item 

latent vector is a vector which has meaning in terms of interaction among items. 

 

 

 

Figure 2.10 :  Neural collaborative filtering model 
 

 



12 
 
  After that, a concatenated vector between a target user latent vector and an target 

item latent vector is fed into a Multi-Layer Perceptron, which is called Neural CF Layers 

(Figure 2.10) in this work, which can extract the interaction between a target user and a 

target item from the concatenated vector. Finally, a rating prediction can be obtained 

from the last layer of MLP as in equations shown in Figure 2.11 

 

 

Figure 2.11 :  Multi-layer perceptron formula 

 

where 𝑧𝑧1 is a concatenated vector from a user latent vector and an item latent vector 

∅1 is a concatenation between two vectors, 

𝑝𝑝𝑢𝑢 or  𝑝𝑝𝑢𝑢𝑢𝑢 (Figure 2.10) is a user latent vector, 

𝑞𝑞𝑖𝑖 or  𝑞𝑞𝑖𝑖𝑖𝑖 (Figure 2.10) is an item latent vector, 

𝑊𝑊𝐿𝐿 is a weight of layer L, 

𝑏𝑏𝐿𝐿 is a bias of layer L, 

𝑎𝑎𝐿𝐿 is an activation function of layer L, 

σ is a sigmoid function, 

ℎ is a weight of an output layer, 

𝑦𝑦�𝑢𝑢𝑢𝑢 is a rating prediction, 

𝑦𝑦𝑢𝑢𝑢𝑢 (Figure 2.10) is a target rating which is the real rating to use for comparison with 

the rating prediction in the training part. 

 

2.7  Autoencoder 
Nowadays, an autoencoder [14] plays a major role in the recommender system. 

The autoencoder is an unsupervised model of the neural network. It tries to reduce the 

dimension of input data by encoding the input data into a low dimensional middle layer 

called the hidden layer (bottleneck) to form a latent representation, and then the output 

from the hidden layer is decoded by reconstructing the data from the hidden layer as in 
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Figure 2.12. There are two main ways of using the autoencoder for recommender 

systems: using the autoencoder to predict rating and using the autoencoder for learning 

either user representation or item representation. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12 : Autoencoder 

 

 2.7.1  Using autoencoder to predict 
Many works attempt to apply the autoencoder into recommender systems by 

using it to predict a rating for a target user and a target item. From Figure 2.13, autorec 

[4] is a model that uses an autoencoder that takes 𝑟𝑟(𝑖𝑖) which is a user-item rating vector 

constructed from the user-item rating matrix as an input. 

 

 
Figure 2.13 : The autorec model 

 

𝑟̂𝑟(𝑖𝑖) 
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A user-item rating vector is fed into an autoencoder and the output from the 

reconstruction of the autoencoder is the new rating from the rating prediction as the 

equation in Figure 2.14. 

 

 

Figure 2.14 :  Autorec equation 

 

where ℎ(𝑟𝑟; 𝜃𝜃)  or 𝑟̂𝑟(𝑖𝑖)  (Figure 2.13) is the new rating reconstructed from the 
autoencoder,  
𝑟𝑟(𝑖𝑖) is a user-item rating vector, 

𝑉𝑉 is a weight of encoding part, 

𝑊𝑊 is a weight of decoding part, 

𝜇𝜇 is a bias of  encoding part, 

𝑏𝑏 is a bias of decoding part, 

𝑔𝑔 is an activation function of encoding part, 

𝑓𝑓  is an activation function of decoding part. 

 

 2.7.2  Using autoencoder to predict 
The second way for using the autoencoder in the recommender system is using 

the autoencoder for learning either user representation or item representation at the 

bottleneck layer. A novel deep hybrid recommender system framework based on 

autoencoders (DHA-RS) [8] uses SDAE that takes a target user and a target item side 

information vector (a vector showing attributes associated with users or items  such as 

gender, age, etc.) from a given user-item side-information matrix as an input for 

features-extraction to get user representation and item representation by minimizing 

errors between the output and the original user-item features. Then, a concatenation 

between the embedding of the user ID one-hot vector and the user representation forms 

the user profile and a concatenation between the embedding of the item ID one-hot 

vector and the item representation forms the item profile as shown in Figure 2.15 in part 

(i) feature extraction and ID embedding module. Then, they fed both the user profile and 

the item profile into DHA-RS framework to learn input to get user-item relation and 
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predict the rating from the last layer of Neural CF layers as Figure 2.15 in part (ii) neural 

collaborative filtering module. 

 
Figure 2.15 : A novel deep hybrid recommender system framework based on 

autoencoders  

 

2.8  Recommender system evaluation 
In the evaluation of the recommender system, there are several evaluation 

methods such as loss, accuracy. There are the two main evaluation measures that most 

researchers use to evaluate results of the recommender system: hit rate and normalized 

discounted cumulative gain. 

