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Abstract 
  
 Kidneys are vital organs of which main function is to maintain constant blood volume and 

composition by removing excess fluid and metabolic waste from the circulation through urine formation. 

It is believed that the first step of renal urine formation is the filtration of fluid and solutes through the 

glomerular barrier with its unique nanostructure.  Two-third of the glomerular capillary surface area 

consists of three cellular layers, a filtration slit connected to epithelial foot processes, an associated area 

of glomerular basement membrane (GBM) and several endothelial fenestrae, commonly referred to as 

the filtration surface, whereas one-third of the glomerular capillary surface is a four-layered barrier with 

the glomerular mesangium located between the endothelial cell layer and GBM.  A comparison between 

the mathematical model employing hindered transport theory and the ficoll sieving coefficient obtained 

from in vivo urinanalysis has shown that the assumption of the fluid and solute fluxes flowing through 

the intact glomerular barrier, although capable of explaining filtration of small and medium-sized 

solutes, greatly underestimates the sieving coefficient of solutes with the radius larger than 5 nm. In 

addition, it also contradicts with the fact that, even in normal humans, a small amount of red blood cells 

is observed in urine. Electron micrographs have shown red blood cells “escaping” through the small 

openings at the junction where the three-layered filtration surface meets the four-layered barrier. In the 

present work, the effects of these openings on the glomerular fluid and solute filtration are investigated 

using low-Reynolds-number fluid dynamics and hindered transport theory.  Although their effects on 

the overall glomerular hydraulic permeability and the filtration of small and medium-sized solutes are 

found to be small, the presence of the possibly shear-induced openings greatly increases the sieving 

coefficient of large solutes, rendering the calculated sieving coefficients that agree well with the ficoll 

sieving coefficients obtained from experiments performed in normal humans and patients with diabetic 

nephropathy for the entire range of solute size. 
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Chapter 1 

Introduction 

1.1) Motivation 

Kidneys, organs on either side of the spine in the posterior abdominal wall, are protected by muscle, 

fat, and ribs [1]. Its primary function is to maintain constant composition and volume of blood plasma 

in circulation by removing excess fluid and metabolic waste through renal urine formulation [2]. The 

first step of this process is blood ultrafiltration where blood from the intravascular space is filtered 

through glomerular capillary wall and becomes a primary urine in Bowman’s space [3]. Normally, the 

glomerular barrier allows smalls solute to pass into primary while retaining large macromolecules such 

as proteins and blood cells.  

The glomerular barrier structure is shown schematically in Fig. 1.  The barrier is often categorized 

into two components; the filtration surface consisting of three cellular layers that are the fenestrated 

endothelial cell layer, glomerular basement membrane (GBM) and the epithelial cell layer, and the four 

layered barrier that includes the mesangium between the endothelium and GBM. 

 

 

 

 

 

At the glomerular intravascular pressure above 58 mmHg (possible with patients with hypertension), 

transient short-lived transcellular and intracellular openings are observed at the endothelial cell layers 

[5,6]. Experimental evidences include electron microscopic images displaying red blood cells (RBC) 

escaped from the capillary lumen into Bowman’s space (show in Fig. 2), indicating hematuria, symptom 

where blood cells are detected in urine’s patients [7].  The “openings” large enough for RBC passages 

are often observed at the jointed area between the filtration surface and the mesangium as shown in Figs. 

3A- 3C.  In the present work, it is speculated that the occurrence of these openings might be due to the 

more uniform orientation of type IV collagens induced by the shear flow, resulting in the reduction of 

the ability of GBM to withstand pressure and hydrodynamic flow. This speculation is based on an 

Fig. 1 The glomerular filtration 

structures. The barrier categorized 

two components; the filtration 

surface with 3 layers that are the 

fenestrated endothelial cell layer, 

glomerular basement membrane 

(GBM) and the epithelial cell layer, 

and the four layered barrier that 

includes the mesangium between 

the endothelium and GBM. [4] 
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experimental study reporting that the increase in the volume flow rate of a shear flow correlates with the 

decrease in the standard deviation in the orientation of type I collagens in microfluidic channels.  In 

addition, it is worth noting the maximum fluid velocity gradient is observed at the jointed area between 

the filtration surface and the mesangium. The objective of this project is to investigate the contribution 

of the glomerular barrier openings on the glomerular hydraulic permeability (estimated from the 

glomerular filtration rate (GFR)) as well as the contribution to size-selectivity (measured as solute 

sieving coefficient: the ratio between the solute concentration in the primary urine in Bowman’s space 

and that in the plasma.   

 
Fig. 2 The serial cross section shows a red blood cell transversing from intravascular to Bowman’s space (A-D). [8] 

 

1.2) Project objective 
 
(1) Determine the fluid volume flow rate through shear flow-induced glomerular barrier opening  

(2) Determine the effect of these opening on glomerular size-selectivity and the change in the 

sieving coefficient of ficolls (highly cross-linked polysaccharides behaving like a rigid 

hydrodynamic spherical particle).  

 

1.3) Definitions of variables and parameters 

L  : pore length 

R  : radius of pore 

0R  : maximum pore radius 

  : fluid velocity 

  : fluid density 

  : fluid dynamic pressure 

A B 

C D 
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  : shear viscosity, plasma viscosity 

Re : Reynold number 

Tf  : dimensionless flow resistance 

3layerk  : hydraulic permeability through glomerular filtration surface 

4layerk  : hydraulic permeability through glomerular mesangium 

N  : the number of pores and solute flux 

R  : volume floe rate 

  : time of period 

sr  : solute radius 

U  : solute molecule velocity 

C  : solute concentration 

k  : Boltzmann’s constant 

D  : diffusivity in dilute bulk solution 

T : Temperature 

  : dimensionless radial position of solute particle 

  : ratio of solute radius and pore radius 

E  : potential of long-range interaction 

dK  : hindrance factor of diffusion 

cK  : hindrance factor of convection 

  : partition coefficient 

Pe  : Peclet number 

  : sieving coefficient 

3layerS  : glomerular filtration surface area  

4layerS  : glomerular mesangium surface area 
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Chapter 2 

Model Development 

In this work, we assume that the solute is a rigid uncharged spherical particle large enough to be 

viewed as a hydrodynamic particle with the no-slip boundary condition applicable at its surface. The 

requirement is that it must be at least several times larger than the solvent molecule.  The solution is 

dilute such that solute-solute interaction is negligible.  The shear-induced opening observed at the 

jointed area between the three-layered filtration surface and the four-layered that includes the 

mesangium (shown schematically in Figs. 3A and 3B) is assumed to be a circular pore. Its length (L) 

equals the GBM thickness; in patients with diabetic nephropathy, L is approximately 800 nm, whereas 

in healthy human, it is estimated to be 400 nm. As shown in Fig. 3C, R is the radius of the shear-induced 

opening that varies as a function of time. Its maximum value (R0) is estimated from an electron 

micrograph [8] to be 80 nm.  The flow is assumed to be mainly in the z-direction.  The estimated 

Reynolds number is found to be small enabling one to find the fluid velocity and pressure by solving 

Stokes’ equation.   In Sec 2.1, the calculation of the dimensionless flow resistance is presented, whereas 

in Sec. 2.2, the computation of the hydrodynamic pressure from single nephron glomerular filtration 

rate (SNGFR) is discussed.  

 

Fig. 3 (A) Schematic drawing of the glomerular capillary cross-section.  Indicated in the figure (as the red block) is the area 

where the “opening” or the temporary “pore” is most often observed. (B) Simplified geometry of the pore, the filtration surface 

and the glomerular mesangium with the attached cellular layers. (C) Schematic drawing of the shear-induced opening or pore. 
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2.1) Dimensionless flow resistance for a creeping flow in a cylindrical pore as a function of the 

ratio between its length and its radius 

The fluid velocity and pressure of an incompressible Newtonian fluid is generally computed as a 

solution of the Navier-Stokes equation [20]: 

 

 2

t
.

