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ABSTRACT (THAI) 
 รัฐพล หลิน : แบบจำลองการเรียนรู้เชิงลึกสำหรับการทำนายอาร์เอ็นเอสายยาวที่ไม่ถูกแปลรหัสและ

อาร์เอ็นเอนำรหัสพร้อมการตีความแบบจำลอง. ( A DEEP LEARNING MODEL FOR PREDICTING 
LONG NON-CODING RNA AND MESSENGER RNA WITH MODEL INTERPRETATION) อ.ที่
ปรึกษาหลัก : รศ. ดร.ดวงดาว วิชาดากุล 

  
อาร์ เอ็น เอสายยาวที่ ไม่ถูกแปลรหัส  (long non-coding RNA: lncRNA) มีบทบาทสำคัญ ใน

กระบวนการทางชีววิทยาและยังพบว่ามีส่วนเกี่ยวข้องกับการเกิดโรคต่าง ๆ จากการพัฒนาเทคโนโลยีการค้นหา
ลำดับเบสในปัจจุบันนำไปสู่การค้นพบสายอาร์เอ็นเอที่ยังไม่ถูกระบุประเภทเป็นจำนวนมาก  การจำแนกสายอาร์
เอ็นเอเหล่านี้ด้วยการทดลองทางชีววิทยามีค่าใช้จ่ายสูงและใช้เวลานาน  ดังนั้นการจำแนกด้วยเครื่องมือหรือ
ซอฟต์แวร์จากการคำนวณจึงเป็นอีกทางเลือกที่ประหยัดและรวดเร็ว เครื่องมือทางคอมพิวเตอร์ที่ใช้ในการจำแนก
อาร์เอ็นเอสายยาวที่ไม่ถูกแปลรหัสมีจำนวนมากถึงอย่างไรก็ตามเครื่องมือเหล่านี้ไม่มีการอธิบายคุณลักษณะ
สำคัญที่ใช้ในการจำแนก ดังนั้นงานวิจัยนี้นำเสนอเครื่องมือใหม่ชื่อ  Xlnc1DCNN ที่สามารถจำแนกอาร์เอ็นเอ
สายยาวที่ไม่ถูกแปลรหัสและอาร์เอ็นเอนำรหัสพร้อมทั้งอธิบายผลลัพธ์จากการทำนาย  แบบจำลองนี้ถูกพัฒนา
ด้วยแบบจำลองโครงข่ายประสาทเทียมแบบคอนโวลูชันหนึ่งมิติ และใช้ DeepSHAP ในการอธิบายคุณลักษณะที่
ใช้ในการจำแนก จากผลการประเมินแบบจำลองด้วยข้อมูลสายอาร์เอ็นเอมนุษย์ชุดทดสอบพบว่า Xlnc1DCNN มี
ประสิทธิภาพที่เหนือกว่าเครื่องมืออื่น ๆ ด้วยตัวชี้วัดความแม่นยำ (accuracy) และ F1-score อีกทั้งยังมีความ
เป็นนัยทั่วไป (generalization) สำหรับสปีชีส์อื่น ๆ ผลลัพธ์จากการอธิบายแบบจำลองพบว่าการจำแนกอาร์เอ็น
เอสายยาวที่ไม่ถูกแปลรหัส พบรูปแบบที่ไม่อนุรักษ์ พบรูปแบบนิวคลีโอไทด์สายสั้นที่ไม่ทราบฟังก์ชัน หรือเป็น
บริเวณที่พบเฉพาะทรานส์เมมเบรนฮีลิกซ์ ในขณะที่ส่วนอาร์เอ็นเอนำรหัสบริเวณที่สำคัญจะพบโปรตีนโดเมนหรือ
วงศ์โปรตีน อีกทั้งผลลัพธ์ที่แบบจำลองทายผิดพบบรรณนิทัศน์ที่ขัดแย้งระหว่างฐานข้อมูลสาธารณะ โดยพบ
โปรตีนโดเมนหรือวงศ์โปรตีนในอาร์เอ็นเอสายยาวที่ไม่ถูกแปลรหัสหรือพบบริเวณที่มีความผิดปกติของสาย
โปรตีน เครื่องมือนี้เปิดให้ใช้งานแบบสาธารณะที่ https://github.com/cucpbioinfo/Xlnc1DCNN 
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 Rattaphon Lin : A DEEP LEARNING MODEL FOR PREDICTING LONG NON-CODING RNA 
AND MESSENGER RNA WITH MODEL INTERPRETATION. Advisor: Assoc. Prof. 
DUANGDAO WICHADAKUL 

  
Long non-coding RNAs (lncRNAs) play important roles in many biological processes 

and are found to be associated with several diseases. The development of next-generation 
sequencing technologies has discovered numerous unannotated transcripts. However, 
classifying these unannotated transcripts by using biological experiments is very time-
consuming and expensive. Thus, a computational approach is considered as an alternative 
solution which is faster and cheaper. Many existing lncRNA identification tools are available, 
these tools lack an explanation of which features contributed to their prediction results. Here, 
we present Xlnc1DCNN, a tool for distinguishing long non-coding RNAs (lncRNAs) from protein-
coding transcripts (PCTs) together with a prediction explanation. We developed the model by 
using a one-dimensional convolutional neural network integrated with DeepSHAP. On the 
human test dataset, we showed that Xlnc1DCNN outperformed other lncRNA identification 
tools in terms of accuracy and F1-score and had a generalization to other species.  We also 
explained the prediction result to understand further how the model makes predictions. The 
explanation results revealed that most of the lncRNA transcripts were identified without any 
conserved regions, short patterns with unknown functions, or only regions of transmembrane 
helices while protein-coding transcripts were mostly identified with protein domains or 
families. Some of the incorrect predictions of the model also found inconsistent annotations 
among the public databases with lncRNA transcripts containing protein domains, protein 
families, or intrinsically disordered regions (IDRs). Xlnc1DCNN is freely available at 
https://github.com/cucpbioinfo/Xlnc1DCNN. 
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Chapter 1 
 

Introduction 
 
Long non-coding RNA sequences (lncRNAs) are RNAs longer than 200 nucleotides that 
are not translated into proteins. lncRNAs have many crucial roles in several biological 
processes, such as gene silencing, gene regulation, gene expression, acting as 
molecular scaffolds, chromatin remodeling, etc. [1-3], and some studies also found 
that lncRNAs have been linked to human diseases such as diabetes or cancers [4-7]. 
A large volume of unannotated transcripts has been discovered by the advancement 
of next-generation sequencing technology, i.e., RNA Sequencing (RNA-Seq) [8, 9]. 
Classifying unannotated transcripts through biological experimentation is very time-
consuming and cost intensive. Therefore, numerous studies have proposed 
computational approaches to identify these unclassified sequences that are quicker 
and cheaper. 
 The existing computational approaches, e.g., CPC2 [10], CNIT [11], PLEK [12], CPAT 
[13], FEELnc [14], RNAsamba [15], LncADeep [16], and lncRNA_Mdeep [17], obtained 
training features by using feature extraction methods. Most of them trained their 
proposed algorithm with similar features, such as ORF length, Fickett and hexamer 
scores, and then combined with additional extracted structural and sequence 
features. However, none of them described how each feature affected the model's 
predicted outcomes. 

