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Chapter 1

Introduction

Long non-coding RNA sequences (IncRNAs) are RNAs longer than 200 nucleotides that
are not translated into proteins. IncRNAs have many crucial roles in several biological
processes, such as gene silencing, gene regulation, gene expression, acting as
molecular scaffolds, chromatin remodeling, etc. [1-3], and some studies also found
that IncRNAs have been linked to human diseases such as diabetes or cancers [4-7].
A large volume of unannotated transcripts has been discovered by the advancement
of next-generation sequencing technology, i.e., RNA Sequencing (RNA-Seq) [8, 9].
Classifying unannotated transcripts through biological experimentation is very time-
consuming and cost intensive. Therefore, numerous studies have proposed
computational approaches to identify these unclassified sequences that are quicker
and cheaper.

The existing computational approaches, e.g., CPC2 [10], CNIT [11], PLEK [12], CPAT
[13], FEELnc [14], RNAsamba [15], LncADeep [16], and IncRNA Mdeep [17], obtained
training features by using feature extraction methods. Most of them trained their
proposed algorithm with similar features, such as ORF length, Fickett and hexamer
scores, and then combined with additional extracted structural and sequence
features. However, none of them described how each feature affected the model's
predicted outcomes.

Deep learning algorithms have gained a lot of popularity, especially for datasets
with many data points and dimensions, since the algorithms will automatically learn
the complex patterns within features as they are trained. Convolutional neural
networks (CNNs), especially the 2D-CNNs, have dominated many computer vision
applications, e.g., image classification, image segmentation, and image detection [18],
because of their excellent capability for automatically learmning and extracting

complex patterns within the input data. While 1D-CNN also achieved state-of-the-art



performance in several applications, such as ECG monitoring and speech recognition
which outperformed the traditional approaches [19]. For detecting irregular
heartbeats applications, [20-22] demonstrated that using only a simple 1D-CNN
architecture could achieve excellent prediction accuracy without explicitly addressing
and extracting features for training their models.

Understanding the decision-making of any artificial intelligent model can help
users trust and comprehend the model's prediction. It can assist in illustrating what
the models perceive and explain how these perceptions relate to fundamental
human knowledge. In general, most complicated black-box models (e.g., deep neural
networks, ensemble models, gradient boosting tree algorithms) have demonstrated
superior learning performance, but most are uninterpretable. Explainable artificial
intelligence (XAl) has lately become a significant research area [23] that aims to
understand these complicated black-box models. LIME [24] and SHAP [25] is one of
the approaches to obtain an explanation from a complex black-box model. LIME
explained each individual prediction by creating a local surrogate model while SHAP
(Shapley Additive exPlanations) introduced SHAP values representing the model's
unified measure of feature importance and SHAP value estimation methods. Another
method to explain any deep learning models is DeepSHAP. DeepSHAP [26] was
developed based on the relationship between DeepLIFT [27] and the original SHAP
to explain the deep learning model and further refined and extended with stacks of
mixed model types and relative background distributions.

Classifying IncRNA and mRNA sequences based on training features still have
some ambiguities, given the promising outcomes of 1D-CNN in prior applications. In
this thesis, we present XlncIDCNN, a long non-coding RNA identification tool
developed by 1D-CNN integrated with a prediction explanation. XInc1DCNN was
solely trained by nucleotide sequences without applying any feature extraction
method. We showed that XInc1DCNN outperformed other existing tools in terms of
accuracy and F1-Score on the human dataset while maintaining generalization among
other testing species. We also provide the insight obtained from the explanation
results. DeepSHAP was used to generate SHAP values that represented what our

model learned. Using our in-house Python code, we then visualized each



nucleotide's contribution and amino acid's contribution. The explanation of true
positives (i.e., IncCRNA transcript sequences) revealed that the model classified a
sequence as INcRNA if it comprised only transmembrane helices or an N-terminal
signal peptide and no important regions. The explanation of true negatives (i.e.,
mMRNA transcript sequences) revealed that the model could learn and utilize protein
domains or families within the input sequences to predict the sequences as mRNAs.
The explanation of false positives (i.e,, mRNA transcript sequences predicted as
(NcRNA transcript sequences) revealed that the model was incapable of capturing
important regions representing protein domains or families or identifying important
regions contributing to both (NcRNA and mRNA. A small number of false-positive
sequences were also found with varying transcript types across databases. Finally,
the explanation for false negatives (i.e., IncRNA transcript sequences predicted as
mMRNA transcript sequences) revealed that the model captured protein domains or

families within these IncRNA sequences, hence, misclassifying them as mRNAs.



