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CHAPTER 1
INTRODUCTION

In this disseration, we study pancyclicity and vertex pancyclicity of the Carte-
sian product and the lexicographic product of graphs. We first introduce some

basic definitions in graph theory which are used in this dissertation as follows.

1.1 Preliminaries

Every graph that we consider in this dissertation is a finite, undirected and
simple graph G = (V(G), E(G)) with the vertex set V(G) and the edge set E(G).
Most of the basic graph theory terminologies in this research follow from West’s
textbook [19].

We say that G is a graph of order m if |V(G)| = m. The set of all neighbors
of a vertex v in G is denoted by N(v) and d(v) is the degree of the vertex v in G,
i.e., the number of vertices which are adjacent to v in G. The maximum degree of
G is denoted by A(G). The length of a path or a cycle is the number of its edges.
A path of length n — 1 is denoted by P,. The followings are several terminologies

that we use in this dissertation.

Definition 1.1. A graph is called trivial if it contains only one vertex and no

edges. Otherwise, it is nontrivial. An empty graph is a graph having no edges.

Definition 1.2. If S C V(G) and M C E(G), then we write G — S and G — M
for the subgraph obtained by deleting the set of vertices S and the set of edges M,
respectively. In particular, if S = {v} and M = {e} are singleton sets, then we

write G — v and G — e instead of G — {v} and G — {e}, respectively.

Definition 1.3. If H and G are graphs such that V(H) C V(G) and E(H) C
E(G), then H is a subgraph of G. In particular, if V(H) = V(G), then H is a



spanning subgraph of G.

Definition 1.4. A subgraph H of G is called an induced subgraph of G whenever
u and v are vertices of H and wwv is an edge of G, then uv is an edge of H. If S is a
nonempty subset of V(G), the subgraph of G induced by S is the induced subgraph
with vertex set S and denoted by G [S].

Definition 1.5. In a graph G and its subgraph H = (V(H), E(H)), the contrac-
tion of H into a single vertex is a replacement of H by a single vertex u* and the

edges incident to u* are all edges formerly incident to some vertices in V(H).

Note that the complete graph of order n is denoted by K,,, the complete bipar-
tite graph with the partite sets X and Y where |X| = p and |Y| = ¢ is denoted by
K

»q- The notion P(s,t) is referred to an (s, t)-path of a graph G as a path in G

from s to ¢t. For paths P(s,t) and P(t, k) of which ¢ is only one common vertex,

the union of P(s,t) and P(t, k) is a path from s to k, denoted by P(s,t)P(t,k).
Definition 1.6. A tree is a connected graph with no cycles.

Definition 1.7. A rooted tree is a tree with one vertex a chosen as its root. For
each vertex u of a rooted tree with root a, let P(u) be the unique (a,u)-path.

Then,

(i) the parent of w is its neighbor on P(u);
(ii) the children of u are its other neighbors in the rooted tree;

(iii) the descendents of u are the vertices v of the rooted tree such that P(v)

contains u;
(iv) the leaves are vertices of the rooted tree having no children;
(v) the internal vertices are vertices of the rooted tree having children.

Definition 1.8. (i) A graph is called a planar graph if it can be drawn in the
plane without edges crossing. This drawing is called an embedding in the

plane or a planar embedding.



(ii) A plane graph is a planar embedding of a planar graph.

(iii) A bounded face of a plane graph is a region bounded by edges. An unbounded

face of a plane graph is the region with unbounded area.

(iv) An edge e that bounds a face f is said to be incident to f. If a vertex v is

an endpoint of e, then v is also incident to f.

The following definitions are products of two graphs which we consider in this

dissertation.

Definition 1.9. (i) Let G and H be two graphs. The Cartesian product of
graphs G and H, denoted by GLIH, is defined as the graph with vertex
set V(G) x V(H) and an edge {(u1,v1), (uz,v2)} is present in the Cartesian
product whenever u; = us and vive € E(H) or symmetrically v; = vy and

wuy € E(G).

(ii) For n > 2 and P, = vjvyvs + - - vy, we call the graph GOP,, the n-generalized
prism over a graph GG. The 2-generalized prism over a graph G is called the
prism over a graph G. For convenience, the n-generalized prism over a graph
G is referred to the family of the n-generalized prisms over a graph G for all

n > 2.

Definition 1.10. Let G and H be two graphs. The lexicographic product or graph
composition of G and H, denoted by G o H, is defined as a graph with vertex
set V(G) x V(H) and an edge {(uy,v1), (ug,v2)} is present in the lexicographic
product whenever ujuy € E(G) or (u; = ug and vyvy € E(H)). The double graph
of a graph G is G o P;.

Since this dissertation consider hamiltonicity, pancyclicity as well as vertex

pancyclicity of a graph, we collect all definitions involved as follows.

Definition 1.11. (i) A path in G is a Hamiltonian path or a spanning path if

it contains all vertices of (.



(i)
(i)
(iv)

A graph G is traceable if G contains a Hamiltonian path.
A cycle of G is a Hamiltonian cycle if it contains all vertices of G.

A graph G is said to be Hamiltonian if it contains a Hamiltonian cycle.

Otherwise, G is non-Hamiltonian.

Definition 1.12. (i) A graph G of order n > 3 is said to be pancyclic if it

(i)

(iii)

contains a cycle of each length [ for 3 <[ < n.

A graph G of order n is almost pancyclic [4] if it contains a cycle of each
length [ for 3 <1 < n except possibly for a single even length. We use the
term m-almost pancyclic for an almost pancyclic graph without a cycle of

even length m.

A vertex of a graph G of order n is k-vertex pancyclic if it is contained in a
cycle of each length [ for £ <1 < n, and a graph G is vertex k-pancyclic if all
vertices of G are k-vertex pancyclic. Note that a vertex 3-pancyclic graph is

simply called a vertex pancyclic graph.

A graph G of order n is vertex even pancyclic if each vertex of G is contained

in a cycle of each even length [ for 3 <1 < n.



1.2 Introduction

The topological structure of an interconnection network or network is usu-
ally well-known that it can be represented by a graph. The processors can be
regarded by vertices or nodes and the communication links between processors
can be expressed by edges connecting two vertices together. The study of struc-
tural properties of a network is beneficial for parallel or distributed systems. The
problem of finding cycles of various lengths in networks or graphs receives much
attention from researchers because this is a key measurement for evaluating the
suitability of the network’s structure for its applications and more information, see
[20].

Pancyclicity in graph theory refers to the problem of finding cycles of all lengths
from 3 to its order. It was first investigated in the context of tournaments by
Harary and Moser [10], Moon [13] and Alspach [I]. Bondy [3] was the first one
who introduced and extended the concept of pancyclicity from directed graphs
to undirected graphs. In 1971, Bondy [2] posed a metaconjecture which states
that almost any nontrivial condition on a graph which implies that the graph
is Hamiltonian also implies that the graph is pancyclic (there may be a simple
family of exceptional graphs). There are a number of works that correspond to
this metaconjecture. For instances, in 1960, Ore [14] introduced the degree sum
condition which states that “for each pair of non-adjacent vertices u, v in G, d(u)+
d(v) > n(G)” and showed that if G is a graph satisfying the degree sum condition,
then G is Hamiltonian. Bondy [3] showed that if G is graph satisfying the degree
sum condition, then G is pancyclic or G' = K, /2 ,/2. Moreover, in terms of degree
sequence of a graph, Chvétal [[7] showed that if G is a graph of order n > 3 with
vertex degree sequence d; < dy < d3 < --- < d, and d < k < n/2 implies
dn—r > n —k, then G is Hamiltonian. Schmeichel and Hakimi [18] showed that if
G satisfies such condition introduced by Chvatal [[7], then G is either pancyclic or
bipartite. Recently, the concept of pancyclicity was also extended to hypergraphs,

for example, see [9] and [[12].



Meanwhile, for the prism over a graph G, there are some Hamiltonian and
pancyclicity results. For example, Paulraja [15] proved in 1993 that if G is a 3-
connected 3-regular graph, then the prism GUP, is Hamiltonian. In 2001, Goddard
[8] showed that if G is a 3-connected 3-regular graph that contains a triangle, then
the prism GOP; is pancyclic. In 2009, Cada et al. [5] showed that if G is a
connected almost claw-free graph and n > 4 is an even integer, then GUP, is
Hamiltonian. They also showed that if G is a l-pendent cactus with A(G) <
%(n +2) and n > 4 is an even integer, then GOP, is vertex even pancyclic, i.e.,
each vertex of GLIP, is contained in a cycle of each even length.

In this study, we first show that the n-generalized prism over any skirted graph
is Hamiltonian. To satisfy the metaconjecture, we investigate the pancyclicity of
the n-generalized prism over any skirted graph.

In Chapter II, we first show that the n-generalized prism over any skirted graph
is Hamiltonian and show that the n-generalized prism over a skirted graph with
three specific types is Hamiltonian by applying the lemma given by Bondy and
Lovész [4]. However, this technique cannot be applied to prove the pancyclicity of
the n-generalized prism over any skirted graph.

In Chapter III, we prove that the n-generalized prism over any skirted graph is
pancyclic. In the final part of this chapter, we discuss the vertex pancyclicity of the
n-generalized prism over any skirted graph and we can see that the n-generalized
prism over any skirted graph is not always vertex pancyclic. This motivates us to
investigate the other product of graphs, that is, the lexicographic product.

In Chapter IV, we study the vertex pancyclicity over the lexicographic product
of some graphs. We investigate some sufficient conditions for vertex pancyclicity
over the lexicographic product of complete graphs K,,, paths P, or cycles C,, with
a general graph.

In Chapter V, the conclusion for our work is given and the disscussion for our

future research as well as some open problems are provided.



CHAPTER II
THE n-GENERALIZED PRISM OVER
A SKIRTED GRAPH WITH THREE SPECIFIC TYPES

In this chapter, we study pancyclicity of the n-generalized prism over a skirted
graph with three specific types introduced by Bondy and Lovasz [4]. We provide
some basis definitions in graph theory which are used in Chapter II and Chapter

IIT as follows.

Definition 2.1. Let G be a graph and a path P, = vjvevs---v,. If u € V(G),
then, for convenience, we refer to the vertex u in its i-th copy in GOP, as u®

instead of (u,v;).

Definition 2.2. (i) A Halin graph [4] is a plane graph 5 = T'U C, where T
is a planar embedding tree with no vertices of degree two and at least one
vertex of degree at least three and C' is the cycle connecting the leaves of T’

in the cyclic order determined by the embedding of T'.

(ii) Let x be a vertex of C'" and a be the neighbor of = in T". Then, the graph
G = A — x is called a reduced Halin graph with root a. Clearly, G =T'U P
where 7" =T — z and P = C — x. Note that 7" has no vertex of degree two

except possibly the vertex a.

For technical reasons, Bondy and Lovédsz [4] regarded that a single vertex is
also a reduced Halin graph. Actually, in literatures, a reduced Halin graph which
is not a single vertex can be represented by a diagram that is similar to a skirted
graph. Hence, in this dissertation, we use the term skirted graph instead of a
reduced Halin graph which is not a single vertex.

In this research, we are interested in the pancyclicity of the Cartesian product

of a skirted graph G and a path P, for n > 2 (the n-generalized prism over a



skirted graph GG). We can see that the Cartesian product is pancyclic only if the
order of GG is at least 2. As we mention before, here, we recall that a skirted graph
is isomorphic to a reduced Halin graph defined by Bondy and Lovész [4]. However,
we exclude the case of a single vertex.

Before giving a definition of a skirted graph, let us introduce a definition of a

side skirt as follows.

Definition 2.3. A side skirt is a planar embedding rooted tree T', T' # P,, where
the root of T is a vertex of degree at least two and all other vertices, except its
leaves, are of degree at least three. In addition, the structure of 7" is embedded in

such a way that the root is at the top.

Definition 2.4. A skirted graph is a plane graph G = T'U P, where T is a side
skirt and P is the path connecting the leaves of 7" in the order determined by the

embedding of T' starting from the vertex on the far left to the vertex on the far

right (see Figure @)

/N

(a) (b)

Figure 2.1: (a) A side skirted 7" and (b) a skirted graph G =T U P

Let G = TUP be a skirted graph, a be the root of T" and ug, u, be the endpoints
of P. Then, the graph G is called a skirted graph with root a and is denoted by
G(a,ug, uy). We notice that if w is an internal vertex of a side skirt 7', then u and
its descendents induce a skirted subgraph of G with root w.

In the following section, we provide our preliminary results on hamiltonicity

and pancyclicity as well as the motivation of the main results of this chapter.



2.1 Preliminary results and motivation

In 1971, Bondy [2] posed a metaconjecture: almost any nontrivial condition on
a graph which implies that the graph is Hamiltonian also implies that the graph
is pancyclic (there may be a simple family of exceptional graphs). There are a
number of works that correspond to this metaconjecture, see [3], [14] and [16] for
more examples.

Meanwhile, for the prism over a graph G, there are some Hamiltonian and
pancyclicity results. For example, Paulraja [15] proved in 1993 that if G is a 3-
connected 3-regular graph, then the prism GUIP, is Hamiltonian. In 2001, Goddard
[8] showed that if G is a 3-connected 3-regular graph that contains a triangle, then
the prism GUP; is pancyclic.

This motivates us to be interested in hamiltonicity and pancyclicity of the
n-generalized prism over a skirted graph.

Since our skirted graphs are isomorphic to reduced Halin graphs defined by
Bondy and Lovasz [4], we obtain the following theorem and lemma from their

study.
Theorem 2.5 (Bondy and Lovasz [4]). Any skirted graph is Hamiltonian.