Deep learning algorithms have gained a lot of popularity, especially for datasets 
with many data points and dimensions, since the algorithms will automatically learn 
the complex patterns within features as they are trained. Convolutional neural 
networks (CNNs), especially the 2D-CNNs, have dominated many computer vision 
applications, e.g., image classification, image segmentation, and image detection [18], 
because of their excellent capability for automatically learning and extracting 
complex patterns within the input data. While 1D-CNN also achieved state-of-the-art 
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performance in several applications, such as ECG monitoring and speech recognition 
which outperformed the traditional approaches [19]. For detecting irregular 
heartbeats applications, [20-22] demonstrated that using only a simple 1D-CNN 
architecture could achieve excellent prediction accuracy without explicitly addressing 
and extracting features for training their models. 
 Understanding the decision-making of any artificial intelligent model can help 
users trust and comprehend the model's prediction. It can assist in illustrating what 
the models perceive and explain how these perceptions relate to fundamental 
human knowledge. In general, most complicated black-box models (e.g., deep neural 
networks, ensemble models, gradient boosting tree algorithms) have demonstrated 
superior learning performance, but most are uninterpretable. Explainable artificial 
intelligence (XAI) has lately become a significant research area [23] that aims to 
understand these complicated black-box models. LIME [24] and SHAP [25] is one of 
the approaches to obtain an explanation from a complex black-box model. LIME 
explained each individual prediction by creating a local surrogate model while SHAP 
(Shapley Additive exPlanations) introduced SHAP values representing the model's 
unified measure of feature importance and SHAP value estimation methods. Another 
method to explain any deep learning models is DeepSHAP. DeepSHAP [26] was 
developed based on the relationship between DeepLIFT [27] and the original SHAP 
to explain the deep learning model and further refined and extended with stacks of 
mixed model types and relative background distributions. 
 Classifying lncRNA and mRNA sequences based on training features still have 
some ambiguities, given the promising outcomes of 1D-CNN in prior applications. In 
this thesis, we present Xlnc1DCNN, a long non-coding RNA identification tool 
developed by 1D-CNN integrated with a prediction explanation. Xlnc1DCNN was 
solely trained by nucleotide sequences without applying any feature extraction 
method. We showed that Xlnc1DCNN outperformed other existing tools in terms of 
accuracy and F1-Score on the human dataset while maintaining generalization among 
other testing species. We also provide the insight obtained from the explanation 
results. DeepSHAP was used to generate SHAP values that represented what our 
model learned. Using our in-house Python code, we then visualized each 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3 

nucleotide's contribution and amino acid's contribution. The explanation of true 
positives (i.e., lncRNA transcript sequences) revealed that the model classified a 
sequence as lncRNA if it comprised only transmembrane helices or an N-terminal 
signal peptide and no important regions. The explanation of true negatives (i.e., 
mRNA transcript sequences) revealed that the model could learn and utilize protein 
domains or families within the input sequences to predict the sequences as mRNAs. 
The explanation of false positives (i.e., mRNA transcript sequences predicted as 
lncRNA transcript sequences) revealed that the model was incapable of capturing 
important regions representing protein domains or families or identifying important 
regions contributing to both lncRNA and mRNA. A small number of false-positive 
sequences were also found with varying transcript types across databases. Finally, 
the explanation for false negatives (i.e., lncRNA transcript sequences predicted as 
mRNA transcript sequences) revealed that the model captured protein domains or 
families within these lncRNA sequences, hence, misclassifying them as mRNAs. 
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Chapter 2 
 

Literature Review 
 
In this chapter, we will discuss about previous works that are related to this research. 
First, we will go through the existing protein-coding and long non-coding RNA 
identification tools. Second, we will explore some previous work about the 
application of 1D-CNN. The last topic will be about methods for the interpretation of 
machine learning and deep learning models. 
 

2.1 Protein-coding and long non-coding RNA identification tools 
 
In this section, we will discuss about the existing tools for protein-coding and long 
non-coding RNAs identification. We selected eight tools: CPAT, PLEK, FEELNC, CPC2, 
LncADeep, CNIT, RNAsamba, and lncRNA_Mdeep to compare with our proposed 
method. All tools were chosen by their performance, availability, and reliability. The 
overview of each tool is shown in Table 1. 
 
Table 1: The overview of selected tools to be compared with the proposed model 

Software Algorithm Supported Species Published 
Year 

Web 
Interface 

CPAT Logistic 
Regression 

Human, Mouse, Fly, 
Zebrafish 

2013 Yes 

PLEK SVM All 2014 No 
FEELNC Random Forest All 2017 No 
CPC2 SVM Human, Chimpanzee, 

Mouse, Zebrafish, 
Xenopus, Fruit fly 

2017 Yes 

LncADeep Deep Learning All 2018 No 
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Software Algorithm Supported Species Published 
Year 

Web 
Interface 

CNIT XGBoost Animal, Plant 2019 Yes 
RNAsamba Deep Learning All 2020 Yes 

lncRNA_Mdeep Deep Learning All 2020 No 
 
 To comprehend the method behind each tool, we will briefly review these eight 
tools from the aspects of their machine learning algorithms and the training features. 
 

2.1.1 CPAT 
 
CPAT [13] is an alignment-free coding potential assessment tool based on a logistic 
regression model. CPAT is trained with four basic sequence features that are 
calculated from the sequence directly, including size of open reading frame (ORF), 
ORF coverage, Fickett TESTCODE score, and hexamer score. CPAT also supports a 
web interface for users to submit sequences and receive back the sequence 
prediction results. 
 

2.1.2 PLEK 
 
PLEK [12] is another alignment-free computational tool for protein-coding and non-
coding  RNA identification. PLEK uses a k-mer scheme and sliding windows to create 
features from RNA sequences. PLEK then was trained with an SVM model using a 
radial basis function kernel. 
 

2.1.3 FEELNC  
 
FEELNC [14] is also an alignment-free tool based on a Random Forest model that 
was trained with the general sequence features (multi k-mer frequencies between 
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protein-coding and lncRNAs, relaxed ORF, and RNA sequence length). FEELNC also 
can predict and analyze coding potential even without lncRNAs learning dataset. 
 

2.1.4 CPC2 
 
CPC2 [10] is the upgraded version of CPC1 [28], which runs ~1000 times faster and 
more accurate. CPC2 used four intrinsic features, including Fickett score, ORF length, 
ORF integrity, and isoelectric point. CPC2 then employed LIBSVM package to train an 
SVM model with the standard radial basis function kernel (RBF kernel). The training 
data of CPC2 were human protein-coding sequences and non-coding sequences from 
RefSeq. CPC2 also has a web interface for coding potential calculator that allows 
users to submit sequences. 
 

2.1.5 LncADeep 
 
LncAdeep [16] proposed a tool for lncRNA identification and functional annotation. 
For lncRNA identification, LncAdeep trained with sequence intrinsic features and 
homology features. LncAdeep was implemented by using a deep belief network 
(DBN) and built as a stack of restricted Boltzmann machines (RBMs). 
 

2.1.6 CNIT 
 
CNIT [11] is the upgraded version from CNCI, which runs ~200 times faster and has 
better accuracy in more species, especially for plants. CNIT used the nucleotide 
sequences intrinsic composition, a nucleotide triplet called ANT, as training features. 
A total of 67 features were used to train the XGBoost models. CNIT also provides a 
web server interface and a stand-alone package. 
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2.1.7 RNAsamba 
 
RNAsamba [15] is a tool for predicting the coding potential based on a novel neural 
network classification model. RNAsamba used the IGLOO architecture and then was 
solely trained with sequence information. RNAsamba also provides a docker image, a 
web server interface, and a stand-alone package. 
 

2.1.8 lncRNA_Mdeep 
 
lncRNA_Mdeep [17] proposed an alignment-free multimodal deep learning 
framework for lncRNA identification. lncRNA_Mdeep used three main features 
including OFH features (the length and coverage of ORF, Fickett score, and Hexamer 
score), k-mer features, and one-hot encoding with a simple CNN layer then 
concatenated these features and trained using deep neural networks. 
 

2.1.9 Summary 
 
All the reviewed tools have relied on feature extraction methods. Most used similar 
features, such as the Fickett score or ORF length. None of them explain how each 
feature contributed to the prediction output. For example, the ORF length and 
Fickett score range that the sequences will classify as lncRNAs or mRNAs. Hence, the 
explanation of each feature that contributes to the prediction output remains 
challenging. 
 

2.2 Application of 1D-CNN 
 
The CNNs are widely used due to their good capability for extracting features from 
input data. In this section, we will present the applications of 1D-CNN. 
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2.2.1 Electrocardiogram (ECG) Monitoring 
 
Cardiovascular disease (CVD) is a leading cause of death worldwide. One of the 
indicator symptoms of cardiovascular disease is irregular heartbeats. 
Electrocardiogram (ECG) is a common approach to diagnose many heart problems by 
using an electrical signal to monitor and analyze the heart’s health.  
 Several studies for detecting irregular heartbeats have been proposed. C.-H. Hsieh 
et al. [22] illustrated that a simple 1D-CNN architecture (Table 2) can outperform the 
existing DL-based methods for detecting an arrhythmia from time-series ECG signal. 
 
