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Chapter I

INTRODUCTION

From high school mathematics, we know that the cardinality of the power
set of a finite set A with |A| = n is 2" and the cardinality of the permutations on
A, denoted by S(A), is n! which is greater than 2" for all natural numbers n > 4.
Surprisingly, for the case that A is an infinite set, in the Zermelo-Fraenkel set theory
(ZF) with the Axiom of Choice (AC), these two cardinals are equal. However, each
of “|S(A)| < |P(A)]”, “|P(A)| < |S(A)|”, and “|S(A)| and |P(A)| are not comparable”
for some infinite set A is consistent with ZF.

We consider the set of all finite subsets of a set A, denoted by fin(A), and the
set of all permutations on A with finite non-fixed points, denoted by Sg,(A). In fact,
|A| = |fin(A)| = |Ska(A)| for all infinite sets A in the Zermelo-Fraenkel set theory
with Axiom of Choice (ZFC).

By the well-known Cantor’s theorem, which is provable in ZF, we know that

|A| < |P(A)| for any set A. Thus, in ZFC, for all infinite sets A,
Al = [fin(A)| = [Sn(A)] < [P(A)] = [S(A)].

Without AC, |A| < [fin(A)] for all sets A but “|A| = |fin(A)| for all infinite sets
A” cannot be proved (see [4]). In 1994, Halbeisen and Shelah improved Cantor’s
theorem for infinite sets by showing, in ZF, that [fin(A4)| < |P(A)| for all infinite
sets A (see [3]). On the other hand, “|Sg,(A)| # |S(A)| for all infinite sets A” is not
provable in ZF (see [6]).

In this project, we give some conditions of an infinite set X as well as some
weak forms of AC that make [fin(X)| and |Sg,(X )| comparable in ZF. First, we give

some background about set theory in Chapter II. New results are in Chapter III.



Chapter 11

PRELIMINARIES

At first, G. Cantor defined sets as collections of objects but this leads to para-
doxes. One way to avoid these problems is to use an axiomatic method and let sets
be undefined. This system is called an axiomatic set theory. Nowadays, Zermelo-
Frankel set theory (ZF) with the axiom of choice (AC) is the most accepted ax-
iomatic set theory. In this project, our work is done in ZF.

In this chapter, we give some background on set theory. Proofs of all theorems

will be omitted. They can be found in [2].

2.1 Cardinal numbers

Intuitively, a cardinal (number) is a number used to measure the size of a set,
i.e. the number of all elements of a set. Denote the cardinal number of a set X by
|X|. Cardinals are defined so that for any sets X and Y, | X| = |Y| ++ X =~ Y, where

X ~ Y means there is a bijection from X onto Y.

Definition. Natural numbers are constructed as follows:
0=0,1=1{0},2={0,1},3=1{0,1,2},...

Let w be the set of all natural numbers.

Definition. Let X be a set. If X ~ n for some n € w, X is said to be finite and define
|X| = n. If X is not finite, then X is said to be infinite. We call | X| a finite cardinal

if X is finite; otherwise, | X| is an infinite cardinal.

Note. Every finite cardinal is a natural number and vice-versa.



Notation. For any sets X and Y, let
1. P(X) be the set of all subsets of X,
2. fin(X) be the set of all finite subsets of X,
3. S(X)={f|f: X — X is a bijection},
4. Sin(X) ={f|f: X — X is a bijection with finite non-fixed points},
5. XY ={f|f:Y— X}

Lemma 2.1.1. For any cardinals k and )\, there are sets X and Y such that |X| = &,

Y=\ and X NY = (.

Definition. Let X and Y be sets and « = | X| and A = |Y|. Define
l. k+A=|XUY|where XNY =0,
2. k- A=|X XY],
3. M =|XY).

Note. From the above definition, we have that for any cardinal « and any natural

number n,
kY =1and k" = K - K",

Theorem 2.1.2. For any set X, |P(X)| = 2X.
Theorem 2.1.3. Let x, )\, and 1 be cardinals. Then

I. k+X=X+k,

2. (k+N)+p=r+A+p),

3. k- A=)k,

4. (kXN p=r-(A-p),

S50 k- (A+p)=((K-N)+(k-p),



Definition. Let X and Y be sets and « = | X| and A = |Y|. Then we say
1. x < X if there is an injection from X into Y,
2. k< Nif Kk < Abutsk # .
Theorem 2.1.4. < partially orders the cardinal numbers.
Theorem 2.1.5. Let x, \, and ;. be cardinals such that k < \
I i+p<X+yp,
2. k<A p,
3. kM<K,
4. pf<p ifk#0o0rp#0.