Definition 2.6. For any skirted graph with root a, G(a, ug, u,), we denote the path
P of length v by wouqug - - - g, and the (a, u,)-path of length 5 and (a, ug)-path of
length v in T' by voviv2 - - - v and wow ws - - - w., respectively. Thus, vy = wy = a,

Uy = w,, and u, = vg (see Figure @)
Lemma 2.7 (Bondy and Lovasz [1]). Let G = G(a,up,us) be a reduced Halin
graph or a skirted graph of order m. Then, G contains:

(i) an (a,uq)-path of each length | for a+~v <1 <m—1;

(7i) a (ug, uq)-path of each length I for a <1 <m — 1.

Remark 2.8. We obtain that
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—@ @
v = Uo (751 U9 Uq—1 Ua = Vg

Figure 2.2: The (ug, uo)-path, (a,u,)-path and (a, ug)-path of G(a,ug, u,)

(i) Lemma @(1) gives an (a, up)-path of each length [ for a4+ <1 <m—1 by

the symmetry of G(a, ug, uq)-

(ii) Since a child of the root a and all of its descendents induce a skirted subgraph
of GG, we can apply Lemma @(ii) to each of the induced skirted subgraphs
of G and obtain that G contains a (ug, u,)-path of each length [ for a <1 <

m — 2 (without the root a).

The following theorem is an immediate observation about the existence of a

Hamiltonian cycle over the n-generalized prism over any skirted graph.

Theorem 2.9. The n-generalized prism over any skirted graph is Hamiltonian.

Proof. Let G = G(a,ug,u,) be a skirted graph of order m and P, be a path of
length n — 1. We show that GLJP, is Hamiltonian by finding a cycle of length mn
in GOP,. To show that GLIP, contains a cycle of length mn, we give the following
paths and then link them together with edges joining each copy of G.

o The first and the last copies of G contain paths P(a(V, u((ll)) and P(a™, u&")),
respectively, of length m — 1 by Lemma @(1) Also, a path P(a™, u(()")) of
length m — 1 of the last copy of GG exists by the symmetry of G in Remark

@(1) (see Figures @(a) and @(c))

e The remaining n — 2 copies of G contain a path P(uéi), ug)) of length m — 2

(without the root a) for 2 < i < n — 1, which exists by Remark @(n)
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e The path P(a™,aV) = a™aVa=2...41 is a path in GOP, from the

last copy to the first copy of G.

AR A\ A‘

(N o

Figure 2.3: (a) (a,uq)-path, (b) (ug, u)-path and (c) (a,u)-path

Now, we link each path by edge z; = u((f)ué“rl) when ¢ is even and edge y; =

uulY when i is odd. The cycle of length mn is

P(a(l)a u&l))ylP(ug), u(()Q))xQP(ué?’), U(S))y3 e xn—lp(uén)> a(n))P(a(n)7 a(1)>

07

when n is odd or

P(a(l)a ugul))ylp<u¢(1) % )I P(UO g (3))y3 e yn—lp(u((ln)7 a(n)>P(a(n)7 a(1)>

? Ot

when n is even.

This completes the proof. O

By linking paths P(a'V, ul! ) and P(a? ul ) of length m — 1 of the first and

the second copies of G and edges uPul? and ot ), GOP, also contains a Hamil-
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tonian cycle.

We consider a skirted graph of order 7 containing no cycle of length 4 as shown

in Figure @

ay az

Uo Uy U us
Figure 2.4: A skirted graph of order 7 containing no cycle of length 4

To study the n-generalized prism over a skirted graph, we start by investigating

the n-generalized prism over this skirted graph as follows.

Theorem 2.10. Let G = G(a,ug,u3) be the skirted graph shown in Figure .
Then, GOP, is pancyclic for n > 2.

Proof. Let G = G(a,ug,us) be a skirted graph of order 7 such that G contains
no cycle of length 4 (see Figure @) We show that the n-generalized prism over
G is pancyclic by the mathematical induction on n. It is easy to see that GLIP;
contains a cycle of each length [ for 3 <[ < 14. Thus, GUP, is pancyclic.

For n = 3, since GOP; is a subgraph of GOP; and GUP; is pancyclic, GLI1P;
contains a cycle of each length [ for 3 < [ < 14. It suffices to show that GLIP;
contains a cycle of each length [ for 15 <[ < 21. Two steps are shown. The first
one is finding a cycle of each length [ for 17 <1 < 21 and the second one is finding
cycles of lengths 15 and 16.

Step 1 : To show that GUP; contains cycles of such lengths, we give the
following paths and then link them together with edges joining each copy of G.

o The first copy of G contains a path P(a'V), ugl)) of each length [ for 5 <1 <6
by Lemma @(1) Also, for the last copy of G, a path P(a(S),uég)) of each
length [ for 5 <[ < 6 exists by the symmetry of G in Remark @(1)
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e The middle copy of G contains a path P(uéz), uéQ)) of each length [ for 3 <
I <5 (without the root a®), which exists by Remark @(u)

o The path P(a®,a®) = a®a®a® of length 2 is a path in GOP; from the

last copy to the first copy of G.

Now, we link each path (maybe of different sizes) by edges e; = ué )u:(f) and

ey = uéZ)uo ) The cycle of length [ for 17 <[ <21 is
P, u)er P(ug?, ufe2Pluy”, o) P(a, o).

Step 2 : To show that GLIP; contains cycles of length 15 and 16, we give the

following paths and then link them together with edges joining each copy of G.

o The first copy of G contains P(a, uél)) = a(l)agl)ugl)ugl)uél) of length 4.

o The middle copy of G contains P(ug : (2)) = ué )ug)ug “0 ) of length 3.

« The last copy of G contains P* (u((]?’), (3)) = u((]?))ug?’)ug?’)ug?’)aé a® of length 5

and P(uo 5 )) = ué3)u§3)u§3)ag 'a® of length 4.

« The path P(a®,aM) = a®a®aW) of length 2 is a path in GOP; from the
last copy to the first copy of G.

Now, we link each path by edges e; = ué )ug) and ey = u(()Q)ué?’). The cycle

of length 16 is P(a(l),ug))e P(ugz),ué ))e P*(u(()?’), GNP(a® aV). The cycle of
length 15 is P(a®,u{")e; P(ul?, uP)ea P(ul?, a®)P(a®, aM).

Therefore, GLIP; is pancyclic.

For n > 4, suppose that GLIP,_; is pancyclic, i.e., GLIP,_; contains a cycle
of each length [ for 3 <[ < 7(n — 1). We shall find a cycle of each length [ for
Tn—1)+1<I1<7nin GOP,.

To show that GL1P, contains cycles of such lengths, we give the following paths
and then link them together with edges joining each copy of G.
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o The first copy and the last copy of G contain P(a("), ugl)) and P(a™, u:(),")),
respectively, of each length [ for 5 < [ < 6 by Lemma @ i). Also, for the
last copy of G' a path P(a™, Uo ) of each length [ for 5 <[ < 6 exists by the
symmetry of G in Remark @ i

e The remaining n — 2 copies of G contain a path P(u(()i), u(i)) of each length
[ for 3 <1 < 5 (without the root a?) for 2 < i < n — 1, which exists by

Remark @(u)

o« The path P(a™,a™) = a™aNa=2...q01) of length n — 1 is a path in
GOP, from the last copy to the first copy of G.

Now, we link each path (maybe of different sizes) by edge x; = ué )u((fﬂ) when

1 is even and edge y; = ué)uézﬂ) when ¢ is odd. The cycle of length [ for 5n + 2 <

[ <Tnis

P(a gy Plus” g e Plug? gy - 01 Pug”, o) P(a™, o)
when n is odd or

P(a, ul! ))y P(ug ),u[()Z))ng(uég),u§3))y3 = -yn_lP(ug ) a" "N P(a™, aM)

when n is even.

Since bn +2 < 7(n — 1) 4+ 1 for n > 4, GOP, contains a cycle of each length [
for 7((n —1)+1<1<T7n.

Therefore, GLJP, is pancyclic. O

We have that the n-generalized prism over any skirted graph is Hamiltonian.
Then, to satisfy the metaconjecture, we are interested to see that Is the n-generalized
prism over any skirted graph pancyclic? To answer this question, we start by in-
vestigating the n-generalized prism over a skirted graph with three specific types.
These three types were introduced by Bondy and Lovész [4] in 1985. They studied
the pancyclicity for a Halin graph. To show that a Halin graph is almost pancyclic,
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they restricted the problem into a reduced Halin graph and then showed that a
reduced Halin graph is almost pancyclic, i.e., it contains cycles of each length [ for
3 <l < n, except, possibly, for one even value of [. Moreover, if it contains no
cycle of even length m, where 3 < m < n, then it contains a subgraph which is

also a skirted graph of order 2m — 1 of type I, II or III (see Figure @)

Type | Type Il Type Il

Figure 2.5: Skirted graphs of order 2m — 1 of type I, II and III

From Figure @, we note that types I and III contain « = m — 1,8 = 2 and
v =2, while « =m — 1,8 =m/2 and v = m/2 for type II.

Since «, 8 and v of types I and III are the same, while the other type has
different values of § and 7, we separate the main study of this chapter into two
sections. When m = 4, we can see that the skirted graphs of these three types are
the skirted graph shown in Figure @ Furthermore, we already showed that the
n-generalized prism over the skirted graph in Figure @ is pancyclic. Thus, we
next consider the case that m > 6.

In Section 2.2, we prove the pancyclicity results for the n-generalized prism
over a skirted graph of type I or III by using Lemma @ and the mathematical
induction on n. In Section 2.3, by using a similar idea, we can also prove the
pancyclicity of the n-generalized prism over a skirted graph of type II. Finally,

conclusion and discussion about this topic are given in Section 2.4.
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2.2 The n-generalized prism over a skirted graph of type I
or 1II

We already know that a skirted graph G = G(a,ug, u,) of type I or IIT of
order 2m — 1 is m-almost pancyclic, i.e., G contains a cycle of each length [ for
3 <1 < 2m — 1 except for a cycle of even length m. Since G is a subgraph of
GOP,, GOP, contains such cycles of length [ for 3 <1 < 2m — 1 except possibly
[ = m. To show that GLIP, is pancyclic, we first show that GL1P, contains a cycle
of length m.

Lemma 2.11. Let G = G(a, ug, us) be a skirted graph of order 2m — 1, where m
is an even integer such that m > 6 and G is of type I or III. Then, GLP, contains

a cycle of each length | where | is an even integer ranging from 4 to 2m + 6.

Proof. Since G is of type I or III, it contains m + 3 consecutive vertices which
are incident to the unbounded face, called wq, wy, ws, ..., w9, respectively. We
define a sequence of m + 2 cycles in GLIP, as follows.

wgl)w(()l)11)(()2)1142)10%1)7

s 2 2 1
P oD 0Pl

T L e e

T

1 1 1 1) (1 2 2 1
Wy wyyywiwy, )y w e g e - e e wl.

The length of each cycle in the sequence increases as an arithmetic sequence with

the common difference 2. Then, the last cycle

1 1 1 1 2 2 1
L2 @

of this sequence has length 2m + 6. Since the first cycle w1 w(()l)w(() )w?)wg ) is
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a cycle of length 4, the lengths of the cycles are even integers ranging from 4 to

2m + 6. O]

By Lemma , we can see that if G = G(a, ug, u,) is a skirted graph of order
2m —1 of type I or III, where m > 6 is an even integer, then GLIP, contains a cycle
of length m. Next, we need the following lemma to show that the n-generalized

prism over a skirted graph of order 2m — 1 of type I or III is pancyclic.

Lemma 2.12. Let G = G(a,ug, us) be a skirted graph of order 2m — 1, where m
is an even integer such that m > 6, and G is of type I or III. Then, GUP; is

pancyclic.

Proof. By the result of Bondy and Lovéasz in [4] that G = G(a,uo, u,) is m-
almost pancyclic and Lemma , GOP, contains a cycle of each length [ for
3 <1< 2m — 1. It suffices to show that the prism over G contains a cycle of each
length [ for 2m <1 < 4m — 2.

For 1 <1 < 2, the i-th copy of G contains a path P(uo ,ua ) of length [ for

—1<1<2m—2, by Lemma @ (ii). We link each path P(u(()), ul) (maybe of
different sizes) for 1 < ¢ < 2 together with edges u(() )ué and P ul?. The cycle of
each length [ for 2m <[ <4m — 2 is P(u(() ), u S)u@)P(ug),ué2))u(()2)u(()1).

Therefore, GLP, is pancyclic. ]

By using Lemma as a basis step, we can use the mathematical induction
to establish the following result.

Theorem 2.13. Let G = G(a,ug, uy) be a skirted graph of order 2m — 1, where m
is an even integer such that m > 6, and of type I or III. Then, GLP, is pancyclic

forn > 2.

Proof. We prove by the mathematical induction on the order of P,. The basis step
is already done by Lemma . For n > 3, suppose that GLIP,_; is pancyclic,
i.e., GOP,_; contains a cycle of each length [ for 3 <1 < (n—1)(2m —1). We
shall find a cycle of each length [ for (n —1)(2m — 1)+ 1 <1 <n(2m —1).
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To show that GL1P, contains cycles of such length, we give the following paths
and then link them together with edges joining each copy of G.

o The first copy and the last copy of G contain P(a'V), u&l)) and P(a(”),u,(ln)),
respectively, of each length [ for m+1 <[ < 2m—2 by Lemma @(1) Also, for
the last copy of G a path P(a™, u(()")) of each length [ form+1 <[ <2m—2
exists by the symmetry of G in Remark @(1)

o The remaining n — 2 copies of G contain a path P(ug), ug)) of each length
[ for m —1 <1 < 2m — 3 (without the root a”) for 2 < i < n — 1, which
exists by Remark @(u)

« The path P(a™,aM) = a™a» a2 ... 41 of length n — 1 is a path in
GOP, from the last copy to the first copy of G.