 
 +   = −+  

 
 (1) 

 

where   is the fluid velocity and   is the fluid dynamic pressure, whereas   is the shear viscosity and 

  is the fluid density. Eq. (1) is essentially Newton’s second law in the form that is appropriate for fluid 

motion.  The terms on left-hand side contains the “material derivate” of a linear momentum (per volume) 

whereas the terms on the right-hand side originates from the forces (which are pressure and viscous 

dissipation). The first term on the left-hand side is simply the change in momentum, whereas the second 

term is the inertia term sometimes viewed as convection of momentum.  Convective term tends to be 

prominent when Re>>1 and nearly absent when Re<<1 [9,10]. For a steady flow with the Reynolds 

number being much smaller than 1, all the terms on the left-hand side are negligible, resulting in the 

Navier-Stokes equation being linearized as [20] 

 

 20 = −+    (2) 

 

Equation (2) is Stokes’ equation which must be solved at the same time with the continuity equation 

(corresponding to a conservation of mass) expressed as follows. [20] 

 

 ( ) 0
t


+  =


  (3) 

 

For an incompressible fluid,   is constant, resulting in the following form of the continuity equation. 

 

 0  =   (4) 

 

Equations (2) and (4) must be solved together as coupled differential equations in order to determine the 

fluid velocity, and pressure.  For the system of our interest, the fluid velocity must satisfy the no-slip 

boundary condition at the “pore surface”;  

 3layer 3layerk Δ =  =   (5) 
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where 3layerk  is the hydraulic permeability of the three-layered glomerular filtration surface and Δis 

the hydrodynamic pressure difference across the glomerular filtration surface. In other words, at the 

interface between the shear-induced opening and the glomerular filtration surface, the fluid velocity is 

assumed to be equivalent to the averaged velocity of a fluid filtrating through the glomerular basement 

membrane ( 3layer ). Because Stokes’ equation is linear, its solution can be expressed as a superposition 

of solutions as follows. 

 1 2( ) ( )
z z z =  +   (6) 

where 1( )
z  is the solution of the Stokes and continuity equations that satisfy the homogenous     

no-slip boundary condition of a stationary pore wall; 1 0( )
z =  at the pore wall. In the present work, 1( )

z  

is obtained as a finite element solution (COMSOL Multiphysics). 2( )
z , on the other hand, is z3layer e .  

As it is a constant, it automatically satisfies Eqs. (2) and (4) as well as the inhomogeneous boundary 

condition stated in Eq. (5).   

    It is worth noting that, for a pore with L at least 10 times larger than R, the pore entrance effect 

on the fluid motion is negligible, and the flow can be considered as a unidirectional fully developed flow 

where Eq. (2) can be written as 

 

 
(1)
z10 r

z r r r

   
 = − +  

      

  (7) 

 

The solution of Eq. (7) can be obtained analytically; it is the velocity of a Poiseuille flow in a circular 

tube: 

 
22

1
z

1 R r1
z 4 R

( )
    
  = − −          

  (8) 

1( )
z  is then averaged over all the opening cross-section as the velocity can be calculated, as shown 

below. 

 
2 R

(1) 1
z 2

0 0

1 r dr dθ
R

( )
z



 = 


    (9) 

 

By completing the integration in Eq. (10), one obtains 

 

 (1) 2
z

1 R
8 z

 
 = −  

  
  (10) 
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where 
z




 is a constant; Δ

z L
 

=


. 

In the field of fluid mechanics, the pore resistance of fluid flow is often expressed in terms of 

the dimensionless flow resistance ( Tf ), a pressure difference required in overcoming a unit of viscous 

stress. For the Poiseuille flow in a long cylindrical pore, Tf is expressed as 

 

 T (1)
z

Δf
R/


=
 

  (11) 

 

Substituting Eq. (10) in Eq. (11), the dimensionless flow resistance is simply 

 

 T
8Lf
R

=   (12)               

As shown in Figs. 4 and 5, Tf  of a creeping flow in a cylindrical pore obtained by using finite element 

method is compared to an analytical result stated in Eq. (12).  Although the dimensionless flow 

resistance expressed in Eq. (12) is strictly valid for a pore with L R , we found that this expression 

yields results with less than 2% error for L 5R .  As discussed earlier, for healthy human, 

0L 400 nm 5R= = , whereas, in the case of patients with diabetic nephropathy, L  is likely to be even 

larger. Eq. (12), is, therefore employed in the calculation of Tf . 

 
Fig. 4 The dimensionless flow resistance for a creeping flow in a cylindrical pore ( Tf ) calculated analytically and that obtained 

as a finite element solution as a function of the ratio between the pore length and pore radius ( L R/ ). 
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Fig. 5 Close inspection of dimensionless flow resistance for a creeping flow in a cylindrical pore ( Tf ) calculated analytically 

and that obtained as a finite element solution with L R/  being in the range of 5 - 10. 

 
 
2.2) The average volume flow rate of a creeping flow through a pore with radius varying as a 

function of time 

The averaged fluid velocity through the pore described in Sec. 2.1 is an addition of the averaged 

values of 1( )
z  and 2( )

z  as follows. 

 

 (1) (2)
z z z =  +    (13) 

 

where, according to Eq. (11), the averaged value of 1( )
z can be expressed as 

 

 ( )1(1)
z Tf R ΔΡ- / =  . (14) 

 

As discussed earlier, 2( )
z  is constant, and therefore, so is its averaged value; 

 

 (2) (2)
z z 3layerk =  =  . (15) 

 

It has been speculated that the shear-induced opening at the junction between the filtration surface and 

the glomerular mesangium opens and closes periodically because, if such pores open all the time, 

hematuria is likely to be unavoidable. If the period during which these pores remain open is   and the 
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number of shear-induced opening per glomerulus is N, the volume flow rate averaged over the pore 

cross-section can be computed as 

 

 ( )2
zpore

0

NR R dt


 =  
  .  (16) 

 

Substituting the expressions in Eq. (14) and (15) into Eq. (16), one obtains the following expression. 

 

 
4

2
3layerpore

0

N RR k R dt
8 L





 
= +    

  (17) 

 

where R, the radius of the pore, is a function of time.  We consider two possible options for R(t) .  If the 

opening and closing of pore happens slowly, R(t)  can be viewed as a sine function as follows. 

 

 0
tR(t) R sin  =  
 

  (18) 

The second option is that, if the GBM rupture is sudden but the closing of the pore is slow (as it requires 

a formation of vesicles), R(t) can be viewed as a cosine function as shown below. 

 

 0
tR(t) R cos

2
 =  
 

  (19) 

 

For both options for R(t) , however, the average of the volume flow rate turns out to be exactly the same 

as shown below. (details show in Appendix D) 

 

 
4

20
3layer 0pore

R3 1R N k R
64 L 2

 
=  + 

  

  (20) 

Equation (20) also allows us to investigate the effect of poreR on the hydrodynamic pressure 

difference ( )  and single nephron glomerular filtration rate (SNGFR), the volume flow rate per 

glomerulus.  As discussed in details in Appendix A, the effect of poreR on both factors is less than 

1% if N < 30. In our calculation, and SNGFR are assumed to be similar to those previously 

employed in the calculation in absence of the shear-induced openings.  The effect of the presence of the 

shear-induced pore openings on the glomerular size-selectivity is discussed further in the next section.  
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2.3) The average solute flux carried by a creeping flow through a cylindrical pore: Faxen’s first 

law 

In order to examine the effects of the fluid flow through the shear-induced openings at the junction 

where the filtration surface meets the glomerular mesangium on the solute sieving, the ratio between the 

solute concentration in the primary urine in Bowman’s space and that in the capillary lumen, a 

mathematical model employing hindered transport theory is developed.  As aforementioned, in this 

model, the solutes are assumed to be at least several times larger than the solvent molecules such that 

they can be viewed as Brownian particles suspended in a continuum medium (that is the fluid solvent). 

The solution is assumed to be dilute such that effects of solute-solute interaction is negligible. Because 

the solute radius (rs) of ficolls from in vivo urinanalysis are in the range of 1.6 – 6 nm and are much 

smaller than the pore radius (R) and the Reynolds number characterizing the flow is very small, the 

hydrodynamic drag is calculated using Faxen’s first law as follows [9].   