 

2.8.1  Hit rate 
The hit rate [15] is an evaluation of the recommender system that generates a 

top k recommendation list by sorted rating from given data. Similarly to prediction, a 

rating of all items associated with a target user is predicted. Then, a top k prediction list 

is generated by sorted rating prediction. After that, if each item in the top k prediction 

list is found in the top k recommendation list, HR will be increased by one. Finally, we 

repeat the process with all users to generate an average HR as a final HR score which 

is called HR@k score because the number of top ranking used is k. 
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2.8.2  Normalized discounted cumulative gain 
The normalized discounted cumulative gain [16] is an evaluation of the 

recommender system that generates a top k recommendation list by sorted rating from 

given similarly with HR but the difference is HR does not consider positions in top k 

that is HR increased when a predicted item is found in the top k recommendation list, 

but the NDCG considers positions in top k as follows (Figure 2.16). 

 

 

 

 

 

 

 

 

 

Figure 2.16 : Normalized discounted cumulative gain formula 

where 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 is a value of the rating, 

𝑖𝑖 is an index, 

𝑝𝑝 is the number of ranks, 

𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝 is the number of ranks in descending order by the values. 

 

As equation above, NDCG takes an index of a prediction item which is found in 

the top k recommendation list as a divisor. After that, we repeat the process with all 

users to generate an average NDCG as a final NDCG score which is called NDCG@k 

score, similar to HR. 

 

According to previous research, the use of an autoencoder in the second 

approach (learning to get user representation or item representation), has shown that 

information from other users or other items is not considered because of the scope of 

mini-batch training, which could not get the information from all users and items at the 

same time. This means it did not consider the relations among users or among items 

which are the advantage of UBCF and IBCF, respectively. In the next chapter, we will 

explain the models that we propose to solve these problems. 

 



 
 

CHAPTER III 

METHODOLOGY 

We propose a new autoencoder recommendation model that applies two more 

autoencoders which include advantages of UBCF and IBCF. The added autoencoders 

aim to learn user similarity representation from the user-user similarity matrix and item 

similarity representation from the item-item similarity matrix to form the user profile 

and the item profile. Consequently, the model should yield a more accurate predicted 

rating. 

 

3.1 Model 
We incorporated the user similarity representation and the user representation 

which form the UBCF latent-vector or user profile, and incorporated item similarity 

representation and the item representation which form the IBCF latent-vector or item 

profile. From Figure 3.1, we proposed both user-based and item-based collaborative 

filtering based on autoencoders with deep neural networks model (UICF-AE) which 

divided into two parts: (1) an autoencoder for learning the representation of the 

user/item and the user/item similarity and (2) a deep neural network for rating prediction 

part. 
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Figure 3.1 : Both user-based and item-based collaborative filtering based on 

autoencoders with deep neural networks model 

 

First, we illustrate the overview of UICF-AE which integrates the latent feature 

representation of a user and an item with the deep neural network. From Figure 3.1, as 

previously mentioned, the proposed model is composed of the learning representation 

part and the deep neural network part. The first part is composed of the user/item 

representation learning part and the user/item similarity learning part. The first subpart 

of the learning representation part are the user/item representation learning which 

consists of two autoencoders. From number 1 in Figure 3.1, the first autoencoder takes 

a user-item rating vector constructed from the user-item rating matrix as the input. From 

number 4, Figure 3.1, the second autoencoder takes an item-user vector constructed 

from the item-user rating matrix as the input. The second sup-parts of the learning 

representation part is the user/item similarity representation learning which consists of 

two autoencoders. From number 2 in Figure 3.1, the first autoencoder takes a user-user 

similarity vector constructed from the user-user similarity matrix as the input. From 

number 5 in Figure 3.1, the second autoencoder takes an item-item similarity vector 

constructed from the item-item similarity matrix as the input. We incorporated two sub-

parts of the learning representation part to form the user latent vector (Number 3 in 

Figure 3.1) and the item latent vector respectively (Number 4 in Figure 3.1). From 

number 7 in Figure 3.1, the second part is the rating predict part which is the deep neural 

network that takes the user latent vector and the item latent vector to predict rating. 

 



19 
 
 

 3.1.1 The representation learning by autoencoder 
We now explain each subpart in more detail. Each part has different objectives 

as follows:  

1) The user/item representation learning  

The learning representation consists of two autoencoders (Figure 3.2). From 

Figure 3.2 number 1, as previously mentioned, the first autoencoder takes a user-item 

rating vector from the user-item rating matrix as the input. From Figure 3.2 number 4, 

the second autoencoder takes an item-user vector from the item-user rating matrix as 

the input.  For each autoencoder, once the input is fed into the autoencoder, 

representation of the input is learned in the hidden layer by minimizing the errors 

between the output and the input (Loss). If loss is very low, the representation is very 

good because it can reconstruct the original input even using a smaller feature 

dimension. 