Theorem 2.1.6. Cantor’s theorem
For any cardinal k,

K < 2F,
Theorem 2.1.7. For all natural number n > 4,
P(X)| =2" <n!=|5(X)|,

where X is a set with | X| = n.

2.2 Axiom of Choice

Definition. A choice function f for a set X is a function f : X\ {0} — (J X such that
for any z € X\{0}, f(z) € =.

The following statements are equivalent forms of the Axiom of Choice (AC).



1. Well-ordering Theorem: Every set can be well-ordered.
2. Cardinal Comparability: For any cardinal numbers x and )\, x < X or A < k.
3. Every set has a choice function.
4. For every infinite cardinal x, x? = x.
The following theorems are consequences of AC.

Theorem 2.2.1. Absorption Law of Arithmetic

For any cardinals v and \ of which at least one is infinite,
1. k+ X\ =max{x, \},
2. k- A =max{k, \} if min{x, \} # 0.

Theorem 2.2.2. For any cardinals x and ), if X is a set such that | X| = x and each

element of X has cardinality less than or equal to ~, then
UX| <k~

Theorem 2.2.3. Let X be an infinite set. Then

Theorem 2.2.4. Let X be an infinite set. Then
| X| = [fin(X)] =[S (X)].
Corollary 2.2.5. Let X be an infinite set. Then
| X| = [fin(X)] = |9 (X)| < [P(X)]| = [S(X)].

More details on AC can be found in [6].



2.3 Cardinal numbers without AC

Definition. An aleph is the cardinal of an infinite well-ordered set.

Note that, with AC, every set can be well-ordered. Therefore AC is equivalent
to “every infinite cardinal is an aleph”. In the absence of AC, any two alephs are

comparable and satisfy absorption law of arithmetic.
Definition. Let X) = |w| and X; be the least aleph greater than X,.

Definition. A set X is countable if | X| < Xy. A set X is denumerable or countably

infinite if | X| = Ry
Theorem 2.3.1. /. |fin(w)| = |Sha(w)] = No.
2. No+Ng = Ng - Ny = N

Cardinal Comparability is equivalent to AC. Therefore, without AC, we can-
not guarantee whether two cardinals are comparable or not, in particular, infinite

cardinals may not be compared with Ry.

Definition. A set X is called Dedekind-infinite if ¥y < | X|; otherwise, X is called a
Dedekind-finite set.

Note. Every Dedekind-infinite set is infinite but the converse is not necessarily true

without AC.

2.4 Weak forms of AC

Even though AC is equivalent to many important theorems, for example,
Zorn’s lemma, Tychonoff’s theorem, and “every vector space has a basis”, it also
leads to some counterintuitive results such as Banach-Tarski paradox. Thus some
mathematicians avoid using AC and sometimes use weaker forms of AC instead.

The following weak choice principles are relevant to our work.

1. AC_y,: Every family of finite sets has a choice function.



2. D-fin: Every infinite set is Dedekind-infinite.
3. 2m = m: For any infinite cardinal m, 2m = m.
Relations among these weak forms are as follows:

* 2m = m implies D-fin but the converse is not provable in ZF. In other words,

D-fin is weaker than 2m = m.

* Itis not provable in ZF that AC_y, implies D-fin. As aresult, “AC_y, implies

2m = m” is not provable as well.
e It is unknown whether 2m = m implies AC_y, or not.

The above results are from [5].
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MAIN RESULTS

In [1], Dawson and Howard proved that for every set X, if | X| = 2|X|, then
|P(X)] < |S(X)| and if | X| = | X|?, then [P(X)| > |S(X)|. Since “|X| = |X|? for any
infinite set X is an equivalent form of AC and “|X| = 2| X| for any infinite set X~
is a weaker form of AC, if AC is assumed, |P(X)| = |S(X)| for any infinite set X.