 

 ( ) ( )
2
s 2

s
r

F 6 r U v v
6

 
 = −  
  

- -   (21) 

 

The solute motion, under the assumption that it is steady and happens in an isothermal fluid, is governed 

by the balance between the chemical potential gradient (viewed as a body force acted on the solute 

molecule [11]) and the hydrodynamic drag the fluid solvent exerted on the solute as shown below. 

 

 ( ) ( )
2
s 2

s
r

kT lnC 6 r U v v 0
6

 
 −  −   =
  

- -   (22) 

 

where k is Boltzmann’s constant and T is the temperature. C is the solute concentration, and   is the 

solvent viscosity.  U  and v  are the velocity of the solute molecule and that of the unperturbed fluid, 

respectively. The first term of Eq.(22) represents the chemical potential gradient in the, whereas the 

second and third terms (in the bracket) correspond to the drag force according to Faxen’s first law. A 

rearrangement of Eq. (22) leads to the following expression. 

 

     ( )
2
s 2r

U D ln C v v
6= −  + +           (23) 

 

where D  is the solute diffusivity in a dilute bulk solution defined as 

 

 
s

kTD
6 r =


. (24) 
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The solute flux is given by N UC= .  According to Eq. (23), it can be written as  

 

 ( )
2
s 2r

N D C vC C v
6= −  + +   (23) 

 

Next, a solute molecule confined in a shear-induced opening (at the junction between the filtration 

surface and the glomerular mesangium) is considered. As shown in Fig. 6, the dimensionless distance 

from the pore centerline to the solute center is denoted as   which is the ratio between the radial location 

of the particle center (r) and pore radius; r R = .  It is clear that 0 1  .  Because the approximated 

shape of the test solutes used in the experiments, ficolls, is that of a sphere, in our calculation, the solute 

is assumed to be spherical.  The relative size of the solute is denoted as   ; sr R = . 

 

 
Fig. 6 A schematic drawing of a spherical solute confined in a cylindrical pore with the pore wall being a loose fibrous 

membrane. R is the pore radius and L is the pore length, whereas, rs is the solute radius. 

 

As aforementioned, the average fluid velocity in the shear-induced opening is the summation of average 

velocity of a Poiseuille flow and the velocity at pore surface. According to Eqs. (13) – (15), the 

glomerular hydrodynamic pressure difference can be expressed as a function of the averaged fluid 

velocity as follows. 

 z
2

3layer
R k
8 L


=

 
+   

 (24) 

 

Substituting the expression in Eq. (26) into Eqs. (13) – (15), one obtains the fluid velocity at a given 

radial location inside the pore as a function of the averaged velocity as shown below. 

 

 ( )2 2
3layer

z z2
3layer

R 1 4 Lk
v 2 v e

R 8 Lk

 − + 
 =
 + 
  

 (25) 
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 The Laplacian of the fluid velocity is, therefore 

 

 
z2

2
3layer

8

R 8 Lk

− 
  =

+ 
 (26) 

 

Eq. (27) and (28) allow one to obtain an expression for a more useful quantity that is related to the 

measurable sieving coefficient, the solute flux averaged  over the pore cross-section ( )N , defined as 

 

 

2 1

1
0 0
2 1

0

0 0

N d d
N 2 N d

d d





  

= =  

  

 



 

 (27) 

 

If L >> R, the solute concentration can be expressed as a product of a function of axial position and that 

of a radial position inside the pore as [11] 

 

 ( ) ( )( )C g z exp E kT/= −   (28) 

 

where E is a potential energy of interaction associated with the long range interaction between solute 

molecule and the pore surface. The solute concentration averaged over the pore cross-section is 

 

 

2 1

1
0 0
2 1

0

0 0

C d d
C 2 C d

d d





  

= =  

  

 



 

 (29) 

 

where its derivative can be expressed as follows. 

 

 
1

0

C C2 d
z z

 
=  

 
  (30) 

 

In addition, zN N e= .  Substitutions of expressions in Eqs.(23), (25), (26), (29) and (30) into 

Eq.(27) yield the following expression for the cross-sectional averaged fluid flux. 

 

 
22

3layer s
2 2

3layer

4 Lk rC 2 C R 2N D
z 3 RR 8 Lk R

    
 = − +  + −     +    

 (31) 
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where 

 
( ) ( )( )

( )( )

1
2

0
1

0

1 exp E kT d

exp E kT d

/

/

− −   

 =

−   





 (32) 

 

 Once E is determined, it would be possible to calculate the cross-sectional averaged solute flux and, 

subsequently, the solute sieving coefficient. 

 
2.4) The convective hindrance factor of a sphere confined in a cylindrical pore 

In this work, as 90% of GBM volume is that of fluid and only 10% is the total volume of the fibers, 

we assume the solute molecule and pore surface (mainly GBM surface) are not interacting (since the 

percentage of the fiber volume fraction is quite low), and that implies that E = 0 (in an approximate 

sense). γ, therefore, becomes 

 
( )

1
2

0
1

0

1 d
1
2d

−  

 = =
 





 (33) 

 

The axial component of average total solute flux can be re-written as [12] 

 

 d z
C

N K D K v C
z


= − +


c  (36) 

 

where dK  and cK  are diffusive and convective hindrance factors, respectively.  dK is the ratio between 

the intrapore solute diffusivity and those in the external bulk solution. cK , on the other hand, is the ratio 

between the cross-sectional averaged convective solute flux and zv C ; it indicates how the 

hydrodynamic interaction changes the rate of solute convection.  By comparing the coefficients of the 

term on the right hand side of Eq. (36) to those of Eq.(33), we found that dK = 1, whereas the convective 

hindrance factor, cK , can be expressed as  

 

 
2 22

3layer s s
2 2 2

3layer 3layer

4 Lk r r2R 1 2 4K 1
2 3 R 3R 8 Lk R R 8 Lkc

   
 = + − = −   +  +   

 (37) 

 

Assuming that the flux is conserved, Eq.(36) can be rearranged in a form involving integrands as 
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C z Lz L

z 0 C z 0d c

1 1dz d C
K D N K C

==

= =

− =
− 

 
( )

( )
 (38) 

 

where C(z = 0) and C(z = L) are the upstream and downstream solute concentrations inside the 

cylindrical pore; as shown in Fig. 6, assuming equilibrium, they are equal to the adjacent external solute 

concentration multiplied by equilibrium partition coefficient   [12]. 0C z 0 C( )= = and 

LC z L C( )= = where C0 and CL are the external upstream and downstream solute concentration, 

respectively. An integration of Eq. (38) yields 

 

 
( ) Pe

L 0
c 0 Pe

1 C C e
N K C

1 e

−

−

 −
 = 

−
 (39) 

 

where Pe is the Peclet number, a dimensionless parameter indicating the relative importance of 

convection and diffusion, defined as 

 

 c

d

K L
Pe

K D

 
=


 (40) 

 

If Pe << 1, diffusion dominates, whereas, if Pe >> 1, convection is the dominant process. As Bowman’s 

space is viewed as a dead end chamber, the downstream solute concentration is determined from the 

ratio of the solute flux divided by average fluid velocity; LC N=   [12]. Substituting this 

expression for CL into Eq. (39), the cross-sectional average flux can be written as  

 

 
( )

c 0
Pe

c

K C
N

1 1 K e−
 

=
− −

 (41) 

 

Typically, the partition coefficient (if the solute and the pore are both uncharged and the interaction is 

purely steric) is the fraction of the intrapore radial positions accessible for the solute.  As we are 

assuming that all radial positions is available for the sphere center,= 1.  In addition, Kd =1. Eq. (41) 

becomes simplified as  

 
( )

c 0
Pe

c

K C
N

1 1 K e−


=
− −

 (42) 

where 

 cK L
Pe

D


= . (43) 
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The next step is to relate the cross-sectional averaged flux to the measurable solute sieving coefficient 

as will be discussed in the next section.  