Table 2: The 2nd proposed 1D-CNN architecture from [22] 

 
 U. R. Acharya et al. [20] proposed two CNN architectures (net A and net B). A 1D-
CNN architecture and parameters are shown in Figure 1 and Table 3. The net B CNN 
architectures from [20] yielded 94.90% accuracy, 99.13% sensitivity, and 81.44 % 
specificity for five seconds of ECG duration. 
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Figure 1: The architecture of proposed 1D-CNN for net B from [20] 

 
Table 3: The parameters of 1D-CNN architecture for net B from [20] 

 
 
 Another method to detect an abnormal heartbeat, Fenli et al. [21], used high-
frequency murmurs from phonocardiogram (PCG) as a training set to classify healthy 
and confirmed cardiac patients before the ECG signals from patients will become 
irregular. A simple 1D-CNN architecture was also used in [21] as a learning model for 
detecting irregular heartbeat, as shown in Figure 2. 
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Figure 2: The proposed 1D-CNNs structure from [21] 

 

2.2.2 Summary 
 
The applications for detecting irregular heartbeats [20-22] showed that they could 
achieve high accuracy using a simple 1D-CNN without applying any further feature 
extraction methods from their datasets. 
 

2.3 Machine Learning Model Interpretation Methods 
 
In this final topic, we will describe some works about the machine learning 
interpretation methods that would be beneficial for interpreting our proposed 
model. 
 Explaining simple machine learning models, such as decision trees or linear 
models, are easy to understand and can be interpreted by their decision nodes or 
weights. On the other hand, complex black-box models such as deep neural 
networks or ensemble models cannot be used for interpretation. Hence, it is 
challenging to understand the reason behind each prediction result. In order to 
understand the underlying cause for each prediction from complex black-box 
models, many interpretation methods have been proposed as a simplified 
explanation model for interpreting the original complex model. 
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 Recently, several interpretation methods have been published that correspond 
to the definition of additive feature attribution methods [25], such as LIME [24], 
DeepLIFT [27], SHAP, and DeepSHAP [25, 26].  
 

2.3.1 Additive feature attribution methods 
 
To explain a model, an additive feature attribution approach combines the impacts 
of all input feature attribution [25]. The explanation model g  can be explained as a 
linear function of the binary variable. We can approximate the output of z  with the 
attribution value for each i  from the model g  using the following Equation (1). 

     
0

1

( )
M

i i

i

g z z 
=

 = +
 (1) 

where i   is the feature attribution for a feature i , {0,1}Mz , and M is the 
number of simplified input features. If the feature i  is present then 1iz = , otherwise 

0iz = . 
 

2.3.2 LIME 
 
Local Interpretable Model-Agnostic Explanations (LIME) [24] is a method to explain 
any black-box machine learning model. The authors proposed a local surrogate 
model that is trained to explain individual prediction of the underlying black-box 
model.  
 Figure 3 demonstrates how LIME works, suppose we want to explain the 
prediction output of instance x , where x , from the complex black-box model 
f . LIME works by training a new local surrogate model g , where g  can be a linear 

model or decision tree. Using newly generated training data x , where x  are 
permuted samples around instance x  from a distance function x , the model g

should yield a good prediction result for local approximation but not necessary in 
global approximation. This kind of approximation is called local fidelity. 
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Figure 3: The red cross, an instance x , is an instance of interest to be explained. The 
black curve represents the decision boundary of the complex black-box model f . 
LIME generates new training data (blue and red dots) then weights them according to 
the distance between an instance x  (shown by size). LIME then trains a simple 
surrogate model g  with new training data. The dashed line mask the decision 
boundary of the explanation model g  
 
 LIME produces the explanation   from an instance x  by minimizing the loss 
function  (e.g., weighted square loss, mean squared error). The loss function 
measures how the prediction from the surrogate model g  is close to the prediction 
of the original model f and then penalizes with the model complexity ( )g . The 
explanation ( )x  can be expressed by the following Equation (2). 
 

     
( ) argmin ( , , ) ( )x

g G

x f g g 


= +

 (2) 
 

2.3.3 DeepLIFT 
 
DeepLIFT (Deep Learning Important FeaTures) [27] is a method to explain the deep 
learning model by differencing the input data from a selected ‘reference’, where a 
‘reference’ is selected according to the current objective for solving the problem. 
DeepLIFT uses the summation-to-delta property as shown in Equation (3) to obtain 
the explanation scores,  
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      1
i

n

x t

i

C t 

=

= 
  (3) 

 

 where 0t t t = − , t  is the prediction output from the model, 0t  is the reference,  

ix  is neuron i  to n  that are neceesary to compute t , and 
ix tC   is the amount of 

difference between the reference 0t  from the output t . 
 If we replace 

ix tC   with i and 0t  with 0 , then the explanation model of 
DeepLIFT will match the additive feature attribution methods (Equation (1)). 
 

2.3.4 SHAP 
 

SHAP (SHapley Additive exPlanations) [25] is a method to explain any machine 
learning model prediction. SHAP is based on the classic Shapley Values originated 
from game-theoretically optimal. 
 The intuition behind the classic Shapley values is to find a fair way for a coalition 
to distribute the “payout” among the “player” based on their contributions. 
Applying to a machine learning model, the “payout” and “player” refers to features 
and prediction output respectively and the Shapley values are considered as the 
feature importance values.  
 The Shapley value   of the feature i  from the model xf  can be obtained by 
the following Equation (4), 
 

     \{ }

| | !(| | | | 1)!
[ ( ) ( )]

| | !
i x x

S F i

S F S
f S i f S

F




− −
=   −

 (4) 
 
where F is the set of all input features and S  is a subset of the input features. 
 
 Finding the Shapley values   from Equation (4) requires retraining the model.

( )xf S i  is trained with present features where ( )xf S is trained without feature i . 
Then all possible subsets S F were computed and weighted average all possible 
differences. 
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 SHAP is the conditional expectation function from Shapley values of the original 
model. It provides the unique additive feature importance measure that defines the 
simplified inputs based on conditional expectations and satisfies three SHAP 
properties: local accuracy, missingness, and consistency. The local accuracy requires 
the summation of all feature contribution values from the explanation model to 
match the original model output. The missingness requires that the missing values 
from the original model have no impact on the explanation model. The consistency 
states that if a model changes and a feature has more contribution to the model, 
the contribution of the feature will increase or remain unchanged regardless of other 
features. 
 

2.3.5 Kernel SHAP (LIME + Shapley values) 
 
Heuristically choosing parameters for LIME in Equation (2) does not recover the 
Shapley values and could make LIME violate three properties of SHAP, i.e., local 
accuracy, missingness, and consistency.  
 To make LIME match the three properties of SHAP, [25] proposed a Kernel SHAP, 
a solution to avoid selecting LIME parameters in Equation (2) heuristically and also 
made Equation (2) recover the Shapley values. Kernel SHAP defines  , x  , and  
for Equation (2) as follows, 

      
( ) 0g =

 (5) 

     

( 1)
( )

( | |) | | ( | |)
x

M
z

M choose z z M z
 

−
 =

  −

 (6) 

     
2( , , ) [ ( ( )) ( )] ( )x x x

z Z

f g f h z g z z  



  = −
 (7) 

where | |z  is the number of non-zero elements in z . 
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2.3.6 DeepSHAP (DeepLIFT + Shapley values) 
 
DeepSHAP [25, 26] is a method to explain any deep learning models by obtaining 
SHAP values from a given background distribution. DeepSHAP builds the connection 
between Shapley values and DeepLIFT. To explain the selected deep learning 
model, DeepLIFT needs a single background to compare with the input instance, 
while DeepSHAP can use single or multiple backgrounds. DeepSHAP [26] showed that 
from the image classification problems, DeepLIFT selected a single background as a 
reference result in the bias explanation. On the other hand, DeepSHAP used multiple 
background distributions as references which could solve the bias problem. 
DeepSHAP also showed that the different representative background distributions 
could have different explanations.  
 