However, they also proved that each of “|S(X)| < [P(X)|”, “|P(X)| < |S(X)]”,
and “|S(X)| and |P(X)| are not comparable” for some infinite set X is consistent
with ZF. Thus, without AC, we cannot conclude any relationship between P(X) and
S(X) for an arbitrary infinite set X.

In [3], Halbeisen and Shelah improved Cantor’s theorem for infinite sets by
showing, in ZF, that |fin(X)| < |P(X)] for all infinite sets X. This implies that, in
the absence of AC, | X| < |fin(X)| < |P(X)] for all infinite sets X. In [4], they also
showed that the statement “|X| = |fin(X)]| for all infinite sets X cannot be proved
in ZF.

On the other hand, in [7], Tachtsis proved that the statement *“|Sg,(A)| # |S(A)]
for all infinite sets A” is not provable in ZF.

In this chapter, we shall give conditions that make two cardinals |fin(X)| and
| Sfn (X )| comparable for an infinite set X.

First, we give conditions that make |fin(X)| < |Sg,(X)| for an infinite set X.

For the first condition, we need the following definitions.
Definition. For a function f on a set X, we define /™ : X — X recursively by
O =idy and f"*! = fo fm.
Definition. For a bijection f on a set X, we define f=" = (f~!)" for all n € w.
Definition. For a bijection f on a set X, we define a relation ~; on X as follows:

a~sbiff b= f"(a) for some n € Z.



Note. For any bijection f on a set X, ~ is an equivalence relation on X. Moreover,
for x € X, if [z]., is finite, then [z]., = {z, f(x),..., f"(z)} for some n € w and if

[z]~, is infinite, then [z]., = {f"(z)|n € Z}, 0 |[z]~,| = Ro.

Notation. Let X be a set, n € w be a natural number greater than 1, and 1, x, ..., x,

be distinct elements of X. We write (z1; x9; ...; z,,) for the cyclic permutation

{(xbe)a($27$3)a"'1(xnaxl)}UidX\{azl ..... Tn}e

Lemma 3.1. Let X be an infinite set. If there is a bijection f : X — X such that f?
and f3 have finite fixed points, then there is a bijection g : X — X such that ¢g*> and

g% have no fixed points.

Proof. Assume there exists a bijection f as in the theorem. Let F = {a € X|f?(a) = a
or f3(a) = a}. Since F is finite and X is infinite, there is a class [z]., such that
|[z]~,| > 4. Then, [z]., N F' = (. Since [z]., is countable, 4 < |[z]., U F| < R,.

Case 1: |[z]~, U F| < Rq.

Let {a1, aq, ..., a, } be an enumeration of [z]., U F. Define

9= (f 1 (X\fa1,cran}) Uidyyy Up) o (a1 az; ).

Clearly, g2 and ¢® have no fixed points.

Case 2 [[z]~, U F| = Ro.

Let {a;|i € Z} be an enumeration of [z]., UF. Define g : X — X by g(z) = f(x)
if 2 ¢ {a;]i € Z} and g(a;) = a;41 for all i € Z. Clearly, ¢*> and ¢ have no fixed

points. [

Theorem 3.2. Let X be an infinite set. If there exists a bijection f : X — X such

that f? and f3 have finite fixed points, then |fin(X)| < |Sg,(X)|.

Proof. Assume there exists a bijection f as in the theorem. By Lemma 3.1, there
exists a bijection g : X — X such that g? and ¢* have no fixed points. We write [z].,
as [z] for all z € X. Note that, since ¢ and ¢3 have no fixed points, |[z]| > 4 for all
z € X.

For each z € X, we define a function g, : fin([z]) — Sgn([2]) by

9] (0) = idp,
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9 ({a}) = (9(a); g*(a); g*(a))
91 ({a, g™ (a), ..., g™ (@) }) = (a; 9™ (a); ..; g™ (a)),

where 1 <l < |[z]|and 1 < ny < mg < ... <y < |[7]].

Claim 1: g, is well-defined for each » € X.

Let 2 € X and Y € fin([z]). If Y is § or a singleton, it is clear that g, (Y") can
be uniquely determined.