 

2.5) Calculation of sieving coefficient 

2.5.1) Calculation of the sieving coefficient of a solute confined cylindrical pore with the pore radius 

being a function of time 

The sieving coefficient is the ratio between the post-sieved and pre-sieved solute concentrations: 

the downstream external solute concentration (at z = L) divided by the upstream external solute 

concentration (at z = 0):  

 L
pore

0

C
C

 =  (44) 

 

As aforementioned, for a solute transport into a dead end chamber, LC N=  and the sieving 

coefficient is 

 
( )

cL
pore Pe

0 c

KC
C 1 1 K e−

 = =
− −

. (45) 

 

Substituting the expressions for convective hindrance factor ( cK ) and the Peclet number ( Pe ) indicated 

in Eqs. (37) and (43) in Eq.(45 ), it can be written as 

 

( )

( ) ( )( ) ( )

2
s

2
3layer

pore
2 22 22
s s 3layers s

3layer2 2 2
3layer 3layer 3layer

r41
3 R 8 Lk

(t)
r r k6 r L R r4 R 1 41 exp k

3 kT 8 L 6 3R 8 Lk L R 8 Lk R 8 Lk

 
 − 
 + 
  

 =
     

     −   −  + −  −       +   +  +          

 

 (46) 

 

Examples of calculated results for θpore as a function of the pore radius, the fluid viscosity and the pore 

length are given in Appendix B; the sieving coefficient remains constant (in an approximate sense) 

despite the changing fluid viscosity and pore length.   

It is worth mentioned that the sieving coefficient (θpore) is a function of time due to the 

dependence of  cK  and vR  on the pore radius (R) which is time dependent. The sieving coefficient 

averaged overall a period of a complete round of the pore opening and closing, pore , is defined as 
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T

v
0

pore T

v
0

1 R (t)θ(t) dt
T

1 R (t) dt
T

 =





 (47) 

 

where, as aforementioned, vR  is volume flow rate through the cylindrical pore that can be calculated 

using the expression given as Eq.(20).  As stated in the previous section, 2 options for R(t) are 

considered; that of a sine function (Eq. (18)) and a cosine function (Eq.(19)). In the present study, the 

average sieving coefficient is calculated by employing Eq. (47) with the integration completed by using 

adaptive Simpson quadrature (MATLAB, Netick, Messachusetts, USA). Calculated results are 

discussed in Chapter 3. 

 

2.5.2) Calculation of the overall solute sieving coefficient across the glomerular capillary wall 

The obtained pore are then utilized in the calculation of the overall sieving coefficient of solutes 

across the glomerular barrier, θ .  As aforementioned, Bowman’s space is viewed as a dead-end 

chamber with the incoming solute flux being the product of the downstream solute concentration (CB) 

and the averaged fluid velocity. CB, is therefore, can be thought as the rate at which the solutes are 

transported into Bowman’s Space divided by the fluid volume flow rate.  As discussed in Chapter 1, our 

calculation is completed under the assumption that the glomerular barrier consists of the three-layered 

filtration surface, the four-layered barrier with the mesangium located between the endothelial fenestrae 

and GBM, and the shear-induced opening at the junction between the filtration surface and the four-

layered barrier.  The total solute filtration rate is the addition of the filtration rate through the filtration 

surface, the mesangium and the openings. The overall sieving coefficient, the ratio between the solute 

concentration in Bowman’s space (CB) and the solute concentration in the capillary lumen (CL), can be 

written as 

 

 
 ( )  ( ) ( )3layer 3layer 3layer 4layer 4layer 4layer v poreB

L

S k S k RC
C SNGFR

 − +  − + 
 = =

  (48) 

 

Where 3layer 4layer,   and pore  are sieving coefficient of the glomerular barrier with three-layered, four-

layered glomerular filtration surface and pore, respectively.  3layerS  and 4layerS  are the glomerular 

filtration and glomerular mesangium surface area, respectively. 3layerk  and 4layerk  are the hydraulic 

permeability of glomerular filtration surface and glomerular mesangium, respectively.  and   are 

hydraulic and oncotic pressure difference. Whereas vR  is volume flow rate, and SNGFR is single 
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nephron glomerular filtration rate. The numerator (in Eq. (48)) is the rate at which the solute is 

transported into the primary urine in the Bowman’s space per glomerulus; the first and second term are 

the filtration rate through filtration surface and the glomerular mesangium, respectively, whereas the 

last term is the solute filtration rate through the shear flow induced openings. The denominator is the 

single-nephron glomerular filtration rate, the fluid filtration rate per glomerulus.  The calculated overall 

sieving coefficients are, then, compared to the ficoll sieving coeffients obtained from in vivo urinalaysis 

[18,19].  
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Chapter 3 

Results and Discussion 

Calculated results are presented below, beginning with the effect of the chosen option of R(t) on 

the calculated average sieving coefficient of a shear-induced opening ( )poreθ  and the overall sieving 

coefficient across the glomerular barrier ( )θ  in Sec.3.1 where the sieving coefficient computed by 

assuming that the pore radius, R(t), is a sine function is compared to sieving coefficient obtained by 

assuming that R(t) is a cosine function. Next, the overall sieving coefficient of a solute through the 

glomerular capillary wall (consisting of a glomerular filtration surface, the four-layered barrier that 

includes the mesangium and, as we speculate, the shear-induced pores at the junction between the two 

barriers) are presented as a function of number of shear-induced openings and plasma viscosity in Sec. 

3.2. Finally, the comparison between the calculated overall sieving coefficient and the sieving 

coefficient of ficolls from urinalaysis in healthy humans [18] and patients with diabetic nephropathy 

[19] will be discussed in Sec.3.3. 

 

3.1) The effects of the choices of R(t) on the averaged solute sieving coefficient through the shear-

induced openings and the overall sieving coefficient through the glomerular barrier 

The comparison between poreθ  obtained under the assumption that the pore radius, R(t), is a sine 

function (and the shear-induced pores open and close gradually) and poreθ obtained from R(t) being a 

cosine function (under the assumption that the capillary rupture is sudden, but its closing is gradual) is 

given in Table 1.  The presented results are calculated with the physiological parameters being those of 

healthy human; the GBM thickness (L) is 400 nm, and the plasma viscosity (μ) is 1.2 mPa.s.  As shown 

in the table, poreθ computed by assuming that R(t) is a sine function is slightly smaller than poreθ

calculated under the assumption that R(t) is a cosine function. This is to be expected as poreθ of solutes 

across a barrier with pores that open and close gradually should be smaller than that of solutes across a 

barrier with pores that open abruptly and then close down gradually over the same period of time.  The 

comparison between  poreθ  obtained under the assumption that the pore radius, R(t), is a sine function 

and poreθ obtained from R(t) being a cosine function for a calculation using the GBM thickness and 

the plasma viscosity of patients with diabetic nephropathy yield the same results as shown in Table 2. ; 

for both cases, however, the difference is found to be less than 1%. This is due to the fact that, R0 is 

much larger than rs; for most of the range of R(t), θpore is close to 1.  Therefore, poreθ computed by 

assuming that R(t) is a sine function is close to that calculated by assuming that R(t) is a cosine function.  
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Table 1. The comparison between poreθ  obtained by assuming that R(t) is a sine function (Eq. (18)) and those obtained by 

assuming R(t) is a cosine function (Eq. (19)). The GBM thickness and plasma viscosity are those of healthy humans 

(L = 400 nm and μ = 1.2 mPa.s). 

 Options of R(t)   Options of R(t) 

Solute radius 

(nm) 
Sine Cosine 

 Solute radius 

(nm) 
Sine Cosine 

2.6 0.9959 0.9982  5.2 0.9903 0.9925 

3.6 0.9942 0.9965  5.4 0.9897 0.9920 

4.6 0.9919 0.9942  5.6 0.9891 0.9914 

5.0 0.9908 0.9931     

 

Table 2. The comparison between poreθ  obtained by assuming that R(t) is a sine function (Eq. (18)) and those obtained by 

assuming R(t) is a cosine function (Eq. (19)). The GBM thickness and plasma viscosity are those of patients with 

diabetic nephropathy (L = 800 nm and μ = 1.2 mPa.s). 

