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-The thesis investigates the performance of an edge-based smoothed finite 

element method (ES-FEM) combined with an automatic mesh refinement (AMR) 
algorithm to provide the solutions of in-plane elastic engineering mechanics 
applications. The ES-FEM adopts a strain smoothing technique over the edges 
adjoining the two adjacent triangular-shape meshes, whilst a layer of singular yet 
compatible five-node elements in addition to standard three-node ES-FEs can be 
employed to overcome the problems associated with stress singularity. 

The proposed framework enables the effective model construction of 
realistic engineering structures with complex geometry at modest computational 
resources. The AMR algorithm adopts the newest node bisection scheme that 
automatically sub-divides the parent critical elements into a suitable number of 
smaller children members at the longest edge of three-node elements overcoming 
the hang-node problems. The set of critical members is determined by the L2-norm 
error estimator functions defining the difference between the computed numerical 
von Mises stress solutions and recovery stress values. A number of illustrative, 
including classical benchmarks, examples were successfully processed by the 
proposed numerical analysis platform. These hence present the efficiency of the 
developed analysis framework in approximating the accurate elastic responses of 
structures under applied forces. 
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CHAPTER 1 INTRODUCTION 

1.1 Background and Motivation 

The analysis and design of engineering structures is to remaining safety with lowest 

consuming resource. Not only the models with simple 1-D elements such as bar 

elements or beam elements but also more complicated problems in 2D or 3D models 

need to be handled in practical design. The numerical method widely used for getting 

the solutions to such problems is Finite Element Method or FEM contributed by 

(Olgierd Cecil Zienkiewicz, Taylor, Nithiarasu, & Zhu, 1977). In the finite element model, 

a three-node triangular mesh is preferred to use than the others owing to its simplicity 

and easy adaptation on complex boundaries denoted to FEM-T3. Furthermore, 

adaptive analysis conforms with a triangular mesh that can be modified and 

regenerated in an automatic manner. The poor accuracy solutions of FEM-T3 models 

have been shown by adopting a conventional model construction, especially for 

problems involving stress concentration and/or stress singularities. The linear 

interpolation function which provides element-wise constant stress or strain fields 

seems inappropriate in such cases. An infinity stress value at singular points (namely 

re-entrant corners in the frame, cracking point, positions at discontinuities in applied 

loads or point loads, etc.) has theoretically proved in the literature. Other mechanics 

problems contain singular points in the domain such as material discontinuities in 

composite structures or stress singularities at sharp edges at the interfaces of two 

frictional bodies (Comninou, 1976). It causes severe discretization errors associated with 

coarse meshes in the FEM-T3 models. (Lo, 2014) indicated that the rate of convergence 

in Finite Element Analysis (FEA) slows down with the presence of singularities in the 

domain. 

However, the standard FEMs using isoparametric element formulations have exhibited 

an “overly-stiff” response leading to poor accurate solutions, especially linear 

interpolation elements. The objective of the new method is also using the simplest 
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element which is aforementioned above as the simple, robust, convenient one for 

adaptive analysis. In order to improve accuracy, a meshfree technique is integrated 

into the conventional FEM to form the Smoothed Finite Element Method or S-FEM by 

G. Liu, Dai, and Nguyen (2007). The diversity of 2D S-FEMs, which is edge-, node- and 

cell-based 2D models, with different properties owing to the strain smoothing 

technique from (J. S. Chen, Wu, Yoon, & You, 2001). S-FEM models introduce 

“softening” effects by computing the elemental stiffness matrices associated with 

smoothing domains or SDs from the shape function values and not its gradients at 

gauss points on the boundaries of SDs. Instead of taking information of nodes at the 

vertices inside each triangle element, the S-FEMs spreads out to consider also nodes 

from surrounding elements to contribute in each smoothed strain field. The S-FEM has 

recently been widely performed because of its superior properties such as super-

convergent stresses, upper bound solutions, volumetric free-locking (G.-R. Liu, 2009), 

shear locking (H Nguyen-Xuan, Tran, Nguyen-Thoi, & Vu-Do, 2011) (Hung Nguyen-Xuan, 

Rabczuk, Nguyen-Thanh, Nguyen-Thoi, & Bordas, 2010), and especially is free of mesh 

quality requirement. Recently, some extensions and enhancements have been done 

to open and apply S-FEM in solving more sophisticated problems such as static and 

dynamic problems (Zhang & Liu, 2010), nonlinear analysis (Cui, Liu, Li, Zhang, & Sun, 

2009),  high-order elements applications (Bordas et al., 2010); contact (Li, Liu, & Zhang, 

2011); fracture problems (L Chen, Liu, Nourbakhsh-Nia, & Zeng, 2010) and (Vu-Bac et 

al., 2013); etc.  

Each S-FEM models exhibited various excellent properties due to its inherent 

“softening” effects compared with the “overly-stiff” property existing in the original 

FEM model. Many engineering mechanics applications conducted in the framework of 

the edge-based smoothed finite element method (ES-FEM) owing to its super-accuracy 

and stability for numerical solutions and simplicity in implementation. ES-FEM model 

is eminently suitable for a mesh of polygonal elements with arbitrarily n sides 

particularly the three-node triangle elements denoted to ES-FEM-T3. 
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For problems with arbitrary order of singular stress field varying on the reentrant angles, 

e.g. a 2d problems with a re-entrant corner in (Szabó, Szabo, & Babuška, 1991). This 

singular model work well either weak or strong singularities problems, expressed by 

the power singular term  , with 2     under the free-free boundary conditions 

(BCs) on both angle faces of the re-entrant corner. (Williams, 1952) and (Seweryn & 

Molski, 1996) had proved the occurrence of elastic stress singularities at angular corners 

resulting from various BCs rather than only the free-free BC as normally encountered 

in crack problems. The   in the term 1( )r  −  is interpolated from the graph as 

provided in (Williams, 1952) or computed from the characteristic Equations in (Seweryn 

& Molski, 1996) depending on the value of vertex angle and the BCs on the two radial 

edges.  

A refinement scheme is usually considered to obtain improved solutions in the next 

cycles of analysis. The adaptive procedure will result in increasing the accuracy of the 

numerical methods through appropriately refining the mesh so that better solutions 

can be achieved with a reasonable computational effort. Adaptive mesh refinement 

(AMR) algorithm under various procedures of error estimator and refinement can be 

implemented using the current numerical solution in each step of analysis. The FEM 

model under adaptive analysis for mesh of triangle elements has been introduced and 

gained outstanding results (O. Zienkiewicz & Zhu, 1989) (Johnson & Hansbo, 1992). 

After getting the initial solution, the procedure continues with the aim of finding the 

regions inside the domain where high errors have been shown and then refines them. 

A smaller size element obviously better captures the exact solution especially in 

problems with stress singularity. 

(Nourbakhshnia & Liu, 2011) solved crack propagation problem by adapting the mesh 

with the Delaunay triangulation procedure and the Laplacian smoothing technique 

instead of computing error indicators. The error estimating area, however, is essential 

in the adaptive algorithm for selecting an appropriate group of elements to be refined 

every iteration. Over the past decades, many significant developments in the area of 
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error estimation and mesh optimization have been achieved for FEA. (Babuška & 

Rheinboldt, 1978) used the deviations from the equilibrium equations and the inter-

element jump of strain or stress over element boundaries for estimating the numerical 

error. In addition, an error estimator scheme which use the first-derivative recovery 

technique introduced by (Olgierd C Zienkiewicz & Zhu, 1987). A recovery stress (or 

strain) field will be constructed which is demonstrated to be more accurate than the 

above interelement discontinuous stress field. (Ainsworth, Zhu, Craig, & Zienkiewicz, 

1989) has mathematically analyzed the rate of convergence of the so-called posterior 

error estimator. It then was widely used for adaptive analysis in various FEM models in 

(O. Zienkiewicz & Zhu, 1989). (Jayaswal & Grosse, 1993) showed that simplicity and low 

computing resource are obtained in case of performing recovery-based error estimator 

based upon a scalar stress function than a stress tensor function. Therefore, a simple 

error indicator with recovery technique generated from von Mises stress function in L2-

norm is adopted in the present work both in FEM-T3 and ES-FEM-T3 framework.  

In the FEM-T3, the stress (or strain) is continuous in each triangle element, while the 

smoothed stress (or strain) is constant and discontinuous along the boundaries of SDs 

inside triangular elements. Several adaptive analysis applications ín S-FEMs, however, 

conducted by (Nguyen‐Thoi, Liu, Nguyen‐Xuan, & Nguyen‐Tran, 2011) or (Hung 

Nguyen-Xuan, Liu, Bordas, Natarajan, & Rabczuk, 2013) did not specifically provide 

formulations for estimating these error indicators. In this work, simple and exact 

formulations for recovery-based error estimator of von Mises stresses in L2-norm is 

established in ES-FEM-T3/singular ES-FEM-T3 models. Moreover, it is straightforward 

and easy-to-programming in a vector-based language.  

In order to enhance the efficiency of the proposed models, vectorization for 

programming within a MATLAB environment is used which reduces the required 

computational runtime and storage especially in large-scale or complicated mechanics 

problems. The process of revising the loop- and scalar-based operations into matrix- 

and vector-oriented operations is known as vectorization. Recently, some efforts have 
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been made for the S-FEMs to be simplest and most general as possible (Li, Li, & Liu, 

2014) (Niu, Liu, & Yue, 2018). Some ideas of using matrix-based operations were first 

introduced by (Getreuer, 2006) in MATLAB programming. In this work, we will apply 

vectorization into some parts of the adaptive procedure for the three-node ES-FEM 

and singular ES-FEM to further augment the robustness and the efficiency of the 

proposed adaptive scheme. 

The applications of node-based smoothed finite element method or NS-FEM using a 

similar recovery-based error function were described in (Nguyen‐Thoi et al., 2011). 

where it demonstrated clearly the good convergence capability and upper-bound 

strain energy solutions over iterative mesh reconstruction processes. The singular ES-

FEM (Hung Nguyen-Xuan et al., 2013) adopted a recovery-based error indicator in an 

energy norm to predict accurately singular stress field under the free-free boundary 

condition on both angle faces around the re-entrant corners. The proposed adaptive 

mesh implementation adopts the vertex bisection algorithm with recovery-based error 

estimators that automatically decides the critical remeshing elements based on the 

discrepancy between numerical solutions and the so-called recovery solution. The 

specific error indicator with recovery technique in L2-norm is adopted within the 

framework of FEM-T3 and ES-FEM-T3 for analysing engineering structures. The similar 

application into singular ES-FEM-T3 for the problems having angular corners under 

several BCs, such as free-free, free-simply supported and clamped-free, using the 

proposed mesh adaptation is also investigated. The variety of BCs occur in several 

numerical models that represent only a part of the practical structure because of 

symmetry. Some numerical examples subjected to the difficulties associated with 

elastic stress singularity and discontinuity are given to illustrate applications of the 

developed analysis scheme. It describes a significant reduction of computing resources 

as compared to standard model construction procedures. Moreover, the proposed 

mesh adaptation can efficiently converge the stress response results over the local 

areas of structures considered. 
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1.2 Research Objective 

From the aforementioned contents, the main research objectives in this work as 

follows: 

(1) Analyzing the plane strain and plane stress mechanics problems in the framework 

of FEM-T3, FEM-Q4 and ES-FEM-T3 under the uniform model construction. The results 

from several numerical examples are expected to provide a more efficient and robust 

elastic analysis scheme both degrees of freedoms (DOFs) and CPU time of the ES-FEM-

T3 model. 