Now, we link each path (maybe of different sizes) by edge z; = u(()i)u((fﬂ) when ¢

is even and edge y; = uPulY when i is odd. The cycle of length [ for mn+n+2 <
[ <n(2m—1)is
P, ul )y P ug e Plug” udys - wny Plug”, o) P(a™, o)

? Yo

when n is odd or

P, uM)y, P(u?, u[()Q))ng(ué?’), uP)ys -y P ™) P(a™, V)

«

when n is even.

We can conclude that GOP, is pancyclic if mn+n+2 < (n—1)(2m —1) + 1,
that is, n > 2m/(m — 2). Since 3 > 2m/(m — 2) for all m > 6, n > 2m/(m — 2)
for all n > 3.

Therefore, GL1P, is pancyclic. [
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2.3 The n-generalized prism over a skirted graph of type
IT

We already know that a skirted graph G = G(a,ug, us) of type II of order
2m — 1 is m-almost pancyclic, i.e., G' contains a cycle of each length [ for 3 <1 <
2m — 1 except for a cycle of even length m. Since G is subgraph of GOP,, GLP,
contains such cycles of length [ for 3 <[ < 2m — 1 except possibly [ = m. To show

that GLIP, is pancyclic, we first show that GLIP, contains a cycle of length m.

Lemma 2.14. Let G = G(a,ug, uy) be a skirted graph of order 2m — 1, where m
is an even integer such that m > 6 and G s of type II. Then, GUP, contains a

cycle of each length | where | is an even integer ranging from 4 to 4m — 2.

Proof. Since G is of type II, it contains 2m — 1 consecutive vertices which are
incident to the unbounded face, called wg,wq,ws, ..., ws,_o, respectively. We

define a sequence of 2m — 2 cycles in GL1P, as follows.

ol

o S

afouPuuuP e ofPul?,

T

1 1 1 1 1 2 2 2 2 1
W oW W)Wy 5w g wg wy? - ws) s i sk .

The length of each cycle in the sequence increases as an arithmetic sequence with
the common difference 2. Then, the last cycle

1 1 1 1 1 2 2 2 1
W oW Wy gy s+~ w wg w Wi ) ) ) wl

of this sequence has length 4m — 2. Since the first cycle w?)wé )w((J )wf) E ) s

a cycle of length 4, the lengths of the cycles are even integers ranging from 4 to
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4dm — 2. ]

By Lemma , we can see that if G = G(a, ug, u,) is a skirted graph of order
2m — 1 of type II, where m > 6 is an even integer, then GLJP, contains a cycle
of length m. Next, we need the following lemmas to show that the n-generalized

prism over a skirted graph of order 2m — 1 of type II is pancyclic.

Lemma 2.15. Let G = G(a,up, us) be a skirted graph of order 2m — 1, where m
is an even integer such that m > 6, and G is of type II. Then, GLIP, is pancyclic.

Proof. By the result of Bondy and Lovész in [4] that G = G(a, ug, u,) is m-almost
pancyclic and Lemma , GUP; contains a cycle of each length [, 3 < | < 2m—1.
It suffices to show that the prism over GG contains a cycle of each length [ for
2m <1 <4m — 2.

For 1 < i < 2, the i-th copy of G contains a path P(uéi),ugf)) of length [ for
m—1<1<2m — 2, by Lemma @(u) We link each path P(u(()i), ug)) (maybe of
different sizes) for 1 < i < 2 together with edges u(()l) Dy
each length [ for 2m <[ <4m — 2 is P(u(()l), ug}))u&l)ug)P(ug), u(()2))u(()2)u(()1).

Therefore, GOP, is pancyclic. O

u((]Q) and u . The cycle of

Lemma 2.16. Let G = G(a,ug, uy) be a skirted graph of order 2m — 1, where m
is an even integer such that m > 6 and G is of type II. Then, GLIP; is pancyclic.

Proof. Let G = G(a,up,us) = T'U P be a skirted graph of type II. By Lemma
, GOP; contains a cycle of each length [ for 3 <[ < 4m —2. It suffices to show
that GLP5 contains a cycle of each length [ for 4m — 1 <1 < 6m — 3. Two steps
are shown. The first one is finding a cycle of each length [ for 4m+1 <1 < 6m—3
and the second one is finding cycles of length 4m — 1 and 4m.

Step 1: To show that GLIP5 contains cycles of such length, we give the following
paths and then link them together with edges joining each copy of G.

o The first copy of G contains a path P(a(l),ug)), of each length [ for (3m —
2)/2 <1 < 2m — 2 by Lemma @(1) Also, for the last copy of G, a path
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P(a®, uo ) of each length [ for (3m — 2)/2 < 1 < 2m — 2 exists by the
symmetry of G in Remark @ i

» The middle copy of G contains a path P (ué )l ) of each length [ for m—1 <
I < 2m — 3 (without the root a®), which exists by Remark @ ii).

« The path P(a®,aW) = a®a®aW) of length 2 is a path in GOP; from the

last copy to the first copy of G.

Now, we link each path (maybe of different sizes) by edges e; = uPu? and

ey = u((f)uo The cycle of length [ for 4m +1 <1 < 6m — 3 is
P, uer Pl )ea Plug”, o) Pa o).

Step 2 : To show that GUPs contains cycles of lengths 4m — 1 and 4m, we
modify the cycle of length 4m 4 1 from Step 1, where P(a"), (1)) and P(ug (3) a®)
have length (3m —2)/2 and P(uCy ,uo ) has length m — 1. For the first copy of G,
let P(aV) Uo ) be the path of length m/2 from a™") to u( ) containing all vertices
which are incident to the unbounded face of G' and P(u(() ,ua ) be the path of

(1) (1)

length m — 1 from ug’ to ug

unbounded face of G. Then, P(a®, uf’) = P(a(l) WM P) ull) is the path of

containing all vertices which are incident to the

length (3m — 2)/2 containing the vertex Uo Similary, for the third copy of G, we
have that P(ué ) a®)) = P(u(()g), u&))P(u&), (3)) is the path of length (3m — 2)/2
containing the vertex u. Then, removing vertex ué ) (respectively u((]l) and ug’))
makes the cycle of length 4m + 1 to become a cycle of length 4m (respectively a
cycle of length 4m — 1).

Therefore, GLJP; is pancyclic. [

We see that, in the proof of Lemma , the Cartesian product of G =
G(a,up, us) and a path of order 3, we have to consider the special case as shown

in Step 2. However, there is no special case when we show that GLIP, is pancyclic

for n > 4.
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By using Lemmas and m as a basis step, we can use the mathematical

induction to establish the following result.

Theorem 2.17. Let G = G(a, ug, uy) be a skirted graph of order 2m — 1, where m
is an even integer such that m > 6 and G is of type II. Then, GUP, is pancyclic

forn > 2.

Proof. We prove by the mathematical induction on the order of P,. The basis step
is already done by Lemmas and for n = 2 and n = 3, respectively. For
n > 4, suppose that GUJP,_; is pancyclic, i.e., GLP,_; contains a cycle of each
length [ for 3 <1 < (n—1)(2m — 1). We shall find a cycle of each length [ for
(m—1)2m—-1)+1<1<n2m-—1).

To show that GUP, contains cycles of such lengths, we give the following paths
and then link them together with edges joining each copy of G.

o The first copy and the last copy of G contain P(a", ug)) and P(a™, u&")),
respectively, of each length [ for (3m — 2)/2 < | < 2m — 2 by Lemma
@(1) Also, for the last copy of G a path P(a™), u[()")) of each length [ for
(3m —2)/2 <1 < 2m — 2 exists by the symmetry of G in Remark @(1)

o The remaining n — 2 copies of G' contain a path P(uéi), ug)) of each length
[ for m —1 <1 < 2m — 3 (without the root a”) for 2 < i < n — 1, which

exists by Remark @(u)

« The path P(a™,aM) = a™a Va2 ... 41 of length n — 1 is a path in
GOP, from the last copy to the first copy of G.

Now, we link each path (maybe of different sizes) by edge x; = uéi)ugﬂ) when

1 is even and edge y; = uPul™™ when i is odd. The cycle of length [ for mn +

m+4+n—2<Il<n(2m-1)is

P(a™, )y P(u®, ufNaa Pl uys - - - 20 Pl a™) P (al™ | oV
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when n is odd or

P(a™, ul )y P, uf)es Plug” ul)ys - yu 1 P(ul?, a™) P(a™, o)

«

when n is even.

We can conclude that GOP, is pancyclic if mn+m+n—2 < (n—1)(2m—1)+1,
that is, n > (3m — 4)/(m — 2). Since 4 > (3m — 4)/(m — 2) for all m > 6,
n > (3m—4)/(m —2) for all n > 4.

Therefore, GLIP, is pancyclic. 0

2.4 Conclusion and discussion

In this chapter, we prove that the n-generalized prism over a skirted graph of
type I, IT or III are pancyclic by applying the lemma given by Bondy and Lovasz
[4]. To apply the lemma, we have to know the exact number of vertices which are
incident to the unbounded face of each skirted graph. This constraint is the reason
why the technique in this chapter cannot be directly applied to the n-generalized
prism of any skirted graphs. Thus, we will develop a technique to overcome this

difficulty in the next chapter.



CHAPTER I11
THE n-GENERALIZED PRISM OVER A SKIRTED
GRAPH

In this chapter, we study pancyclicity of the n-generalized prism over a skirted
graph. We first provide our preliminary results on hamiltonicity and pancyclicity

as well as the motivation of the main results of this chapter as follows.

3.1 Preliminary results and motivation

In 1971, Bondy [2] posed a metaconjecture: almost any nontrivial condition
on a graph which implies that the graph is Hamiltonian also implies that the
graph is pancyclic (there may be a simple family of exceptional graphs). From
Chapter II, we have proved that the n-generalized prism over any skirted graph
is Hamiltonian. This metaconjecture motivates us to investigate the pancyclicity
of the n-generalized prism over any skirted graph. However, the technique that
we use in Chapter II cannot be directly applied to any skirted graphs other than
those three types since we do not know the exact configuration of their vertices and
edges. Thus, we develop a technique to overcome this difficulty in this chapter.

From Chapter II, we have proved the following theorem.
Theorem 3.1. The n-generalized prism over any skirted graph is Hamiltonian.

Now, we notice that a skirted graph G = T'U P contains a cycle of length 3
where one of the edges of such cycle belongs to the path P as follows.

Lemma 3.2. A skirted graph G =T U P contains a cycle of length 3 with exactly
one edge of the cycle belongs to the path P.
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Proof. To prove this statement, we let P = wugquius---u,. Let T” be a rooted
tree obtained by deleting all leaves of T. If T” is a singleton, then it means that
all children of the root a of T" are leaves of T'. Since a has at least two children,
G =T U P contains a cycle of length 3 with exactly one edge of the cycle belongs
to the path P. Otherwise, T” contains a vertex u of degree one. This implies that
u is an internal vertex of 7' such that all of its children are leaves of T'. Since u
has at least two children. Let U be the set of all children of w. Thus, U C V(P)
and |U| > 2. Let u; € U and i be the minimum index of vertices in U. Since u
has at least two children and P is obtained by connecting the leaves of T" in the
order determined by the embedding of 7', w;11; € U. Thus, {u,u;,u;41} induces
a cycle of length 3 in G. Moreover, this cycle has one edge u;u;+1 belongs to the

path P. O

In general, a triangle in graph theory usually means a cycle of length 3. How-

ever, in this research, we define a triangle as follows.

Definition 3.3. Let G(a, ug, u,) = TUP be a skirted graph with P = ugujus - - - tg.
Fori,j €{0,1,2,...,a} and i < j, an induced subgraph C(u, u;, u;) of G(a, ug, uy)

is said to be a triangle in G(a, ug, uy) if
o wu is an internal vertex of T' such that all children of u are leaves of T" and;

e wu; is the first vertex and wu; is the last vertex in P in which u; and u; are

children of w.

Moreover, since P is obtained by connecting the leaves of T in the order
determined by the embedding of T', vertices between w; and w; in the path P,

Uit1, Wit2, Uits, - - -, Wj—1, are all children of u (see Figure @)

Observation 3.4. From Definition , a triangle C(u,u;,u;) of G(a,uo,uy) s
also a skirted graph T U P’ containing the side skirt T with root u and the path

P’ = wuig1uivs - - - uj. Note that u has degree at least two because i < j.
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V2
U3

Up U U2 U3 Ug Us U UT U

Figure 3.1: C(vy,u3,uy) and C(vs,ug, ug) are triangles in G(a,ug,us), while

C(a,ug, us) is not a triangle

We obtain from the proof of Lemma @ that a skirted graph G = T'UP contains
a cycle of length 3 induced by {u, u;,u;+1} in G. Since all children of u are leaves
of T', we can extend such cycle into a triangle. Therefore, a skirted graph contains

a triangle.

Lemma 3.5. Let G(a,ug,uy) =T U P be a skirted graph with P = uguqug - - - U,
If G' is a simple graph obtained from a skirted graph G(a,ug,us) by contracting a
triangle C(u, u;, u;) of G(a,uo, uq) where u # a. Then, G' is a skirted graph.

Proof. Let G(a,ug,us) = T'UP be a skirted graph and C(u, u;, u;) be a triangle in
G(a,ug, uy) for some 0 <i < a—1and i < j. Let G’ be a simple graph obtained
from G(a, ug, u,) by contracting C(u, u;, u;) and u* be the vertex of G’ representing
the triangle C'(u, u;, u;), i.e., all vertices u, u;, uit1, Uito, - . ., u; are contracted into
one vertex u*. Since u # a, G’ is not a trivial graph.