 

 

 

 

 

 

 

 

 

Figure 3.2 : The user/item representation learning 

 

2) The user/item similarity representation learning  

The learning representation consists of two autoencoders. From Figure 3.3 

number 2, as previously mentioned, the first autoencoder takes a user-user similarity 

vector from the user-user similarity matrix (calculated by cosine similarity between 

user-item rating matrix) as the input. From Figure 3.3 number 5, The second 

autoencoder takes an item-item similarity vector from the item-item similarity matrix 

(calculated by cosine similarity between item-user rating matrix)  as the input. The user-

user similarity matrix and the item-item similarity matrix are matrices based on the 
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cosine similarity formula as discussed in chapter two. For each autoencoder, once the 

input is fed into the autoencoder, the representation of the input is learned in the hidden 

layer by minimizing the errors between the output and the input (Loss). If loss is very 

low, the representation is very good because it can reconstruct the original input using 

a smaller feature dimension. 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 : The user/item similarity representation learning 

 

 3.1.2 Rating prediction with the deep neural network 
After we get the user representation, the item representation, the item similarity 

representation, and the user similarity representation, we concatenate the user 

representation and the user similarity representation defined as the user profile (Figure 

3.4) and concatenate the item representation and the item similarity representation 

defined as the item profile (Figure 3.5). 

 

 

 

 

 

 

 

Figure 3.4 : User profile from a concatenation user representation  

and user similarity representation 
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Figure 3.5 : Item profile from a concatenation item representation  

and item similarity representation 

 

NCF is applied to learn user-item relations and predict the rating by feeding the 

user profile and the item profile into the NCF framework (Figure 3.6) based on the 

Multi-Layer Perceptron formula as discussed in chapter two. Weights and bias are used 

in calculations in each layer to reconstruct the input. 

 

 

 

 

 

 

 

 

 

Figure 3.6 : NCF framework 
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CHAPTER IV 
EXPERIMENTAL EVALUATION 

We want to evaluate the proposed model by comparing it with the previous 

research which does not have the advantages of UBCF and IBCF. This chapter shows 

the details of the dataset, evaluation metrics and experimental results. 

 

4.1 Dataset 
We trained the model with MovieLens dataset 1M which is the benchmark 

dataset used in the previous work and retrieved from the Department of Computer 

Science and Engineering at the University of Minnesota. This dataset contains 

1,000,209 anonymous ratings of approximately 3,900 movies made by 6,040 

MovieLens users who joined MovieLens in 2000. Each record consists of a user ID, a 

movie ID and its rated value (Figure 4.1). 

 

 
 

Figure 4.1 : The movielens dataset 1M 

 

  We chose to use implicit feedback data because the implicit feedback data is 

much easier to collect in real-world applications [9]. We preprocessed ratings to implicit 

feedback by the condition that for each movie, if a movie has been rated by a user, then 

we set the rating to one, else we set the rating to zero. After that, we split the dataset 
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into 994169 rows for the train set and 6040 rows for the test set. The test set is 

constructed using a leave-one-out evaluation method since we want to recommend a 

rank-list as much as possible for each user. We used HR and NDCG which are rank-list 

evaluation metrics to evaluate the proposed model [15, 16]. 

 

4.2 Evaluation metrics 
The recommender system that applied the neural network is difficult to evaluate 

accuracy of the predicted rating. Therefore, we evaluated recommendation rank lists 

which are a measure of ranking quality instead of evaluating accuracy. We chose the 

normalized discounted cumulative gain [16] and the hit rate [15] because they were the 

rank list metrics which are used in real life scenarios and also previous research. In our 

test set, there are 6040 records, one record per user with a rated movie value. We use 

negative sampling, that is, from the test set, we obtained a record from one user at a 

time (a movie in this record has been rated) and random sampling 99 movies that haven’t 

been rated by this user. 

 

 4.2.1 The hit rate method 
For the hit rate method [15], we fed the negative sampling data into the model and 

obtained predicted ratings from the model. Next, we sorted the predicted ratings and 

obtained the hit rate. If the movie ID that has been rated shows up in the top ten, we 

incremented the hit rate value by one. We repeat this process until all users have been 

sampled to get HR@10 which is an HR score from using the top ten rankings. For 

example, in a test set, we use one record which has user ID 0 and rated movie ID 47. 