 Options of opening   Options of opening 

Solute radius 

(nm) 
Sine Cosine 

 Solute radius 

(nm) 
Sine Cosine 

1.6 0.9971 0.9993  5.2 0.9903 0.9926 

2.0 0.9967 0.9989  5.4 0.9897 0.9920 

2.6 0.9959 0.9982  5.6 0.9891 0.9914 

3.6 0.9942 0.9965  5.8 0.9885 0.9907 

4.6 0.9919 0.9942  6.0 0.9878 0.9901 

5.0 0.9909 0.9931     

 

 The effects of the chosen options of R(t) over the overall sieving coefficients of solutes across 

the glomerular capillary wall, θ , calculated by using Eq.(48) from the solute filtration across the three-

layered filtration surface, the four-layered barrier that includes the glomerular mesangium and the shear-

induced opening) are displayed in Figs. 7A (for healthy humans) and 7B (for patients with diabetic 

nephropathy). Also shown in the figures are sieving of ficolls from urinalaysis obtained by Blouch et al. 

[18] and Anderson et al. [19].   In accord with the results in Tables 1 and 2, θ computed by assuming 

that R(t) is a sine function is graphically indistinguishable from those obtained by assuming that R(t) is 

a cosine function for the range of rs from 1.6 nm to 6 nm if the opening period is assumed to be equal.  

For subsequent results, the employed function for R(t) is a sine function (Eq. (18)).  (The difference 

between the calculation completed under the different options of R(t) is given in Appendix C.)  
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Fig. 7 The overall sieving coefficient across the glomerular barrier, θ as a function of solute radius (rs) calculated by using 

(A) the GBM thickness and the plasma viscosity of healthy humans and (B) the GBM thickness and the plasma viscosity of 

patients with diabetic nephropathy.  Results completed by assuming that R(t) is a sine function (Eq. (18)) is compared to those 

computed by assuming that R(t) is a cosine function (Eq. (19)).  Also presented are ficoll sieving coefficients from in vivo 

urianalysis [18,19]. 

 
3.2) Effects of the number of shear induced openings and plasma viscosity on the overall sieving 

coefficient across the glomerular barrier  

3.2.1) The overall sieving coefficient across the glomerular capillary wall as a function of the number 

of shear-induced openings  

The effect of the shear-induced openings on glomerular size-selectivity is demonstrated in Figs. 

8A and 8B where the overall glomerular solute sieving coefficient, θ , of the moderate-sized solute (rs 

= 2.6 nm) and that of a large solute (rs = 5.6 nm) is presented as a function of the number of shear-

induced openings per glomerulus (N).  As shown in the figures, θ increases as a linear function of N 

in accordance with the expression in Eqs. (20) and (48) where RV and, subsequently, θ are linearly 

dependent on N.  As shown in Fig. 8A, the effect of poreθ and the increase in N on θ of a spherical 

solute with rs of 2.6 nm is quite small.  The increasing N, however, has a larger effect on θ of a larger 

solute with rs of 5.6 nm as indicated in Fig. 8B.  The same phenomena is observed for θ calculated by 

setting the GBM thickness and other physiological parameters associated with diabetic nephropathy 

shown in Figs. 9A and 9B;  the effect of the increase in N on θ of a smaller solute with rs of 1.6 nm is 

negligible, but causes a significant increase in θ of a larger solute with rs of 6.0 nm.  This indicates 

that, although the presence of the shear-induced openings (at the junction where the filtration surface 

meets the glomerular mesangium) is unlikely to affect the value of the sieving coefficient of smaller 

solutes, it can cause a significant increase in the sieving coefficient of solutes with rs    5.0 nm 
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Fig. 8 The total average sieving coefficient, θ ,as a function of the number of pores, N. Results are the sieving coefficient of 

(A) spherical solutes with rs = 2.6 nm and (B) that of solutes with rs = 5.6 nm. Physiological constants and hydraulic 

permeabilities are those associated with healthy humans. 

 

 

 

Fig. 9 The total average sieving coefficient, θ ,as a function of the number of pores, N. Results are the sieving coefficient of 

(A) spherical solutes with rs = 1.6 nm and (B) that of solutes with rs = 6.0 nm. Physiological constants and hydraulic 

permeabilities are those associated with patients with diabetic nephropathy. 

 
3.2.2) The overall sieving coefficient as a function of plasma viscosity 

It is known that hyperglycemia, a high level of glucose in blood circulation, results in the increase 

in the viscosity of blood plasma.  Experiments indicate that the plasma viscosity of patients with diabetic 

nephropathy are in the range of 1.2 – 1.8 mPa.s, slightly higher than the plasma viscosity of healthy 

humans at 1.2 mPa.s.  In Figs. 10A and 10B, the effects of the plasma viscosity on the overall solute 

sieving coefficient across the glomerular capillary wall is examined. L = 800 nm.  The increase in the 

plasma viscosity causes a decline in θ . In accordance with results presented in Sec 3.2.1 where the 

shear-induced openings are shown to affect θ of large solutes but not those of small solutes, the 
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reduction of θ is negligible if rs = 1.6 nm as shown in Fig. 10A, but becomes larger with increasing rs 

as indicated in Fig. 10B.  Overall, however, the effect of the plasma viscosity is found to be small.  

 

 

Fig. 10 The total average sieving coefficient, θ ,as a function of the plasma viscosity, μ. Results are the sieving coefficient 

of (A) spherical solutes with rs = 1.6 nm and (B) that of solutes with rs = 6.0 nm. Physiological constants and hydraulic 

permeabilities are those associated with patients with diabetic nephropathy. 

 

3.3) Comparison between the calculated sieving coefficient and the sieving coefficient of ficolls 

from in vivo urinalysis  

3.3.1) Healthy humans 

In order to examine the effect of the shear-induced openings on glomerular size-selectivity, the 

computed overall sieving coefficient across the glomerular barrier ( )θ is compared to the sieving 

coefficient of ficolls from urianalysis performed in humans [18, 19].  In Fig. 11, θ computed by 

employing physiological parameters and, subsequently, the hydraulic permeability typically found in 

healthy humans, is presented as a function of rs and compared to ficoll sieving coefficient obtained from 

urinanalysis performed in healthy humans [18] presented as filled symbols.  Also presented in the figure 

is θ  calculated without including the effect of the solute filtration through the shear-induced opening 

(plotted as a grey dashed line).  As aforementioned, θ  computed with N = 0 agrees well with the 

experimental results if rs   4.5 nm, but significantly overestimates the sieving coefficient if rs > 5.0 nm.  

In accord with results in Sec. 3.2 and 3.3, the presence of the openings does not significantly affect θ  

of small and medium-sized solutes (with rs   4.5 nm) but increases θ of larger solutes.  As N increases, 

θ increases and becomes graphically distinguishable from θ  calculated by assuming that N = 0.  As 
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shown in Fig. 11, the value of N that yield θ with the least deviation from the ficoll sieving coefficient 

is N = 5.  

 

Fig. 11 The computed overall sieving coefficient across the glomerular barrier ( )θ computed using the physiological 

parameters typically found in healthy humans as a function of solute radii. Results are presented for N = 0 (a grey dashed line), 

N = 10 (a yellow dashed line), N = 20 (a red dashed line) and N = 5 (a solid line).  Also presented is the ficoll sieving coefficient 

obtained from in vivo urianalysis in healthy humans [18].  