Consider the side skirt T of G(a, ug, u,). It can be regarded that we obtain 7"
from T by deleting all children of u and then turn the internal vertex u to be a leaf
u* of T". The contraction does not affect the degree of other vertices in G(a, ug, ).
Thus, 7" is a side skirt. Now, we consider the path P of G(a, ug, us). The contrac-
tion turns the path P = upuqus . . . u, into the path P’ = uguy ... w10 u iy . .. uq
in G’. Since the contraction does not affect the degree of other vertices outside the

triangle, all leaves of T" except w;, w1, Uit2, - - ., u; are still the leaves of T". Thus,
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all vertices of P’ are all leaves of T”. Since G’ is a union 7" U P’, G’ is a skirted

graph. [

Note that G' = G'(a,ug, u,) if i,7 ¢ {0,a}, G' = G'(a,u*,u,) if i = 0 (in this
case, j # a) and G' = G'(a, ug, u*) if j = « (in this case, i # 0). However, to prove
Lemma @, we do not care about the endpoints of the path P’ in G'. Thus, we
just wrote G'.

The following figure shows skirted graphs G'(a,ug,us) and G'(a,ug, u™) ob-
tained from skirted graph G(a,ug,us) by contracting triangles C'(vq, us,uy) and

C'(vs, ug, ug), respectively

upg  up Up Uz Uy U5 UG UT U up U] Uy ut ous ug up  ug uy  up Uy U3 Uy U w*

(a) (b) (c)

Figure 3.2: (a) a skirted graph G(a,ug,ug), (b) and (c) skirted graphs obtained
from G(a,ug,us) by contracting triangles C'(vq, us, us) and C(vs, ug, ug), respec-

tively

From Lemma @, we already know that if G’ is a simple graph obtained from
a skirted graph G(a,ug,u,) by contracting a triangle C(u,w;, u;) of G(a,u, uq)
where u # a. Then, G’ is a skirted graph. Next, we investigate the case that
u = a. By the definition of a triangle, we obtain that ¢ = 0 and j = «. Thus, in
this case, the skirted graph G(a, ug, u,) is a triangle. In the next section, we prove

the pancyclicity results for the n-generalized prism over a triangle.

3.2 Pancyclicity of the n-generalized prism over a triangle

To show that the n-generalized prism over a triangle is pancyclic, we need the

following lemmas.
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Lemma 3.6. Let C' = C(u, ug, uy) be a triangle of order a+2. Then, C contains:
(i) a (u,uq)-path of each length | for 1 <1< a+1;
(7i) a (ug, uq)-path of lengths o and o+ 1.

Proof. Let C' = C(u,up,us) = T U P be a triangle of order o« + 2 and P =
UpUilUs - - - Uy. We prove this statement by the mathematical induction on «. If
a =1, then C' is a cycle of length 3. It contains (i) a (u, u1)-path of lengths 1 and
2 and (ii) a (ug, u1)-path of lengths 1 and 2. Now, we suppose that the statement
holds for all triangles of order less than o + 2 where a > 1.

Let C" = (T — uo) U (P —ug,). Then, C" = C(u, ug, uq—1) is a triangle subgraph
of C. By the induction hypothesis, we obtain that C'(u,ug,u,—1) contains (i) a
(u, uq—1)-path of each length [ for 1 < [ < « and (ii) a (ug, ua—1)-path of lengths
a—1 and a.

Since u,, is adjacent to u in C, C' contains a (u, u, )-path of length 1. Since u,, is
adjacent to u,_1 in C, we can extend a (u, u,_1)-path of length [ to a (u, u,)-path
of length [+ 1. Thus, C' contains (i) a (u, u,)-path of each length l for 1 <[ < a+1
and (ii) a (ug, us)-path of lengths a and o + 1. O

Remark 3.7. We obtain that

(i) Lemma @(1) gives a (u, up)-path of each length [ for 1 <[ < o+ 1 by the

symmetry of C(u,ug, ug).

(ii)) P = woujug...us is a (u, uy)-path of length o (without the vertex ) in

C(u, ug, Uy )-

The following lemma is an immediate observation about the pancyclicity of the

prism over a triangle.

Lemma 3.8. The prism over a triangle is pancyclic.

Proof. Let a > 1 and C' = C(u, ug, u,) be a triangle of length a+2. For 1 < s < 2
the s-th copy of C' contains a (u(®, ugf))—path of each length [ for 1 <[l < a+1
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by Lemma @ ). We link each (u®,u{”)-path and (u®,u$)-path (maybe of
different sizes) together with edges uVu® and ul’u?. We obtain a cycle of each
length [ for 4 < [ < 2a + 4. Since C' contains a cycle of length 3, CUP; is
pancyclic. [

By using Lemma @ as a basic step, we can use the mathematical induction

to establish the following result.

Theorem 3.9. The n-generalized prism over a triangle is pancyclic.

Proof. Let @ > 1 and C' = C(u,ug, u,) be a triangle of order a + 2 and P, be
a path of order n > 2. We prove that CP, is pancyclic by the mathematical
induction on n. The basic step is already done by Lemma @ For n > 3, suppose
that COP,_ is pancyclic. Since CP,_; is a subgraph of COP,, CLIP, contains
a cycle of each length [ for 3 <1 < (& + 2)(n — 1). We shall find a cycle of each
length [ for (a« +2)(n — 1)+ 1 <1< (a+2)n.

To show that CUJP, contains a cycle of such lengths, we give the following
paths and link them together with edges joining each copy of C'.

o The first copy and the last copy of C contain P(u'"), u,()l)) and P(u™, u((ln)),
respectively, of each length [ for 1 < < o + 1 by Lemma @ i). Also, for
the last copy of C, a path P(u® uo ) of each length [ for 1 <l < a+1
exists by the symmetry of C' in Remark @(1)

e The remaining n — 2 copies of G contain the path P(u(()s),ua ) of length «

(without the root u(s)) for 2 < s < n — 1, which exists by Remark @(n)

« The path P(u™,uV) = u™ym=Ny(=2) ... 41) of length n — 1 is a path in
COP, from the last copy to the first copy of C.
Now, we link each path (maybe of different sizes) by edge uDu$™ when s is

odd and by edge Uo (s+1

when s is even. We obtain a cycle of each length [ for
(+2)n—2a <1 < (a+2)n. Since (a+ 2)n — 2o < (a+2)(n — 1) + 1 for all
a > 1, COP, contains a cycle of each length [ for (a+2)(n—1)+1 <1 < (a+2)n.

Therefore, COP, is pancyclic. [
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3.3 Pancyclicity of the n-generalized prism over a skirted

graph

To show that the n-generalized prism over a skirted graph is pancyclic, we
first establish the preliminary results of even cycles in the n-generalized prism over
a skirted graph. Note that since a skirted graph is traceable, we investigate the
n-generalized prism over a path instead of the n-generalized prism over a skirted

graph as follows.

3.3.1 Even cycles in the n-generalized prism over a path

Let n > 2 be an even integer and m > 2, we need the following lemma to
prove that P,,[JP, contains a cycle of each even length [ where [ is an even integer

ranging from 4 to mn.

Lemma 3.10. Suppose that m > 2. Then, the prism over P,, contains a cycle
of each length | where | is an even integer mnging from 4 to 2m. Moreover, if
P,, = vivvs - - - vy, then the edges vgl) ) and U 0(2) of the first copy and the
second copy of P,[P,, respectively, are contained in a cycle of each even length |

for4 <1 <2m.

Proof. Let P,, = vivqvs - - - v,,,. We define a sequence of m — 1 cycles in P,,[ 1P, as
follows.

oDy (D2 @ (0.

)

O )

Ty

D@ M 0 0 0, @0) @) @) )0

(
U U= 1Um—2Um=3 2 U1 U1 Vg U =1V Upy”

The length of each cycle in the sequence increases as an arithmetic sequence with
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the common difference 2. Then, the last cycle

LoD o )

(1)

of this sequence has length 2m. Since the first cycle vy vg ) (2) ( ) él) is a cycle

of length 4, the lengths of the cycles are even integers ranging from 4 to 2m.

(1) ( and vgz)vf) are edges contained in all even cycles. ]

Moreover, v,
Observation 3.11. Forn > 2 is an even integer and m > 2, if P,, = v1vov3 - - -

then the edges vil)vé and vl 1)2 of the first copy and the last copy of P,UP,,

Um:

respectively, are contained in a cycle of length mn (see Figure @)

v%n) vén) vén) v,(,?zl v
b ]
RERERN
EENN
o RO R

Figure 3.3: The dashed line represents a spanning cycle of length mn containing

edges v\Vul and o™l

By using Lemma as a basic step, we can use the mathematical induction
to establish the following result.

Lemma 3.12. Suppose that n > 2 is an even integer and m > 2. Then, the

n-generalized prism over P, contains a cycle of each length | where | is an even
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integer ranging from 4 to mn. Moreover, if P,, = vivav3--- vy, then the edge

( (1) of the first copy of P,,L1P, is contained in a cycle of each even length | for

4 <l <mn.

Proof. Let P,, = viv9v3 -+ - v, where m > 2 and n = 2k for some positive integer
k. We prove by the mathematical induction on k. The basic step is already done
by Lemma . For k > 2, suppose that P,,[1P5_1) contains a cycle of each even
length [ where [ is an even integer ranging from 4 to 2m(k — 1). We shall find an
even cycle of each length [ for 2m(k — 1) +2 <1 < 2mk.

Here, let us regard P,,[0Py;—1) as a subgraph of P, 1P, induced by the set

of all vertices of the first 2(k — 1) copies of P,,. By Observation , there is

a cycle C* of length 2m(k — 1) in P, [0P,;_1) containing the edges vgl)vél) and

U§2k72)vé2k72).

Now, we consider the last two copies of P,,. The vertices of these two copies
induce a subgraph P,,00P, of P,UJPs;. By Lemma , an edge v?k_l)vé%_l)

is contained in a cycle of each even length [ for 4 < [ < 2m in P,,[P,,. Since

(26-2), (2k-1) o v(%*Q) (

1) are edges of P,,l1P,y, we delete edges vy 5

(2h=1) ¢ v§2k_2)

(2k—1) (2k—1) and o

and v, Uy ) and then j join v§ "16 v(% 2)

, respectively.
Then, C* can be extended to a cycle of each even length [ for 2m(k—1)+4 <[ <
2mk. Next, we extend C* to be a cycle of even length 2m(k — 1) + 2 by replacing

the edge Ui%—?)vé%—?) with the path U£2k—2)vi2k—1)UéZk—l)yéZk—m'

Moreover, since the cycle C* contains edge vg)vél) and the extension of C*

does not affect the edge v§ )vé ), it is contained in a cycle of each even length [ for

4 <l <mn. ]

By Lemma , P,,l0P, contains an even cycle of each length [ for 4 <[ < mn
when n is even. Next, to investigate the case that n is odd, we will only examine

the case that n = 3 as follows.

Lemma 3.13. Suppose that m > 2. Then, the 3-generalized prism over P,
contains a cycle of each length | where | is an even mteger ranging from 4 to 3m.

Moreover, if P, = vivou3 - - - Uy, then the edge v1 v2 of the first copy of P,,[1P;s
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18 contained in:

(i) a cycle of each even length | for 4 <1 < 3m if m is even;

(ii) a cycle of each even length | for 4 <1 <3m — 1 if m is odd.

Proof. Let m > 2 and P,, = vyvqvs - - - v,,. Here, let us regard P,,,[1P; as a subgraph
of P,,l0P; induced by vertices of the first two copies of F,,. By Lemma and

P,,0P; is a subgraph of P,,l1P;, P,,l1P; contains a cycle of each length [ where [

is an even integer ranging from 4 to 2m and the edge v§ v2 ) of the first copy of

P,,00P, is contained in a cycle of each length [ where [ is an even integer ranging
from 4 to 2m. We shall find an even cycles of each length [ for 2m + 2 <[ < 3m.
By Lemma , P,,L0P; contains a cycle

T M NN R JUC N

of length 2m in which it contains v@vé”.

Now, we consider the second and the third copies of P,,. For an odd integer
J such that 1 < 57 < m — 1, there is a path P; = v( )0(3)1)( X il of length 3 in

J+17j
P,,0P;.

(3) and v

J +1 have not been contained in C* for all odd integers j, we

Since v;

replace each edge v; )vﬁ)l with each path P;. Then, C* can be extended to a cycle

of each even length [ for 2m + 2 < [ < 3m. Since this extension does not change

anything in the first copy of P,,, the extended cycle still contains the edge v@vé”.

Moreover, we can see that (i) if m is even, then v( ) é ) is contained in a cycle

of each even length [ for 4 <1 < 3m (3m is even); (i) if m is odd, then v{"v ( ) is

contained in a cycle of each even length [ for 4 <1 <3m — 1 (3m is odd). O

Figure @ shows examples of cycles of length 18 and 20 in FPs(JP; and P;JP;,

respectively.

Remark 3.14. From the proof of Lemma , we obtain the cycles of length 3m

when m is even and 3m — 1 when m is odd. We notice that, apart from edge

vg Syt ), these two cycles also contain an edge v@vé when m > 3.
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1) vt
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(a) (b)

Figure 3.4: (a) The dashed line represents a cycle of length 18 in Ps(1P; and (b)
The dashed line represents a cycle of length 20 in P;[1P;

3.3.2 Main results

To show that the n-generalized prism over any skirted graph is pancyclic,
we start by providing some observations and investigating the pancyclicity of the
prism over a skirted graph; and the pancyclicity of the 3-generalized prism over a

skirted graph as follows.