We random 99 movie ID which is not rated to list as [1, 0, 0, 0, 0, 0,..., 0]. After that, 

the model will predict the rating from the negative sampling data, then get the new 

rating as [0.955, 0.456, 0.432, 0.0123,..., 0.998]. We sort the list by predicted rating. 

Next, we checked if the top ten movie IDs in the sorted predicted rating list match with 

the rated movie ID in the negative sampling data. If a match occurs, we incremented the 

hit rate value by one. Finally, we repeat this process until all users have been sampled 

and divided by the number of tests set to get HR@10. 
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 4.2.2 The normalized discounted cumulative gain method 

For the normalized discounted cumulative gain (NDCG) [16], we fed negative 

sampling data into the proposed model to get a result similar to the hit rate. We sorted 

predicted ratings and calculated DCG. If the movie has not been rated before, a term 

contributing to DCG value will be zero. If the movie has been rated before, a term is 

calculated according to the formula.  As previously mentioned in chapter two, from the 

formula of IDCG in NDCG, our data set has an implicit feedback type that is binary 

data; therefore, we do not need to calculate IDCG because it will always be one. 

Therefore, it calculates only DCG to get NDCG@10 which is an NDCG score from 

using the top ten rankings. For example, we construct a test set from a record with user 

ID 0 and rated movie ID 47 then we random 99 movie ID which has not been rated to 

form a list as [1, 0, 0, 0, 0, 0, ..., 0]. After that, the model will predict the rating for the 

previous list and predicted ratings are obtained which might look like e.g., [0.955, 0.456, 

0.432, 0.0123, ..., 0.998]. We sort the list by predicted ratings. Next, we checked if the 

top ten movie IDs in the sorted predicted rating list match with the rated movie ID in 

the negative sampling data. If a match occurs, we incremented the NDCG value by one 

and divide the NDCG value by the position of the movie ID 47 in the top ten list. Finally, 

we repeat this process until all users have been sampled and divided by the number of 

tests set to get NDCG@10. 

 

4.3 Experimental results 
 We want to compare results between the proposed model (UICF-AE) which uses 

4 autoencoders to extract the representation of user, item, user similarity (which shows 

the relation between users and takes advantage of UBCF) and item similarity (which 

shows the relation between items and takes advantage of IBCF). The four 

representations are fed to MLP to predict rating with a novel deep hybrid recommender 

system framework based on autoencoders model (DHA-RS) [8] which uses two 

autoencoders to extract representation of user and item and uses embedding of the user 

ID and the item ID to show the relation between users and between items but their 

method did not fully utilize the strength of CF. Therefore, we use the same evaluation 

methods as DHA-RS that are HR and NDCG to compare the performance of models. 

Further, we began by setting the hyperparameters based on DHA-RS [8] best 

hyperparameters. We set an adam optimizer to optimize the model and set the learning 
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rate to 0.0001, set the number of hidden layers of each autoencoder to 128 dimensions 

since autorec [4] experimental results have shown that the loss of autoencoder 

dramatically reduces when the number of hidden layers is more than 100, set the 

regularization to 100 and the loss parameter to 100 because DHA-RS [8] experimental 

results have shown that the model is not sensitive to this values, and set the batch size 

to 512. We refer to these sets of parameters as the base parameter model. For activation 

functions, we used relu activation function to all hidden layers in the proposed model 

because relu can reduce the vanishing gradient problem unlike sigmoid, relu is 

appropriate with sparse data, and relu allows the model to be less likely overfitting [9]. 

Except for the output layer of MLP we used sigmoid activation function to predict the 

implicit rating. 

 

4.3.1 The multi-layer perceptron layers 
We want to test how the number of MLP layers affects the model's performance. 

We set the output layer to 64 dimensions and tested on the number of MLP layers with 

one, two, three and four layers. For example, if the number of hidden layers is one, the 

MLP dimensions of each layer are 64 and 1, respectively. If the number of hidden layers 

is two, the MLP dimensions of each layer are 128, 64 and 1, respectively. We use the 

base parameter model to test and compare with DHA-RS to get the result shown in 

Figure 4.2 and Figure 4.3. 

 

 
Figure 4.2 : The number of hidden layers effect on HR@10 
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Figure 4.3 : The number of hidden layers effect on NDCG@10 

 

From Figure 4.2, the best result of HR@10 of the proposed model on test set is 

MLP with four layers which has HR@10 of 0.7274 while DHA-RS has the highest 

HR@10 value less than 0.71 followed by MLP with three layers and MLP with two 

layers that have HR@10 values 0.7183 and 0.7113, respectively. 