For the last case, |Y| =1+ 1 forsome 1 < < |[z]| and let Y = {a,a1,...,q;} =
{b,b1,...,b;}, where a,aq,...,a; and b,by,...,b; are two distinct enumerations of Y.
Since for any natural number 1 < i <[, a and qa; are in the same equivalence class,
a; = g"(a) for some n! < |[z]|. Now, we arrange n}, ...,n} in an increasing order, say
ni,...,n;. Therefore, Y = {a,¢" (a),...,g"(a)} where 1 < n; < ny < ... < ny < |[z]].
Similarly for the set {b,b1,...,b;}, Y = {b, g™ (b), ..., g™ (b)} for some 1 < m; < mgy <
e<my < |[zx]].

Since b € Y and a, ay, ...,a; and b, by, ..., b; are distinct enumerations, there ex-
ists a natural number 0 < k& < [ such that b = ¢"*(a). Note that for any i < [,
among the elements of Y, g™+ (a) appears first in the sequence g™ *(a), g™ "2(a), ...,
similarly for g™+ (b) (here, no = 0 = myp). Since ¢g"*(a) = b, the sequences
g t(a), g™ %(a),... and gmot1(b),gm+2(b),... are identical, so g™+i(a) = g™ (b).
By induction, we can show that g"+i(a) = ¢g™i(b) for all i < [ — k. Since k # 0,
a € Y\{b,g™(b),...,g™*(b)}, so a = g™ (b) for some | — k+1 < r < [. By the
same process as described above, we have that ¢"i(a) = g™+ (b) for all i < k where
r+i<Il. Hence r <!—k+1,sor =1—k+ 1. Thus the sequences a, g™ (a), ..., g™ (a)

and g™i-++1(b), g™-r+2(b), ..., g™ (b), b, g™ (D), ..., g™ —*(b) are identical. Hence,

(a;9" (a);..; g™ (a)) = (g™ =+ (b); g™ *+2(D); ...; g™ (b); b5 g™ (b); .5 g™~ (D))

= (b; ™ (b);...; g™ (D). [

Claim 2: g, is injective for each 2 € X.
LetY, Z € fin([z]) be such that Y # Z. Without loss of generality, assume there

Now, suppose Z # .
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Case 1Y = {y}.

Then g, (Y) = (9(v); 9°(v); 9°(v))-

Case 1.1 7 = {z}.

Then y # z and g4 (Z) = (9(2); 9°(2); g*(2)). Since g is injective, g(y) # g(2). |
y = g(2), then g1, (Z2)(y) = ¢°(2) = ¢°(y). If y = g°(2), then g, (Z)(y) = g(2). Since g°
(and hence g) has no fixed points, from both cases, g, (Y)(y) = y # gj)(Z)(y). Oth-

erwise g(y) ¢ {9(2),9°(2), 9°(2)}. Hence g,;(Y)(9(v)) = ¢*(y) # 9(¥) = 9121(Z)(9(»))-
Case 1.2 |Z| > 1.

/\/\

Then 9] (Z) is a cyclic permutation which permutes every element in Z.

If Z = {9(y), $*(v), °(y)}, then g} (V) (9(v)) = ¢°(v) # 9°(y) = 92)(Z2)(9(v))-
Otherwise, clearly g;,1(Y) # g1, (2).

Case2 [Y| > 1.

As in the case 1.2, if [Z] = 1, then gp,)(Y) # g14(2).

Suppose |Z| > 1. Since y € Y'\Z where gp,)(Y) permutes every element in Y,

92) (V) (W) # vy = 91)(Z)(y). Hence g, (Y) # g12)(2). [

We define a function G : fin(X) — Sg,(X) by G(0) = idx and

G(S) = g1s,)(S N [51]) © gL,y (S N [52]) © - g1s,1(S N [50])s

where S # 0 and {[z] € X /|[z]NS # 0} = {[s1], [s2], .., [sn]}. Since for 1 <i <k, g5
only permutes finitely many elements in the class [s;] and these classes are pairwise
disjoint, G is well-defined. Finally, we show that G is an injection.

Let A, B € fin(X) be such that A # B. Without loss of generality, assume there
isa € A\B. If B=1, then G(B) = idx # G(A).