2.3.7 Summary 
 
LIME builds a local surrogate model to explain the model's prediction while SHAP 
computes and retrains the model based on features. SHAP also provides a better 
version of LIME called Kernel SHAP, which combines the strength of both LIME and 
SHAP. DeepSHAP is another proposed method from the authors of SHAP to explain 
any deep learning model and improve the computational performance. 
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Chapter 3 
 

Methods 
 
Basically, our task is to classify the input RNA sequences into two classes: (1) long 
non-coding RNA (lncRNAs) and (2) messenger RNA or protein-coding RNA. Long non-
coding RNA is a type of non-coding RNA, i.e., an RNA that will not be translated into 
protein. Still, it can function and involve in several biological mechanisms and 
diseases in the RNA form. In contrast, a messenger RNA or protein-coding RNA or 
protein-coding transcript (PCT) is an RNA that will be translated into a protein. An 
example of a lncRNA and a protein transcript is shown in Figures 4, 5, respectively.  
 

 
Figure 4: An example of a long non-coding RNA transcript from GENCODE in FASTA 
format 
 
 In this chapter, we will explain how our study will be conducted. We will use a 
1D-CNN model as our training model and compare model evaluation metrics with 
other tools. 

>ENST00000469289.1|ENSG00000243485.5|OTTHUMG00000000959.2|OTTHUMT00000

002841.2|MIR1302-2HG-201|MIR1302-2HG|535| 

TCATCAGTCCAAAGTCCAGCAGTTGTCCCTCCTGGAATCCGTTGGCTTGCCTCCGGCATTTTTG

GCCCTTGCCTTTTAGGGTTGCCAGATTAAAAGACAGGATGCCCAGCTAGTTTGAATTTTAGATA

AACAACGAATAATTTCGTAGCATAAATATGTCCCAAGCTTAGTTTGGGACATACTTATGCTAAA

AAACATTATTGGTTGTTTATCTGAGATTCAGAATTAAGCATTTTATATTTTATTTGCTGCCTCT

GGCCACCCTACTCTCTTCCTAACACTCTCTCCCTCTCCCAGTTTTGTCCGCCTTCCCTGCCTCC

TCTTCTGGGGGAGTTAGATCGAGTTGTAACAAGAACATGCCACTGTCTCGCTGGCTGCAGCGT

GTGGTCCCCTTACCAGAGTGAGGATGCGAAGAGAAGGTGGCTGTCTGCAAACCAGGAAGAGAG

CCCTCACCGGGAACCCGTCCAGCTGCCACCTTGAACTTGGACTTCCAAGCCTCCAGAACTGTG

AGGGATAAATGTATGATTTTAAAGTC 
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Figure 5: An example of a protein-coding transcript from GENCODE in FASTA format 

 

3.1 Data Preparation and Preprocessing 
 
We obtained the human datasets for training the proposed model from GENCODE 
(release 32) [29] and LNCipedia (Version 5.2) [30]. The sequences dataset of GENCODE 
contains 48,351 lncRNAs and 100,291 PCTs. For LNCipedia, we selected only high 
confidence lncRNAs, which contain 107,039 lncRNAs. Since we obtained datasets 
from multiple sources, we further removed identical lncRNAs from GENCODE and 
LNCipedia by using the CD-HIS-EST-2D program [31]. We removed sequences with 
more than 95% similarity out, leaving a total of 72,803 lncRNAs from LNCipedia. 
 To evaluate the generalization of the model, we prepared cross-species datasets 
from multiple species, including mouse (GENCODE, release M23) [29], chicken, gorilla, 
and cow (Ensembl, release 102) [32]. The generalization datasets of mouse, chicken, 
gorilla, and cow contained each with an equal number of sequences from each class 
32,000, 11,000,  8,000, and 8,000 sequences, respectively. 
 Finally, we preprocessed the sequences from all datasets by discarding 
sequences shorter than 200 bases and longer than 3,000 bases. We then performed 
one-hot encoding to encode sequences before training the proposed model. We set 
the lncRNAs and PCTs as the positive (1) and negative (0) class, respectively. We then 
stratified split the human dataset for training the model by 80% and 20% into the 

>ENST00000437963.5|ENSG00000187634.12|OTTHUMG00000040719.11|OTTHUMT000

00097862.5|SAMD11-204|SAMD11|387|UTR5:1-60|CDS:61-387| 

CAGCGCTTGGGGCTCGCGGGCCGCTCCCTCCGCTCGGAAGGGAAAAGTCTGAAGACGCTTATG

TCCAAGGGGATCCTGCAGGTGCATCCTCCGATCTGCGACTGCCCGGGCTGCCGAATATCCTCC

CCGGTGAACCGGGGGCGGCTGGCAGACAAGAGGACAGTCGCCCTGCCTGCCGCCCGGAACCT

GAAGAAGGAGCGAACTCCCAGCTTCTCTGCCAGCGATGGTGACAGCGACGGGAGTGGCCCCA

CCTGTGGGCGGCGGCCAGGCTTGAAGCAGGAGGATGGTCCGCACATCCGTATCATGAAGAGAA

GAGTCCACACCCACTGGGACGTGAACATCTCTTTCCGAGAGGCGTCCTGCAGCCAGGACGGCA

ACCTTCCCACC 
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training and test sets. The summary of human datasets for training the proposed 
model is shown in Table 4 and their distribution in Figure 6. 
 
Table 4: The summary of human datasets from GENCODE and LNCipedia 

Sequence Species Data Source Dataset Size 
< 200 
bps 

> 3,000 
bps 

Number of transcripts  
after cleansing 

mRNA Human GENCODE (release 32) 100,291 374 23,464 76,453 

lncRNA Human GENCODE (release 32) 48,351 291 3,486 44,574 

lncRNA Human LNCipedia (version 5.2) 72,803 0 8,799 64,004 

 
 

 
Figure 6: (A) Distribution of target class (B) Distribution of the sequences' length 

 

3.2 Model Architecture and Training Procedure 
 
In this study, we built and designed Xlnc1DCNN architecture from scratch. We trained 
our model in Python3 using Tensorflow library on NVIDIA GeForce GTX 1080 Ti, Intel 
Xeon Silver 4112 Processor, and CentOS Linux 7. The overview of the model 
architecture is shown in Table 5. 
 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 19 

Table 5: Hyperparameters of the proposed 1D-CNN architecture 

Layer Hyperparameter 
Conv 1D kernel size=57, stride=1 

Max-Pooling pool size=2 
Dropout p=0.3 
Conv 1D kernel size=57, stride=1 

Max-Pooling pool size=2 
Dropout p=0.3 
Conv 1D kernel size=57, stride=1 

Max-Pooling pool size=2 
Dropout p=0.3 
Flatten - 
Dense 256 

Dropout p=0.5 
Dense 256 

Dropout p=0.5 
SoftMax 2 

 

3.2.1 Model Hyperparameters Optimization 
 
 To get the above hyperparameters, we utilized 10% of the training set to perform 
hyperparameter tuning. We performed the grid search algorithm over the kernel and 
stride size of each convolutional layer, dropout rate of each dropout layer, batch 
size, and learning rate for model learning. The best kernel size was around 50 to 60, 
as shown in Figure 7A. After experimenting with various hyperparameters, we settled 
on a kernel size of 57 and a stride size of 1 for all convolutional layers. As shown in 
Figure 7B, the model performance always decreases after increasing the stride size 
for almost every kernel size in the search spaces.  
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Figure 7: The model performance on the validation set. (A) The model performance 
for each kernel size (B) The model accuracy of a kernel size of 57 for each stride size 

 

3.2.2 Model Hyperparameters in Details 
 
 Input data: We used 2D arrays of nucleotide sequences as the input data. The 
shape of the input data was (4, 3000). 
 
 Convolution Layer: We defined 120 filters, 57 kernel sizes, and 1 stride with 
zero-padding for each convolution layer in the model architecture. ReLu was used as 
the activation function of the model. We applied a weight constraint to force weights 
to have a magnitude below max-norm (3) to avoid overfitting. 
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 Max-Pooling Layer: We defined 2 pool sizes and 2 strides with zero-padding for 
each max-pooling layer in the model architecture. 
 