From Figure 4.3, the best result of NDCG@10 of the proposed model on the test 

set is MLP with four layers which has NDCG@10 of 0.4549 while DHA-RS has the 

highest NDCG@10 value less than 0.44 followed by MLP with three layers and MLP 

with two layers that have the NDCG@10 values 0.4400 and 0.4381, respectively. 

 

 4.3.2 The output layer dimensions of multi-layer perceptron 
After we get the number of layers of MLP, we want to test how the number of 

the output dimensions of MLP layers affects the model's performance. We set the layer 

of MLP to 4 layers from the previous results (Section 4.2.1) and tested for the number 

of output layer dimensions of MLP with 64, 32, 16 and 8. For example, if the output 

layer dimensions of MLP has 64 dimensions, each layer of the MLP has dimensions 

with 512,  256, 128 and 64 respectively. If the output layer dimensions of MLP have 32 

dimensions, each layer of the MLP has dimensions with 256,  128, 64 and 32 

respectively. We use the base parameter model to test and compare with DHA-RS to 

get the result shown in Figure 4.4 and Figure 4.5. 
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Figure 4.4 : The number of the output layer dimensions effect on HR@10 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 : The number of the output layer dimensions effect on NDCG@10 

 

From Figure 4.4, the best result of HR@10 of the proposed model on the test set 

is the output layer dimensions with 64 dimensions which has HR@10 of 0.7274 while 

DHA-RS has the highest HR@10 value less than 0.71 followed by the dimension of the 

output layers with 32 dimensions and the dimension of the output layers with 16 

dimensions that have HR@10 values 0.7112 and 0.6958, respectively. 
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From Figure 4.5, the best result of NDCG@10 of the proposed model the on test 

set is the output layer dimensions with 64 dimensions which has HR@10 of 0.4549 

while DHA-RS has the highest HR@10 value less than 0.44 followed by the dimension 

of the output layers with 32 dimensions and the dimension of the output layers with 16 

dimensions that have HR@10 values 0.4307 and 0.4203, respectively. 

 

Table 4.1 : The comparison between DHA-RS and UICF-AE 

 

Model Evaluation method 

HR@10 NDCG@10 

DHA-RS 0.7076 0.4320 

UICF-AE 0.7274 0.4549 
 

From Table 4.1, the results show that when we switch from embedding user ID 

and item ID to using the representation similarity of items and users by adding 

autoencoders, it makes our model outperforms DHA-RS because DHA-RS did not 

consider the relations among users or among items but they used only embedding of the 

user ID and the item ID for showing the relations among users or among items. It is a 

relationship among users and among items in terms of positions which can not extract 

representation of other users that are similar with target users but, our model uses 

autoencoder to find the representation of similarity which utilizes the advantages of 

UBCF and IBCF. For this reason, the efficiency of our model is higher than DHA-RS. 

 

 

 

 

 



 
 

CHAPTER V 
CONCLUSION  

5.1 Conclusion 
In this work, we proposed UICF-AE which utilize the advantages of UBCF and 

IBCF by applying two more autoencoders to learn representations of similarity between 

a target user (Item) and other users (Items). UICF-AE consists of four autoencoders: (1) 

a user representation learning autoencoder, (2) an item representation learning 

autoencoder, (3) a user similarity representation learning autoencoder and (4) an item 

similarity representation learning autoencoder. Then, we concatenated the user 

representation and the user similarity representation to form a user profile and the item 

representation and the item similarity representation to form an item profile. After that, 

we fed a concatenated vector of the user profile and the item profile to MLP for rating 

prediction. Finally, the experimental results have shown that UICF-AE outperforms 

previous work for both metrics; HR is 2.8% higher and NDCG is 5.3% higher. 

 

5.2 Suggestion 
1. We find the similarities of each user and each item using only the cosine 

similarity method. There are many ways to find similarities, which may affect model 

performance. 

 2. From results 4.1.1, the performance of the model depends on the number of 

layers which tends to increase continuously with the number of layers.  

3. From results 4.1.2, the performance of the model depends on the number of 

dimensions of the output layer which tends to increase continuously with the number of 

dimensions of the output layer. 

4. In the NCF framework, we use only the multi-layer perceptrons. DHA-RS has 

shown that using generalized matrix factorization (GMF) is more efficient than MLP. 