Chapter 2

Literature Review

In this chapter, we will discuss about previous works that are related to this research.

First, we will go through the existing protein-coding and long non-coding RNA

identification tools. Second, we will explore some previous work about the

application of 1D-CNN. The last topic will be about methods for the interpretation of

machine learning and deep learning models.

2.1 Protein-coding and long non-coding RNA identification tools

In this section, we will discuss about the existing tools for protein-coding and long

non-coding RNAs identification. We selected eight tools: CPAT, PLEK, FEELNC, CPC2,

LncADeep, CNIT, RNAsamba, and (ncRNA Mdeep to compare with our proposed

method. All tools were chosen by their performance, availability, and reliability. The

overview of each tool is shown in Table 1.

Table 1: The overview of selected tools to be compared with the proposed model

Software Algorithm Supported Species Published Web
Year Interface
CPAT Logistic Human, Mouse, Fly, 2013 Yes
Regression Zebrafish
PLEK SVM All 2014 No
FEELNC Random Forest All 2017 No
CPC2 SVM Human, Chimpanzee, 2017 Yes
Mouse, Zebrafish,
Xenopus, Fruit fly
LncADeep Deep Learning All 2018 No




Software Algorithm Supported Species Published Web
Year Interface

CNIT XGBoost Animal, Plant 2019 Yes

RNAsamba Deep Learning All 2020 Yes

(NncRNA_Mdeep | Deep Learning All 2020 No

To comprehend the method behind each tool, we will briefly review these eight

tools from the aspects of their machine learning algorithms and the training features.

2.1.1CPAT

CPAT [13] is an alignment-free coding potential assessment tool based on a logistic
regression model. CPAT is trained with four basic sequence features that are
calculated from the sequence directly, including size of open reading frame (ORF),
ORF coverage, Fickett TESTCODE score, and hexamer score. CPAT also supports a
web interface for users to submit sequences and receive back the sequence

prediction results.

2.1.2PLEK

PLEK [12] is another alignment-free computational tool for protein-coding and non-
coding RNA identification. PLEK uses a k-mer scheme and sliding windows to create
features from RNA sequences. PLEK then was trained with an SVM model using a

radial basis function kernel.

2.1.3FEELNC

FEELNC [14] is also an alignment-free tool based on a Random Forest model that

was trained with the general sequence features (multi k-mer frequencies between




protein-coding and (ncRNAs, relaxed ORF, and RNA sequence length). FEELNC also

can predict and analyze coding potential even without IncRNAs learning dataset.

2.1.4CPC2

CPC2 [10] is the upgraded version of CPC1 [28], which runs ~1000 times faster and
more accurate. CPC2 used four intrinsic features, including Fickett score, ORF length,
ORF integrity, and isoelectric point. CPC2 then employed LIBSVM package to train an
SVM model with the standard radial basis function kernel (RBF kernel). The training
data of CPC2 were human protein-coding sequences and non-coding sequences from
RefSeq. CPC2 also has a web interface for coding potential calculator that allows

users to submit sequences.

2.1.5LncADeep

LncAdeep [16] proposed a tool for IncRNA identification and functional annotation.
For (ncRNA identification, LncAdeep trained with sequence intrinsic features and
homology features. LncAdeep was implemented by using a deep belief network

(DBN) and built as a stack of restricted Boltzmann machines (RBMs).

2.1.6CNIT

CNIT [11] is the upgraded version from CNCI, which runs ~200 times faster and has
better accuracy in more species, especially for plants. CNIT used the nucleotide
sequences intrinsic composition, a nucleotide triplet called ANT, as training features.
A total of 67 features were used to train the XGBoost models. CNIT also provides a

web server interface and a stand-alone package.