Observation 3.15. Letm > 3, a > 2 and G(a, up, u,) = T U P be a skirted graph
of order m with P = uguqus - - - s and C' = C(u, u;, u;) be a triangle of order t in
G(a, ug, uy) such that u # a. Then, m —t > 1. Let G’ be a skirted graph of order
m — (t — 1) obtained from a skirted graph G(a,ug, us) by contracting the triangle
C and u* be the vertex of G' representing the triangle C'. By Theorem @, G’ is
Hamiltonian. Let C' = u*v1v903 - - - Uy_t™ be a spanning cycle in G'. Then, there
is a spanning path P' = u*vivgvs -« vy in G'.

Since u* is the vertex of G' representing the triangle C and vy is adjacent to

u*, vy is adjacent to either u, u; or u; in G(a,up,us). Let G = G(a,ug, uq).

e Ifviu; € E(G), then P(u;, Upm—t) = Ulip1 Uit -+ UjV1V2 - - * Uy 1S @ path of

length m — 2 (without the vertex u) in G.

e Ifviu; € E(G), then P(u;, Uy—t) = WjUj—1Uj_g - - - WV1V2 - - Uy @S @ path of

length m — 2 (without the vertex u) in G.



35

e Ifviu e E(G), then v,_; is adjacent to either u; or u; in G(a,ug, u,). Note

that vy # Uy, since m —t > 1.

— If vy—uj € E(G), then
P(u;,v1) = Wlig1Uiva -+ - UjUpm—tVm—t—1Um—t—2 - - V1 is a path of length

m — 2 (without the vertex u) in G.

— If vyu; € E(G), then
P(uj,v1) = ujuj_1Uj_g - UilVp—tUm—t—1Um—t—2 - - - U1 1S a path of length

m — 2 (without the vertex u) in G.

We notice that the vertex u is not contained in each of these four paths and the
vertex u is adjacent to the first two vertices of such paths. This note is used in the

proof of the following theorems.
Theorem 3.16. The prism over any skirted graph is pancyclic.

Proof. First, we consider a single skirted graph. Let G = G(a,up,uq) = T U P
be a skirted graph of order m with P = wpujus - - - uy. Let C' = C(u,u;, u;) be a
triangle of order ¢ in G(a, ug, uy), where t < m. If u = a, then G itself is a triangle.
By Theorem @, the prism over G is pancyclic. Now, we assume that u # a.

Let G’ be a skirted graph of order m — (t — 1) obtained from a skirted graph G
by contracting the triangle C' and u* be the vertex of G’ representing the triangle
C. By Theorem @, G' is Hamiltonian. Let C' = u*v 0903 - - - v,,,_;u™ be a spanning
cycle in G'. Then, P' = u*v 0903 - - - U, IS a spanning path in G'.

Since u* is the vertex of G’ representing the triangle C' and v, is adjacent to u*,
vy is adjacent to either u, u; or u;. By Observation , without loss of generality,
let vy be adjacent to w;. Then, P(u;, Vp—t) = Uillip1Uita - - UjUV2 - - - Uy 1S &
path of length m — 2 (without the vertex u) in G.

Now, consider prism over a skirted graph which contains the first and the second
copies of the same skirted graph. By Lemma , P(u;, vy,—¢)OP, contains a cycle
C* of each even length [ for 4 <[ < 2(m—1) in which it contains the edge ugl)uﬁ)l.

Since P(u;, vy,—)OP; is a subgraph of GOP,, the prism over G contains a cycle of
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each even length [ for 4 <1 <2(m —1).

We shall find a cycle of each odd length [ for 5 < [ < 2m — 1. Since P =

M
i+

(1)

ug 'uMug, is a path of length 2 in GOP, and u() is not contained in C*, we
replace edge ugl)uﬁ)l with the path P. Then, C* can be extended to a cycle of
length [ + 1. Since 4 <[ < 2(m — 1), we obtain a cycle of each odd length [ for
5 < <2m — 1.

Since G contains a cycle of length 3, the prism over G also contains a cycle
of length 3. By Theorem @, the prism over GG is Hamiltonian, i.e., it contains a

cycle of length 2m. Therefore, the prism over G is pancyclic. ]

Remark 3.17. From the proof of Theorem , the edge vgltflvff),t of the second
copy of GOP, is contained in the odd cycle of length 2m — 1 (see Figure @)

Figure 3.5: The dashed line represents a cycle of length 2m —1 in G P, containing
edge v,(i)_t_lvg)_t where G is a skirted graph in Theorem

Next, we consider the pancyclicity of the 3-generalized prism over a skirted

graph.
Theorem 3.18. The 3-generalized prism over a skirted graph is pancyclic.

Proof. First, we consider a single skirted graph. Let G = G(a,ug,uy) = T U P
be a skirted graph of order m with P = woujug - - - ty. Let C' = C(u,u;, u;) be a
triangle of order t in G(a, ug, uy ), where t < m. If u = a, then G itself is a triangle.
By Theorem @, GOP; is pancyclic. Now, we assume that u # a.

Let G’ be a skirted graph of order m — (¢t — 1) obtained from a skirted graph G

by contracting the triangle C' and u* be the vertex of G’ representing the triangle
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C. By Theorem @, G’ is Hamiltonian. Let C' = u*vv903 - - - v,,,_su™ be a spanning
cycle in G'. Then, we let P’ = u*vjvov3 - - - v,,_; be a spanning path in G’.

Since u* is the vertex of G’ representing the triangle C' and vy is adjacent to u*,
vy is adjacent to either u, u; or u;. By Observation , without loss of generality,
let v; be adjacent to w;. Then, P(u;, Vym—t) = Wllit1Uisa - UjV1Vs - - - Vppy 1S &
path of length m — 2 (without the vertex u) in G.

Now, consider the 3-generalized prism over a skirted graph which contains three
copies of the same skirted graph. Since P(u;,v,,—¢)0P; is a subgraph of GOP;,
we show that GLIP; is pancyclic by applying Lemma . Then, we consider two
cases as follows.

Case 1. m — 1 is even. By Lemma (i), P(u;, vy,—¢)OP3 contains a cycle of
each even length [ for 4 <[ < 3(m —1) in which it contains the edge u( ) §+)1 Note
that, for all 1 < s < 3, vertex ©®) has not been contained in P(u;, vy—)OP;. To
find an odd cycle, we replace u§1>u§21 of such cycles with a path ugl)u(l)u&)l and
then obtain a cycle of each odd length [ for 5 <1 <3(m —1)+ 1 =3m — 2. Let
C’ be the cycle of length 3m — 2 without the vertex u®® (see Figure @ (a)). By
Remark B.14, C’ contains the edge u(?’)ugi)1 Then, we replace u(3)u§i)1 of C" with

3)

a path u(3)u u and then obtain a cycle of length 3m — 1. Thus, we obtain that

GO P; contains a cycle of each length [ for all 4 <1 < 3m — 1.

Case 2. m — 1 is odd. By Lemma (ii), P(u;, vy,—)OPs contains a cycle of

each even length [ for 4 <[ < 3(m—1)—1 in which it contains edge u§1>u§1+)1. Note

that, for all 1 < s < 3, vertex u(®) has not been contained in P(u;, vp—)OPs. To

find an odd cycle, we replace ul(-l)uﬁ)l of such cycles with a path ugl)u(l)uﬁl

then obtain a cycle of each odd length [ for 5 <1 <3(m —1) =3m — 3. Let C’ be

the cycle of length 3m —3 without vertex u®® (see Figure @ ). By Remark ,

(" contains edge u( )U§+)1 Thus, we replace u(3)u§+1 of C' with a path u(g)u(:”)ul(i)l

and

and then obtain a cycle of length 3m — 2. Therefore, GL1P; contains a cycle of
each length [ for all 4 < < 3m — 2.

We shall find a cycle of length 3m — 1 in GOP;. Recall that C' = C(u, u;, u;)
is a triangle of order ¢ in G = G(a, ug, u,) such that u # a. To show that GOP;
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/U*...

e

(a) (b)

Figure 3.6: (a) The dashed line represents a cycle of length 3m — 2 in GOP; when
m —11is even and (b) The dashed line represents a cycle of length 3m — 3 in GO Ps

when m — 1 is odd

contains a cycle of length 3m—1, we give the following paths and link them together

with edges joining each copy of G.

o For the first copy of G, we consider subgraph G’.
In the first case, let u; = w,. Since w # a, we have u; # u, or w; # up.
Thus, in this case, u; # ug and C(u,u;,uj) = C(u,u;,uy). Then, G =
G'(a,up,u*). Since G’ is a skirted graph, by Lemma @, G' contains an
(a,u*)-path Pg (a,u*) of length m — t. Suppose that v’ is adjacent to u* in
Per(a,u*). Then, v’ is adjacent to either u or u; in G. We consider two cases

as follows.

— If v/ is adjacent to w, then P(v',u;) = v'utiy1uie---u; is a path of

length ¢ — 1 (without the vertex w;).

— If v/ is adjacent to u;, then P(v',u;) = v'uu;s1uiqo - - - uj is a path of

length ¢ — 1 (without the vertex u).

Therefore, we can extend the path Pg (a,u*) of length m — ¢ in G’ to be a
path P(a,u,) of length m — 2 in G by replacing the edge v'u* of G’ with the
path P(v', ;).

Now, let u; # u,. Then, G' = G'(a,w,u,). Note that w = u* if u; = wo.
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Otherwise, w = ug. Since G'(a,w,u,) is a skirted graph, by Lemma @,
G’ contains an (a,u,)-path Pg(a,u,) of length m — t. Since Pgi(a,u,) is a
spanning path in G', Pg/(a,u,) contains the vertex u*. Suppose that v" and
v" are adjacent to u* in Pg(a,u,). Then, each of v' and v” is adjacent to

either u,u; or u; in G. We consider three cases as follows.

— If v'u;, u0" € E(G), then P(v',v") = v'ujtis1uigs - - - u0” is a path of
length ¢ (without the vertex u).

"

— If v'u,u;v" € E(G), then P(v',v") = v'ut;siuiqs - - ujv” is a path of

length ¢ (without the vertex w;).
— If v'u,u;v" € E(G), then P(v',v") = v'uu;_qu;_9 - - - wip1uv” is a path

of length ¢ (without the vertex u;).

Therefore, we can extend the path Pg/(a,u,) of length m — ¢ in G’ to be a
path P(a,u,) of length m — 2 in G by replacing the path v'u*v” in Py (a, us)
with the path P(v',v"). Thus, the first copy of G' contains a path P(a"), ug}))

of length m — 2.

« By Remark @(ii), the second copy of G contains a (u((f), u((f))—path P (ugf), ug))
of length m — 2 (without the root a(?).

« By Remark @(i), the last copy of G' contains an (a®, u(()?’))—path P(a®, u(()s))

of length m — 1.

o The path P* = a®a®a® of length 2 is a path in GOP; from the last copy
to the first copy of G.

Now, we link each path by edges uPu? and u(()2)u(()l). The cycle of length 3m—1

is

p(a(1)7 u 1))p(u&2)7 uéQ))P(ué?)), a(3))P*.

«

Therefore, GLP; contains a cycle of length 3m — 1.
From these two cases, we obtain that GL1P; contains a cycle of each length [

for all 4 <[ < 3m — 1. Since G is a skirted graph, by Lemma @, G contains a
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cycle of length 3. By Theorem @, GUP; is Hamiltonian, i.e., it contains a cycle
of length 3m. Therefore, GL1P; is pancyclic. ]

By the proof of Theorem , the pancyclicity of the 3-generalized prism over
a skirted graph, we need to consider the special case using the technique that we
have used in Chapter II. However, there is no special case when we show that GL1P,

is pancyclic for n > 4. Therefore, we prove the following theorem by considering

n > 4.
Theorem 3.19. The n-generalized prism over any skirted graph is pancyclic.

Proof. First, we consider a single skirted graph. Let G = G(a,ug,uy) = T U P
be a skirted graph of order m with P = ugujus - - -u,. Let P, be a path of order
n > 2. If n = 2 or 3, then we respectively obtain from Theorems and
that GUJP, is pancyclic. Suppose now that n > 4.

Let C' = C(u,u;,u;) be a triangle of order ¢t in G(a, ug, u,), where t < m. If
u = a, then G itself is a triangle. By Theorem @, the n-generalized prism over G
is pancyclic. Now, we assume that u # a.

Let G’ be a skirted graph of order m — (¢t — 1) obtained from a skirted graph G
by contracting the triangle C' and u* be the vertex of G’ representing the triangle
C. By Theorem @, G’ is Hamiltonian. Let C' = u*v1v9v3 - - - ¥,,,—;u™ be a spanning
cycle in G'. Then, P’ = u*vivovs - - - v,,_¢ is a spanning path in G,

Since u* is the vertex of G’ representing the triangle C' and vy is adjacent to u*,
vy is adjacent to either u, u; or u;. By Observation , without loss of generality,
let v; be adjacent to w;. Then, P(u;, Vym—t) = Wllit1Uisa - UjVLVs - - - Vppy 1S &
path of length m — 2 (without the vertex u) in G.

Now, consider the n-generalized prism over a skirted graph which contains
n copies of the same skirted graph. Since wu,uu;y1 € E(G), there is a path
Pl = wutiy Uit - - - UjVy -+ - Uppy Of length m —1in G| i.e., P/, is a spanning path
in G. We can see that P/ [P, is a subgraph of GOP,.