However, our method outperformed DHA-RS when using MLP. This suggested that if 

GMF alone or both GMF and MLP are employed, a higher performance should be 

achieved.  
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Background and Rationale 

 With the growing size of information, the recommender system plays an 

important role, that is, allowing users to interact with content efficiently [1]. The 

recommender system tries to advise users by filtering items based on users’ previous 

actions. It has been employed by many sites (e.g., Netflix, Amazon, and Spotify) to 

provide their products or services for customers to raise their incomes. There are three 

main types of recommender systems: content-based filtering (CBF), collaborative 

filtering (CF), and hybrid methods. CBF aims to recommend other similar items to users 

based on item features (e.g., item descriptions) from users’ previous actions. However, 

item features sometimes can not be gathered, so it is not possible to use CBF. CF came 

to fix this limitation [2]. CF are built on explicit feedback (e.g., user ratings) and implicit 

feedback (e.g., number of clicks and purchases). It compares the target user with others 

who have similar preferences. It is based on the logic that people like you (judging from 

the past) like this and so should you. Further, they are two well known types of CF: 
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user-based and item-based. User-based CF assumes that people who have similar tastes 

tend to react to items similarly. This approach calculates the target user rating by using 

other users’ rating (Figure A.1). In this figure, among other users (red square on the left 

of figure A.1), we used users who have the highest similarity (blue square on the right 

of figure A.1) to the target user to calculate the rating. For item-based CF, it tries to find 

items that look alike instead of users look alike (Figure A.2). In this figure, the approach 

focuses on using the reacted items (the red square on the left of figure A.2) of the target 

user. The highest similarity items (the blue square on the right of figure A.2) to the 

unreacted item of the target user will be used to calculate the rating of the unreacted 

item of the target user. The hybrid method is a combination of CBF and CF.  

 

 
 

Figure A.1 : User-based CF 
 

 
 

Figure A.2 : Item-based CF 
 
 
 

  
 Nowadays, many pieces of research attempt to apply the neural network into CF 

(neural network based CF) because there is a limitation in CF that CF can learn only 
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linear representation, but the neural network can learn both linear and non-linear 

representation [1]. A neural network can learn input features in both supervised and 

unsupervised ways. Besides CF, a neural network has been showing its capability in 

many fields, such as computer vision and natural language processing [9]. 

 Autoencoder is one of the most popular neural network models in the 

recommender system. Autoencoder is an unsupervised model, which aims to 

reconstruct the input data in the output layer by encoding the input data into the middle 

layer called the hidden layer to form latent representation, and then the output from the 

hidden layer is decoded by the output layer to reconstruct the data. There are two well 

known types of autoencoder: (1) Denoising Autoencoder (DAE); (2) Stacked Denoising 

Autoencoder (SDAE). DAE takes the corrupted input data by adding noise, then the 

output layer aims to reconstruct the real input data from the latent representation of 

corrupted data to make the model robust. SDAE is the extended version of DAE by 

adding more layers symmetrically. Encoding layers of SDAE are corrupted to make the 

model more robust than DAE.  

There are two ways of using autoencoders in the recommender system: 

predicting rating from the user-item rating matrix and learning either user representation 

or item representation at the bottleneck layer [3]. In the first approach, Sedhain et al. 

(2015) proposed AutoRec [4] which takes user-item rating vectors or item-user rating 

vectors as input and reconstructs it in the output layer to fill missing values in the rating 

matrix (Figure A.3). This figure shows two approaches which are depending on the 

input: user-based AutoRec takes user-item rating vector as the input (the green square 

on the left of figure A.3) and item-based AutoRec takes item-user rating vector as the 

input (the orange square on the right of figure A.3). 

 

 

 

 

 

 

 

 

 



37 
 
 

 

 

 

 

 

 

 

Figure A.3 : Two approaches of autorec: user-based AutoRec (left) which takes 

user-item rating vector as the inputs and item-based AutoRec (right) which takes item-

user rating vector as the input 

 
Another model called CDAE (Collaborative Denoising Auto-Encoders) [5], 

proposed after AutoRec, uses DAE to corrupt input data, which is implicit feedback 

instead of the rating. The output layer aims to reconstruct the real input data from the 

latent representation of corrupted data. An extension from CDAE called CFN (Hybrid 

Recommender System based on Autoencoders) [6] takes the input similar to AutoRec, 

but a corrupted version. It also incorporates side information (e.g., user profiles and item 

descriptions) to increase the prediction accuracy. 

In the second approach, there are many models proposed. First, Hybrid 

Collaborative Filtering Model with Deep Structure for Recommender [7] aimed to learn 

user representation from user-item rating matrix and item representation from item-user 

rating matrix for Matrix Factorization Recommender using SDAE. Second, DHA-RS 

(A Novel Deep Hybrid Recommender System Framework based on Autoencoders) [8] 

improved recommendation accuracy by using SDAE to learn latent representation from 

users and items side information, and then they concatenated the embedding of the user 

ID one-hot vector with the user representation to form the user profile and the 

embedding of the item ID one-hot vector with the item representation to form the item 

profile. They fed the user profile and item profile to DHA-RS framework: GMF++ 

(Generalized Matrix Factorization++) and MLP++ (Multi-Layer Perceptron++) to learn 

user-item relation and predict the rating. 