 Dropout Layer: We defined a 30% dropout rate for dropout layers connected 
with the max-pooling layer and a 50% dropout rate for dropout layers connected 
with fully connected layers. 
 
 Fully Connected Layer: We defined 256 neurons for each fully connected layer 
in the model architecture. ReLu was also used as the activation function of the 
model. We also applied weight constraints below max-norm (3). 
 
 Output Layer: We defined 2 neurons and SoftMax as the activation function. 
 

3.2.3 Details of learning 
 
We trained our models using stochastic gradient descent as a model optimizer with a 
momentum of 0.9, 0.01 learning rate, 128 batch size, and 120 epochs. The training 
and prediction time (on the test set) was around 5 hours and 11 seconds on NVIDIA 
GeForce GTX 1080 Ti. 
 

3.3 Model Selection 
 
To find the best candidate model for understanding its prediction. In this section, we 
compared our proposed 1D-CNN with other models presented here. All models were 
trained and evaluated using the human dataset.  
 First, we trained ResNet501D [33] with the same dataset for training our proposed 
1D-CNN. We then trained ResNet50V2 (2D-CNN) using the same dataset. However, we 
must transform the sequences dataset to make it trainable for 2D-CNN models. The 
transformation methods consist of basic, spiral, and pairwise features transformation, 
as shown in Figure 8. The basic and spiral transformations transformed the 
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sequences by rearranging them into a 2D rectangle with 60 x 50 input size. In the 
spiral transformations, the first nucleotide starts in the middle of the rectangle, while 
for the basic transformations, the first nucleotide starts at the left-most position, as 
shown in Figures 8A, B. For the pairwise features transformation, we converted the 
output of 1D-CNN into a 2D matrix by using the outer matrix product operation. The 
pairwise features transformation was inspired by the deep learning architecture for 
protein contact prediction [34]. 

 
Figure 8: Transformation methods for 2D-CNN (A) Basic (B) Spiral (C) Pairwise Features 

 
 Finally, we evaluated all models’ performance, as shown in Table 6. The best 
model was our proposed 1D-CNN, which outperformed all other models. Thus, we 
will call it as Xlnc1DCNN, and we will apply the model interpretation method to 
obtain all insights from the model prediction result made by this model. 
 
Table 6: Model performance of all candidate models 

Model Accuracy Sensitivity Specificity Precision F1 

Proposed 1D-CNN 94.53 96.22 92.13 94.55 95.38 

ResNet501D 87.66 95.22 76.91 85.42 90.06 

ResNet50V2 (Basic) 83.70 93.95 69.14 81.22 87.12 

ResNet50V2 (Spiral) 74.84 75.43 73.99 80.46 77.87 

ResNet50V2 (Pairwise Features) 91.68 94.86 87.17 91.30 93.05 
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3.4 Model Interpretation method 
 
We used DeepSHAP to interpret the prediction result of the proposed 1D-CNN. 

DeepSHAP requires input samples to be background distributions as references to 

approximate the SHAP values on conditional expectation. If the entire training 

dataset is used as a background, the expected values will be highly accurate; 

nevertheless, this will result in an unreasonable increase in computational cost. We 

then randomly selected the size of n background samples to observe the 

explanation results and to find the optimal background sample size, as shown in 

Figure 9. We found that the explanation results will remain unchanged on the 

background sample size greater than 200. Thus, 175 sequences were randomly 

selected from each class to serve as the representative background distributions. Due 

to the limitations of the available GPU, a total of 350 sequences were utilized. 

 
Figure 9: The explanation result from each size of the background sample 
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Figure 10: The process to obtain SHAP values for each amino acid 
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 DeepSHAP generates SHAP values that represent the contribution of each training 
feature to the model prediction. The proposed model was trained by using solely 
sequences data that were encoded by one-hot encoding. Thus, we summed up 
SHAP values from the array of one-hot encoding to represent the SHAP value for a 
single nucleotide. To represent the sequence of amino acids, we further summed up 
the SHAP values of three consecutive nucleotides in three reading frames. Finally, we 
plotted a color line representing each amino acid's contribution, as shown in Figure 
10. The red and blue colors indicate the contribution of the sequences to be 
classified as either an mRNA or a lncRNA. 
 

3.5 Evaluation 
 

3.5.1 Model Evaluation Metrics 
 
We used the following metrics to evaluate the model performance and compare it 
with other tools.  

TP TN
Accuracy

TP TN FP FN

+
=

+ + +  
TP

Sensitivity
TP FN

=
+  
TN

Specificity
TN FP

=
+  

TP
Precision

TP FP
=

+  
2

1
precision sensitivity

F
precision sensitivity

 
=

+  
 
TP, true positive; TN, true negative; FP, false positive; FN, false negative 
 
 We then evaluate our model performance with other tools with their versions in 
Table 7. 

Table 7: Software version 
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Software Version 
CPC2 Web based 
CNIT Web based 
PLEK 1.2 
CPAT 2.0.0 

FEELnc 0.1.1 
RNAsamba 0.2.4 
LncADeep 1.0 

lncRNA_Mdeep - 
 

3.5.2 Interpretation Evaluation Method 
 
We evaluated the explanation results of Xlnc1DCNN on the human test set by 
comparing the visualization results as described in Chapter 3.4 with the annotation 
results from bioinformatics tools/databases. We assumed that Xlnc1DCNN might 
capture some underlying biological knowledge within sequences. Thus, we utilized 
TMHMM [35] to identify transmembrane helices, Pfam [36] and InterPro [37] to 
identify protein domains or families. From the annotation results of InterPro, we 
considered the following InterPro entries, which include InterPro domain, family, 
homologous superfamily, repeat, and sites (i.e., active site, binding site, conserved 
site, PTM site). We also considered the results of MobiDB (integrated within InterPro) 
[38] to identify intrinsically disordered regions within sequences. 
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Chapter 4 
 

Results 
 
This chapter presents the model evaluation, interpretation, and annotation results of 
the proposed model. 
 

4.1 Model Evaluation Results 
 
We evaluated the Xlnc1DCNN performance and compared it with eight selected 
tools: CPAT, PLEK, FEELNC, CPC2, LncADeep, CNIT, RNAsamba, and lncRNA_Mdeep by 
using the human test set and cross-species datasets as described in Chapter 3.1. 
Using our human training set, we retrained tools that have a training option, including 
CPAT, FEELnc, and RNAsamba, and used the pre-trained models of tools that did not 
provide a training option, including CPC2, CNIT, and LncADeep. Although 
lncRNA_Mdeep and PLEK provided a training option, retraining both was very time-
consuming. Thus, we decided to skip retraining and used their pre-trained models.  
 

4.1.1 Performance Evaluation on Human Test set 
 
The evaluation results on the human test set (Table 8) show that Xlnc1DCNN 
achieved the highest on both accuracy (94.53) and F1-Score (95.38), the second-
highest precision (94.55) slightly lower than LncADeep, and the third-highest 
specificity (92.13) slightly lower than FEELnc and LncADeep. CPAT, CNIT, and CPC2 
achieved very high sensitivity, but their specificity was much lower. FEELnc was the 
only tool that was trained by a machine learning algorithm (random forest) but could 
achieve comparable performance with other tools trained with deep learning 
models. FEELnc, LncADeep, RNAsamba, and lncRNA_Mdeep performed well on the 
average of every metric, but overall, they were still lower than our proposed model. 
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Table 8: Evaluation results of all tools on the human test set 

Model TP FP TN FN Accuracy Sensitivity Specificity Precision F1 

Xlnc1DCNN 20,895 1,204 14,087 821 94.53 96.22 92.13 94.55 95.38 
CPC2 21,023 6,457 8,834 693 80.68 96.81 57.77 76.50 85.47 
CNIT 21,307 3,580 11,711 409 89.22 98.12 76.59 85.61 91.44 
PLEK 20,704 6,665 8,626 1,012 79.26 95.34 56.41 75.65 84.36 
CPAT 20,646 2,597 12,694 1,070 90.09 95.07 83.02 88.83 91.84 

FEELNC 20,023 1,182 14,109 1,693 92.23 92.20 92.27 94.43 93.30 
RNASAMBA 20,998 1,795 13,496 718 93.21 96.69 88.26 92.12 94.35 

lncRNA_Mdeep 20,813 1,799 13,492 903 92.70 95.84 88.23 92.04 93.90 
LncADeep 20,232 1,113 14,178 1,484 92.98 93.17 92.72 94.79 93.97 

 
 We further analyzed the classification power of all tools, as shown in Figure 11A. 
We plotted a receiver operating characteristic curve (ROC) and calculated the area 
under the curve (AUC) of all tools on the human test set which Xlnc1DCNN achieved 
the highest AUC (0.9825). We also calculated the accuracy of all tools on each range 
of sequence lengths as shown in Figure 11B, and Xlnc1DCNN also outperformed all 
tools on any range of sequences on the human test set. 