(2) A simple yet effective recovery-based error function of von Mises stresses in L2-

norm adopted directly to the automatic AMR scheme is applied into an ES-FEM-T3 

framework. The proposed analysis work provides the elastic responses of engineering 

mechanics problems associated with physically instabilizing stress singularity and 

discontinuity field. Some numerical examples subjected to the difficulties associated 

with elastic stress singularity and discontinuity are provided to illustrate efficiency and 

robustness of the proposed analysis framework  

(3) The proposed adaptive mesh implementation is adopted (in a similar fashion to 

the conventional FEM) for the singular ES-FEM-T3 model with a layer of singular five-

node elements around the crack point that can produce the stress singularities of 

arbitrary order. The examples having angular corners under different BCs, namely, free-

free, simply supported-simply supported, and clamped-free on the two angle faces 

are tested to validate the super-accuracy and the fast-convergence propertied of 

present method. 

(4) MATLAB built-in functions and vectorization will be applied in our tool in order to 

optimize the efficiency of consuming computational resources such as runtime and 

storage. The superiority in computing resources is verified in some log-scale figures. 

1.3 Scope of Research 

From the mentioned above research objectives, the scope of research in this work is 

listed below:  
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(1) Solving plane strain and plane stress mechanics problems in linear elastic materials 

(2) The simplest three-node triangle element for the general case and the singular five-

node triangle element for the particular case of stress singularity are properly applied 

in the proposed analysis framework 

(3) Applying a strain smoothing technique on the standard FEM-T3 associated with 

edges of triangular mesh to establish the ES-/singular ES-FEM-T3. 

(4) Applying Adaptive Mesh Refinement (AMR) technique under the proposed analysis 

framework to obtain the optimal mesh for engineering mechanics problems involving 

stress concentration and singularities 

(5) In programming, the extension of the elementwise array operations into the matrix-

wise array operations or the matrix-array operations is conducted. It is performed in 

the sense of eliminating as many as possible for-loops by using matrix-array operations 

and built-in functions within a MATLAB environment. 

1.4 Methodology and Research Procedure 

In this work, we investigate the performance of a novel automatic adaptive ES-FEM-T3 

for general problems and automatic adaptive singular ES-FEM-T3 for problems with 

stress singularities resulting from various BCs in terms of high performance, e.g. 

accuracy, simplicity, and less computational consumption, to provide the solutions of 

two-dimensional practical engineering mechanics problems. 

Following this purpose of the study, several tasks for implementation are listed below: 

Firstly, the numerical method ES-FEM-T3 are tested to prove a more efficient and 

robust elastic analysis scheme as compared with the standard FEM using isoparametric 

elements. 

Sencondly, a simple yet effective recovery-based error function of von Mises stresses 

adopted directly to the automatic AMR scheme within the framework of ES-/singular 

ES-FEM-T3. The propose analysis scheme provides the elastic responses of engineering 

mechanics problems associated with physically instabilizing stress singularity. The 

results from several benchmark examples showed that the proposed mesh adaptation 
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can efficiently converge the stress response results over the local areas of structures 

considered. 

Finally, vectorization language and several advanced built-in functions in MATLAB will 

be employed for numerical methods under the proposed mesh adaptation to reduce 

the requirement of computational resources. The results from several examples will 

validate the performance of the present analysis model in terms of simplicity, accuracy 

and less consumption of computational resources. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Problem Description. 

2.1.1 General. 

Fig. 2.1 represents a 2D linear-elastic solid body of   with the boundary   divided 

into two parts, Dirichlet conditions denoted by D  where displacements u are 

presented and Neumann conditions denoted by N  where tractions t are pressented. 

The domain is subjected to a body force and b and are classified into two cases of 

corner with BCs on two angle faces, namly free-free Fig. 2.1a) and clamped-free Fig. 

2.1b) such that ,D N D N =     =  .  

  
a) Sharp corner with vertex angle   under the free-free BC 

 
b) Sharp corner with vertex angle   under the clamped-free BC 

Figure 2.1 Two-dimensional domains resulting in an arbitrary order of singular stress 
field varying in vertex angle   and BCs of the two angle faces. 
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2.1.2 Governing Equations. 

According to the linear elastic theory, the 2D time-independent mechanic's problems 

can be described through the solution of Boundary Value Problem (BVP) as follows: 

 0;ij ib x + =    (2.1) 

 ;ij ijkl klC x =     (2.2) 

 ( ), j,i

1
;

2
ij i ju u x = +     (2.3) 

And Boundary Conditions:  

- Prescribed displacement:  ( );i D Du u x x=     (2.4) 

- Prescribed traction:  ( );ij j N Nn t x x =    (2.5) 

on angle faces:   

Case a: 
        

       

0 0

0

r

r

f r

fo

u o

r

 

 

 

   

= = =


= = =
  (2.6a) 

Case b: 
         

  

0 0

0      

r

r

fo

f

u r

or

u

 



   

= = =


= = =
 (2.6b) 

where Cijkl = the elastic tensor 

In case of using isotropic linear material, Cijkl is deduced by Eq. (2.7) or Eq. (2.8) 

Plane stress:  
( )2

1 0

1 0
1

1
0 0

2

xx xx

yy yy

xy xy

E
 

  


 

 
    
    

=    
−    −

    
 

 (2.7) 

Plane strain:  
( )( )

1 0

1 0
1 1 2

1 2
0 0

2

xx xx

yy yy

xy xy

E
  

   
 

 

 
    −
    

= −    
+ −    −

    
 

 (2.8) 

2.1.3 Singularity Problems. 

As already studied in the work of (Williams, 1952) or (Seweryn & Molski, 1996) that the 

stress around the corner of such problems in Fig. 2.1 taking the form of 1r  − , where 

  depends on vertex angle and BCs of the two angle faces and is interpolated from 
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the graph as provided in (Williams, 1952) or computed from the characteristic 

equations in (Seweryn & Molski, 1996) as follows: 

Case a:  sin sin 0  + =  (2.9)  

Case b:   
2

2 2 2
(3 4 ) 1

sin (3 4 )sin 0
4


   

− +
+ − − =  (2.10)  

For example, if 0360 =  we obtain a solution of 1/ 2 =  corresponding to a crack 

in the domain.  

Engineering structures in practical design that have singular point such as a re-entrant 

corner in the frame, cracking point, point loads resulting stress singularity (as in Figs. 

2.2a, b and c) and discontinuities in applied loads or materials as in Fig. 2.2d), etc. More 

advanced mechanics problems like material discontinuities in the composite elements 

or a sharp edge at the interface between two bodies with friction (Comninou, 1976) 

own the stress singularity or discontinuity. In the area surrounding singular point, the 

sharp change in the stress field, which causes serious discretization errors using coarse 

mesh, can be seen clearly in Finite Element Analysis (FEA).  

 
a) Concrete-corbel column with point load  b) Concrete dam with interface crack 

 
c) Double-edge notched plate                       d) Prandtl’s punch 

Figure 2.2 Typical structures with singularity point in the domainFinite Element 
Methods. 
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2.2 Finite Element Method 

2.2.1 Background. 

Solving above Partial Differential Equations (PDEs) becomes impossible in case of 

dealing with complicated problems in geometry, loading conditions, or material 

properties, etc. The most famous numerical method applied to find the solution to 

such problems in engineering and mathematical physics is FEM mainly contributed by 

(Olgierd Cecil Zienkiewicz et al., 1977). FEM gives approximate values of the unknown 

variables at points of the discrete model. Instead of analytically solving PDE for the 

whole domain, FEM discretizes a problem into smaller domains so-called elements. 

Then, the characteristic equations representing these elements are added together 

into a global system of discrete equations for the entire domain. Recent development 

of computer science has boosted this method to become more efficient because of 

its total dependency.  

Using finite element modeling, a triangular mesh is usually chosen than the 

quadrilateral mesh because of its simplicity and easy adaption on the complex 

boundary.   

2.2.2 Isoparametric Three-node Triangular Element. 

2.2.2.1 Displacement Interpolation. 

In the model of three-node triangle elements, stress and strain fields in each element 
is piece-wise constant since the interpolation functions are independently linear along 
each direction. 

 
Figure 2.3 Cartesian coordinate system for constant strain elements 
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+ Two degrees of freedoms or DOF per node are displacements in x- and y- directions. 
Hence there are six degrees of freedoms per element. 
The displacement field is interpolated through shape functions within an element. 
 ( ),i iu N x y d=  

 Or:
( )

( )
 1 2 3

1 1 2 2 3 3

1 2 3

, 0 0 0

0 0 0,

Tu x y N N N
u u v u v u v

N N Nv x y

    
= =   

   

(2.11) 

where 
id  contains nodal displacements. 

Ni (x,y) contains shape functions corresponding to the i-th node in the element with 
the formulation reads 

  

1 1 1
1

2 2 2
2

3 3 3
3

2

2

2

m n p y
N

A

m n p y
N

A

m n p y
N

A

+ +
=


+ +

=


+ +
=



 (2.12) 

where A is the elemental area, equals to 
1 1

2 2

3 3

1
1

det 1
2

1

x y

x y

x y

 
 
 
  

 (2.13) 

 and  
1 2 3 1 3 2

2 3 1 2 1 3

3

1 2 3 3 2

2 3 1

1 2 3 2 1

1 3

3 1 2 2 1

      n       p

      n       p

      n       p

m x y x y

m x y x y

m x y x y

y y x x

y y x x

y y x x

= − = −


= − = −

= −

= −

=



= − = −−


 (2.14) 

2.2.2.2 Properties of Shape Functions and Strain-Displacement Matrix 

 
Figure 2.4 Shape functions for three-node triangle element 

+ At every point inside the domain: 
 1      j

  0   j

i

i i

N

N

i=

=

=





  (2.15) 

and 
3 3 3

1 1 1

    1   ;     x ;     y        i i i i i

i i i

N N x N y
= = =

= = =      (2.16) 

1

1

1
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+ In 2D triangular mesh:  
/ 6         ,

dx  
/ 12       .

l

l

i j

l

A i j
N N

A i j


=
= 


  (2.17) 

Substitute the displacement approximation Eq. (2.11) into the strain-displacement 
relation Eq. (2.3), then 

 
1 0 0 0

0 0 0 1

0 1 1 0

Tx

y

xy

u u v v
Bd

x y x y


   

 
   



   
    

= = =    
      

  (2.18) 

where 

31 2

31 2

3 31 1 2 2

( , )( , ) ( , )
0 0 0

( , )( , ) ( , )
0 0 0

( , ) ( , )( , ) ( , ) ( , ) ( , )

N x yN x y N x y

x x x

N x yN x y N x y
B

y y y

N x y N x yN x y N x y N x y N x y

y x y x y x

 

  

 

  

    

     

 
 
 
 

=  
 
 
 
 

 

or 
1 2 3

1 2 3

1 1 2 2 3 3

0 0 0
1

0 0 0
2

n n n

B p p p
A

p n p n p n

 
 

=
 
  

 (2.19) 

with ni (i= 1,2,3); pi (i= 1,2,3) in the Eq. (2.14). 