 
3.3.2) Patients with diabetic nephropathy 

Next, the effect of the shear-induced openings on glomerular size-selectivity in the case of patients 

with diabetic nephropathy is investigated.  As shown in Fig. 12, the overall sieving coefficients ( )θ

computed by assuming that  N = 0, 6, 20, and 30 and utilizing the physiological parameters associated 

with diabetic nephropathy are presented as a function of solute radii (rs). Also presented in the figure is 

the sieving coefficient of ficolls from in vivo urinalysis with the test subjects being patients with early-

but-overt diabetic nephropathy [19] shown as filled symbols.   μ = 1.2 mPa.s (equal to that of healthy 

humans).  The observed trend is similar to that of results (computed using the physiological parameters 

found in healthy humans) presented in Fig. 11. θ computed by assuming that N = 0 (which indicates 

that shear-induced openings are absent) agrees well with the ficoll sieving coefficient with rs   4.5 nm 

but overestimates the value of θ if the solute radius is larger. If the shear-induced openings are present             

(N > 0), the sieving coefficients of solutes with rs   4.5 nm hardly change, whereas θ  of solutes with      

rs >  4.5 nm significantly increases and becomes graphically distinguishable from θ computed with            

N = 0. As shown in the figure, the value of N that yields θ that is closest to the ficoll sieving coefficient 

from the experiment is N = 6, slightly larger but very close to the value of N that yields θ with the 

smallest deviation from the experimental results in the case of healthy humans (N = 5).  As shown in 

Figs. 13 and  14, if the employed value of the plasma viscosity increases, the value of N that yields θ
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with the smallest difference from the sieving coefficient of ficolls [19] increases. For instance, if μ = 1.8 

mPa.s, the value of N that yields θ with the smallest deviation from the experimental results is N = 9.  

It can be concluded that the value of N that θ  that agrees well with the experimentally obtained sieving 

coefficient in the case of patients with diabetic nephropathy is slightly higher than that of healthy 

humans. This might be due to the fact that, with diabetic nephropathy associated with the surface area 

of the filtration surface, the higher averaged fluid velocity through the filtration surface, and the denser 

glomerular mesangium, the non-uniformity of the flow velocity at the junction where the filtration 

surface meets the glomerular mesangium is likely to be greater than that in healthy humans.  With the 

gradient of the flow velocity of the shear flow at the junction being larger, the possibility of the 

occurrence of shear-induced openings is likely to be higher if diabetic nephropathy is present. 

Nevertheless, in the cases of healthy humans and patients with diabetic nephropathy, the value of N that 

yields θ  that agrees well with the experimentally obtained sieving coefficient is low enough such that, 

given that the openings periodically opens and closes, hematuria is unlikely to occur. This agrees with 

the medical finding that, even though hematuria is sometimes found in patients with diabetic 

nephropathy, it is not a common symptom. 

 

 

Fig. 12 The computed overall sieving coefficient across the glomerular barrier ( )θ computed using the physiological 

parameters typically found in patients with diabetic nephropathy as a function of solute radii. Results are presented for N = 0 

(a grey dashed line), N = 20 (a yellow dashed line), N = 30 (a red dashed line) and N = 6 (a solid line). μ = 1.2 mPa.s. Also 

presented is the ficoll sieving coefficient obtained from in vivo urianalysis in patients with diabetic nephropathy [19].  

 



25 
 

 

Fig. 13 The computed overall sieving coefficient across the glomerular barrier ( )θ computed using the physiological 

parameters typically found in patients with diabetic nephropathy as a function of solute radii. Results are presented for N = 0 

(a grey dashed line), N = 20 (a yellow dashed line), N = 30 (a red dashed line) and N = 8 (a solid line). μ = 1.6 mPa.s. Also 

presented is the ficoll sieving coefficient obtained from in vivo urianalysis in patients with diabetic nephropathy [19]. 

 

 

Fig. 14 The computed overall sieving coefficient across the glomerular barrier ( )θ computed using the physiological 

parameters typically found in patients with diabetic nephropathy as a function of solute radii. Results are presented for N = 0 

(a grey dashed line), N = 20 (a yellow dashed line), N = 30 (a red dashed line) and N = 9 (a solid line). μ = 1.8 mPa.s. Also 

presented is the ficoll sieving coefficient obtained from in vivo urianalysis in patients with diabetic nephropathy [19]. 

 
 
 

 

 

 

 

 



26 
 

Chapter 4 

Conclusion 

 Glomerular selectivity remains an enigma despite several decades of on-going research.  A 

refine biological filtration device, the glomerular capillary wall is believed to consist of the three-layered 

filtration surface (that accounts for two-third of its entire surface) and the four-layered barrier that 

includes the glomerular mesangium (with the surface area being one-third of the total glomerular 

capillary surface). Previous calculations performed by assuming that the solutes are transported through 

the glomerular filtration surface and the four-layered barrier, although yields the solute sieving 

coefficient that agrees well with the ficoll sieving coefficient obtained from in vivo urinalysis if the 

solute radius is less than or equal to 4.5 nm, significantly underestimate the solute coefficient if the 

solute is larger.   A small amount of red blood cells found in urine of healthy humans and patients with 

diabetic nephropathy, as well as electron micrographs (performed with the test subjects displaying a 

symptom of thin GBM) demonstrating red blood cells escaping through the openings at the junction 

between the glomerular filtration surface and the glomerular mesangium where the shear flow is found 

leads to a speculation that shear flow induced openings at the junction may occur and may serve as 

another pathway for glomerular solute filtration.  In the present study, the possible contribution of these 

shear flow induced openings on glomerular size-selectivity is theoretically investigated using low-

Reynolds-number hydrodynamics and hindered transport theory with the openings assumed to be pores 

that periodically open and close. Calculated results indicate that solute filtration through these pores 

does not significantly alter the sieving coefficient of small and medium-sized solutes but considerably 

increases the sieving coefficient of solutes with the radius greater than 4.5 nm. If a small number of the 

pores are present, the computed sieving coefficients agree with those of ficoll obtained from urinalysis 

performed in healthy humans and patients with diabetic nephropathy for the entire range of solute size 

with the values of SNGFR also agrees with those reported in the same experiments. It is worth noting, 

however, that the micrographs showing the red blood cell escapes through the glomerular capillary wall 

opening were obtained from glomeruli of patients with abnormal GBM and a symptom of hematuria.  

The same experimental evidence for cases of healthy humans and patients with diabetic nephropathy 

are yet to be found.  
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Appendix A 

 

A-1) The effect of volume flow rate of pore per glomerulus on the hydrodynamic pressure 

difference and single nephron glomerular filtration rate 

Calculation of effect of volume flow rate ( )poreR  on the hydrodynamic pressure difference

( )  and single nephron glomerular filtration rate (SNGFR) are presented below in Fig. A-1. If the 

hydraulic pressure difference is constant, the effect of poreR on SNGFR is as shown below. 

 ( ) ( )3layer 3layer 4layer 4layer poreSNGFR k S k S R= −  + −  +   (A-1) 

where 3layerk  and 4layerk  are hydraulic permeability of glomerular filtration surface and glomerular 

mesangium, respectively. 3layerS  and 4layerS  are glomerular filtration and glomerular mesangium surface 

area.   is an oncotic pressure difference. 

 If on the other hand, SNGFR is assumed to be constant, the effect of volume flow rate through 

the opening on hydraulic pressure difference can be calculated as 

 3layer 3layer 4layer 4layer
4

20
3layer 3layer 4layer 4layer 3layer 0

SNGFR S k S k

R3 1S k S k N k R
6 L 2

+  + 
=

 
+ +  + 

  

 . (A-2) 

For healthy humans, the effect of an inclusion of poreR  decreases the hydraulic pressure difference 

but increases SNGFR as show in Figs. A-1(A) and A-1(B). 

 

 

Fig. A-1 The effect of volume flow rate on hydraulic pressure difference ( )  and single nephron glomerular filtration rate 

(SNGFR) in normal human, as graph (A) and (B), respectively. The pressure difference decline when the volume flow rate 

through the pore increase (the number of pore increase) but decreasing of hydraulic pressure difference is less than 1% 

compared to absence of pore. Whereas SNGFR increase with volume flow rate through the pore where increasing less than 

1%. 
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 As shown in Fig. A-1, the effect of the incorporation of poreR on both SNGFR (if the 

hydraulic pressure is assumed to be constant) and (when SNGFR is kept constant)  creates very 

little alterations. 