2.1.7RNAsamba

RNAsamba [15] is a tool for predicting the coding potential based on a novel neural
network classification model. RNAsamba used the IGLOO architecture and then was
solely trained with sequence information. RNAsamba also provides a docker image, a

web server interface, and a stand-alone package.

2.1.8IncRNA_Mdeep

(NncRNA Mdeep [17] proposed an alignment-free multimodal deep learning
framework for (ncRNA identification. IncRNA Mdeep used three main features
including OFH features (the length and coverage of ORF, Fickett score, and Hexamer
score), k-mer features, and one-hot encoding with a simple CNN layer then

concatenated these features and trained using deep neural networks.

2.1.9Summary

All the reviewed tools have relied on feature extraction methods. Most used similar
features, such as the Fickett score or ORF length. None of them explain how each
feature contributed to the prediction output. For example, the ORF length and
Fickett score range that the sequences will classify as (ncRNAs or mRNAs. Hence, the
explanation of each feature that contributes to the prediction output remains

challenging.

2.2 Application of 1D-CNN

The CNNs are widely used due to their good capability for extracting features from

input data. In this section, we will present the applications of 1D-CNN.



2.2.1Electrocardiogram (ECG) Monitoring

Cardiovascular disease (CVD) is a leading cause of death worldwide. One of the
indicator  symptoms of cardiovascular disease is irregular heartbeats.
Electrocardiogram (ECG) is a common approach to diagnose many heart problems by
using an electrical signal to monitor and analyze the heart’s health.

Several studies for detecting irregular heartbeats have been proposed. C.-H. Hsieh
et al. [22] illustrated that a simple 1D-CNN architecture (Table 2) can outperform the

existing DL-based methods for detecting an arrhythmia from time-series ECG signal.

Table 2: The 2" proposed 1D-CNN architecture from [22]

Layer Type Qutput Shape Parameters
ConvlD 8996 x 32 192
Batch Normalization 8996 x 32 128
ConvlD 4494 x 32 5152
Conv1D 2243 x 64 10,304
ConvlD 1117 x 64 20,544
Conv1D 554 x 128 41,088
ConvlD 273 x 128 82,048
Conv1D 132 x 256 164,096
ConvlD 62 X 256 327,936
Conv1D 27 x 512 655,872
ConvlD 9 x 512 1,311,232
Dense 128 589,952
Dense 32 4128
Dense 4 132

Total number of network training parameters: 3,212,740

U. R. Acharya et al. [20] proposed two CNN architectures (net A and net B). A 1D-
CNN architecture and parameters are shown in Figure 1 and Table 3. The net B CNN
architectures from [20] yielded 94.90% accuracy, 99.13% sensitivity, and 81.44 %

specificity for five seconds of ECG duration.
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Figure 1: The architecture of proposed 1D-CNN for net B from [20]

Table 3: The parameters of 1D-CNN architecture for net B from [20]

The details of CNN structure for net B.

Layer 6

Layers  Type Number of neurons (output layer) Kernel size for each output feature map  Stride
0-1 Convolution 1224 x 3 27 1
1-2 Max-pooling 612 x3 2 2
2-3 Convolution 598 x 10 15 1
3-4 Max-pooling 299 x 10 2 2
4-5 Convolution 296 x 10 4 1
5-6 Max-pooling 148 x 10 2 2
6-7 Convolution 146 x 10 3 1
7-8 Max-pooling 73 x10 2 2
8-9 Fully-connected 30 - -
9-10 Fully-connected 10 - -
10-11 Fully-connected 4 -

Another method to detect an abnormal heartbeat, Fenli et al. [21], used high-

frequency murmurs from phonocardiogram (PCG) as a training set to classify healthy

and confirmed cardiac patients before the ECG signals from patients will become

irregular. A simple 1D-CNN architecture was also used in [21] as a learning model for

detecting irregular heartbeat, as shown in Figure 2.
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Figure 2: The proposed 1D-CNNs structure from [21]

2.2.2Summary

The applications for detecting irregular heartbeats [20-22] showed that they could
achieve high accuracy using a simple 1D-CNN without applying any further feature

extraction methods from their datasets.

2.3 Machine Learning Model Interpretation Methods

In this final topic, we will describe some works about the machine learning
interpretation methods that would be beneficial for interpreting our proposed
model.