2.2.2.3 Global Stiffness Matrix and Nodal Load Vector 

The global stiffness matrix then reads: 

 ( ) ( ) ( ) ( )d
e

e
e e

e e e e e

N N N

T T
e eD DK K B AB B tB



 == =     (2.20) 

The nodal load vector: 

 
1e

node

e
e

e
N

N
T e T e e

N N i

i

e

N N

N b d N t d pf
= 

 += +      (2.21) 

where eK  is the e-th elemental stiffness matrix, t is the element thickness, Ne; Nnode 
represent the number of element and node, respectively, in the domain. 
For the Von Mises stress: this stress is applied to formulate the von Mises yield 

criterion indicating the yielding state of materials in 2‐D and 3‐D stress analyses. It 

can be computed from the Cauchy stress tensor through the general following 

formulation. 

 ( ) ( ) ( )
2 2 2 2 2 21

3( )
2

von xx yy yy zz zz xx xy xy xy         = − + − + − + + + (2.22) 
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For plane stress:   ( )
2

23
3

4
von xx yy xy   = − +  (2.23) 

For plane strain:   ( )
2

23von xx yy xx yy xy     = − + +  (2.24) 

Because of the constant properties of stress components in triangle elements (FEM) or 
smoothing domains (ES-FEM), the von Mises stress functions is a scalar values which is 
piecewise constant inside triangles or smoothing domains, respectively. 

2.2.3 Isoparametric Four-node Quadrilateral Element. 

2.2.3.1 Shape Functions. 

 
a) Cartesian coordinate system for an arbitrary quadrilateral element; 

b) A equivalent square element for natural coordinates. 

Figure 2.5 Mapping physical coordinates system into natural coordinates system 

The shape functions in the natural coordinate system then reads 

 
( )( ) ( )( )

( )( ) ( )( )

1 2

3 4

1 1
( , ) 1 1 , ( , ) 1 1 ,

4 4

1 1
( , ) 1 1 , ( , ) 1 1 .

    

4
  

4
   

N N

N N

       

       

= − − = + −

= + + = − +

 (2.25) 

2.2.3.2 Strain-Displacement Matrix. 

The transformation The derivatives of the shape functions are transformed from Oxy 

coordinate system to 0  coordinate system, respectively. 

 1
/ /

/ /

j j

j j

N x N
J

N y N

   

   

−
   

=   
      

  (2.26) 

where  
/ /

/ /

x y
J

x y

   

   

 
=  
 

  (2.27) 

After substituting into Eq. (2.15), the strain-displacement matrix becomes: 
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   ( )  1 1 2 2 3 3 4 4,4 43 8 4 8

1 0 0 0

0 0 0 1 ,

0 1 1 0

T
B N u v u v u v u v

  

 
     =      
  

(2.28) 

where   
   

   
2 2

4 4

2 2

0

0

T

T







 
 =  

  
 with   22 121

2 2
21 11

1

det( )

J J
T J

J JJ

−



− 
= =  

− 
 (2.29) 

and  ( )

1 2 3 4

1 2 3 4

,
4 8

1 2 3 4

1 2 3 4

, 0 , 0 , 0 , 0

, 0 , 0 , 0 , 0
,

0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 ,

N N N N

N N N N
N

N N N N

N N N N

   

   

 
   

   



 
 
   =

   
 
  

 (2.30) 

Note: comma ‘,’ represents for the partial derivative. 

2.2.3.3 Global Stiffness Matrix and Nodal Load Vector. 

The global stiffness matrix reads 

  ( )
1 1

1 1

det
e eN

T
e

N

B D B J tdK K d 
− −

   
   

= =    (2.31) 

In order to evaluate the integration in Eq. (2.31), people often use Gauss Integration 
rules to select some sample points inside each element. The load vector is computed 
similarly to that FEM-T3 Eq. (2.21). 
However, Lo (2014) showed that the rate of convergence in FEA will slow down in the 
presence of stress singularity and discontinuity within the domain. The poor 
approximate solutions of FEM using uniform mesh have revealed the poor accuracy of 
the simple refinement strategy, especially for the singularity problems. In the next 
sections, an automatic AMR scheme within the ES-FEM framework adopting constant 
strain element is applied to provide the elastic responses of engineering mechanics 
problems associated with physically instabilizing stress singularity. The three-node 
singular ES-FEM framework adopted the same proposed mesh adaptation is also 
performed for mechanics problems with arbitrary order of elastic stress singularity. 
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CHAPTER 3 ES-FEM-T3 AND SINGULAR ES-FEM-T3 IN ELASTIC SOLID 
MECHANICS 

3.1 Introduction 

The S-FEM models introduce “softening” effects into the conventional FEM models 
using the shape function values and not its gradients. Instead of taking information of 
nodes at the vertices inside each triangle element, S-FEM spreads out to use nodes 
from surrounding elements to construct smoothed strain field for the purpose of the 
stability, convergence and high accuracy. It is straighforward and easy-to-modify from 
the standard FEM without much extra computing expenses. S-FEM model is eminently 
suitable for a mesh of polygonal elements with arbitrarily n sides particularly the three-
node triangle elements denoted to ES-FEM-T3.  
Among the above S-FEM models, ES-FEM is outstanding with stable both spatially and 
temporally and produces super-accurate solutions compared to the original FEM in (G. 
Liu, Nguyen-Thoi, & Lam, 2009) and some other superior properties. Three principle 
features (G. Liu, 2008) as follows: 
(a) Close-to-exact stiffness formulation; 
(b) Coarse mesh accuracy; 
(c) Simple implementation using the similar basis to a standard three-node triangular 
element. 
However, ES-FEM is not good enough to solve the problems with domain containing 
discontinuities. Adopting new singular elements for the current model will be efficient 
in analyzing structures subjected to the difficulties associated with elastic stress 
singularity and discontinuity. In this method, a layer of singular five-noded elements 
introduced by (G. Liu, Nourbakhshnia, & Zhang, 2011) is used around the singular point 
and is designed to be compatible with triangular simplex (T3) elements in the 
remaining area. Only a node is added on the edges that directly connected to the 
crack tip while linear triangulars remain unchanged. This will create an combined mesh 
of three- and five-noded triangle elements, so-called the singular edge-based finite 
element method or singular ES-FEM, in which a proper order of stress singularity can 
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be obtained around the singular point or crack tip (L Chen et al., 2010; G. Liu, 
Nourbakhshnia, Chen, & Zhang, 2010). The stiffness matrix derived from a global system 
of discretized equations is assembled using the displacement values and not its 
gradients on the boundaries of SDs associated with the edges. Therefore, the integrate 

singular terms ( )1 1r  −   can be eliminated. 

3.2 ES-FEM-T3. 

3.2.1 Creation of Smoothing Domains. 

The same 2D triangle element mesh with Ne elements, Nn nodes, and Neg edges is 
generated. Then, a set Ns of ”non-overlap” and “no-gap” SDs s

k  will fill in the whole 
problem domain 1

sN s

k k=
 =    and ,s s

i j i j  =  .  
In each SD, there are a number of “non-overlap” and “no-gap” sub-smoothing 
domains where 1 ,

sns s

k k k q=
 =    and , , ,s s

k i k j i j  =  .  

,

s

k q  denote to the q-th sub-smoothing domain or sub-SD, nq is the number of sub-
SDs or the number of elements supporting the smoothing domains 

 
Figures 3.1 Triangle element mesh and the smoothing domains (shaded areas) 

encompass the edges in ES-FEM-T3 model. 

The SD associated with edges is created by linking two endpoints of every edges to 
centre points of the surrounding elements as depicted in Fig. 3.1.  
where nq = 2, for the number of elements sharing interior edge k, nq = 1, for the 
number of elements sharing boundary edge m.  
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3.2.2 Construction of Shape Function. 

Whenever three-node triangle mesh is used, the same shape functions from the 
standard FEM are also applied in S-FEM as constructed in Section 2.2.2.1 a). The set of 
nodes contributing in the displacement interpolation formulation, however, no longer 
three as in standard FEM, is varying depending on how many nodes of adjacent 
elements supporting the smoothing domain, Ns

n. 

 ( )      1 2 1 2

1

, ... ...

s
n

s s
n n

N T

i i N N
i

u N x y d N N N d d d N d
=

= = =  (3.1) 

Note: in the general case of using any types of element, a Point Interpolation Method 
(G.-R. Liu & Gu, 2001), is used to construct the shape functions for n-sided polygonal 
elements. 

3.2.3 Construction of Smoothed Strain Field 

Eqs. (2.18) and (2.19) for constructing smoothed strain field through either modifying 
the compatible strain field from the standard FEM or using shape function values over 
every local SDs based on edges of triangle mesh. 
A smoothing strain operator is performed over the edge-based SDs s

k  resulting in 
constant smoothed strain fields in each SDs 
 ( ) (x)

s
k

k x W d 


=   (3.2a) 

 ( ) (x)
s
k

k dL u x W d


=   (3.2b) 

Note that: Eq. (3.2a) is used when ( )x  is available. 
where (x)  is the compatible strain field in Eq. (2.18) 

 
/ 0

0 / ,

/ /

d

x

L y

y x

 

 

   

 
 

=
 
  

 denote the matrix of derivative operations,  

(x)W  is a distribution/weight function needs to satisfy the following properties: 
1) Positive only in the area inside the local smoothing domain s

k  and zero for the 
other locations. 
2) The unity property of (x) 1

s
k

W d


 =  (3.3) 

The simple form of the Heaviside-type smoothing function is adopted as 
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1/ ,

(x)
0

       

          x     

s s s

k k k

s s

k k

W
xA 



  
= 

 

 (3.4) 

where 
1

1

3

k
e

s
k

N
s

k j

j

A d A


=

=  =   is the area of SD s

k , with Nk
e denote the number of 

elements contributing the edge k (Nk
e = 1 in edges on the boundary and Nk

e =2 in 

edges inside), and 1

3
jA  equals the area of sub-SD belong to the j-th element around 

the edge k such as ''

1

3
DI F DEFA A=  in Fig. 3.2. 

Note: the weight function (x)W  vanishes only out of the domain s s s

k k k
  =     to 

ensure it is differentiable over s

k  and applicable for Green’s theorem in the next 
sections. 

3.2.3.1 Adopting The Compatible Strain Field 

In the case that the compatible strain field is available, from Eq. (2.28)  

 1
( )  

s
k

k s

k

x d
A

 


=    (3.5) 

The smoothed strain field is piecewise constant inside every smoothing domains, it 
means that:  

 1
( ) ( ) (  ,  )

s
k

s

k k k ks

k

xx x x d
A

   


= = =     (3.6) 

Note: Eq. (3.6) shows formulation of taking area averaged compatible strains over SDs 
s

k  and only applicable for constant strain element mesh. 