To show that GLIP, is pancyclic, we consider two cases as follows.
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Case 1. n is even. By Lemma , P/ P, contains a cycle of each even length
[ for 4 <1 < mn. Since P/ 0P, is a subgraph of GOP,, GOP, contains a cycle
of each even length [ for 4 < [ < mn. We shall find a cycle of each odd length
in GUP, by considering two disjoint induced subgraphs GUP, and GUP, 5 of
GOP,, where GUP, is induced by the first two copies of G and GUJP,,_5 is induced
by the last n — 2 copies of G.

First, we consider GLJP,. By Theorem , GOP, contains a cycle of each
length [ for 3 < | < 2m. Since GUP, is a subgraph of GLIP,, we obtain that
GOP, contains a cycle of each length [ for 3 < [ < 2m. Let C* be the cycle of
length 2m — 1 in GOP, containing edge Uﬁ)_t_lvff)_t, which exists by Remark .

Next, we consider subgraph GLIP, o induced by the last n — 2 copies of G,
in order to show that GLIP, contains a cycle of each odd length [ for 2m + 1 <
I < mn —1. Since P/ P, 5 is a subgraph of GOP,_», we can consider cycles

in P/ 0P, 5 instead of GOP,_5. Since n — 2 is even, by Lemma and the
(3) (3)

reverse of the path P’ | the edge v,.”, ;v,.~,; is contained in a cycle of each length

[ where [ is an even integer ranging from 4 to m(n — 2) in P/ P, 5. Since

o2 W B B W) e B(GOR,), we delete the edge v, v,

ﬁltﬁl 7(3),,5,1 ﬁlt to vfg),t. Then, we can extend C*

to be a cycle of length 2m + 1. In addition, we delete the edge vf,?)_t_lvg)_t of each

(2) ®3) ()

m—t m— m—t*

of C* and then join v to v and v

cycle of each length [ in P/ JP, 5 and then join v,.”, ; tov,,”, ; and v,(j)_t tow
Then, we can extend C* to be a cycle of each length [ for 2m +3 <[ < mn — 1.
Therefore, GLIP, is pancyclic.

Case 2. nis odd. Since n — 3 > 2 is even, by Case 1, GL1P,_3 contains a cycle
of each length [ for 3 < [ < m(n — 3). Thus, we consider two disjoint induced
subgraphs GUP,_3 and GUP; of GUP,, where GLIP,_3 is induced by the first
n — 3 copies of G and GUIP; is induced by the last three copies of G.

We shall find a cycle of each remaining length [ for m(n —3) +1 <1 < mn.
Recall that G is a skirted graph of order m and P, = wuttj11Uiya - - UjU1 -+ Uppy
is a spanning path in G. Then, P/ P, is a subgraph of GOP,. Let C,4q be the

cycle of odd length m(n —3) — 1 in P/ 0P, 3 containing the edge vﬁ?__f)vg__f’_)l
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(see Figure @( )) and Cepe, be the cycle of even length m(n — 3) in P/, 0P, 3
containing the edge v\""; )vf: tg)l (see Figure @(b))

n n n n n (’ﬂ) n n
R S PN ul” S o

(b)

Figure 3.7: (a) The dashed line represents C,yy of length m(n —3) —1 and (b) The
dashed line represents Ceye, of length m(n — 3)

Consider GOP;. By Lemma (1) and the reverse of the path P/, GOP;

contains a cycle of each even length [ for 4 <[ < 3m containing edge v,(n h )v,(f; f)l

First of all, we replace the edge vﬁg tg)lv,: t3 of the cycle Cygq with the path

vf]j f’ )lv,(: tz)lv,(,? f)vfff ts) and then obtain a cycle of odd length m(n—3)+1. Next,

we delete the edge vfn t)lv(n %) of Cyq and the edge v,(n . )11)(” of each cycle of

each even length [ in GOP; and then join v\"~2, to v\"~2, and v{""> to v

m—t
Hence, we can extend C,yq of length m(n —3) — 1 to be a cycle of each odd length
[ for m(n —3)+3 <1 < mn—1 when m is even and extend C,4y to be a cycle
of each odd length [ for m(n — 3) +3 <1 < mn — 2 when m is odd. Thus, GOP,

contains a cycle of each odd length [ for m(n —3) + 1 <1 < mn — 1 when m is

even and a cycle of each odd length [ for m(n —3) +1 <! < mn — 2 when m is
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odd.

For cycles of even length, in a similar way, we extend Ceye, of length m(n — 3)
to be a cycle of each even length [ for m(n —3) 42 <[ < mn when m is even and
extend Cpe, to be a cycle of each even length [ for m(n —3)+2 <1l < mn —1
when m is odd. Since GUIP, is Hamiltonian, it contains a cycle of length mn.

Thus, GOP, contains a cycle of each length [ for m(n —3) +1 < I < mn.
Therefore, GLJP, is pancyclic. O

3.4 Conclusion and discussion

In this chapter, we prove that the n-generalized prism over a skirted graph is
pancyclic. The result holds for any skirted graph, even though we have not known
the exact configuration of this family of graphs. Moreover, since the Cartesian
product of a graph G and a path P, (or GOP,) is a subgraph of GOC,, and
GUOK,,, the results can be concluded in a similar way when P, is replaced by C,,
or K, for n > 3.

For the vertex pancyclicity of the n-generalized prism over a skirted graph G,
we notice that there are vertices of G in which it is not contained in any cycle of
length 3 in G. Moreover, the Cartesian product of G and a path does not generate
a cycle of length 3. Thus, the n-generalized prism over a skirted graph is not vertex
pancyclic. This motivates us to investigate the other product of graphs in the next

chapter.



CHAPTER IV
THE LEXICOGRAPHIC PRODUCTS OF SOME
GRAPHS

To study vertex pancyclicity over lexicographic products of some graphs, we
first provide the preliminary results and motivation of the main results of this

chapter as follows.

4.1 Preliminary results and motivation

Apart from pancyclicity, there are a number of works showing that several
nontrivial sufficient conditions on a graph which implies that the graph is Hamil-
tonian also implies that the graph is vertex k-pancyclic for some k. For instance, in
1960, Ore [[14] introduced the degree sum condition which was stated that “for each
pair of non-adjacent vertices w,v in G, d(u) 4+ d(v) > n(G)” and showed that if G
is a graph satisfying the degree sum condition, then G is Hamiltonian. Bondy [3]
showed that if G is graph satisfying the degree sum condition, then G is pancyclic
or G = K,/25/2. In 1984, Cai [6] considered the degree sum condition and proved
that a graph G satisfying this condition is vertex 4-pancyclic or G = Ky, /2,2, see
[16] for more examples.

For Cartesian product of graphs, there also are a bunch of works relating to
the metaconjecture, i.e., almost any nontrivial condition on the Cartesian product
of graphs which implies that the Cartesian product of graphs is Hamiltonian also
implies that the Cartesian product of graphs is pancyclic (there may be a simple
family of exceptional graphs). The following theorems are some conditions con-

cerning hamiltonicity of the Cartesian product of graphs which imply pancyclicity.

Theorem 4.1. The conditions concerning hamiltonicity are provided as follows.
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(i) [15] If G is a 3-connected cubic graph, then GOP, is Hamiltonian.

(ii) |15] If G is an even 3-cactus, then GOP, is Hamiltonian.
(iii) |17] If G is a connected graph, then GOK,, is Hamiltonian for A(G) < n.
(iv) [5] If G is a connected graph, then GOC,, is Hamiltonian for A(G) < n.

(v) [5] Let G be a connected almost claw-free graph and n > 4 be an even integer.

Then, GUIP, is Hamiltonian.

A cactus is a connected graph in which every block is a K5 or a cycle, where
a block is a maximal 2-connected subgraph. A 3-cactus is a cactus with maximum
degree 3. An even 3-cactus is a 3-cuctus in which all of its cycles are of even length.
However, such conditions only imply that the Cartesian product of graphs is

vertex even pancyclic as follows.

Theorem 4.2. The conditions concerning vertex even pancyclicity are provided as

follows.
(i) [§] If G is a 3-connected cubic graph, then GOP, is vertex even pancyclic.
(i7) [8] If G is an even 3-cactus, then GOP, is vertex even pancyclic.

(ii) [5] Letn be even andn > 4. If G is a 1-pendent cactus with A(G) < 1(n+2),

then GUIP, is vertexr even pancyclic.

A claw is a K; 3. The vertex of degree 3 is its center. For a set B C V(G), B
is a dominating set if every vertex of G is in B or has a neighbor in B. A graph
G is 2-dominated if the size of a minimum dominating set of G is at most 2. A
graph G is called an almost claw-free graph if the set of center vertices of induced
claws in G is independent and the neighborhood of each center vertex induces a
2-dominated subgraph. For a graph G, a vertex of degree 1 in G is called pendent
if its neighbor is a vertex of degree at least 3 in G. A 1-pendent cactus is a cactus
in which every vertex v has at most 1 pendent neighbor (v can have other non

pendent neighbors).
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Here, we notice that vertex pancyclicity over the Cartesian product of graphs
is affected by the number of edges between each copy of a graph. This motivates

us to consider the lexicographic product of graphs that contains more edges.

Observation 4.3. From the definitions of the Cartesian product of graphs and
the lexicographic product of graphs G and H given in Chapter I, we can see that
V(GOH) =V (GoH) and E(GOH) C E(GoH). Therefore, the vertex pancyclicity
over GLH implies the vertex pancyclicity over GoH. Here, we only consider vertex

pancyclicity over G o H on the conditions that do not imply vertex pancyclic over

GUH.

For the pancyclicity of the lexicographic product of graphs, there are a few
results. In 2006, Kaiser and Kriesell [11] investigated toughness conditions on a
graph G that the lexicographic product of G and a graph is Hamiltonian and also
pancyclic in which states that if G is 4-tough and H contains at least one edge,

then G o H is pancyclic. In addition, they proved the following theorem.

Theorem 4.4. [11] If G and H are graphs with at least one edge each, then Go H
either has no cycles, or it contains cycles of all lengths between the length of the

shortest cycle and the length of the longest cycle.
The following theorem on vertex pancyclic will be used in this chapter.

Theorem 4.5. (] Let G be a graph of order n > 4 with d(u) + d(v) > n for
distinct nonadjacent vertices uw,v in G. Then, G is vertex 4-pancyclic unless n is

even and G = Ky 25/.

We know that a vertex pancyclic graph is Hamiltonian. Then, a non-Hamiltonian
graph is not vertex pancyclic. Here, we provide a necessary condition for a graph

to be Hamiltonian as follows.

Theorem 4.6. [19] If G has a Hamiltonian cycle, then for each nonempty set
S CV, the graph G — S has at most |S| components.
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To study vertex pancyclicity over the lexicographic products of graphs, we start
by investigating the lexicographic product of K, and a graph G in Subsection 2.1.
By Theorem @, we obtain that K, oG is vertex pancyclic for n > 3. In Subsection
2.2, we show that G, o G4 is vertex pancyclic if GGy is a traceable graph of even
order and (5 is a graph with at least one edge. Since (5, is traceble, we consider
the lexicographic product of a path and G5 instead of the lexicographic product
of G; and G5. Furthermore, we directly show that if G; and G5 are nontrivial
traceable graphs, then G, o (G5 is vertex pancyclic. In Subsection 2.3, we show
that if Gy is Hamiltonian and G5 is a graph with at least one edge, then G o G5 is
vertex pancyclic. Since Gy is Hamiltonian, we consider the lexicographic product

of a cycle and (G5 instead of the lexicographic product of GGy and Gbs.

4.2 Vertex pancyclicity of some lexicographic products

4.2.1 Complete Graphs

First of all, we investigate the lexicographic product of a complete graph and
a general graph. Let K, be a complete graph of order n and A; be an empty graph
of order k. Theorem @ gives us the following theorem.

Theorem 4.7. K, o A is vertex pancyclic forn >3 and k > 1.

Proof. Let (z,y) be any vertex of K, 0Ay. Then, N((2,9)) = Ucy(x,)— (1 (&', 9)]
y € V(Ag)}. Since n > 3, there are x;, x; € V(K,,) —{z} such that z; # x;. Then,
(x,y)(zi,y)(x;,y)(x,y) forms a cycle of length 3 containing (z,y).

Next, we can see that the order of K,, 0 Ay is nk and |N((z,y))| = (n—1)k. Let
u,v € V(K, o A) such that uv ¢ E(K, o Ay). Then, d(u) + d(v) = 2(n — 1)k =
2nk — 2k > nk. Since K, o Ay is not isomorphic to a balance complete bipartite
graph K nk nk, by Theorem @, we obtain that K, o Ay is vertex 4-pancyclic. Thus,
(x,y) is contained in a cycle of each length [ for 4 <[ < nk. Therefore, K,, o Ay is

vertex pancyclic. O
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Since Ay, is a spanning subgraph of all graphs of order k, we obtain the following

corollary:.
Corollary 4.8. Let n > 3 and G be a graph. Then, K, o G is vertex pancyclic.

By Corollary @, since ('3 is a complete graph of order 3, we obtain the following

corollary.

Corollary 4.9. Let G be a graph. Then, C3 o0 G is vertex pancyclic.

4.2.2 Paths

We start this section by considering the lexicographic product of a path P,
and any graph as follows.

Let P, = xyx9 and Ay be an empty graph of order k. Then, P;o0 Ay, is isomorphic
to a balanced complete bipartite graph K}, ;, with two partite sets, V; and Vs, where
Vi ={(z1,9)ly € Ax} and Vo = {(22,y)|y € A}

Since a balanced complete bipartite graph K} j; is Hamiltonian and also vertex
even pancyclic for k > 2 (to prove that Ky is vertex even pancyclic, we can use
the result that it is Hamiltonian), we obtain that P, o Ay is vertex even pancyclic
for k > 2. Since Aj is a spanning subgraph of any graph of order k, we obtain the

following remark.
Remark 4.10. Let G be a nontrivial graph. Then, P, oG is vertex even pancyclic.
Now, we investigate the lexicographic product of P, and a graph G as follows.