 

Figure 11: (A) ROC curve of all tools and their AUC on the human test set (B) 
Accuracy of all tools for any range of sequence lengths on the human test set 
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4.1.2 Performance Evaluation on Cross-Species Datasets 
 
In the previous section, we showed that Xlnc1DCNN could achieve high performance 
compared with other tools on the human test set. Thus, we also need to evaluate 
the generalization of the model to verify that it was not overfitting on the human 
dataset. We used cross-species datasets (mouse, gorilla, chicken, and cow) as 
described in Chapter 3.1 to evaluate the generalization of Xlnc1DCNN. Table 9 
shows that Xlnc1DCNN achieved the highest accuracy on gorilla dataset alongside 
RNAsamba and the second highest accuracy on mouse dataset. While on both 
mouse and cow datasets, LncADeep achieved the highest accuracy. Other evaluation 
metrics are shown in Appendices A1-A4. 
 

Table 9: Accuracy of all models on cross-species datasets 

Model Mouse Gorilla Chicken Cow 

Xlnc1DCNN 92.58 96.06 92.35 95.92 
CPC2 80.06 94.96 93.51 94.48 
CNIT 87.68 94.00 92.94 95.18 
PLEK 73.62 89.53 79.54 86.22 
CPAT 89.46 95.1 93.70 95.52 

FEELnc 90.51 94.8 92.75 93.97 
RNAsamba 91.91 96.06 93.98 96.39 
LncADeep 94.95 96.05 93.46 96.70 

lncRNA_Mdeep 91.38 95.58 92.59 95.63 

 
 Figure 12 shows that the ROC curves and AUCs of Xlnc1DCNN for cross-species 
datasets are comparable to other methods. LncADeep had the best generalization 
performance on cross-species datasets based on AUCs. In summary, the evaluation 
results of all species showed that Xlnc1DCNN has the generalization for classifying 
lncRNAs and mRNAs for other species.  
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Figure 12: Receiver operating characteristic curves and AUCs of nine models on the 
datasets of (A) mouse (B) gorilla (C) cow and (D) chicken 

 

4.2 Model Interpretation Results 
 

Xlnc1DCNN was built based on the CNN model, which is also known as one of the 
deep learning techniques that can learn complex patterns within the data. We can 
presume that our trained 1D-CNN captured some patterns within sequences that 
could be used to classify between lncRNAs and mRNAs. To understand these 
patterns. In this section, we used DeepSHAP to explain what the model has learned 
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by plotting the contribution of each nucleotide for the entire sequence, as we 
described in Chapter 3.4.  
 In the following subsections, we will present the explanation results of 
Xlnc1DCNN for true positive, true negative, false positive, and false negative 
sequences, respectively. 
 

4.2.1 True Positive Sequences 
 
True positive sequences (TPs) are lncRNAs that are correctly classified as lncRNA. The 
explanation results highlighted the important regions that contributed to the correct 
classification as lncRNA in blue color. We summarized the patterns that we found 
from the explanation results of TPs into four categories. 
 In the first category, Xlnc1DCNN highlighted weak signals across the entire 
sequence, as shown in Figures 13A, B. The explanation results of the 
ENST00000658844.1 and lnc-REXO4-2:1 suggested that Xlnc1DCNN classified a 
transcript sequence as a lncRNA if any important regions or distinctive patterns within 
the sequence were not captured. The annotation result of InterPro also couldn’t 
identify any entries.  
 In the second category, Xlnc1DCNN particularly highlighted important regions in 
some parts of the sequence, as shown in Figure 14A. To understand these important 
regions, we utilized the bioinformatic tools, as described in Chapter 3.5. The 
prediction of TMHMM (Figure 14B) shows that these regions were predicted as a 
transmembrane helix. Thus, the explanation results of the lnc-NXNL1-3:11 have 
shown that Xlnc1DCNN has learnt transmembrane helices as one of the patterns that 
contributed to the prediction as lncRNA.  
 In the third category, Xlnc1DCNN highlighted important regions, particularly in the 
front part of the sequence, as shown in Figure 15A. The explanation result of the 
ENST00000663782.1 highlighted important regions which corresponded with the 
identification by InterPro as signal N peptide terminal region as shown in Figure 15B.  
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Figure13: Explanation results of Xlnc1DCNN highlighted weak signals on TP 
sequences (A) ENST00000658844.1, a lncRNA sequence obtained from GENCODE and 
(B) lnc-REXO4-2:1, a lncRNA sequence obtained from LNCipedia. 
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Figure 14: (A) Explanation result of Xlnc1DCNN and (B) the prediction result of the 
transmembrane helices by TMHMM program on the true positive sequence, lnc-
NXNL1-3:11 which corresponds to the explanation result of Xlnc1DCNN. 
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Figure 15: (A) Explanation result of Xlnc1DCNN and (B) the signal peptide identified 
by InterPro on the true positive sequence, ENST00000663782.1 obtained from 
GENCODE. 

 
 In the last category, Xlnc1DCNN particularly highlighted important regions in some 
parts of the sequence. However, these regions do not correspond with any 
identification results from InterPro, Pfam, and TMHMM. Figure 16 shows the 
explanation results of the lnc-THTPA-2:32 and lnc-VIM-3:1 and these important 
regions do not correspond to any InterPro entries. 
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Figure 16: The explanation results of Xlnc1DCNN on true positive sequences of the 
(A) lnc-THTPA-2:32, (B) lnc-VIM-3:1 obtained from LNCipedia. 

 

4.2.2 True Negative Sequences 
 
True negative sequences (TNs) are mRNAs that are correctly classified as mRNA. The 
important regions of the explanation results were highlighted in red, indicating 
mRNAs' prediction contribution, as shown in Figures 17A-C. We found that most of 
the import regions of TNs were found with protein domains and/or families, as shown 
in Figures 17D-E. Figure 17D, the ENST00000528724.5 transcript, shows the 
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prediction result of transmembrane helix regions by TMHMM, which corresponds to 
the important regions highlighted by the Xlnc1DCNN in Figure 17A. Figure 17B, the 
ENST00000593088.5 transcript, shows the important region highlighted by Xlnc1DCNN 
which overlapped the identification result of the KRAB box (Krüppel associated box) 
by Pfam as shown in Figure 17E. Figure 17F, the ENST00000589852.5 transcript, 
shows the identification result of the FAM32A family (family with sequence similarity 
32 member A) by InterPro, which also corresponds to the important region 
highlighted by the Xlnc1DCNN as shown Figure 17C. This transcript has been related 
to an ovarian tumor gene [39]. 
 