3.2.3.2 Adopting The Flux of The Displacement Field 

In general, smoothed strain field can be constructed by using the flux of the 
displacement field as follows. 
With the assumption of continuous displacement field along the boundary s

k  in ES-
FEM-T3 model and the differentiation of weight function (x)W  as mentioned above, 
we can apply Green’s divergence theorem into the second term in Eq. (3.2): 

 
 

1
( ) (x) ( ) ( ) (x) ( )

1
( ) ( )     

s s s
k k k

s
k

k d n ds

k

ns

k

L u x W d L x u x d L W u x d
A

L x u x d
A


  



 =  =  − 
 

= 

  



 (3.7) 
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Note: the second term at the second line in Eq. (3.7) vanishes because (x)W is constant 
in smoothing domain s

k . 

where 
/ 0

0 /

/ /

d

x

L y

y x

 

 

   

 
 

=
 
  

 denote the matrix of derivative operations (3.8) 

0

( ) 0

x

n y

y x

n

L x n

n n

 
 

=  
 
 

 contains components of the outward normal vector on boundary 

s

k  as depicted in Fig. 3.2. 

 
Figure 3.2 The x-, y- outward normal vector ( xn , yn ), for the edge DI’’ in the 

smoothing domain (DI’’FI’) 

Eq. (3.7) is a line integration along the boundary s

k of the SD s

k . In other words, it is 
the computation of the flux displacement field accross the boundary of SD s

k . 
Similarly, it is intended to be piecewise constant in smoothing domains: 

 1
( ) ( ) ( )      ( ) ,   

s
k

s

k k k n ks

k

x x L x u x d
A

x  


= = =     (3.9) 

Note: Eq. (3.9) for a general types of elements being used in various S-FEM models in 
comparison with Eq. (3.7) that only applicable to three-node element. 

3.2.4 Smoothed Strain–Displacement Matrix 

Substituting Eq. (3.1) into Eq. (3.9), the smoothed strain then becomes: 

 ( )    1 2 1 2

1

, ... ...

s
n

s s
n n

N T

i i N N
i

B x y d B B B d d d B d
=

   = = =     (3.10) 

Where ( ),iB x y  is the “smoothed strain-displacement” matrix of node i-th 
contributing into overall smoothed strain–displacement matrix B 

   of SD s

k . 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 22 

As mentioned before, Ns
n contains the set containing field nodes which supporting the 

SD s

k  (e.g. ES-FEM model using three-node triangle elements in Fig. 3.1, Nn,s = 3 for 
the boundary edge m which is (A, B and C) from triangular ABC  only, and Nn,s = 3 
for the interior edge k which is (D, E, F and G) from the triangle DEF  and FGD . 
The smoothed strain–displacement matrix iB  becomes 

 
( ) 0

1
( ) ( ) ( ) 0 ( )

( ) ( )
s
k

ix k

i k n i iy ks

k

iy k ix k

b x

B x L x N x d b x
A

b x b x

 
 

=  =  
 
 

  (3.11) 

with  
( ) ( )

1
( ) ( ) ( )

s
k

k

ix y k x y is

k

b x n x N x d
A



=   (3.12) 

Eq. (3.11) can be performed by applying a Gauss integration technique. In essense, a 
Gauss-point is good enough for computing the line integration along each boundaries 

s

k , then the formulation reduces to a summation form of 

 ( )( ) ( ),p

1

1
( ) ( ) l

sn
k Gauss

ix y k x y i p ps
pk

b x n x N x
A



=

=   (3.13) 

where sn
  denote the total number of boundary segments ,

s s

k k p =  , Gauss

px  is the 
coordinates of the mid-point (Gauss-point) of p-th the boundary segment ,

s

k p , ( ),x y pn  
and pl  denote for the unit normal and the length of the p-th boundary segment ,

s

k p  
Up to this point, it is straightforward to obtain the formulation of iB  using the origin 
compatible strain-displacement matrix ( )iB x  from the standard FEM: 

 1 1 1
( ) ( ) ( ) ( ) ( )

s s s
k k k

i n i p i is s s

k k k

B L x N x d L x N x d B x d
A A A

  

=  =  =     (3.14) 

Eq. (3.14) shows that the iB  matrix is the averaged formulation of the compatible 
matrix ( )iB x  matrix over the smoothing domain s

k .  

( )iB x  will be piecewise constant such that Eq. (3.14) for constructing the smoothed 

iB  matrix can be transformed into a so-called area-weighted average formulation as 
follows: 

 
1

1 1

3

k
eN

i j js
jk

B B A
A =

=    (3.15)

where the jB  matrix denote compatible strain-displacement matrix of the j-th 
element surrounding edge k and obtained by using Eq. (2.19). 
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1

1

3

k
e

s
k

N
s

k j

j

A d A


=

=  =   denote the area of SD s

k  and 1

3
jA  denote the area of sub-

SD belong to the j-th element surrounding the edge k such as ''

1

3
DI F DEFA A=  in Fig. 

3.2 
Note: 
(1) The Eq. (3.15) is simple and easy-to-implement based on available FEM-T3 model. 
It is applicable, however, for constant triangle elements with linear interpolation shape 
functions. The S-FEM models that adopting arbitrary n-sided elements or higher-order 
interpolation shape functions, the general Eq. (3.11) should be performed for 
computing the smoothed iB  matrix. 
(2) In triangle mesh, the size of matrix jB  is (36 rowcolumn) in the standard FEM 
model. In ES-FEM, however, the size of the smoothed matrix iB  can vary in a model 
and depends on the type of smoothing domain (SD). For example,  iB  for interior SD 
is a (38) matrix and for boundary SD is a (36) matrix in a ES-FEM model, such as, 
depicted by the Fig. 3.2 the (38) matrix DFB  for the interior SD based on interior edge 
DF will bring information of four-node D, E, F, G, and similar for the (36) matrix ACB  
for the boundary SD based on boundary edge AC will bring information of only three-
node A, B, C. 

3.2.5 Smoothed Galerkin Weak Form 

The ES-FEM that using the Galerkin weak form in terms of smoothed strain field instead 
of compatible strain field or smoothed Galerkin weak form (G.-R. Liu, 2009) reads 

1

1 1
( ) ( ) ( ) ( ) 0

s

s s
k k

T
N

s T T

k n ns s
k k k

A L x u x d D L x u x d u bd u td
A A

  
=   

   
     − −  =
   
   

      

or  
1

0
sN

s T T T

k k k

k

A D u bd u td   
=  

−  −  =    (3.16) 

where Ns denotes the number of SD,  or number of edges Neg, in the whole problem 
domain of ES-FEM, s

kA  denotes the area of the k-th SD, b is the body load acting over 
the whole domain and t is the external traction load defined on the Neumann 
boundary. 
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3.2.6 Discretized Linear System of Equations. 

Firstly, we obtain a similar discretized system of equations for the ES-FEM with those 

of FEM-T3. The only difference is replacing the standard matrix K  by the smoothed 
matrix  as follows: 
    K d f=   (3.17) 
In which the K  matrix equals  

 
1

sN
k

k

K K
=

=   (3.18) 

and its entries is computed by: 

 
1 1

d

k

s s

s

N N
T

IJ I J I J

k k

T s

kK B B BD D A tB
= =

=  =    (3.19) 

where Ns = Neg is the number of SDs or edges over the whole domain of ES-FEM-T3, 
kK  denotes the elemental stiffness matrix associated with SD s

k , 
IJK  is the entries 

of K  that relating the nodes I to J. The global stiffness matrix K  of ES-FEM-T3, 
however, is assembled over SDs instead of individual triangle elements 
This global smoothed stiffness matrix K  is also extremely sparse but may not as much 

as in the K  matrix in the standard FEM. The reason is that it consider more nodes in 
contributing to the elemental, namely SD, stiffness matrices compared with the original 
FEM-T3 counterparts. 
The nodal load vector keeps unchange Eq. (2.21) as in the standard FEM. 

3.3 Singular ES-FEM-T3. 

In linear fracture analysis, infinite stress value will occur at the crack tip. Of the 

numerical method, the standard FEM uses a (quadratic) 6-node crack-tip element to 

approximate the stress singularity where the mid-points are shifted by a distance one-

fourth edge length toward the crack tip. An isoparametric mapping procedure is then 

applied to create the singular field by (Olgierd Cecil Zienkiewicz, Taylor, Taylor, & 

Taylor, 2000). However, no mapping is required for the singular ES-FEM using combined 

mesh of three- and five-node elements. A simple point interpolation method adding 

basis functions with proper order of power terms make possible creating the singular 

stress field around the crack tip in the singular ES-FEM method. 
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3.3.1 Singular Stress Field at The Crack-Tip 

A crack body as depicted in Fig. 3.3 is discretized using a layer of five-noded triangle 

elements surrounding the crack-tip and the normal three-node triangle elements in 

the remaining area. Additional nodes are presented on every edges that directly 

connect to the crack tip.  

 
Figures 3.3 Triangular mesh with layer of five-node elements in singular ES-FEM-T3. 

The construction of singular stress field performed by: Firstly, interpolating the 
displacement value along the crack-tip edge by adopting the enriched linear PIM and 
then, the displacement field inside the singular elements will be constructed. 

3.3.1.1 Displacement Interpolation along The Crack-Tip Edge 

It is also noted that the additional nodes can be any location on the crack tip edge in 

the singular ES-FEM model compared with an fixed position of one-fourth edge length 

in the conventional FEM illustrated in Fig. 3.4. 

 
a)      b) 

Figure 3.4 Additional point on the crack tip edge 
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X l
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The displacement field, u, along the crack-tip edge is approximated by: 
 ( ) ( ) 0 1 2

Tu x P x a a a r a r = = + +    (3.20) 
where the radial coordinate r with origin point at the crack-tip and 0 ≤ r ≤ l in Fig. 3.4 
b, and ai (i = 0, 1, 2) are the unknown coefficients, 1/ 2 1   is a singularity 
parameter computed from the characteristic equations depending on the vertex 
angular and the BCs on two angle faces as in Section 2.1.3. 
After replacing the nodal coordinates into Eq. (3.20), then 
 1 0u a= ; ( 0r =  at node 1)   
 

2 0 1 2( )u a a l a l  = + + ; ( r l=  at node 2)   (3.21) 
 

3 0 1 2u a a l a l = + + ; ( r l=  at node 3)  
or in the matrix form:  ,d Ca=  (3.22) 

with  1 2 3

T
d u u u=  contains nodal displacements and matrix (3x3) C of the radial 

coordinates at nodes 

 ( )

1 0 0

1

1

C l l

l l





 

 
 

=  
 
 

   (3.23) 

where l denote the  edge length and the ratio of the edge 1-2 over the edge 1-3 
denoted by   (with 0 1  )  
Solving the Eq. (3.22) for vector and substituting them back into Eq. (3.21), then  
 ( ) ( ) ( )1Tu x P x C d x d−= =     (3.24) 
where  1 2 3 =     stores shape functions for nodes on the crack tip edge  is 
defined as follows: 

 
( ) ( )

( )

1

1

1 1
1

r l r

l l

  

 

 

 

−− + −
 = +

−
;

( )

1

2

r l r

l l

 

  

−−
 =

−
;

( )

1

3

l r r

l l

  

 

 

 

− −
 =

−
(3.25)  

As already studied,   can take any value in the range (0-1) opposite to that in FEM 
approach using the quarter point elements which is fixed to equal 1/4. To be simple 
and,   is set to be 1/4, then the shape functions change to 
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( )1

1 1 1

2 1 1

1

3 1 1

4 14
1 . .