Explaining simple machine leaming models, such as decision trees or linear
models, are easy to understand and can be interpreted by their decision nodes or
weights. On the other hand, complex black-box models such as deep neural
networks or ensemble models cannot be used for interpretation. Hence, it is
challenging to understand the reason behind each prediction result. In order to
understand the underlying cause for each prediction from complex black-box
models, many interpretation methods have been proposed as a simplified

explanation model for interpreting the original complex model.
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Recently, several interpretation methods have been published that correspond
to the definition of additive feature attribution methods [25], such as LIME [24],
DeepLIFT [27], SHAP, and DeepSHAP [25, 26].

2.3.1 Additive feature attribution methods

To explain a model, an additive feature attribution approach combines the impacts
of all input feature attribution [25]. The explanation model g can be explained as a
linear function of the binary variable. We can approximate the output of z' with the
attribution value for each ¢ from the model g using the following Equation (1).
0(2) =4+ Y02
i—1 (1)
where ¢ € R is the feature attribution for a feature i, z'e{0,}", and M is the
number of simplified input features. If the feature i is present then z/ =1, otherwise

z/=0.
2.3.2LIME

Local Interpretable Model-Agnostic Explanations (LIME) [24] is a method to explain
any black-box machine learning model. The authors proposed a local surrogate
model that is trained to explain individual prediction of the underlying black-box
model.

Figure 3 demonstrates how LIME works, suppose we want to explain the
prediction output of instance X, where X e R, from the complex black-box model
f . LIME works by training a new local surrogate model g, where g can be a linear
model or decision tree. Using newly generated training data X', where X' are
permuted samples around instance X from a distance function 7z, , the model g
should yield a good prediction result for local approximation but not necessary in

global approximation. This kind of approximation is called local fidelity.
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Figure 3: The red cross, an instance X, is an instance of interest to be explained. The
black curve represents the decision boundary of the complex black-box model f .
LIME generates new training data (blue and red dots) then weights them according to
the distance between an instance X (shown by size). LIME then trains a simple
surrogate model g with new training data. The dashed line mask the decision

boundary of the explanation model g

LIME produces the explanation & from an instance X by minimizing the loss
function L (e.g., weighted square loss, mean squared error). The loss function
measures how the prediction from the surrogate model g is close to the prediction
of the original model f and then penalizes with the model complexity Q(g). The
explanation &(X) can be expressed by the following Equation (2).

E(x)=argmin L(f,g,7,)+Q(9)
geG (2)

2.3.3DeepLIFT

DeepLIFT (Deep Learning Important FeaTures) [27] is a method to explain the deep
learning model by differencing the input data from a selected ‘reference’, where a
‘reference’ is selected according to the current objective for solving the problem.
DeepLIFT uses the summation-to-delta property as shown in Equation (3) to obtain

the explanation scores,
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ZCAxiAt =At
i-1 (3)

where At :t—to, t is the prediction output from the model, t% is the reference,
X; is neuron i to n that are neceesary to compute t, and CAXiAt is the amount of
difference between the reference t° from the output t.

If we replace C,, with ¢ and t° with ¢,, then the explanation model of

DeepLIFT will match the additive feature attribution methods (Equation (1)).

2.3.4SHAP

SHAP (SHapley Additive exPlanations) [25] is a method to explain any machine
learning model prediction. SHAP is based on the classic Shapley Values originated
from game-theoretically optimal.

The intuition behind the classic Shapley values is to find a fair way for a coalition
to distribute the “payout” among the “player” based on their contributions.
Applying to a machine learning model, the “payout” and “player” refers to features
and prediction output respectively and the Shapley values are considered as the
feature importance values.

The Shapley value ¢ of the feature i from the model f, can be obtained by
the following Equation (4),

=y BRFEEISIEDY s iy 1))
ScF\{i} |F|! @)

where Fis the set of all input features and S is a subset of the input features.