 In the case of patients with diabetic nephropathies, the effect of an inclusion of poreR on 

SNGFR (if the hydraulic pressure is assumed to be constant) and (when SNGFR is kept constant) 

are shown below in Figs. A-2(A) and A-2(B).  

 

Fig. A-2 The effect of volume flow rate through the pore on hydraulic pressure difference ( )  and SNGFR in diabetic 

nephropathies. In graph (A), the pressure difference decreases when the volume flow rate through the pore increase but 

decreasing of hydraulic pressure difference is less than 1% compared to absence of pore. Whereas in graph (B), SNGFR 

increase with volume flow rate through the pore where increasing less than 1%. 

 

 According to the figures, the hydraulic pressure difference will decrease when with the number 

of pores increase, whereas SNGFR increases as a function of N.  The effect of including poreR  , 

however, is less than 1% (compared to results calculated with N = 0). Therefore, the hydraulic pressure 

difference and SNGFR are same as the previously employed in the calculation in absence of opening 

pore. 
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Appendix B 

 
B-1) The sieving coefficient of pore 

The sieving coefficient and average sieving coefficient of pore are calculated by Eqs.(47) and (48) 

as show in Sec.2.5. First, calculated results in Sec B-1.1 to B-1.3 are the sieving coefficient of pore as a 

function of pore radius, glomerular basement membrane (GBM thickness) and plasma viscosity, 

respectively. Second, the average sieving coefficients averaged over the period of pore opening is shown 

as a function of GBM thickness, plasma viscosity and solute radius.  

 

B-1.1) The sieving coefficient of pore as a function of pore radius 

The relation between the pore sieving coefficient and pore radius is shown in Fig. B-1. Graph (A) 

and (B) demonstrate that relation between θpore as a function of R(t).  

 
Fig. B-1 The solute coefficients of pore as a function of pore radius when plasma viscosity is 1.2 mPa.s and 800 nm of 

glomerular barrier thickness. (A) solute radius is 1.6 nm, the sieving coefficient of pore slight increase with rising pore radius. 

(B) solute radius is 6.0 nm, the sieving coefficient increased sharply with increasing pore radius. 

 

B-1.2) The sieving coefficient as a function of GBM thickness 

The sieving coefficients of pore as a function of GBM thickness are shown in Fig. B-2. Graph 

(A) and (B) show that relation when plasma viscosity and pore radius are fixed to 1.2 mPa.s and 80 nm, 

respectively. whereas the solute radius in graph A and B are 1.6 and 6.0 nm, respectively. 
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Fig. B-2 The solute coefficient of pore as a function of GBM thickness when plasma viscosity is 1.2 mPa.s and pore radius is 

80 nm. (A) solute radius is 1.6 nm, the sieving coefficient of pore slight increase with rising thickness. (B) solute radius is 6.0 

nm, the sieving coefficient increased sharply with thickness rise. 

 According to the Figs. B-2A and B-2B, the sieving coefficient of pore increase with increasing 

GBM thickness. In graph A, the sieving coefficient of pore that GBM thickness is 1200 nm increase 

about 7 x 10-5 % from the case of 800 nm. On the contrary, the sieving coefficient of pore where solute 

radius 6.0 nm (graph B), the sieving coefficient that thickness 1200 nm rises about 9 x 10-4 % from the 

sieving coefficient that GBM thickness 800 nm. Although, the increasing of the sieving coefficient of 

pore is very slightly, but the increasing ratio of the sieving coefficient that solute radius 6.0 nm more 

than about 10 times solute radius 1.6 nm.; consequently, the sieving coefficient of pore for large solute 

gave higher increasing ratio than small solute. However, the rising of the sieving coefficients of pore as 

GBM thickness are negligible, that seem to be constant. 

 

B-1.3) The sieving coefficient as a function of plasma viscosity 

The sieving coefficient of pore as a function of plasma viscosity is shown in Fig. B-3A and B-

3B. The GBM thickness and pore radius are fixed to 800 and 80 nm, respectively, whereas the solute 

radius in graph (A) and (B) are 1.6 and 6.0 nm, respectively. 

 
Fig. B-3 The solute coefficient of pore as a function of plasma viscosity when GBM thickness and pore radius are fixed to 

800 and 80 nm, respectively. (A) solute radius is 1.6 nm, the sieving coefficient of pore slight increase with rising plasma 

viscosity. (B) solute radius is 6.0 nm, the sieving coefficient increased slightly with increasing viscosity. 
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According to the Fig. B-3A and B-3B, the average sieving coefficient of solute through the pore 

as a function of plasma viscosity. (The increases is about about 7 x 10-5 % from the case that plasma 

viscosity is 1.2 mPa.s. In contrast to the sieving coefficient of pore where solute radius 6.0 nm (graph 

(B)), the sieving coefficient of pore for plasma viscosity 1.8 mPa.s rises approximately 9 x 10-4 % 

compared with case plasma viscosity 1.2 mPa.s. Though, the sieving coefficient of pore very slight 

increase, but the increasing ratio of the sieving coefficient of pore that solute radius 6.0 nm more than 

about 10 times for solute radius 1.6 nm; consequently, the sieving coefficient of pore for large solute 

gave higher increasing ratio than small solute. Nevertheless, the sieving coefficient of pore increased 

very slightly, that seem to be constant. 

 
 
B-2) The total average sieving coefficient as a function of GBM thickness 

The total average sieving coefficient is plotted as a function of GBM thickness where opening 

pore as a sine function, plasma viscosity 1.2 mPa.s, single pore and solute radiuses are 1.6, 5.2, 5.4 and 

6.0 nm, as show in graph (A), (B), (C) and (D) Fig. B-4., respectively.  

 

 
Fig. B-4 The total average sieving coefficient as a function of GBM thickness. Graph (A) to (D) show the total average sieving 

coefficient is plotted as a function of GBM thickness with plasma viscosity 1.2 mPa.s, single pore and solute radius 1.6, 5.2, 

5.4 and 6.0 respectively. In graph (A) and (B), the total sieving coefficient rise as GMB thickness. In graph (C), the total average 

sieving coefficient increase in range of GBM thickness from 800 to 1000 nm, while decrease as GBM thickness from 1000 to 

1200 nm. Whereas in graph (D), the total average sieving coefficient decline when GBM thickness rise. 

 
 According to Fig. B-4., graph (A) has solute radius 1.6 nm, show the total average sieving 

coefficient rises as GBM thickness, where increasing ratio of thickness 1200 nm compared with 800 nm 
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is about 0.14%. Graph (B) has solute radius 5.2 nm, the total average sieving coefficient increase 

considerably when GBM thickness in range of 800 to 1000 nm but increase slightly when range of GBM 

thickness from 1000 to 1200 nm. Graph (C) has solute radius 5.6 nm, increase when GBM thickness in 

range of 800 to 1000 nm but decrease when GBM thickness in range of 1000 to 1200 nm. In contrast, 

the total average sieving coefficient decrease with GBM is thicker when solute radius 6.0 nm as show 

in graph (D), where decreasing ratio between thickness 1200 and 800 nm is about 1.36%. These show 

the total average sieving coefficient increase as a function of GBM thickness for small solute but 

decrease for large solute, where the increasing and decreasing ratio depend on solute size. 
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Appendix C 

 
Table C-1. The average sieving coefficient of pore with varies solute radius in healthy human, where the opening is function 

of sine and cosine in range of solute radius 2.6 to 5.6 nm 

 Options of opening   Options of opening 

Solute radius (nm) Sine Cosine  Solute radius (nm) Sine Cosine 

2.6 0.9959 0.9982  4.2 0.9929 0.9952 

2.8 0.9956 0.9979  4.4 0.9924 0.9947 

3.0 0.9953 0.9975  4.6 0.9919 0.9942 

3.2 0.9949 0.9972  4.8 0.9914 0.9937 

3.4 0.9946 0.9968  5.0 0.9908 0.9931 

3.6 0.9942 0.9965  5.2 0.9903 0.9925 

3.8 0.9938 0.9960  5.4 0.9897 0.9920 

4.0 0.9933 0.9956  5.6 0.9891 0.9914 

 
 

Table C-2. The average sieving coefficient of pore with varies solute radius in diabetic nephropathy patients, where the 

opening is function of sine and cosine in range of solute radius 1.6 to 6.0 nm, GBM thickness 800 – 1200 nm and 

plasma viscosity 1.2 - 1.8 mPa.s. 