1 4 1 4

4 4
. .
1 4 1 4

4 1
. .
1 4 1 4

r r

l l

r r

l l

r r

l l

 

 

  

 

 

 

−

− −

− −

−

− −

−   
 = − +   

− −   

   
 = −   

− −   

   
 = − −   

− −   

 (3.26) 

For fracture mechanics problems with in-line crack faces,   = 1/2 and the shape 
functions become   

 1 2 31 2 3 ; 4 4   ;  2 
r r r r r r

l l l l l l
 = + −  = − +  = −  (3.27) 

The i  owns basic properties of a normal shape function, namely linear 
reproducibility, partition of unity and Kronecker delta properties. The shape functions 
with linear dependence are enriched with a term of r  in r-direction that actually 
produces stress (or strain) singularity field with an exponent of 1/2.  
Integration for the term of 1r −  can be removed since no derivative of shape functions 
will be performed in S-FEMs. In addition, no mapping procedure is required compared 
to the standard FEM counterparts. 

3.3.1.2 Creation of Displacement Field Within A Five-Node Triangle Element. 

As already presented, in the singular ES-FEM-T3, only the edges that directly connect 

to the singular point are added one node with one-fourth distance from the original 

(singular) point. The same nodal shape functions derived in Eq. (3.26) can be properly 

performed in this singular element. The displacement interpolation uses the enriched 

form as formulated in Eq. (3.21) in the radial direction, while it is interpolated with 

linear dependence in the tangential direction that will assure the compatibility along 

the two-node edge of crack-tip elements.  

Now, we consider the singular element 1-4-2-3-5 as depicted in Fig. 3.5. The node 6 

and 7 denote to the mid-points of lines 4-5 and 2-3, respectively. Then the 

displacements can be obtained by averaging those from the field nodes (because of 

the assumption of linear dependence on the tangential direction) by 

 ( ) ( )6 4 5 7 2 3 
1 1

;
2 2

 u u u u u u= + = +        (3.28) 
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Note that: the linear point interpolation method is taken into account in this case then 

linear interpolation inside the singular element can take the Eq. (3.28) at any point. 

 
Figures 3.5 Two layers of singular smoothing domains in singular ES-FEM-T3. 

Along the arbitrary radial line 1-N-M, displacement is obtained using the Eq. (3.24) as 

 1 1 2 3N Mu u u u=  + +   (3.29) 

with  4 4 2 2
4 5 2 3

5 4 5 4 3 2 3 2

 1 , 1 N N M M
N M

l l l l
u u u u u u

l l l l
− − − −

− − − −

   
= − + = − +   
   

      (3.30) 

where i jl
−  denotes for the distance from point i to j. Similar triangle rule leads to 

4 2

5 4 3 2

N Ml l

l l
− −

− −

= = , after substitute Eq. (3.30) into Eq. (3.29), we finally get the general 

form 

 ( ) ( )1 1 3 2 3 3 2 4 2 51 1u u u u u u   =  + −  +  + −  +   (3.31) 

In matrix form:  u Nd=    (3.32) 

where N contains shape functions for degree of freedoms or DOFs of singular element 

and ( ) ( ) 1 1 2 3 3 3 4 2 5 2     ; 1 ; ;    1 ; N N N N N N   = =  = −  =  = −  =   with i  

(i = 0, 1, 2) are the same as above sections.   

In the special cases of interpolating along the element edge such as line 1-4-2, 1-5-3 

or line 1-B2-B1, the value of   equal to 0, 1, 1/2, respectively. After substituting into 

Eq. (3.31), we obtain the corresponding shape functions. Therefore, Eq. (3.31) is the 

general form for interpolating the displacement field within the present singular 

element. 
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3.3.2 Smoothing Domains in The Singular ES-FEM-T3 

In the present ES-FEM-T3, strain smoothing domains or SDs are created encompassing 

edges in triangle mesh. Each triangle element contains three sub-smoothing domains 

or sub-SDs corresponding to their three edges and every two sub-SDs from adjacent 

elements form a edge-based SD. In these singular elements, similar SDs can be 

constructed. Multi-layer SDs, however, are needed to better approximate the presence 

of the singularity stress. As already studied, two layers of singular smoothing domains 

(singular SDs) are good enough to assure both stability and accuracy in approximating 

the singular term around the crack-tip. In each five-node element, a smaller layer of 

SDs established by connecting two additional nodes and the center point of the 

smaller triangle close to the singular point Fig. 3.5, namely triangle 1-4-B2-1 and 1-B2-

5-1. The second layer that is quadrilateral-shaped and next to (outside) the first layer, 

namely quadrangle 4-B2-B1-2-4 and B2-5-3-B1-B2. The last one is the normal s-SD, 

namely 2-B1-3-2, which ensures the conformity of normal SD associated with the 

remaining edge. 

In the three-node triangle ES-FEM model, the shape function is linearly dependent 

along the boundaries of normal SDs. Therefore, one Gauss-point is good enough for 

approximately integrating on every boundary segments. However, more than one 

Gauss-point are required on the boundary segments of the singular SDs in the singular 

model because of the complex variation of the term r   in  the displacement field 

along these boundary segments.  

For example, we now consider the edge of 2B1 to be intergral. It has the Gauss-point 

G1 on the boundary in the tangential direction, and also located on the line 1-N-M as 

depicted in Fig. 3.5, the displacement is interpolated using the general Eq. (3.31). For 

the Gauss-point G2 on the boundary B1B2 in the radial direction, the general Eq. (3.31) 

with 1/ 2 =  will be considered. 
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3.3.3 The Smoothed Stiffness Matrix of The Singular Method 

The smoothed stiffness matrix of the singular model can be constructed using two 

types of SDs: (1) normal SDs which are not directly related to the crack-tip point 

(computed in a similar fashion as section 3.2.4) and (2) singular smoothing domains or 

singular SDs directly related to the crack-tip point. For SDs connected to the crack tip, 

there are two layers of singular SDs per edge that will effectively capture the singular 

property. 

The smoothed strain–displacement matrix of each layer of singular SDs ,s a

k (a =1, 2), 
is computed as 
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with  
,

,

( ) ( ),

1
( ) ( ) ( )

s a
k

a k a

ix y k i x ys a

k

b x N x n x d
A



=   (3.34) 

where , ,,s a s a

k kA   denote the area and the boundary of the a-th layer of the singular SD 
,s a

k , respectively, the shape functions Ni (x) in Eq. (3.25) are adopted in this case, ,

( )

k a

x yn  
denotes the unit normal vector of the boundary segment ,s a

k  
Similarly, we apply the Gauss integration along the segments of boundary ,s a

k , then 

 ( ),

( ) ,b , ( ) ,,
1 1

1
( )

s
Gaussnn

a k a Gauss

ix y p p x y i p bs a
p bk

b w n x N x
A



= =

 
=  

 
    (3.35) 

where ngauss denote the number of Gauss points for each boundary segment, wp,b is 
the corresponding weight coefficient of that Gauss points, xgauss

p,b denote the b-th 

Gauss-point of the p-th boundary segment of ,

,

s a

k p  and sn
  is the number of boundary 

segments of , ,

,

1

sn
s a s a

k p k

p



=

 =  . 

Note: the number of Gauss-points required for the numerical integration in Eq. (3.35) 
now is not only one as that in the standard ES-FEM-T3. Parameter study has been 
performed together with the application of the singular ES-FEM-T3 to obtain an 
approximate number of Gauss-points that is good enough for such integration (L Chen, 
Liu, Jiang, Zeng, & Zhang, 2011). Three Gauss-points on every boundary segment of the 
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singular SDs are sufficient to provide a good approximation, ngauss  = 3 is used in this 
study. 
A similar procedure for obtaining the discretized linear system of equations as well as 
the nodal load vector from the ES-FEM-T3 is implemented in the present singular 
model. 
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CHAPTER 4 AUTOMATIC ADAPTIVE FEM-T3 AND ES-FEM-T3 

4.1 Introduction 

Under the adaptive analysis, better solutions can be achieved in a controlled 

computational effort. In this study, local refinement of three-node triangle elements 

accompanied by subdivision of neighbor simplices along the longest edge or LE  to 

ensure conformity. Such LE partitions of triangles introduced by (Rosenberg & Stenger, 

1975) and (M.-C. Rivara & Iribarren, 1996) for maintaining the conformity of the mesh 

and eliminating degradation in mesh quality, simultaneously. This technique, however, 

leads to by-product effects which induce unnecessary refinement for surrounding 

elements from the target subdivided elements. Suárez, Plaza, and Carey (2008) 

concluded in their studies that the adjacent propagation inherent to LE refinement 

does not make a significant change in the results, especially in 2D applications. 

Moreover, this adaptive scheme can be effectively performed in both the standard 

FEM-/ES-FEM-T3 models because they use the same triangular element. A parent 

triangle element can be sub-divided into several children triangle elements using the 

so-called newest vertex bisection technique. The process can continue until a 

convergence of the results is obtained. As a result, the implementation of the adaptive 

standard FEM-/ES-FEM-T3 obviously provides an efficient mesh generation with higher-

level accuracy of solutions and reduces the requirement for consuming computational 

resources.  
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4.2 Adaptive Algorithm Implementation 

4.2.1 Flowchart 
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4.2.2 Adaptive Formulation 

The refinement indicators l , which is the value of error estimators from the 
aforementioned sections, will be used to seek a group of elements l   for 
refinement. In our study, we use the well-known Dorfler criterion (Dörfler, 1996) to find 
the minimal set M   such that: 
 2 2

l l M

l l  
   

    (4.1) 

where the parameter (0,1)   means that if 1 →  the mesh is almost uniformly 
refined (e.g. Almost all of elements are stored for refinement and if 0 →  means that 
a highly adapted mesh will be performed. As mentioned before, this case will restrict 
the unnecessary refinement for surrounding elements. With this criterion, a new mesh 

'  is obtained by subdividing at least the marked elements assumed M-Group 

M   in order to reduce total numerical errors of the whole domain. 

4.2.3 Criterion for Stopping Adaptive Iteration 

In mechanics problems with the presence of singular point, no amount of mesh 
refinement is enough to capture the correct solution. The very small sizes of elements 
at that point will be seen and cost a lot for analyses may very expensive. In order to 
prevent excessively expensive analyses of those models, we can set up a minimum 
element size constraint or a maximum number of elements for the given problem 
domain. On the other hand, the relative error indicators in some specified norms are 
the most important results that we need to concern. Criterion Equations are 
summarized as follows: 
 minl

h h
 

  (4.2)

 
,maxe eN N  (4.3) 

 mine e

  (4.4) 

Whenever one of the above Equations reached, the adaptive analysis will stop and 
the previous results will be reported. 

4.2.4 Newest Vertex Bisection Technique. 

An original triangle may be either divided into four child triangles by linking the mid-
points of their edges or bisected by connecting the mid-point of the longest edge to 
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the opposited vertes. The former, so-called RGB technique in the next section, 
possibility obviously produces similar triangles as discussed in (Verfürth, 1994), while 
the second one may increasingly lead to a distorted mesh. Fortunately, the longest-
edge bisection so-called Newest Vertex Bisection is to divide only the longest edge of 
elements (M. C. Rivara, 1984) which keeps away from producing triangles with smaller 
angles. There are four types of partitioning a parent element into so-called child 
elements which are formed of lines connecting the newest vertex to the mid-point of 
reference edge as in Fig. 4.1 

 
Figure 4.1 Refinement by newest vertex bisections: A triangle element with four cases 
of refinement, but at least the longest or reference edge is marked for refinement (in 

upper line). After refinement, the element is divided into 2 (a), 3 (b, c) and 4 (d) 
children triangles (bottom). Note that: the reference edges are added by the dash-

lines 

All these strategies, however, need to be modified through rules to solve the hanging 
nodes. The condition reads as follows, any two triangles in domain   share at most 
a common edge or a common vertex. The simplest and most efficient way that can 
be applied for triangular meshes is to introduce auxiliary bisected triangles shown in 
Fig. 4.2 

 
Figure 4.2 The Propagation of Newest Vertex Bisection Technique: The element (A) is 
marked for refinement. Bisection of the element (A) leads to a hanging node as in 

step (2). To avoid hanging nodes, the element (B) need to be refined and at least the 
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reference edge, this is as the case (b) in Fig. 4.1 and the results as in step (4). Note 
that: the reference edges are added by the dash-lines. 