Now, suppose B # 0.

Casel [a]nB=0.
Then G(A) | [a] = g (AN [a]) # idjy) = G(B) | [a]. So, G(4) # G(B).

Case2[a] NB#0.
Let b € [a] N B. Note that a € (AN [a])\(B N [a]). Since g, is injective, G(A) | [a] =
g(AN[a]) # gig(BN [a]) = G(B) | [a]. So, G(A) # G(B). O

Corollary 3.3. Under 2m = m, |fin(X)| < |Sqa(X)| for any infinite set X.
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Proof. Assume 2m = m and let X be an infinite set. Then | X| is an infinite cardinal
and |4 x X| =4|X| =2(2|X]) =2|X| = |X]. Let g : 4 x X — X be a bijection. Define
f:X — Xby f(z) = (go((0,9);...; (3,y))og 1) (z) if x = g(k,y) for some (k,y) € 4x X.
That is f(g(k,y)) = g(k + 1,y) for all & < 3, and f(g(3,y)) = ¢(0,y) for all y € X.
Then f is a bijection and for each = € X, [z]., = {9(0,v),9(1,9),9(2,¥),9(3,y)} if
z = g(k,y) for some k < 4 and y € X. Since |[z]~,| =4 for all z € X, f? and f? have
no fixed points. By Theorem 3.2, [fin(X)| < |S5,(X)| as desired. [

Next, we shall give another result.

Theorem 3.4. Let X be an infinite set. If fin(X) has a choice function, then
fin(X)] < [Sgn(X)].

Proof. Let X be an infinite set such that fin(X) has a choice function. Let Y =

{vo,v1,y2,y3} be a subset of X where yo, y1,y2,ys are distinct. Since fin(X) has a

choice function, say F, every A € fin(X) has a linear order <, induced by the

ordering on w via the map ¢4 : |[A| — A defined recursively by ¢4 (k) = F(A\palk]).
Define IT : fin(X) — Sg,(X) by

idy if A=10;

(ao;an;..;aa-1) if |A| > 1and A = {ag,a1,...,aj4/-1}

11(A4) = where a; <4 a;4q forall i < |A| — 1;

(MY \{y:}) ! if A= {y,;} forsome i€ {0,1,2,3};

(U ({y1,y2,a}))"t if A= {a} for some a € X\Y.

Note that since II(Y\{y;}), where i < 4, is a cycle of length 3, II(Y\{y;}) #
(II(Y\{y;}))~*. Similarly for II({y1,yo,a}) where a € X\Y. It is left to show that
IT is an injection. Let A, B € fin(X) be such that I1(A) = II(B) = «. If 7 = idx, then
A = B = (. Suppose 7 # idx. Then M = {z € X : n(z) # z} # (. We distinguish
into cases.

Case 1 M = Y\{y;} for some natural number i < 4. Then = = (IL(Y'\{y:})) ! =
I({y:}) or m = I(Y\{y;}). Since (II(Y\{y:}))™" # L(¥\{yi}), A = {wi} = B or
A=Y\{y:} = B.
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Case 2 M = {yi1,ys,a} forsome a € X\Y. Then 7 = (I1({y1, y2,a})) " = I({a})
or m = l({y1,y2,a}). Similar to the above case, A = {a} = Bor A = {y1,y2,a} = B.
Otherwise, we have 7 = II(M) so A = B = M as desired. ]

For the other direction, we need a stronger condition than that in the previous

theorem.

Theorem 3.5. Let X be a Dedekind-infinite set. If fin(X) has a choice function,
then |Sin(X)]| < [fin(X)].

Proof. Let X be a Dedekind-infinite set such that fin(X) has a choice function. Since
w X Sin(w) & w X w ~ w, there exists an injection g : w x Sg(w) — X. Let G =
glw x Sgn(w)] and a,,, = g(n,o) for all n € w and o € Sg,(w). For each 7 € Sg,(X),
define m(7) = {z € X : 7(x) # z}.