 Options of opening   Options of opening 

Solute radius (nm) Sine Cosine 
 

Solute radius (nm) Sine Cosine 

1.6 0.9971 0.9993  4.0 0.9933 – 0.9934 0.9956 

1.8 0.9969 0.9991  4.2 0.9929 0.9952 

2.0 0.9967 0.9989  4.4 0.9924 0.9947 

2.2 0.9964 0.9987  4.6 0.9919 0.9942 

2.4 0.9962 0.9984  4.8 0.9914 0.9937 

2.6 0.9959 0.9982  5.0 0.9908 – 0.9909 0.9931 

2.8 0.9956 0.9979  5.2 0.9903 0.9926 

3.0 0.9953 0.9975 – 0.9976  5.4 0.9897 0.9920 

3.2 0.9949 - 0.9950 0.9972  5.6 0.9891 0.9914 

3.4 0.9946 0.9968  5.8 0.9885 0.9907 

3.6 0.9942 0.9965  6.0 0.9878 0.9901 

3.8 0.9938 0.9960 - 0.9961     
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Table C-3 The calculated overall average sieving coefficient in diabetic nephropathies with 6 pore that opening as a function 

of sine and cosine, plasma viscosity 1.2 mPa.s and GBM thickness 800 nm. 

 Options of opening   Options of opening 

Solute radius (nm) Sine Cosine 
 

Solute radius (nm) Sine Cosine 

1.6 0.80803 0.80803  4.0 0.03526 0.03526 

1.8 0.73480 0.73480  4.2 0.02349 0.02349 

2.0 0.64851 0.64851  4.4 0.01546 0.01547 

2.2 0.55381 0.55381  4.6 0.01009 0.01009 

2.4 0.45688 0.45689  4.8 0.00654 0.00655 

2.6 0.36416 0.36416  5.0 0.00424 0.00424 

2.8 0.28090 0.28090  5.2 0.00276 0.00276 

3.0 0.21028 0.21028  5.4 0.00183 0.00183 

3.2 0.15327 0.15327  5.6 0.00125 0.00125 

3.4 0.10914 0.10914  5.8 0.00089 0.00089 

3.6 0.07616 0.07616  6.0 0.00068 0.00068 

3.8 0.05222 0.05222     

 

Table C-4 The calculated overall average sieving coefficient in diabetic nephropathies with 8 pore that opening as a function 

of sine and cosine, plasma viscosity 1.6 mPa.s and GBM thickness 800 nm. 

 Options of opening   Options of opening 

Solute radius (nm) Sine Cosine  Solute radius (nm) Sine Cosine 

1.6 0.80803 0.80803  4.0 0.03526 0.03526 

1.8 0.73480 0.73480  4.2 0.02349 0.02349 

2.0 0.64851 0.64851  4.4 0.01547 0.01547 

2.2 0.55381 0.55381  4.6 0.01009 0.01009 

2.4 0.45688 0.45689  4.8 0.00654 0.00655 

2.6 0.36416 0.36416  5.0 0.00424 0.00424 

2.8 0.28090 0.28090  5.2 0.00276 0.00276 

3.0 0.21028 0.21028  5.4 0.00183 0.00183 

3.2 0.15327 0.15327  5.6 0.00125 0.00125 

3.4 0.10914 0.10914  5.8 0.00089 0.00089 

3.6 0.07616 0.07616  6.0 0.00068 0.00068 

3.8 0.05222 0.05222     
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Table C-5 The calculated overall average sieving coefficient in diabetic nephropathies with 9 pore that opening as a function 

of sine and cosine, plasma viscosity 1.8 mPa.s and GBM thickness 800 nm. 

 Options of opening   Options of opening 

Solute radius (nm) Sine Cosine  Solute radius (nm) Sine Cosine 

1.6 0.80803 0.80803  4.0 0.03526 0.03526 

1.8 0.73480 0.73480  4.2 0.02349 0.02349 

2.0 0.64851 0.64851  4.4 0.01547 0.01547 

2.2 0.55381 0.55381  4.6 0.01009 0.01009 

2.4 0.45689 0.45689  4.8 0.00654 0.00655 

2.6 0.36416 0.36416  5.0 0.00424 0.00424 

2.8 0.28090 0.28090  5.2 0.00276 0.00276 

3.0 0.21028 0.21028  5.4 0.00183 0.00183 

3.2 0.15327 0.15327  5.6 0.00125 0.00125 

3.4 0.10914 0.10914  5.8 0.00089 0.00089 

3.6 0.07616 0.07617  6.0 0.00068 0.00068 

3.8 0.05222 0.05222     
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Appendix D 

 

The average volume flow rate of pore that R(t) is a sine and cosine function 

Volume flow rate average over the pore cross-section, as shown below 

 
4

2
3layerpore

0

N RR k R dt
8 L





 
= +    

   (D-1) 

 
4
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3layerpore

0 0

N RR dt k R dt
8 L

 



 
= + 

   
   (D-2) 

We consider two possible choices for the pore radius as a function of sine and cosine. In case of R(t) is 

a sine function, as shown below. 

 0
tR R sin  =  
 

 (D-3) 

substitutions of expression in Eq.(D-3) into Eq.(D-2) yield the following for the averaged volume flow 

rate. 
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consider integral term of sin4 as follows 
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and integral term of sine square as follows 

 
( )2

0 0

1 cos 2 ttsin dt dt
2

 
 −    =        

    (D-7) 
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  
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1 2 tsin
2 2

    
 =  −   

     

 

 2

0

t 1sin dt
2


 

=  
    (D-8) 

substituting Eqs.(D-6) and (D-8) into Eq.(D-4), the average volume flow rate that R(t) is a sine 

function is 

 
4
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3layer 0pore

R3 1R N k R
64 8 L 2

 
=  + 

  

  (D-9) 

 

In case of R(t) as a cosine function, R(t) is expressed as 

 0
tR R cos

2
 =  
 

  (D-10) 

substitutions of expression in Eq.(D-10) into Eq.(D-2) yield the following for the averaged volume 

flow rate that R(t) is cosine function. 
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4 2 20
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0 0

RN t tR cos dt k R cos dt
8 L 2 2

 



      
 = +   

       
 

    (D-11) 

consider integral term of cos4 as follows 
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    (D-12) 
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    (D-13) 

and integral term of sine square as follows 
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t 1cos dt
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
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=  
    (D-15) 

substituting Eqs.(D-13) and (D-15) into Eq.(D11), the average volume flow rate that R(t) as a cosine 

function is 
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20
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R3 1R N k R
64 8 L 2

 
=  + 

  

  (D-16) 

Eqs.(D-9) and (D-16) are the averaged volume flow rate of pore that R(t) are function of sine and cosine, 

respectively, are exactly the same. 
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Appendix E 

 

Parameters for calculation in healthy human and patients with diabetic nephropathy 

In healthy human 

Table E-1 Parameters for calculation in healthy human. 

parameters quantities  parameters quantities 

SNGFR 121 04 10. −  3m s   4layerk  106 37 10. −  m s Pa  

3layerS  72 90 10. −  2m    41 34.  mmHg  

3layerk  92 46 10. −  m s Pa     31 48.  mmHg  

4layerS  71 24 10. −  2m     

 

In patients with diabetic nephropathy 

Table E-2 Parameters for calculation in patients with diabetic nephropathy. 

parameters quantities  parameters quantities 

SNGFR 138 22 10. −  3m s   4layerk  115 39 10. −  m s Pa  

3layerS  88 20 10. −  2m    61 73.  mmHg  

3layerk  92 10 10. −  m s Pa     26 34.  mmHg  

4layerS  83 51 10. −  2m     
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