Fortunately, the adjacent propagation owing to LE refinement does not make 
considerable changes in the results, especially in 2D problems. Although the trends of 
the element excess keep extending, it is slower as refinement proceeds. It is suggested 
that, however, there should be appropriate modifications before applying in 3D 
models. Note that the more extensive refinement area the smaller number of marked 
elements for a single refinement step might reduce the propagation effects. 

4.2.5 Coarsening Mesh Technique 

 
Figure 4.3 Coarsening is one step back from the refinement of newest vertex 

bisection: Assume the triangle is marked for all three edges as in step (1) and result 
in 4 children elements step 2 & 3). The coarsening algorithm only unify 1 step back 

as step 4) 

The coarsening algorithm introduced by (Long Chen & Zhang, 2010) can select a group 
of elements for coarsening and clear the redundant memory like former nodes. In 
addition, the algorithm also can update all input data in order to conform with the 
current mesh after coarsening such as the boundary conditions or the connectivities, 
etc. 

4.2.6 Error Assessment in FEM-T3 and ES-FEM-T3 Models. 

A mathematical discretization of continuous physical problems in FEM-T3 will 
introduce a discretization error into the approximate solutions. After solving above 
system of Equations, we obtain the numerical solution (u ,  ) in FEM or (u ,  ) in ES-
FEM which differ from the exact values (u ,  ) and the amount of difference is called 
error as 
In terms of displacements: de u u= −  (or u u− ) (4.5a) 
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In terms of stresses: e  = −  (or  − ) (4.5b) 
The pointwise formulation of errors as shown in Eqs. (4.5a) and (4.5b) is too general to 
evaluate. In order to evaluate this kind of error, some mathematical error estimation 
techniques have been adopted. The most famous one is a simple recovery-based error 
estimator using the gradient recovery technique. A continuous stress field will be 
constructed which is demonstrated to be more accurate than the above interelement 
discontinuous stress field. This improved stress field can be obtained through several 
projection techniques (e.g. least squares smoothing or a nodal averaging of the 
element stresses). The exact solution is represented by this continuous solution so 
that the discretization error can be easily evaluated. This error estimator is called the 
posterior error estimator.  

4.2.6.1 Global Recovery-Based Error Estimator in L2- Norm and Energy Norm. 

The energy norm was proposed by (Olgierd Cecil Zienkiewicz et al., 1977) for studying 
a quantitative study of the error and convergence rate of numerical methods. Either 
errors in energy norm or L2-norm is performed associated with triangle elements. 
Therefore, it is applicable both for the FEM-/ES-FEM-T3 models. 
The total ZZ-type error estimator 

 
1/2

2

1

eN

Z l

l

 
=

 
=  
 
  (4.6) 

where l  is recovery-based error indicator of the l-th triangle element in the domain 
for the FEM-/ ES-FEM-T3 models and is computed by: 
For the energy norm: 
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

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  
 (FEM-T3) (4.7a) 
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
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 (ES-FEM-T3) (4.7b) 

For L2- norm: 
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 ( ) ( )2
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( )l

l

T
R R R

l L
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


 
= − = − −  

  
  (ES-FEM-T3) (4.8b) 

where   and   are the numerical solution for stresses obtained using the FEM-/ES-
FEM-T3, respectively, R  and R  are the recovery stress fields, which will be defined 
in the next section, in the FEM-/ES-FEM-T3 models, respectively. 
Note: the recovery-based error estimators in L2-norm only differs from those in energy 
norm by the weighting coefficient D. 

4.2.6.2 Recovery Stress Field in FEM-T3 and ES-FEM-T3 Models. 

A recovery stress field denoted as R  and R for the FEM-/ES-FEM-T3 models, 
respectively, is generated by using the nodal stress values  (1, 2, 3) and  (1, 2, 3)  of 
1-st, 2-nd, 3-rd nodes of element. This recovery stress field is continuous on the whole 
problem domain and proved to fast converge to exact solutions for a very fine mesh. 
Therefore, it can be used as a “reference” solution for computing the error of the 
current model then errors indicators for adaptive analysis.  
For the triangle mesh (three-node element) in the FEM-/ES-FEM-T3 models, the 
recovery stress field in each triangular element is interpolated by nodal stresses of 
that element as: 
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N x y i 
=

=  (FEM-T3) (4.9a) 
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=  (ES-FEM-T3) (4.9b) 

where ne
n denotes the number of nodes in an element, ne

n = 3 in a triangle mesh, Ni 

(x, y) (i=1,2,3); Ni contains shape functions of the corresponding nodes. (these shape 
functions are similar to the conventional FEM-T3), ( )R i  is the vector containing the 
nodal stress components at the i-th (i=1,2,3) node of the element resulted from the 
FEM-T3, ( )R i  contains the nodal stresses at the i-th (i=1,2,3) node of the element 
resulted from the ES-FEM-T3. 

4.2.6.3 Computation of Stress at Nodes in FEM-T3 and ES-FEM-T3. 

The nodal stresses (i)R  and (i)R  can be obtained through the simple nodal 
averaging technique from the FEM-/ES-FEM-T3, respectively. This technique is well-
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known as the first-order recovery stress first proposed by (Cook, Malkus, Plesha, & Witt, 
1974) and recently applied by (Alberty, Carstensen, Funken, & Klose, 2002) 
a) FEM-T3 model. 
In the triangle mesh, the nodal stresses ( )i  are the mean value of the stresses on 
the corresponding patch which includes elements surrounding and sharing that node 
as illustrated in Fig. 4.4 a). The area-weighted averaged stress formulation: 
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(i) (x )A

A

i
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j c jne
ji
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=

=   (4.10) 

where ni
e denotes the number of triangle elements j  around the i-th node, 

1

A

i
en

ne

i j

j

A
=

=  is the total area of all the elements sharing i-th node, A j  denotes the 

area of the j-th element sharing the i-th node, (x )j c  is the compatible stress specified 
at the centroid of the j-th element (also that element stress in T3 mesh) 

 
Figure 4.4 The elements/SDs used to calculate the nodal stresses (or strain) in        

the FEM-/ES-FEM-T3 

b) ES-FEM-T3 model. 
In a similar way as in FEM-T3, the nodal stress R (i) is the area-weighted averaged 
values of smoothed stresses from SDs surrounding and sharing that node as illustrated 
in Fig. 4.4 b) for ES-FEM-T3.  
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where ni
s  denotes the number of smoothing domains k  around the i-th node, 

1

A

i
sn

ns

i k

k

A
=

=  is the total area of all the SDs sharing the i-th node, A k  denotes the 

area of the k-th SD sharing the i-th node, k  is the smoothing stress of SD k  

4.2.6.4 Implementation of Recovery-Based Error Estimators in L2-Norm Using 
Scalar Von Mises Stress Function for FEM-T3 and ES-FEM-T3 

A) Error Estimator Based on von Mises Stress Function  

In elasticity theorem, the von Mises stress is proportional to the square root of the 
second invariant of the deviatoric stress tensor. Therefore, the recovery-based error 
estimator in L2-norm obeying the von Mises stress function obviously relates to the 
error from the element distortion energy. We have the element error indicators in L2-
norm based on von Mises stress function as follows: 
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  (FEM-T3) (4.12a) 
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


 
= − = − −  

  
  (ES-FEM-T3) (4.12b) 

Note that: 
(1) The above two Equations are nearly the same as Eqs. 4.8a, b) except replacing all 
stress tensors by the corresponding scalar von Mises stress of the compatible stress 
field in the FEM-T3 and smoothed stress field in the ES-FEM-T3. 
where v  and v  denote the numerical solutions obtained in the FEM-/ES-FEM-T3, 
respectively. 
(2) Scalar von Mises stress field can be obtained from their corresponding stress fields. 
(3) The integration in Eqs. 4.12a, b) which is the deviation between the C0/C-1 

continuous numerical stress field ( / )v v   and a higher order C1/C1 continuous 

recovery stress field ( / )R R

v v   over a 2D triangle element in the FEM-/ES-FEM-T3, 

respectively. In the standard FEM-T3 model, the stress (or strain) is continuous in each 

element, while the smoothed stress (or strain) is not continuous inside elements using 

the model of ES-FEM-T3. It appears to be constant and discontinuous at the 

boundaries of SDs. The error computed by the integration of the deviation between C-
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1 continuous numerical stress field ( )v  and two higher order C1 continuous recovery 

stress field ( )R

v  over each triangle element becomes more complicated in the ES-

FEM-T3 model. So a simple formulation will be proposed to exactly calculate these 

recovery-based posteriori error indicators both in the FEM-/ES-FEM-T3. 

B) Implementation of Formulation for Recovery-Based Error Estimators using Scalar 

von Mises Stress Function. 

B1) For FEM-T3: Substituting Eq. (4.19a) into Eq. (4.12a), adopting the scalar von Mises 
stress function, the recovery-based error indicator of the l-th triangle element in the 
domain: 

 2 2

3
2 2 2

( ) ( )
1

|| || || ( , ) ( ||  ) 
l l

R R

l v v v i vL L
i

N x y i    
 

=

= − = −  (4.14) 

In the FEM-T3 model, the scalar von Mises stress v  is constant inside each element 

l . Then, we have the stress intensity at node i (= 1, 2, 3) equals:  
 ( ) (1) (2) (3)v v v v vi    = = = =  (4.14)
  
The partition of unity property of the shape function, Eq. (2.13), as follows: 
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(  , ) 1i

i

N x y
=

=  (4.15) 

From Eqs. (4.14) & (4.15), Eq. (4.13) is rewrited by: 
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 

=

= − = −  (4.16) 

Let ,i ( ) ( )R

l v vr i i = −  is the deviation between numerical von Mises stress intensity 
and recovery nodal von Mises stress at the i-thnode of the l-th element in the FEM-T3 
model. Then from Eq. (4.16): 
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3 3
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From the property of the shape function, Equation (2.13), we have: 
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Then we finally obtain: 
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whenever ( ); ( )R

v vi i   are available at all field nodes in the domain, the recovery-
based error indicator of the l-th triangle element in the domain and the total recovery-
based error indicator in the FEM-T3 model can be computed easily using Eq. (4.19) 
B2) For ES-FEM-T3: Similarly, the recovery-based error indicator of the l-th triangle 
element in the domain can be obtained in ES-FEM-T3 model as follows: 
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The scalar von Mises stress v , however, is discontinuous at the boundaries of SDs 
inside each element l  in the ES-FEM-T3 model. The smoothed stresses in ES-FEM-
T3 will constant in each smoothing domain meaning that, inside each triangle element, 
there will be three sub-elements with constant smoothed stress or smoothed von 
Mises stress as in Fig. 4.5. Therefore, the recovery-based error indicator will be 
computed based on the summation of errors from three sub-elements, we have:  
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 (4.21) 

where ,l q  is the q-th sub-element of the l-th element, , ( )R

v q i  is the recovery von 
Mises stress at the i-th node of the q-th sub-element. It is available for the 1-st and 2-
nd node (field nodes) of all sub-element such as C, A in the domain ABC,1 CAI =   
as in Fig. 4.5. 