Theorem 4.11. Let G be a nontrivial graph with at least one edge. Then, P, o G

is vertex pancyclic.

Proof. Let Py = x129 and V(G) = {y1,v2, Y3, - - - , yx } for k > 2. Since G contains at
least one edge, assume that 1,5, € E(G). Then, (z1,y1)(x1, y2) and (22, y1) (22, y2)
are edges of PyoG. Let (x,y) € V(P,0G). If x = a1, then (z,y) is adjacent to both
vertices (z2,y1) and (z2,y2). Thus, (z,y)(x2, y1)(xe, y2)(z,y) is a cycle of length 3

containing (z,y). If x = x,, then (z,y) is adjacent to both vertices (z1,7;) and
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(x1,y2). Thus, (z,y)(x1,y1)(x1,92)(z,y) is a cycle of length 3 containing (z,y).
Thus, each vertex of P, o G is contained in a cycle of length 3.

Since G contains a cycle of length 3, P, o G is not isomorphic to any complete
bipartite graph. Since P, o G is of order 2k > 4 with d(u) + d(v) > 2k for any pair
of distinct nonadjacent vertices u and v in P, o GG, by Theorem @, G is vertex
4-pancyclic.

Therefore, P; o GG is vertex pancyclic. [

Now, we consider the lexicographic product of a path P, for n > 2 and a graph

G as follows.

Remark 4.12. For any k and n > 3, P, o A is non-Hamiltonian.

Let P, = zyzox3 -+ - o and V(Ar) = {vy1,¥2,Y3,- -, yx . Choose S = {(x2,y)|y €
V(Ag)}. Then, |S| = k. Let H denote the graph (P, o Ay) — S. Then, H has at
least k+1 components, namely, H[(z1,vy1)], H[(x1,y2)], H[(z1,y3)], - .., H[(z1,yx)]
and H[{(z;,y)|i € {3,4,5,...,n},y € V(G)}]. By Theorem @, P, o Ay is non-

Hamiltonian.

From Remark , we can see that the lexicographic product of P, and an
empty graph is non-Hamiltonian and not vertex pancyclic. We invertigate the
condition of a graph G for P, o GG to be vertex pancyclic and show that P, o G is
vertex pancyclic when n is even and G contains at least one edge. We start with

the following lemmas.

Lemma 4.13. Let k > 2. If u and v are on different partite sets of a complete
bipartite graph Ky, then there is a path P(u,v) in Ky of each odd length | for
1<I<2k—-1.

Proof. Let K} be a complete bipartite graph for £ > 2 with partite sets V; and
V,. Assume that uw € V) and v € V. For k =2/ let v’ € V) —{u} and v/ € Vo —{v}.
We obtain that uv and uv'v/v are paths P(u,v) of length 1 and 3, respectively.
For k > 3, let V* = Vi — {u} and V;* = V5 — {v}. We can see that Ky ;1
is a subgraph of Kj; induced by V;* U V5. Since a balanced complete bipartite
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graph is vertex even pancyclic, Kj_1 ;1 contains a cycle of each even length [ for
4 <[ <2(k—-1). Let C = vyvgug---yvy be a cycle in Ky ;_1 of even length [
for some 4 <1 < 2(k —1). Then, any two consecutive vertices of C' contain in the
different partite sets. Without loss of generality, let v; € V" and vy € V. We see
that v; € Vi* if ¢ is odd and v; € V5 if i is even and v1v, vou € E(Kjy). Then,
UV - - - V10 s a path P(u,v) in Ky of length [ + 1. Note that [ + 1 is an odd
number. Since [ is an arbitrary even number between 4 and 2(k — 1), there exists
a path P(u,v) in Ky of each odd length [ for 5 <1 < 2k — 1. In addition, wv and
uv9viv are paths from u to v in Kjj, of length 1 and 3, respectively.

Therefore, there exists a path P(u,v) in Ky of each odd length [ for 1 <1 <
2k — 1. 0

Lemma 4.14. Let n > 2 be even and G be a nontrivial graph of order k. If
P, = mxoxg- -z, is a path and yiys € E(G), then P, o G contains a path
P((z1,11), (x1,92)) of each length | for 1 <1 <nk —1.

Proof. Let P, = x1x9x3---x, and V(G) = {y1,y2,93,...,yx} for k > 2. Since
iy € E(G), vertices (x1,11), (€1, y2), (2, y1) and (x2,ys) form a clique of order
4. Then, there are paths P((x1,41), (1, y2)) of length [ for 1 <1 < 3.

We prove by the mathematical induction on n. For n = 2, let Vi* = {(z1,y)|y €
V(G) —{yi}} and V' = {(x2,vy)|ly € V(G) —{v1}}. We can see that Kj_q 1 of
which its vertex set is V;* U V5® is a subgraph of P, o G. Since (z1,y2) € V{* and
(x2,y2) € V5, by Lemma , there exists a path P((z1,y2)(%2,y2)) in Kg_1 41
of each odd length [ for 1 < [ < 2(k — 1) — 1. To show that there exists a
path P((z1,vy1), (z1,y2)) of each length [ for 1 <[ < 2k — 1, we extend the path
P((z1,y2), (x2,y2)) of each length [ for 1 <1 < 2k — 3 as follows.

(a) Join the vertex (xy,y;) with the vertex (z2,y2) of P((x1,y2), (x2,y2)) (see
Figure @(a))

(b) Join the vertex (x2, ;) of the edge (z1,y1)(x2,y1) with the vertex (z2,y2)

of P((x1,2), (2,1y2)) (see Figure Ell(b))
Then, a path P((z1,y2), (z2,y2)) of each odd length [ for 1 <1 < 2k — 3 can
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(@1, 9) (z1,92) (@1,93) (21,7) (1, 9n) (x1,91) (z1,u2) (x1,u8) (21,44) (1, yx)
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(a) (b)

Figure 4.1: (a) Joining vertex (x1,y;) to a path P((x1,y2), (z2,y2)) and (b) Joining
the edge (21, y1)(22, y1) to a path P((z1,y2), (22,2))

be extended to a path P((x1,41), (x1,y2)) of each even length [ for 2 <[ < 2k — 2
by (a), and of each odd length [ for 3 <[ < 2k — 1 by (b). Thus, we obtain that
there exists a path P((x1,41), (21, y2)) of each length [ for 1 <1 <2k — 1.

For the induction step, let ¢ € N and suppose that the statement holds for
all even n, n < 2t. We show that the statement still holds for n = 2t + 2. Let
Vi = {(z,y)ly € V(G)} for i € {1,2,3,...,2t + 2}. The set J7*, V; induces a
subgraph Py o G of Py 49 o G. By the induction hypothesis, Py 9 0 G contains
paths P((z1,y1), (x1,42)) of each length [ for 1 <[ < 2tk—1. In order to show that
there exists a path P((z1,v1), (x1,42)) of each length [ for 2tk <[ < (2t +2)k — 1,
we perform the following three steps.

(i) We show that there is a path P((xa, y2), (x1,y2)) of length 2¢(k — 1) — 1
(without vertices (z;,y1) for all 7). Let V;* = {(z;,y)ly € V(G) — {y1}} for all
i €{1,2,3,...,2t}. Consider each pair of vertex set V5 ; and V5 for all j €
{1,2,3,...,t}. We can see that the set V5; ; UV5; induces a subgraph Kj,_ ;1 of
P, o G. By Lemma , there is a path P((z2;_1,v2), (z2;,92)) of length 2k — 3.
We connect such ¢ paths, P((2j-1,%2), (25, y2)) forall j € {1,2,3,...,t}, together
to obtain path P((x1,y2), (o, y2)) of length 2t(k — 1) — 1. By reversing path
P((z1,y2), (x2r,y2)), there is a path P((za, y2), (1, y2)) of length 2t(k—1) —1 (see
Figure @(a))

(ii) We show that there is a path P((z1,y1), (1, y2)) of length 2tk. From (i), we
get P((xar, y2), (z1,y2)) of length 2¢(k — 1) — 1 and the path P((z1,v1), (T2, y2)) =
(21, 91) (2, y1) (@3, 41) - - (T2, Y1) (T2e41, Y1) (T2r, Y2) 18 & path of length 2t + 1 (see
Figure @(b)) Connecting P((za,Y2), (z1,y2)) to P((x1,y1), (Tar,y2)) yields a
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path P((x1,41), (x1,y2)) of length 2¢tk.
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Figure 4.2: (a) A path P((za:,92),(21,y2)) and (b) A path P((z1,v1), (z2t,y2)) of
length 2t + 1

(iii) We show that there is a path P((z1,¥1), (x1,92)) of each length [ for 2tk +
1 <1< (2t+2)k — 1. Let P((w1,41), (w2r, 1)) = (@1, y1) (@2, y1) (23, 91) - - (T2, 91)
be a path of length 2t — 1. By connecting P((z1,¥1), (z2t,%1)) with the path
P((z2t,y2), (1, y2)) of length 2¢(k —1) — 1 from (i), we obtain P*((x1,v1), (z1,y2))
of length 2tk — 1 (see Figure @(a)) Consider the set Vo1 U Vo9, The set
Vare1 U Voo induces a subgraph P, o G of Pyi9 0 G. Then, Py 0o G contains a
path P((za41,y1), (2141, y2)) of each length [ for 1 <[ < 2k —1 where each vertex
of P((xo141,%1), (Tars1,y2)) contains in the set Vo1 U Voryo (see Figure @(b))
Since (Z2441,y1) and (zgi41,y2) are adjacent to vertices (xo,y1) and (2o, y2), we
replace the edge (22, Y1) (zar, y2) of P*((21, 1), (21,y2)) by P((T2041, Y1), (T2041, Y2))
of each length [ for 1 <1 < 2k — 1 and obtain a path P((z1,y1), (21, y2)) of each
length [ for 2tk + 1 <1 < (2t + 2)k — 1.

Therefore, there exist paths P((z1,y1), (z1,y2)) of each length [ for 1 < [ <
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Figure 4.3: (a) A path P*((x1,v1), (z1,92)) of length 2tk — 1 and (b) A path

P((th-Hayl), ($2t+1,y2))

nk — 1 for n is an even number n > 2. O

By reversing path P, = xixox3---x, into x,x, 12, o...x;, we also obtain
that P, o G contains path P((x,,y1), (zn,y2)) of each length | for 1 <[ < nk —1

when n is even.

Theorem 4.15. Let n > 2 be even. If G is a graph with at least one edge, then

P, o G is vertex pancyclic.

Proof. Let P, = x1x9x3---x, and V(G) = {y1,¥2, Y3, ..,yx} for k > 2. Since G
contains at least one edge, without loss of generality, we assume that y,y, € E(G).
We prove by the mathematical induction on n. For n = 2, Theorem yileds
that P, o G is vertex pancyclic.
For the induction step, let t € N and suppose that the statement holds for all
even n, where n < 2t. We show that the statement still holds for n = 2t + 2.
Let V; = {(zs,y)ly € V(Q)} for i € {1,2,3,...,2t +2}. Then, each |J7, V; and

UQt+2 V; induces a subgraph Py o G of Py 5 o G. By the induction hypothesis,
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a vertex in the induced subgraph P,; o G is contained in a cycle of each length [
for 3 <1 < 2tk. Then, each vertex of P9 0o G is contained in a cycle of each
length [ for 3 < [ < 2tk. In order to show that P55 o G is vertex pancyclic,
we show that each vertex of P9 0 GG is contained in a cycle of each length [ for
2k +1 <1< (2t+2)k.

Let (z,y) be a vertex of P, o G. Without loss of generality, we assume that
(z,y) € U, Vi. We perform two steps as follows.

(i) We show that there is a cycle of length 2tk + 1 containing (x,y). By Lemma
and the reversing path, there is a path P((xo, y1), (X2, y2)) of length 2tk —1 in
the subgraph of Py 0 G induced by Ufil Vi. Moreover, P((xa,y1), (T2, y2)) con-
tains (z,y). Since (zar41,y1) is adjacent to two end verties of P((xar, y1), (ar, Ya)),
we connect (zg11,%1) to each end vertex of P((zos, y1), (Tar, y2)). Then, a cycle of
length 2tk 4+ 1 containing (z,y) is obtained.

(ii)) We show that there is a cycle of each length [ for 2tk +2 <1 < (2t + 2)k
containing (z,y). We can see that P; o G is the subgraph of Py 5 0o G induced by
Vary1 U Varia. By Lemma , there is a path P((zat41,v1), (T2t41,%2)) in Poo G
of each length [ for 1 < [ < 2k — 1. For the subgraph of P, o G of Py 950G
induced by Ufil Vi, we obtain (from Lemma and the reversing path) a path
P((zat, 1), (xar, y2)) of length 2tk — 1 containing vertex (z,y). Since (zat41,Y1)
and (o141, y2) are adjacent to (w9, y1) and (zg, yo), respectively, we connect each
end vertex of P((z2441,Y1), (2111, y2)) to each end vertex of P((zar,v1), (T2, y2))
together. Then, (z,y) is contained in a cycle of each length [ for 2tk +2 < [ <
(2t 4+ 2)k.

Therefore, P, o GG is vertex pancyclic for even n. ]

By Theorem , we obtain that P, o GG is vertex pancyclic if n is even and
GG is a graph with at least one edge. Since a path P, is a subgraph of traceable

graphs of order n, we obtain the following corollary.