4.2.3 False Positive Sequences 
 
False positive sequences (FPs) are mRNA transcript sequences that are incorrectly 
classified as lncRNAs. Unlike the explanation results of TNs, the explanation results of 
FPs had a similar pattern to the explanation results of TPs, which did not contain any 
important regions in red color. Figure 18A, the ENST00000408930.6 transcript, shows 
the explanation result which did not highlight any important regions that contributed 
to the prediction as an mRNA in red. The identification results of Pfam and InteroPro 
also couldn’t identify any protein domains or families, as shown in Figures 18B, C. 
We then investigated the ENST00000408930.6 across all databases. We found that 
while the Ensembl database reports the ENST00000408930.6 as a protein-coding 
transcript of the HEPN1 (ENSG00000221932) gene, the Gene database at NCBI reports 
HEPN1 as the ncRNA gene (https://www.ncbi.nlm.nih.gov/gene/641654) and the 
RefSeq database reports the NR_170124.1 (ENST00000408930.6) as a long non-coding 
RNA (https://www.ncbi.nlm.nih.gov/nuccore/NR_170124.1). The prediction results of 
other top tools (FEELnc, LncADeep, RNAsamba, lncRNA_Mdeep) also classified this 
sequence as lncRNA. This sequence illustrates an instance of conflicting annotations 
among public databases, which impact the performance of the model and its 
explanation. 
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Figure 17: Comparison between the explanation results of Xlnc1DCNN on TN 
sequences (A) ENST00000528724.5, (B) ENST00000593088.5, and (C) 
ENST00000589852.5 protein-coding transcripts and (D) the prediction result of 
TMHMM program on the ENST00000528724.5 (E) the KRAB (Krüppel associated box) 
domain identified by Pfam within the ENST00000593088.5 and (F) the FAM32A family 
identified by InterPro within the ENST00000589852.5 transcripts. 
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Figure 18: Comparison between (A) the explanation result of Xlnc1DCNN on the 
ENST00000408930.6 protein-coding transcript, predicted as a lncRNA (B) the 
identification result from Pfam and (C) the identification result from InterPro. 
 

4.2.4 False Negative Sequences 
 
False negative sequences (FNs) are lncRNAs that incorrectly classified as mRNAs. 
Figures 19A, B, the LNC-SIGIRR-2:1 and ENST00000616537.4, show the highlighted 
important regions that contributed to misclassifying as mRNA transcripts. The 
identification results of InterPro identified protein families of Anoctamin and Taxilin, 
respectively, as shown in Figures 19C, D. In contrast to typical lncRNAs, these FNs 
contain protein domains/families regions.  
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Figure 19: Comparison between the explanation result of Xlnc1DCNN on the long 
non-coding RNA transcripts (A) lnc-SIGIRR-2:1 and (B) ENST00000616537.4, predicted 
as mRNAs (C) the Anoctamin family within the lnc-SIGIRR-2:1 transcript and (D) the 
Taxilin family within the ENST00000616537.4 transcript identified by InterPro. 
 

4.3 Sequences Annotation results 
 
To reassure our findings from the explanation results in the previous section. In this 
section, we summarized the annotation results of all sequences on the test by using 
the result of InterPro entries as described in Chapter 3.5. The summary is shown in 
Table 10. 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 40 

Table 10: Summary of test set sequences annotated with InterPro entries 

Metrics Amount 
Found with  

InterPro Entries 

Found without  

InterPro Entries 

Contain IDRs 

without 

InterPro 

Entries 

Contain 

Transmembrane 

Helixes without 

InterPro Entries 

TP 20,895 1,692 (8.10%) 19,203 (91.9%) 9,833 (47.06%) 7,713 (36.91%) 

TN 14,087 13,085 (92.89%) 1,002 (7.11%) 822 (5.84%) 289 (2.05%) 

FP 1,204 704 (58.47%) 500 (41.53%) 359 (29.82%) 161 (13.37%) 

FN 821 463 (56.39%) 358 (43.61%) 264 (32.16%) 104 (12.67%) 

All missed FP 344 93 (27.03%) 251 (72.97%) 164 (47.67%) 94 (27.33%) 

All missed FN 105 90 (85.71%) 15 (14.92%) 5 (4.76%) 4 (3.81%) 

 
 We first considered the annotation results of true positive sequences. From the 
total of 20,895 TPs, only 8.10% (1,692/20,895) TPs contained InterPro entries. 
However, top protein domains and families of these entries on the test set were 
found in only a few TNs (≤5) (Appendices A5-A6). The 47.06% (9,833/20,895) TPs 
were found with only intrinsically disordered regions (IDRs), and 36.91% 
(11,490/20,895) TPs were found with transmembrane helices identified by TMHMM 
without any InterPro entries. These annotation results showed that most lncRNAs did 
not contain any InterPro entries. 
 As shown in Figure 15, the explanation results for true negative sequences 
indicate that our model could capture the regions in the transcript sequences that 
represent protein domains or families. From a total of 14,087 TNs, 92.86% 
(13,079/14,087) were found with InterPro entries, 5.84% (882/14,087) were found with 
only IDRs, and 2.05% (289/14,087) TNs contained only transmembrane helices 
without any InterPro entries. Hence, the majority of TNs contained InterPro entries 
and our model could correctly classify most of the input mRNAs. 
 The explanation results of false positive sequences typically do not contain the 
important regions (red color) that contributed to the model prediction as mRNAs. Of 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 41 

the total 1,204 FPs, 42.53% (500/1204) FPs were found without any InterPro entries, 
29.81% (359/1204) FPs were found with only IDRs, and 13.37% (161/1204) FPs were 
found with transmembrane helices without any InterPro entries. 
 The 56.39% (463/821) FNs contained InterPro entries, and the explanation results 
also highlighted the important regions in red, as shown in Figure 19. In addition, 
32.16% (264/821) and 12.67% (104/821) FNs were found with IDRs and 
transmembrane helices, respectively. 
 Finally, we could summarize the annotation results of InterPro entries from TP, 
TN, FP, and FN as shown in Table 10. Most of the TPs were found without any 
InterPro entries, while TNs, most of which were found with InterPro entries that 
correspond with the explanation results of Xlnc1DCNN. The number of TPs 
annotated with only transmembrane helices or IDRs also highlighted these regions' 
contributions to predicting the sequences as lncRNAs. 
 The 58.47% (704/1,204) and 43.61% (358/821) annotated FPs and FNs with and 
without InterPro entries indicated the limitations of Xlnc1DCNN. We also analyzed 
top tools (Xlnc1DCNN, FEELnc, LncADeep, RNAsamba, lncRNA_Mdeep) misclassified 
FPs and FNs. The 27.03% (93/344) and 14.92% (15/105) annotated FPs and FNs with 
and without InterPro entries misclassified by all top tools suggested complicated 
sequences to classify. In addition, the misclassification of 72.97% (251/344) and 
85.71% (90/105) annotated FPs and FNs without and with InterPro entries by all top 
tools suggests the limitations of all top tools or inconsistent annotations among 
public databases.  
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Chapter 5 
 

Discussion 
 
We have shown that the explanation results can help understand how our model 
learned to differentiate between lncRNAs and mRNAs. Furthermore, these findings 
from the explanation results are also consistent with other studies; for example, [40, 
41] found a transmembrane helix within lncRNAs, and [42] reported hidden peptides 
encoded inside non-coding RNAs, which is consistent with the highlighted regions 
perceived by Xlnc1DCNN for classifying lncRNAs from mRNAs. 
 Besides, we also investigated how the single nucleotide, dinucleotide, and 
trinucleotide (codon) contributed to the prediction results by plotting their mean of 
absolute SHAP values, as shown in Figure 20. The higher the mean of absolute SHAP 
values, the more significant contribution of that genetic code. The stop codons TAA, 
TGA, and TTA, were the top three codons with the highest contribution to lncRNA 
prediction, while the stop codon (TGA), the start codon (ATG), and arginine (CGA) 
were the top three codons for mRNA prediction. The CG was the top dinucleotides 
contributing to the mRNA prediction, consistent with [43]. 
 According to findings from more recent research, some putative lncRNAs contain 
a short open reading frame (sORF) [44]. We also tried to analyze the relationship 
between lncRNAs and sORF using the explanation results of Xlnc1DCNN. We 
randomly selected some false negative sequences and verified whether they 
contained sORFs by using MetemORF [45]. Some of the false negative sequences 
were found with sORFs. However, the important regions highlighted by the 
explanation results and the reported regions of sORFs were inconsistent. 
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Figure 20: Mean of absolute SHAP values for (A) single nucleotide (B) dinucleotide 
and (C) trinucleotide, indicating the impact of each genetic code on the model 
prediction as lncRNA or mRNA. 