 
Figure 4.5 Sub-elements of a triangle element from three smoothing domains  
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Note: the centroid of the element will be the 3-rd node in each sub-element which is 
the point I as Fig. 4.5. Then, one needs to compute its recovery nodal stress by 
substituting its coordinates into the interpolation Eq. 4.9b) as follows: 

 
3

, ,1 ,2 ,3
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(3) (3) (3) (3) ( , ) ( )R R R R R
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i
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= = = =   (4.22) 

Because the smoothed stress is constant inside each sub-element, the smoothed 
stress intensity at i-th node (i = 1, 2, 3) equals:  
 

, , ,q , ,( ) (1) (2) (3)v q v q v v q v qi    = = = =  (4.23) 
Similarly, the partition of unity property in each sub-element reads 
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From Eqs. (4.22), (4.23) & (4.24), Eq. (4.21) is rewrited by:   
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Let ,q,i , ,( ) ( )R

l v q v qr i i = −  is the deviation between smoothed von Mises stress 
intensity and recovery nodal von Mises stress at an i-thnode of the q-th sub-element 
of element l, in ES-FEM-T3 model. Then from Eq. (4.25): 
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 (4.26) 

Similarly, from the property of the shape function for each sub-element, we have: 
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where ,l qA  denotes the area of the q-th sub-element of the element l, which equals 
one-third of the area of the element l. For example, (1/ 3)CAI ABI BCI ABCA A A A= = =  
as in Fig. 4.5. We finally obtain: 
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whenever , ,( ); ( )R

v q v qi i   are available at all field nodes and at the centroid of all 
triangle elements in the domain, the recovery-based error indicator of the l-th triangle 
element in the domain and the total recovery-based error indicator in the ES-FEM-T3 
can be computed easily using Eq. (4.28) 

4.3 Enhancing Computing Efficiency by Vectorization Language and Built-In 
Functions 

Some ideals was first introduced by (Getreuer, 2006) for researchers using MATLAB 
language for programming. Recently, the successful application of those advance 
techniques into numerical method, specially FEM-T3, has been shown by (Rahman & 
Valdman, 2013); (Funken, Praetorius, & Wissgott, 2011); (Cuvelier, Japhet, & Scarella, 
2016). Therefore, the vectorization for our code in each adaptive loop is essential for 
optimizing the runtime as well as storage of the code. In this work, we will apply 
vectorization for some steps. We will perform in the sense of eliminating as many as 
possible for-loops in the same adaptive scheme for both for the FEM-/ES-FEM-T3.  

4.3.1 Loops in Classical Algorithm 

 
Figure 4.6 Loops in MATLAB 
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As mentioned above, the algorithms that use these loops for computing a matrix or 

constructing a new matrix cost a lot of work to do and it will repeat every calculation 

loop. In addition, many adaptive procedures often have loops inside loops that will 

require a huge amount of runtime and storage.  

4.3.2 Matrix, Logical Array Operations and Ordering, Setting, and Counting 
Operations. 

Built-in MATLAB functions help to implement the vectorization and make a combined 
set of operations generally classified as follows:  
(1) Matrix Operations  
(2) Logical Array Operations  
(3) Ordering, Setting, and Counting Operations.  
Functions that is widely used in vectorization as in Table 5.1 

Table 5.1 Functions commonly used in vectorization 

Function Description 

accumarray accumulating elements of a vector using the subscripts 

all Determine whether all array elements are nonzero or true 

any Determine whether any array elements are nonzero 

cumsum Cumulative sum of 

diff Differences and Approximate Derivatives 

find Find indices and values of nonzero elements 

logical Convert numeric values to logicals 

mat2vec Convert a matrix (nxm) into a vector 

repmat Repeat copy of array 

reshape Reshape array 

sparse Construct a sparse matrix based on row, column index and values 

setdiff Find elements different from 2 matrix 

sort Sort array elements 
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sum Summation of array elements 

unique Find unique elements 

vec2mat Convert a vector into a matrix (nxm) 

4.4 Illustrative Examples. 

The two problems, from a number of which successfully solved, are double-edge 

notched specimen and Prandtl’s punch (Tangaramvong, Tin‐Loi, & Song, 2012) and. 

They serve as benchmarks for any analysis methods developed to provide solutions 

of the challenging problems under the presence of stress singularity and discontinuity 

field. Processing such problems often require excessive computing resources. Robust 

numerical method is thus necessary. The reference values is extracted from 

(Tangaramvong et al., 2012) without considering the plastic response of the problems. 

The proposed models were encoded within a MATLAB environment. 

4.4.1 Example 1: Double-Edge Notched Specimen 

A plane strain double-edge notched specimen in Fig. 4.7a)  was subjected to the total 
uniform lateral load of 1.44. The material properties of E = 70, v = 0.3 and t = 1 were 
adopted. Due to symmetry in both x- and y-axis, a quarter of the specimen without 
undue loss of accuracy was analyzed. The initial characteristic ES-FEM-T3 with 150 
elements is displayed in Fig. 4.7b).  
The proposed ES-FEM-T3 analysis approach with uniform model construction was 
successfully performed. The relations between computed lateral displacements v, 
corresponding degrees of freedoms (DOFs) and CPU times are displayed in the two Figs. 
4.8 and 4.9, respectively. The responded displacements v shown in the similar figures 
were also obtained by some standard isoparametric FEMs, namely FEM-T3 and FEM-
Q4. 
All analysis methods converged to the reference values as the discrete models were 
sufficiently refined. The ES-FEM-T3 present the more efficient and robust elastic analysis 
scheme as compared to the other FEM-T3 and FEM-Q4 approaches. Figs. 4.8 and 4.9 
show the displacement solutions computed by ES-FEM-T3 converged with less 
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computing efforts (i.e. numbers of elements and numbers of DOFs) as compared to 
FEM-T3 and FEM-Q4. 

 
Figure 4.7 Example 1: Double-edge notched problem (a) geometry and loading (b) ES-

FEM-T3 model of a triangle mesh (the thick solid lines denote nodal restrained 
directions). 

 
Figure 4.8 Example 1: Convergence of horizontal displacement results. 
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Figure 4.9 Example 1: CPU times run for various FEM models.  

 
Figure 4.10 Example 1: Convergence of lateral displacement results for various 

automatic adaptive mesh algorithms. 

Moreover, the ES-FEM-T3 incorporated the automatic adaptive scheme adopting 
recovery-based strain error functions. The lateral displacements v and strain energy 
responses (displayed in Figs. 4.10 and 4.11, respectively) were successfully computed 
for various mesh refinements, and compared with those in other standard FEM models 
adopting the same adaptive algorithm. 
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Figure 4.11 Example 1: Convergence of strain energy results for various automatic 

adaptive mesh algorithms 

a)  

b)  

c)  

Figure 4.12 Example 1: Automatic adaptive meshes with corresponding von Mises 
stress distributions. (a) 150 elements – relative error 14.16% (b) 199 elements – 

relative error 8.89% (c) 360 elements – relative error 5.78% 
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As shown in these Figs. 4.10 and 4.11, the analysis solutions accurately converged to 
the reference values with minimum numbers of DOFs. The mesh discretized patterns 
in Fig. 4.12 as expected progressively refined over the concentrated stress singularity 
and discontinuity areas. 

4.4.2 Example 2: Prandtl’s Punch 

The second example considers a well-known Prandtl’s punch problem with flexible 
foundation drawn in Fig. 4.13a). The footing was modeled as a total uniformly 
distributed loads of 10. The material properties employed were: E = 104, v = 0.25 and 
t = 1. In view of symmetry in both geometry and loading configurations, only half of 
the structure is modeled in plane strain. The characteristic discrete structural model in 
Fig. 4.13b) contains 256 three-node elements. 

 
Figure 4.13 Example 2: Prandtl’s punch (a) geometry and loading, (b) ES-FEM-T3 

model of triangle mesh, (thick solid lines denote nodal restrained directions) 
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Figure 4.14 Example 2: Convergence of strain energy results from various analysis 

methods. 

The proposed automatic adaptive ES-FEM-T3 analysis approach was successfully 
processed to obtain elastic strain energy response solutions. The analysis results 
computed are plotted with their associated DOFs in Fig. 4.14, where those of some 
other standard FEMs, namely FEM-T3 with mesh adaptive scheme and ES-FEM-T3 with 
uniform mesh refinement. It is clear that all methods produce the solutions converged 
to the reference value with the sufficient fine numbers of discrete elements. 

 
Figure 4.15 Example 2: Convergence rate of runtime versus strain energy between 

uniform and adaptive ES-FEM-T3 models 

Once again, the proposed automatic adaptive ES-FEM-T3 approach provided the fast-
converged strain energy solutions as compared to ES-FEM-T3 with uniform mesh 
refinement. The computing times as required for successfully converging the results by 
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automatic mesh adaptive recovery-based strain algorithm, as displayed in Fig. 4.15, 
were less than those from standard uniform mesh refining technique. The von Mises 
stress results corresponding to automatically adaptive meshes are depicted in Fig. 4.16. 
It illustrates the mesh refinements localizing over strong stress discontinuity areas. 

      
(a) 256 elements – relative error 7%   -   (b) 637 elements – relative error 4.27% 

 
(c) 1565 elements – relative error 2.73% 

Figure 4.16 Example 2: Automatic adaptive meshes with corresponding von Mises 
stress distributions. 

Remarks: 

The novel ES-FEM-T3 approach with an automatic AMR algorithm has been presented 
to efficiently and accurately provide the response solution of elastic structures. The 
automatic AMR adopted the newest vertex bisection algorithm with recovery-based 
error function. A number of numerical benchmarks (including both benchmarks and 
practical in-plane structures) were successfully solved using the proposed analysis 
scheme. Two of which are given in this paper. These illustrate robustness of the 
proposed analysis method, in which the adaptive ES-FEM-T3 approach provided the 
fast convergence of elastic response solutions as compared to conventional FEMs. The 
computed results agreed well with all reference values, and thus evidenced the 
computational advantages in yielding the close-to-exact solutions for modest 
computing resources. 
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CHAPTER 5 AUTOMATIC ADAPTIVE SINGULAR ES-FEM-T3 

5.1 Introduction 

The numerical solutions from Chapter 4 illustrate the robustness of the proposed 

analysis scheme with fast convergence of the adaptive ES-FEM-T3 against the standard 

FEMs. These challenging problems are successfully captured the presence of stress 

singularity or discontinuity field by a sufficient fine mesh around the singularity point. 

However, if we further zoom in a local area of triangle elements surrounding the crack-

tip point, a linearly approximate interpolation will not properly represent for the 

singular solution fields. Therefore, in this Chapter, another layer of singular elements 

around the crack-tip point is combined with the remaining area of unchanged three-

node triangle element for sovling the cracking problems. 