Corollary 4.16. If Gy is a traceable graph of even order and Gy is a graph with

at least one edge, then Gy o Gy is vertex pancyclic.
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Example 4.17. The Petersen graph is a graph of order 10 containing a Hamil-
tonian path. By Corollary , the lexicographic product of the Petersen graph

and a graph of at least one edge is vertex pancyclic.
Next, we investigate the lexicographic product of odd paths and a graph.

Theorem 4.18. Let n > 2 be odd. If G is a graph of order k > ”TH with exactly

one edge, then P, o G is not vertex pancyclic.

n

+

1

}-

Proof. Let P, = xjxows---x, and V(G) = {vy1,y2,93,...,yx} where k >
Assume that E(G) = {yiy2}. Choose S = Uicoa6. i@ y)ly € V(G
Then, |S| = k(51). Let H denote the graph (P,0G)—S. Then, H has (k—1)(*

M‘

\+

)

components, namel% H[{(‘rw yl)? (xia yQ)}]v H[('Tu y3)]7 H[(‘TU y4>]7 ce H[(‘rlv yk)]
for all i € {1,3,5,...,n}. Since k > %, (k—1)(%) > k(%5+). By Theorem @,

P, o GG is non-Hamiltonian. Therefore, P, o GG is not vertex pancyclic. [

Therefore, if n is odd and G is a graph with the same condition as in Theorem
, i.e., G is a graph with at least one edge, then we cannot conclude anything
about vertex pancyclic of P, o G.

Now, we investigate the condition that provide vertex pancyclic over the lexi-
cographic product of graphs. We consider nontrivial traceable graphs G; and G,

as follows.

Theorem 4.19. If Gy and Gy are nontrivial traceable graphs, then Gi o Gy is

vertex pancyclic.

Proof. Let GG; and Gs be traceable graphs of order n and m, respectively, for
n,m > 2. Let P, = x1xow3---x, and P,, = y192y3 - - - Y, be spanning paths in G,
and G5, respectively.

If n is even, by Corollary , (G o Gy is vertex pancyclic. Assume that n is
odd. Let P,_y = z12923 - - x,—1 and P}, = x9x374 - - - T, be subgraphs of P,. We
can see that P,_; o Gy and P}, o G5 are subgraphs of GG; o G3. By Theorem -
P,_1 0Gy and P} | o G5 are vertex pancyclic. Then, each vertex of G; o G is

contained in a cycle of each length [ for 3 <1 < k(n —1).
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We show that each vertex of GG; o G5 is contained in a cycle of each length [ for
(n—1)k+1 <1 < nk. Let (x;,y;) be a vertex of G; oG, for some ¢ € {1,2,3,...,n}
and j € {1,2,3,...m}.

By the symmetry of Gy o G, the idea of proof for the vertex (x,,y;) is sim-
ilar to the proof of the vertex (z1,y;). Then, without loss of generality, let
i€{1,2,3,...,n— 1}. Now, we consider the subgraph P,_; o G5. Similar to the
prove of Theorem , by reversing a path P,_; of Lemma , there is a path
P((p-1,%), (Tn-1,Y2)) of length (n — 1)k — 1 containing vertex (z;,y;). Consider
subgraph {x, }oG3 of G;0G5. This subgraph contains a path P((x,, y1), (s, y;)) =
(@, Y1) (T, y2) (T0, y3) - - - (T, y;) where j € {1,2,3,...,k}. Since each vertex of
P((zpn, 1), (n,y;)) is adjacent to vertices (z,—_1,y1) and (z,—1,¥2), we connect
P((xn—1,y1), (xn_1,y2)) with each end vertex of P((x,,y1), (xn,y;)), respectively,
for all j € {1,2,3,...,k}. Then, (z;,y;) is contained in a cycle of length [ for
(n—1Dk+1<1<nk.

Therefore, G o G5 is vertex pancyclic. 0

By Theorem , we obtain that P, o P, is vertex pancyclic for all n > 2 even

though n is an odd number, the following corollary is proved.

Corollary 4.20. If G is a nontrivial traceable graph, then the double graph of G

is vertex pancyclic.

4.2.3 Cycles

Theorem 4.21. Letn > 3, k > 1 and Ay be an empty graph of order k. Then,

C,, o Ay is Hamiltonian.

Proof. We see that C,, o Ay is C,, which is Hamiltonian. Assume that k& > 1. Let
C,, = xywoxs - xpry and V(Ag) = {y1,92,y3, ..., yx}. We can see that the path
T1xox3 - - - T, in C), forms the path P; = (21, y;) (22, yi) (23, yi) - - (T, y;) in Cp 0 Ay,
for each i € {1,2,3,...,k}. Let e; = (zpn,v:)(x1,vi41) fori € {1,2,3,...,k — 1}
and e, = (T, yr)(z1,y1). Fori € {1,2,3,..., k—1}, each pair of paths P; and P,
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is connected by the edge e; and the paths P, and P, are connected by the edge ey.

A Hamiltonian cycle in C), o Ay is
Prei Pyea Paeg - - - ey Prey.

]

Since C), o Ay, is a subgraph of C), o G for any graph G of order k, we obtain

the following corollaries.
Corollary 4.22. Ifn > 3 and G is a graph, then C,, o G is Hamiltonian.

Corollary 4.23. If G| is Hamiltonian and Gy is a graph, then Gy o Gy is Hamil-

tonian.

Corollary does not hold for the Cartesian product G1LG,. For counter
example, let Gy be disconnected. Then, G;00G; is disconnected (and of course
non-Hamiltonian) although G, is Hamiltonian.

By Corollary @, C5 0 Ay is vertex pancyclic for £ > 1. Unfortunately, the
lexicographic product of cycle C,, for n > 4 and empty graph A; for & > 1 is
not always vertex pancyclic. For instance, C; o Ay contains no cycle of length 5.
Now, we investigate the condition of G that allows the product C), o G to be vertex

pancyclic.

Theorem 4.24. Let n > 3. If G is a graph with exactly one edge, then C, o G is

vertex pancyclic.

Proof. Let C,, = z1x923 - xpx1 and V(G) = {vy1,y2,Y3,...,yx} for kK > 2. Since
G contains exactly one edge, assume that y1yo € E(G). We can see that P, o G is
a spanning subgraph of C,, o G where P, = 12923 - - - ,. By Theorem , C,oG
is vertex pancyclic if n is even.

Assume that n is odd. Let P,_; = x12025- - 2,1 and P} | = Zox3x4 - - Ty
We can see that P,y o G and P;_, o G are subgraphs of (), o G induced by
V((P, — z,) o G) and V((P, — x1) o G), respectively. By Theorem , P, 10G
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and P;_, o G are vertex pancyclic. Then, each vertex of C,, o G is contained in a
cycle of each length [ such that 3 <[ < (n— 1)k.

By Theorem Q and Corollary , C, o G contains a cycle of each length
[ for 3 < | < nk. Now, we show that each vertex is contained in a cycle of
each length [ for (n — 1)k +1 <1 < nk. For (n—1k+1 <1 < nk, let C; =
(@iys Uiy ) @iy, Yin) (Tig, i) - -+ (24, y5,) (T4, y5,) be a cycle in C,, o G of length I. We
consider two cases as follows.

Case 1. y1yo does not induce an edge in C;. Then, C} is a cycle in C,, o Ay. Let
(xs,y¢) be a vertex of Cp, 0o G where s € {1,2,3,...,n}and t € {1,2,3,...,k}. We
consider two subcases as follows.

Subcase 1.1. 1f x, = x;, for some B € {1,2,3,...1}, then (z,,y;,) =
(Ti5,Yj5) € Ci. Since C is in Gy, 0 Ay, @, # x;,,, for any a € {1,2,3,...1 -1}

and x; # wx;. This implies that z;,  x;,, v, € E(C,). Since x; = Tig,

Ligyr
(Tig_1 Yjo, ) (s, ye) and (2, ye)(Tis, 1, Yjsy,) are edges in Cp o G. Thus, we can
replace (zi,,¥;,) in C; by (2s,1:). Therefore, (z,,1;) is contained in a cycle of
length [.
Subcase 1.2. 1If xy # x;, for all @ € {1,2,3,...1}, we translate cycle
C; to be C} by defining an injective function. Let 4, = max{i.|(z:,,y;,) € Ci}.
We define an injective function ¢ : {1,2,3,...,n} — Z, by ¢(ia) = (ia + 5 —
iy)(modn). This function translates indices in each vertex (z;,, y;, ) of the cycle C;.
The vertices with new indices are vertices of cycle Cf. From this function, vertex
(%i,,Yj,) is translate into vertex (zs,vy;,,). If yi = y;,, then (x4, y:) = (zs,y,,) is
contained in C}. Assume that y, # y;,. We can replace vertex (zs,y;,) by vertex
(xs,y¢) as shown in Subcase 1.1. Hence, (x5, ;) is contained in a cycle of length .
Case 2. 11y, induces an edge in (). Let S be a subgraph of GG induced by
the set {y1,y2}. Then, S is a path yy. If £ = 2, then C,, 0 G = C,, o P,. By
Theorem , C,, o (G is vertex pancyclic. Now, we assume that & > 2. Let S;
and Sy be subgraphs of C,, o G induced by C,, 0o S and C,, o (G — 5), respectively.
Then, V(S1) = {(@i,y;)|i € {1,2,3,...n}andj € {1,2}} and V(S2) = {(xi,y,)|i €
{1,2,3,...n}andj € {3,4,5,...,k}}. We can see that V(C,,0G) = V(S;)UV (S,).
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We first show that all vertices of S; are contained in a cycle of length [. Since
y1y2 forms an edge in C}, C) contains an edge of S;. Then, there are vertices (z;, y;)
and (z;,y2) contained in Cj as consecutive vertices for some i € {1,2,3,...,n}. We
translate cycle C; into C, as shown in Subcase 1.2, and obtain that all vertices in
S; are contained in a cycle of length [.

Next, we show that each vertex of S, is contained in a cycle of length [. Consider
a cycle of maximum length in S;. The length of such cycles is at most 2n. Since
the length of C; is at least (n — 1)k + 1 and (n — 1)k + 1 > 2n for k > 2, the
cycle C; contains a vertex of Sy. Let (z4,v;) be any vertex in C,, 0S,. If xy = Ty,
for some ig € {ia|(7i,,¥5.) € Sa}, then (vi,,y;,) € C;. Similar to Subcase 1.1, we
can replace vertex (i, ¥y;,) by (zs,:). Thus, (z,,y:) is in a cycle of length [. If
vy # xi, for all ig € {ia|(74,,y;,) € So}, then let i, = max{ia|(7i,,y;,) € S2}.
Similar to Subcase 1.2, we can translate cycle C; into C}. Then, vertex (z;,,y;, )
is translated into (zs,y;,). If yi = y;,, then (z4, y;) is contained in C}. Otherwise,
we can replace vertex (zs,y;,) by (s, 4:) as shown in Subcase 1.1.

From these two cases, we conclude that each vertex is contained in a cycle of

each length [ for (n — 1)k +1 <1 < nk. Therefore, C,, o G is vertex pancyclic. [

From Theorem , we can see that adding more edges into the graph G does

not affect vertex pancyclic property. Thus, we obtain the following corollary.

Corollary 4.25. Let n > 3. If G is a graph with at least one edge, then C, oG 1is

vertex pancyclic.

If G, is Hamiltonian containing a spanning cycle C,,, then C,, is a subgraph of

G1. We can extend Corollary as follows.

Corollary 4.26. If Gy is Hamiltonian and Gs is a graph with at least one edge,
then G1 o Gy is vertex pancyclic.
4.3 Conclusion and discussion

This chapter obtains that C,, o G is vertex pancyclic provided that |E(G)| > 1

and n > 3 and K, o G is vertex pancyclic for all positive integers n. However, the
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vertex pancyclicity of P, o G can be obtained only for n > 2 is an even integer.
If n =1, then P, o G = . Thus, the vertex pancyclicity of P; o G depends on
G. If n > 3 is an odd integer, then we can see from Theorem that the vertex
pancyclicity of P, o G may depend on some conditions on n and k. Therefore, our
future research will try to find the conditions which imply the vertex pancyclicity

of the P, o G when n > 3 is odd integer.



CHAPTER V
CONCLUSIONS

The present research was conducted to investigate the pancyclicity of the n-

generalized prism over any skirted graph and the vertex pancyclicity of the lexico-

graphic product of some graphs. It was found that

(vi)

the n-generalized prism over any skirted graph is Hamiltonian (see Theorem
b.9):

the n-generalized prism over a skirted graph with three specific types given
by Bondy and Lovész [4] is pancyclic (see Theorems and );

the n-generalized prism over any skirted graph is pancyclic (see Theorem
3.19);

if GGy is a traceable graph of even order and G is a graph with at least one

edge, then G 0@, is vertex pancyclic (see Theorem and Corollary );

if G; and G, are nontrivial traceable graphs, then GGy o G is vertex pancyclic

(see Theorem );

if G'; is Hamiltonian and G5 is a graph with at least one edge, then G o G5
is vertex pancyclic (see Theorem )

Although the third result implies the second result, the cycles obtained from

the proof of the second result is more elective than the cycles from the proof of

the third result. Thus, we still provide the proof of the second result.

For the lexicographic product of graphs, since a skirted graph is Hamiltonian,

the sixth result implies that the lexicographic product of a skirted graph and a

graph with at least one edge is vertex pancyclic. In particular, the lexicographic

product of a skirted graph and a path is vertex pancyclic.
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However, we have not investigated the vertex k-pancyclicity for some k of the
n-generalized prism over any skirted graph. Therefore, it is recommended that
further studies investigating more details about the vertex k-pancyclicity for some

k of the n-generalized prism over any skirted graph should be conducted.
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