 

Conclusion 
 
This thesis proposed Xlnc1DCNN, a simple but effective 1D-CNN model for classifying 
lncRNA and mRNAs (protein-coding transcripts) integrated with prediction explanation 
results. Furthermore, we have shown that using 1D-CNN as a feature extractor instead 
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of applying traditional feature extraction methods can result in a more accurate 
prediction than other available tools. 
 The explanation results revealed several insights about how Xlnc1DCNN learned 
to differentiate the lncRNAs from mRNAs. The recent findings of transmembrane 
microproteins within lncRNAs agreed with the transmembrane helices area 
highlighted by the explanation results of multiple true positive lncRNAs while several 
misclassified lncRNAs contained protein domains or families in Pfam and/or InterPro. 
In addition, several misclassified mRNAs were disordered proteins that did not 
contain any highlighted regions in the explanation results. These findings bring 
insights into the complexities of long non-coding RNAs and suggest the necessity of 
regular evaluations of cross-referenced gene annotations among public databases. 
Xlnc1DCNN, together with all explanation results, are publicly available at 
https://github.com/cucpbioinfo/Xlnc1DCNN. 
 

Future Work 
 
Although our model could outperform other long non-coding identification tools 
using a simple 1D-CNN architecture, different approaches could be used to improve 
the model performance further. For example, set the dilation rate to expand the 
convolution kernel size instead of increasing the kernel size, experiment with other 
deep learning models, or use different hyperparameter tuning algorithms instead of 
the grid search algorithm.  
 LSTM (Long Short-Term Memory), RNN (Recurrent Neural Networks), and GRU 
(Gated Recurrent Units) could be a candidate model for improving the model 
performance if the order of the nucleotide sequences is important. The grid search 
algorithm could be replaced with NNI (Neural Network Intelligence) [46] or OPTUNA 
[47] which is one of the popular hyperparameter tuning algorithms for searching the 
optimal hyperparameter and neural architecture. 
 

https://github.com/cucpbioinfo/Xlnc1DCNN
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Appendix 
Table A1: Evaluation results of all tools on gorilla transcripts 

Model TP FP TN FN Accuracy Sensitivity Specificity Precision F1-Score 

Xlnc1DCNN 3,902 217 3,783 98 96.06 97.55 94.58 94.73 96.12 
CPC2 3,878 281 3,719 122 94.96 96.95 92.98 93.24 95.06 
CNIT 3,944 424 3,576 56 94.00 98.60 89.40 90.29 94.26 
PLEK 3,847 685 3,315 153 89.53 96.18 82.88 84.89 90.18 
CPAT 3,824 216 3,784 176 95.10 95.60 94.60 94.65 95.12 

FEELnc 3,723 139 3,861 277 94.80 93.08 96.53 96.40 94.71 
RNAsamba 3,899 214 3,786 101 96.06 97.48 94.65 94.80 96.12 

lncRNA_Mdeep 3,863 217 3,783 137 95.58 96.58 94.58 94.68 95.62 
LncADeep 3,842 158 3,842 158 96.05 96.05 96.05 96.05 96.05 

 

Table A2: Evaluation results of all tools on chicken transcripts 

Model TP FP TN FN Accuracy Sensitivity Specificity Precision F1-Score 

Xlnc1DCNN 3,606 218 3,782 394 92.35 90.15 94.55 94.30 92.18 
CPC2 3,679 198 3,802 321 93.51 91.98 95.05 94.89 93.41 
CNIT 3,737 302 3,698 263 92.94 93.43 92.45 92.52 92.97 
PLEK 3,119 756 3,244 881 79.54 77.98 81.10 80.49 79.21 
CPAT 3,593 97 3,903 407 93.70 89.83 97.58 97.37 93.45 

FEELnc 3,485 65 3,935 515 92.75 87.13 98.38 98.17 92.32 
RNAsamba 3,618 100 3,900 382 93.98 90.45 97.50 97.31 93.75 

lncRNA_Mdeep 3,538 131 3,869 462 92.59 88.45 96.73 96.43 92.27 
LncADeep 3,586 109 3,891 414 93.46 89.65 97.28 97.05 93.20 

 
Table A3: Evaluation results of all tools on mouse transcripts 

Model TP FP TN FN Accuracy Sensitivity Specificity Precision F1 

Xlnc1DCNN 15,307 1,680 14,320 693 92.58 95.67 89.50 90.11 92.81 
CPC2 15,186 5,568 10,432 814 80.06 94.91 65.20 73.17 82.64 
CNIT 15,530 3,473 12,527 470 87.68 97.06 78.29 81.72 88.74 
PLEK 14,731 7,172 8,828 1,269 73.62 92.07 55.18 67.26 77.73 
CPAT 14,812 2,186 13,814 1,188 89.46 92.58 86.34 87.14 89.78 

FEELnc 14,244 1,281 14,719 1,756 90.51 89.03 91.99 91.75 90.37 
RNAsamba 15,161 1,749 14,251 839 91.91 94.76 89.07 89.66 92.14 

lncRNA_Mdeep 14,858 1,616 14,384 1,142 91.38 92.86 89.90 90.19 91.51 
LncADeep 15,388 1,003 14,997 612 94.95 96.18 93.73 93.88 95.01 
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Table A4: Evaluation results of all tools on cow transcripts 

Model TP FP TN FN Accuracy Sensitivity Specificity Precision F1 

Xlnc1DCNN 5,259 208 5,292 241 95.92 95.62 96.22 96.20 95.91 
CPC2 5,201 308 5,192 299 94.48 94.56 94.40 94.41 94.49 
CNIT 5,324 354 5,146 176 95.18 96.80 93.56 93.77 95.26 
PLEK 4,751 767 4,733 749 86.22 86.38 86.05 86.10 86.24 
CPAT 5,194 187 5,313 306 95.52 94.44 96.60 96.52 95.47 

FEELnc 4,491 124 5,376 509 93.97 89.82 97.75 97.31 93.42 
RNAsamba 5,294 191 5,309 206 96.39 96.25 96.53 96.52 96.39 

lncRNA_Mdeep 5,188 169 5,331 312 95.63 94.33 96.93 96.85 95.57 
LncADeep 5,262 121 5,379 238 96.74 95.67 97.80 97.75 96.70 

 
Table A5: Top protein domains found within TPs compared with TNs 

Protein Domain Found in TPs Found in TNs 

Murine leukemia virus integrase, C-terminal 30 1 

Domain of unknown function DUF1725 29 3 

Reverse transcriptase domain 17 2 

L1 transposable element, dsRBD-like domain 13 1 

L1 transposable element, RRM domain 13 0 

NADH:quinone oxidoreductase/Mrp antiporter, membrane subunit 13 0 

Ribosomal protein S10 domain 9 5 

Mos1 transposase, HTH domain 9 1 

Retro-transcribing virus envelope glycoprotein 9 1 

Integrase, catalytic core 8 1 

DDE superfamily endonuclease domain 7 3 

Ribosomal protein L23/L25, N-terminal 6 1 

Cytochrome c-like domain 6 1 

Ribosomal protein L30, ferredoxin-like fold domain 5 3 

Domain of unknown function DUF4764 5 1 

Reverse transcriptase/retrotransposon-derived protein, RNase H-like domain 5 0 

Mitochondrial cytochrome c oxidase subunit VIc/VIIs 5 1 

Cytochrome c oxidase subunit II-like C-terminal 5 0 

Integrase, C-terminal, retroviral 5 3 

Cytochrome b/b6, N-terminal 5 0 
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Table A6: Top protein families found within TPs compared with TNs 

Protein Family Found in TPs Found in TNs 

TLV/ENV coat polyprotein 23 2 

Ribosomal protein L21e 18 1 

High mobility group protein HMGN 16 5 

BNIP3 11 3 

Transposase, L1 11 0 

Ribosomal protein L44e 10 2 

Ribosomal protein S26e 10 0 

Ribosomal protein S10 10 2 

Ribosomal protein L34Ae 9 0 

Ribosomal protein S27 7 2 

Ribosomal protein S12e 7 0 

Ribosomal protein S8 7 2 

Vomeronasal receptor, type 1 7 0 

Transposase, type 1 7 0 

High mobility group protein HMGB1 7 0 

FAM27D/FAM27E 6 0 

Protein FAM27 6 0 

NADH-ubiquinone reductase complex 1 MLRQ subunit 6 1 

Elongin-C 6 4 

Ribosomal protein S3Ae 6 2 
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