Adopting the recovery-based error function in energy norm for a sES-FEM-T3-5, (Hung 

Nguyen-Xuan et al., 2013) predicted accurately the singular stress field of arbitrary 

order around re-entrant corners (free-free BC on angle faces).  

The proposed adaptive mesh implementation adopted a similar recovery-based error 

indicator, but in L2-norm, in singular ES-FEM-T3 model is conducted in this chapter for 

problems of having angular corners under some other BCs. Two numerical examples 

about cracking problems, one is the same Example 1 of double-edge notched 

specimen in previous Chapter and another is the concrete dam with a crack in the 

footing, both of them in the plane strain condition.  

5.2 Adaptive Algorithm Implementation 

The adaptive algorithm adopted in the singular ES-FEM-T3 is similar as that in Section 

4.2. For regular three-node triangle elements which are not directly related to the 

crack-tip, the adaptive procedure is exactly the same as three-node elements in ES-

FEM-T3. Therefore, we will not repeatedly this procedure in-detail in this Chapter. The 

following parts propose an error indicator that is suitable and properly implemented 

into the proposed mesh adaptation for the singular ES-FEM-T3 for singular problems. 
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5.2.1 Error Assessment in Singular ES-FEM-T3. 

5.2.1.1 Global Recovery-Based Error Estimator in L2 and Energy Norm. 

In the singular ES-FEM-T3, the recovery-based error estimator in L2-norm is performed 
based on both regular three-node triangle elements and five-node singular triangle 
elements. 
The total ZZ-type error estimator 
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where s,,l l   is recovery-based error indicator of the l-th regular and singular triangle 
element in the singular ES-FEM-T3, 

s,l  in L2-norm reads 
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where s  is the numerical solution for stress of singular elements and R

s  is the 
recovery stress field of singular elements, which will be defined in the next section for 
singular ES-FEM-T3 model. 
In this singular model, the numerical solution s  of the singular smoothing domains, 

e.g. 1-A2-A1-2-B1-B2-1 in Fig. 5.1, has two different values for two layers, namely 1-A2-

4-B2-1 and A2-A1-2-B1-B2-4-A2, respectively. In order to compute the error in Eq. (5.2), 

we apply the simple area-weighted averaging technique to obtain the unique solution 

(stress or strain) in each singular smoothing domain by 
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where ,,a s a

i kB A  denote the smoothed strain–displacement matrix and areas of the a-

th layer of the singular smoothing domains s
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As shown on the Fig. 5.1, we have: 
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Figure 5.1. Averaging the smoothed stress for singular smoothing domains. 

5.2.1.2 Recovery Stress Field in Singular ES-FEM-T3. 

A recovery stress field, R

s , is constructed from the smoothed nodal stresses obtained 
from the singular ES-FEM-T3 together with the linear shape functions of the standard 
constant strain element. 
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( , ) ( )

e
nn

R R

s i s

i

N x y i 
=

=  (5.5) 

where 3e

nn =  denote the number of original field nodes of an singular triangle 
element, Ni (x, y) (i=1,2,3) contains shape functions of the corresponding nodes. (these 
shape functions are the same as in the conventional FEM-T3), ( )R

s i  contains the 
nodal stresses at the i-th (i=1,2,3) node of the singular element in singular ES-FEM-T3 
and is presented in the next section. 

5.2.1.3 Evaluation of Stress at Nodes in Singular ES-FEM-T3. 

The nodal stress (i)R

s  in singular ES-FEM-T3 is also computed using the similar simple 
nodal averaging technique for all nodes in the domain.  
In a similar way as in ES-FEM-T3, the nodal stresses ( )R i  are the area-weighted 
averaged values of smoothed stresses from smoothing domains (SDs) surrounding and 
sharing that node. Three cases corresponding to three different types of node will be 
conducted in this model as illustrated in Figs. 5.2 a, b and c), namely regular node, 
node directly connected to singular point and singular node (point), respectively. 
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where ni
s denote the number of SDs around the i-th node, 

1

A

i
sn

ns

i k

k

A
=

=  is the total 

area of all SDs sharing the i-th node as illustrated in Fig. 5.2, ,s k  is the smoothed 
stress of smoothing domains 

k  
For the nodes in case b, the layer of singular SDs closes the node will be considered 
for computing. Similarly in case c, the layer of singular SDs directly connected to the 
singular node is used.  

 

 
Figure 5.2. The sub-/SDs used to calculate the recovery nodal stresses in the singular 

ES-FEM-T3 
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5.3 Illustrate Examples 

The two numerical examples related to cracking problems are used in this Chapter. 

One is the double-edge notched specimen in previous Chapter and another is the 

well-known concrete dam with a crack in the footing, both of them in the plane strain 

condition. The first example in linear elastic is solved again to provide a higher level 

of accuracy using the proposed mesh adaptation adopted a layer of singular triangular 

element around the crack-tip so-called adaptive singular ES-FEM-T3. Whereas the 

second example was introduced (Theme, 1999) for the safety assessment of the 

concrete gravity dam. Several numerical models, such as the bilinear mixed FEM by 

(Tangaramvong & Tin-Loi, 2012) or scaled boundary FEM by (Zhong, Li, Ooi, & Song, 

2018), have been applied for solving the problem of crack propagation at the interfaces 

between a concrete dam and a rigid foundation. The density of mesh around the crack 

tip is expected to be finer than others. The proposed mesh adaption in the framework 

of the singular ES-FEM-T3 is used to provide the static-elastic responses of present 

structure. 

5.3.1 Example 1: Double-Edge Notched Specimen 

The same problem as in Section 4.4.1 is considered in this example, but using the 

adaptive singular ES-FEM-T3. 

Compared with the results obtained from the previous Chapter, the adaptive singular 
ES-FEM-T3 converged with a more reasonable computing efforts (DOFs) in terms of both 
the lateral displacements v and strain energy solutions (displayed in Figs. 5.3 and 5.4, 
respectively). Moreover, either ES-FEM or FEM all provide solution towards reference 
values adopting the same proposed approach. 
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Figure 5.3 Example 1: Convergence of lateral displacement results from adaptive ES-

FEM-T3 and adaptive singular ES-FEM-T3  

 
Figure 5.4 Example 1: Convergence of strain energy results from adaptive ES-FEM-T3 

and adaptive singular ES-FEM-T3  

Within the framework of singular ES-FEM-T3, the present adaptive mesh 

implementation significantly reduces the recovery-based relative error compared to 

the normal uniform refinement strategy. The value from adaptive singular ES-FEM-T3 

navigates to the zero value, while that from uniform singular ES-FEM-T3 still stands at 

a very high value (e.g. less than 5% can be obtained with about 500 DOFs as shown in 

Fig. 5.5. 
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Figure 5.5 Example 1: Convergence of relative error results from adaptive singular ES-

FEM-T3 and uniform singular ES-FEM-T3  

5.3.2 Example 2: Concrete Gravity Dam 

A concrete gravity dam (Bolzon, 2017) depicted in Fig. 5.6a) with a self-weight of 
24 kN-m-3 was supported by a solid foundation and applied by the hydraulic pressure 
(water weight of 10 kN-m-3) at an upstream face. The proposed analysis algorithm was 
performed to tra the complete responses between the overflow water level  (unit-
m) and uplift v (m) at an upstream corner base. The concrete body assumed the elastic 

homogeneous material properties (E = 24  106 kN-m-2 and v = 0.15), and the 
potential damaged interface c was described by the mode-I cohesive fracture, where 
the smooth interface was suitably discretized into the set of c contact points k. The 

tensile traction strength of 0

kk

cr r e −=  (kN) was employed with the initial capacity of 

r0 = 300 kN-m−2 and the stress degradation rate of  = 105 (viz., immediate loosing of 
contact tractions at crack openings). In addition to the upstream hydraulic pressure, 
the two uplift load pk

c Cases i perfect drainage (pk
c=0) and Case ii imperfect drainage 

given by 0(1 )
kk

cp p e −= − , established along the cracked interface (i.e., k > 0), 
where p0 is a water pressure at the bottom face and  = 33.33 for an uplift pressure 
distribution. 
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Figure 5.6 Example 2: Concrete Dam (a) geometry and loading, (b) ES-FEM model of 

triangle mesh 

The structure was discretized as the initial characteristic three-node ES-FE model in 
plain strain (containing 122 elements with 158 degrees of freedom) in Fig. 5.6b). The 
proposed approach was successfully performed for both analysis cases under 
monotonic increases of  = 0.1 up to the predefined uplift limit of vlimit = 0.1 m. For 
the imperfect drainage Case ii, the water level increment of  = -0.1 was applied over 
the post-collapse behaviours. The resulting α - v responses for the two uplift cases 
were plotted in Fig. 5.7, where the maximum overflow water levels of αmax = 26.2 m 
and 12.7 m were computed for Cases i and ii, respectively. The corresponding von Mises 
stress distributions to the αmax are depicted in Figs. 5.8a) and 5.8b). In essence, these 
illustrate the efficiency of the automatic adaptive ES-FE constructions, namely mesh 
refinements following the moving crack tips along the damaged interface c and 
coarsern meshes after loosing of the interface tractions, and the robustness of the 
proposed ES-FE complementarity algorithm in providing the complete post-collapse 
behaviours at modest computing resources. 
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Figure 5.7 Example 2: α - v responses 

Deformed Mesh with Distributed Von 
Mises Stress – Imperfect Drainage 

 
(a) 

Deformed Mesh with Distributed Von 
Mises Stress – Perfect Drainage 

(b) 

Figure 5.8 Example 2: (a) von Mises stress distribution at max for an imperfect 
drainage case, (b) von Mises stress distribution at vlimit for a perfect drainage case. 
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CHAPTER 6 CONCLUSION AND FUTURE RESEARCH 

The novel ES-FEM-T3 and singular ES-FEM-T3 approaches employed automatic AMR 
algorithm to efficiently and accurately provide the response solution of elastic 
structures. The automatic AMR adopted the newest vertex bisection algorithm and 
recovery-based error function in L2-norm. A number of numerical benchmarks 
(including both mechanics problems and practical in-plane structures) were 
successfully solved using the proposed analysis scheme. Three of which are given in 
this study. These illustrate robustness of the proposed analysis method, in which the 
adaptive singular ES-FEM-T3 approach provided the superconvergence of elastic 
response solutions as compared to the other models for crack problems and the 
adaptive ES-FEM-T3 approach for general discontinuity problems (e.g. discontinuity 
applied load). The computed results agreed well with all reference values, and thus 
evidenced the computational advantages in yielding the close-to-exact solutions for 
modest computing resources. In addition, it is clear that the refinement properly focus 
around the crack-tip. 
The present approach has been also applied to trace the full responses of concrete 
gravity dam with damaged interfaces at solid foundation. The stepwise holonomic 
algorithm is employed to captures the post-collapse behaviours of the concrete dam 
under hydraulic pressures. This algorithm within the automatic adaptive ES-FEM 
provides the robust modelling and solution framework to capture crack propagation in 
fracture mechanics applications. 
A nontrivial extension of the proposed analysis scheme is the applications in contact 
and nonlinear fracture mechanics, where the structures are severely subjected to the 
numerically instabilizing problems involving from stress singularity at crack tips. 
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