According to previous methods, the uses of autoencoder in the recommender 

system have shown that they used only the target user data and the target item data, but 
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there was no information of other users or other items considered. This means they did 

not consider the relations among users or among items. 

In this work, we extend the use of autoencoder for user and item representation 

by including the advantages of user-based CF and item-based CF. Therefore, we 

propose to apply two more autoencoders that aim to learn user similarity representation 

and item similarity representation on user-user similarity matrix and item-item 

similarity matrix respectively (Figure A.4). The user-user similarity matrix is the matrix 

of cosine similarity between user-user ratings, and the item-item similarity matrix is the 

matrix of cosine similarity between item-item ratings. The first autoencoder aims to 

learn the user representation from the user-item rating matrix (Figure A.4, top left). The 

second autoencoder, which is the main part of the proposed model, aims to learn the 

user similarity representation from the user-user similarity matrix (Figure A.4, top 

right). The output vectors from the first autoencoder and the second autoencoder are 

concatenated to form the user profile. The third autoencoder aims to learn the item 

representation from the item-user rating matrix (Figure A.4, bottom left). The fourth 

autoencoder aims to learn the item similarity representation from the item-item 

similarity matrix (Figure A.4, bottom right). The output vectors from the third 

autoencoder and the fourth autoencoder are concatenated to form the item profile. Then, 

we do concatenation on the user profile and the item profile. After that, we feed the 

concatenated vector in the NCF [9] framework: MLP (Multi-Layer Perceptron) to learn 

user-item relations and predict the rating. Finally, we use Hit Rate (HR) and Normalized 

Discounted Cumulative Gain (NDCG) as the evaluation metrics to measure the 

accuracy of the model. 
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Figure A.4 : Both user-based and item-based collaborative filtering based on 

Autoencoders with deep neural networks 

 

In this section, we will breakdown through the calculation of the proposed 

model. From figure A.4, we split the proposed model into two modules: Learning 

representation module and NCF framework module. The learning representation 

consists of four autoencoders; all of them generate the output as in equation 1: 

 

O𝑙𝑙 = σ(𝑊𝑊𝑙𝑙
𝑇𝑇O𝑙𝑙−1 + b𝑙𝑙)    (1) 

 

where O𝑙𝑙, σ, W𝑙𝑙, O𝑙𝑙−1 and b𝑙𝑙 denote the output of autoencoder at layer l, 

activation function, the weight matrix at layer l, the output of autoencoder from the 

previous layer and the bias vector at layer l, respectively. For the first layer, the 

computation will be defined as in equation 2: 

 

O1 = σ(𝑊𝑊1
𝑇𝑇𝑋𝑋 + b1)    (2) 

 

where 𝑋𝑋 is the input which is different among the four autoencoders. 𝑋𝑋 is the 

user-item rating vector for the first autoencoder, user-user similarity vector for the 

second autoencoder, item-user rating vector for the third autoencoder and item-item 
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similarity vector for the fourth autoencoder. The loss function of autoencoders can be 

defined as in equation 3:  

L𝐴𝐴𝐴𝐴 = �𝑂𝑂𝑦𝑦 − 𝑋𝑋�
𝐹𝐹
2 + λ𝑊𝑊‖𝑊𝑊‖𝐹𝐹2 + λ𝑏𝑏‖𝑏𝑏‖𝐹𝐹2   (3) 

 

where L𝐴𝐴𝐴𝐴 is the loss of autoencoder at number n (Figure A.4), 𝑂𝑂𝑦𝑦 is the output 

from last layer of the autoencoder, λ𝑊𝑊 and λ𝑏𝑏 is a regularization-term parameter of 

weight matrix and bias vector, respectively. 

The NCF framework module consists of MLP which is used to learn user-item 

relations and predict the rating. The calculation of the NCF can be defined as in equation 

4: 

 

Z = [U ;  I]   

O1 = σ(𝑊𝑊1
𝑇𝑇𝑍𝑍 + b1)     

O2 = σ(𝑊𝑊2
𝑇𝑇O1 + b2)     

 …     (4) 

O𝑙𝑙 = σ(𝑊𝑊𝑙𝑙
𝑇𝑇O𝑙𝑙−1 + b𝑙𝑙)    

r�𝑢𝑢𝑢𝑢 = σ(𝐻𝐻𝑇𝑇O𝑙𝑙)     

 

where Z is the concatenated vector between user profile (U) and item profile (I), 