For each A € fin(X), let ¢4 : |A] — A be defined as in the proof of Theorem
3.4. Recall that ¢4 is a bijection which induces a linear order <4 on A for each
A € fin(X). Finally, for = € Sg,(X)\{idx}, define 7° = (gb;nl(ﬂ) 0T 0 Py () Ui n () -
Then 7° : w — w is a bijection. Since for any © € Sg,(X), m(7) € fin(X) and
hence 7° € S, (w). Note that for any distinct 7, € Sg,(X)\{idx}, it is possible that
7° = ¢° but if m(w) # m(v), then 7° £ ¢°.

Define f : Sg,(X) — fin(X) by f(idx) = 0 and f(7) = m(n) U {am -} for all
7 € Sqn(X)\{idx } where

0 if m(m) NG = 0;
M =

max{n € w: 3o € Sgp(w)(an, € m(7))} +1 otherwise.
We will show that f is injective. Let 7, ¢ € S5,(X) be such that f(7) = f(¢) = F. If
F=0,thenw=v¢ =idx. If F # 0, then FNG # (). Let K be such largest k € w such
that there exists o € Sg,(w) Where ay,, € F. Then m(n) U {ak o} = m(y) U {ak yo}-
Note that for any | € w and p € Sg,(w), if a;, € m(7) Um(y), then I < k. Hence
Ao = Al apo, SO T° = Y° = o and m(7) = F\{ak .} = m(v).
This implies that 7(z) = 2z = ¢ () for all z € X\m(n). It is left to show that

7(z) = ¢ (z) for all z € m(rw). Let x € m(w). Then qb;n%ﬂ) (x) < |m(m)| and
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T(T) = Gpy(r) 0 T° 0 ¢;&ﬂ) (T) = Py 0¥ 0 625;1@) (z) = ().
We have 7 = ¢ as desired. []
Thus, we can conclude the above results in the following corollary.

Corollary 3.6. If we assume AC_y,, then [fin(X)| = |San(X)| for any Dedekind
infinite set X. That is, under AC_y, and D-fin, |fin(X)| = |Ss,(X)| for any infinite
set X.
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Background and Rationale

In high school mathematics, everyone knows that the cardinality of the
power set of a finite set A with |A| = n is 2" and the cardinality of the permutations
on A, denoted by S(A), is n! which is greater than 2" for all natural numbers n > 4.
Surprisingly, for the case that A is an infinite set, in the Zermelo-Fraenkel set theory
(ZF) with the Axiom of Choice (AC), these two cardinals are equal. However, each
of “|S(A)| < |P(A)]”, “|P(A)| < |S(A)|”, and “|S(A)| and |P(A)| are not comparable”
for some infinite set A is consistent with ZF.

We consider the set of all finite subsets of a set A, denoted by fin(A) and the
set of all permutations on A with finite non-fixed points, denoted by S, (A4). In fact,
|A| = |[fin(A)| = |Skn(A)| for all infinite sets A in the Zermelo-Fraenkel set theory
with Axiom of Choice (ZFC).

By the well-known Cantor’s theorem, which is provable in ZF, we know

that |A| < |P(A)| for any set A. Thus, in ZFC, for all infinite sets A,

Al = [fin(A)] = [Sn(A)] < [P(A)] = [S(A)].
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Without AC, |A| < [fin(A)] for all sets A but “|A| = |fin(A)| for all infinite sets
A” cannot be proved (see [4]). In 1994, Halbeisen and Shelah improved Cantor’s
theorem for infinite sets by showing, in ZF, that [fin(A4)| < |P(A)| for all infinite
sets A (see [3]). On the other hand, “|Sg,(A)| # |S(A)| for all infinite sets A is not
provable in ZF (see [6]).

While relationships between P(A) and S(A) for an infinite set A have been
widely studied, those of fin(A4) and Sg,(A) are still open. Thus, it is interesting to
know, in the absence of AC, whether any relationship between them is provable or

not.

Objective

Study relationships between |fin(X)| and |Sg,(X)| in ZF.

Scope

In this project, we work in ZF. For consistency results, we use permuta-

tion models.

Project Activities

1. Study AC and its consequences.

2. Study properties of cardinal numbers without AC.

3. Find conditions of an infinite set X that make |fin(X)| and |Sg,(X)| com-
parable in ZF.

4. Study permutation models.

5. Investigate some consistency results concerning |fin(X)| and |Sg, (X)].
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3. Project conduct
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5. Project presentation
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