O𝑙𝑙 is the output of MLP at layer l, W𝑙𝑙 is the weight matrix at layer l, b𝑙𝑙 is the bias vector 

at layer l, σ is the activation function, 𝐻𝐻𝑇𝑇 is the weight matrix of rating prediction layer 

and  r�𝑢𝑢𝑢𝑢 is the predicted rating of user U and item I. The loss function of NCF is defined 

as equation 5: 

 

L𝑁𝑁𝑁𝑁𝑁𝑁 =  ∑ (1 − 𝑟𝑟𝑢𝑢𝑢𝑢) log2(1 − r�𝑢𝑢𝑢𝑢)(𝑢𝑢,𝑖𝑖)𝜖𝜖𝜖𝜖∪𝑅𝑅− + 𝑟𝑟𝑢𝑢𝑢𝑢 log2(r�𝑢𝑢𝑢𝑢) + λ𝜃𝜃‖𝜃𝜃‖𝐹𝐹2   (5) 

 

which is a binary cross-entropy, where 𝑅𝑅 is the set of observed ratings, 𝑅𝑅− is the 

set of unobserved ratings, λ𝜃𝜃 is a regularization-term of parameters, 𝜃𝜃 is the parameters, 

𝑟𝑟𝑢𝑢𝑢𝑢 is an actual rating of user U and item I. Therefore, the total loss is defined as equation 

6: 
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L𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = L𝑁𝑁𝑁𝑁𝑁𝑁 + 𝛼𝛼L𝐴𝐴1 + 𝛽𝛽L𝐴𝐴2 + 𝛾𝛾L𝐴𝐴3 + δL𝐴𝐴4         (6) 

 

 where 𝛼𝛼, 𝛽𝛽, 𝛾𝛾 and δ denote the hyperparameters of the loss function. 

 

 
Objectives 

1. To propose to apply two more autoencoders that aim to learn to get user 

similarity representation and item similarity representation from user-user 

similarity matrix and item-item similarity matrix respectively.  

2. To use the NCF framework: MLP (Multi-Layer Perceptron) to learn to get user-

item relations and predict the rating.  

 
Scope 

1. Using a dataset named MovieLens-1M, which contains 6040 users, 3706 items, 

and a million ratings. The max rating is 5. The min rating is 1. Zero means there 

is no rating for the movie. 

2. Evaluation metrics are HR and NDCG. 

3. The dataset has to contain users, items, and ratings. 

 
Project Activities 

A. project Plan 

1. Do a literature review on the recommender system. 

2. Identify the problems and limitations of previous works. 

3. Design and analyze the improved method of the recommender system. 

4. Implement the proposed system. 

5. Evaluate the accuracy of the proposed system. 

6. Analyze and discuss the experimental results. 

7. Do the documentation. 
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B. Schedule 

Table A.1 : the Gantt Chart that explains the processes of methods in the 

timeline. 

Method Year 2019 Year 2020 

Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. 

1. Read research 
papers and 
academic 
articles about 
the 
recommender 
system. 

          

2. Identify the 
problems and 
limitations of 
previous works. 

          

3. Design and 
analyze the 
improvement 
method of the 
recommender 
system. 

          

4. Develop and 
test the 
efficiency of the 
proposed 
system. 

          

5. Experiment 
to evaluate the 
accuracy of the 
proposed 
system. 

          

6. Analyze and 
discuss the 
experiment 
result. 
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7. Provide the 
report 
documentation. 

          

 
 
 
Benefits 

1. Benefits for users 

1.1 Users get a new recommender system, which should be better in accuracy 

than the previous work. 

1.2 Increase the product sales. 

1.3 Increase the income of the user's company. 

1.4 Users can access the content efficiently. 

2. Benefits for the system developers 

2.1 Achieved both theoretical and practical knowledge in the recommender 

system field. 

2.2 Learn new tools and programs, which are significant to develop the system. 

2.3 Practice how to plan the work properly. 

2.4 Improve problem-solving skills. 

 
 

Equipment 
1. Hardware 

1.1 Dell Inspiron 7559 with Windows 10 64-bit Operating System, 2.30 GHz 

Intel ® Core (TM) i5-6300HQ Processor, 8 GB Ram, and 1 TB HDD Storage. 

1.2 Personal Computer with Windows 10 64-bit Operating System, 3.40 GHz 

quad-core Intel Core I5 Processor, 16 GB Ram, and 1 TB HDD Storage. 

1.3 Macbook Pro 2017 with macOS Mojave Operating System, 2.30 GHz 

dual-core Intel Core I5, 8 GB Ram, and 256 GB SSD Storage. 

2. Software 

 2.1 Jupyter Notebook 

 2.2 Google Colab 

 2.3 sagemaker on AWS 
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Budget 

1. SSD 500 GB      3070 Baht 

2. Apple Airpods      4708 Baht 

Buy          Total 7778 Baht 
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