Finding the Shapley values ¢ from Equation (4) requires retraining the model.
f,(Sui) is trained with present features where f (S)is trained without feature i.
Then all possible subsetsS < F were computed and weighted average all possible

differences.
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SHAP is the conditional expectation function from Shapley values of the original
model. It provides the unique additive feature importance measure that defines the
simplified inputs based on conditional expectations and satisfies three SHAP
properties: local accuracy, missingness, and consistency. The local accuracy requires
the summation of all feature contribution values from the explanation model to
match the original model output. The missingness requires that the missing values
from the original model have no impact on the explanation model. The consistency
states that if a model changes and a feature has more contribution to the model,
the contribution of the feature will increase or remain unchanged regardless of other

features.

2.3.5Kernel SHAP (LIME + Shapley values)

Heuristically choosing parameters for LIME in Equation (2) does not recover the
Shapley values and could make LIME violate three properties of SHAP, i.e., local
accuracy, missingness, and consistency.

To make LIME match the three properties of SHAP, [25] proposed a Kernel SHAP,
a solution to avoid selecting LIME parameters in Equation (2) heuristically and also
made Equation (2) recover the Shapley values. Kermnel SHAP defines Q, 7z,., and £

for Equation (2) as follows,
Q(g)=0
(5)
M -1
(M choose|z'|)|Z'|(M—]|Z"])

ﬂx’ (Z’) =
(6)

L(f,9,m,)= [f(h(z)-9(@ )7, (2) .
7'eZ 7

where | Z'| is the number of non-zero elements in z’.
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2.3.6 DeepSHAP (DeepLIFT + Shapley values)

DeepSHAP [25, 26] is a method to explain any deep learning models by obtaining
SHAP values from a given background distribution. DeepSHAP builds the connection
between Shapley values and DeepLIFT. To explain the selected deep learning
model, DeepLIFT needs a single background to compare with the input instance,
while DeepSHAP can use single or multiple backgrounds. DeepSHAP [26] showed that
from the image classification problems, DeepLIFT selected a single background as a
reference result in the bias explanation. On the other hand, DeepSHAP used multiple
background distributions as references which could solve the bias problem.
DeepSHAP also showed that the different representative background distributions

could have different explanations.

2.3.7Summary

LIME builds a local surrogate model to explain the model's prediction while SHAP
computes and retrains the model based on features. SHAP also provides a better
version of LIME called Kernel SHAP, which combines the strength of both LIME and
SHAP. DeepSHAP is another proposed method from the authors of SHAP to explain

any deep learning model and improve the computational performance.
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Chapter 3

Methods

Basically, our task is to classify the input RNA sequences into two classes: (1) long
non-coding RNA (IncRNAs) and (2) messenger RNA or protein-coding RNA. Long non-
coding RNA is a type of non-coding RNA, i.e., an RNA that will not be translated into
protein. Still, it can function and involve in several biological mechanisms and
diseases in the RNA form. In contrast, a messenger RNA or protein-coding RNA or
protein-coding transcript (PCT) is an RNA that will be translated into a protein. An

example of a IncRNA and a protein transcript is shown in Figures 4, 5, respectively.

>ENST00000469289.1|ENSG00000243485.5|0TTHUMG00000000959.2|OTTHUMT00000
002841.2|MIR1302-2HG-201|MIR1302-2HG|535]

TCATCAGTCCAAAGTCCAGCAGTTGTCCCTCCTGGAATCCGTTGGCTTGCCTCCGGCA G
GCCCTTGCC AGGGTTGCCAGATTAAAAGACAGGATGCCCAGCTAGTTTGAA AGATA
AACAACGAATAATTTCGTAGCATAAATATGTCCCAAGCTTAGT TTGGGACATACTTATGCTAAA

AAACATTATTGGTTGTTTATCTGAGATTCAGAATTAAGCATTTTATATTTTATTTGCTGCCTCT

Figure 4: An example of a long non-coding RNA transcript from GENCODE in FASTA

format

In this chapter, we will explain how our study will be conducted. We will use a
1D-CNN model as our training model and compare model evaluation metrics with

other tools.
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>ENST00000437963.5|[ENSG00000187634.12|0TTHUMG00000040719.11|OTTHUMTO000
00097862.5/SAMD11-204|SAMD11|387|UTR5:1-60|CDS:61-387|

CAGCGCTTGGGGCTCGCGGGCCGCTCCCTCCGCTCGGAAGGGAAAAGTCTGAAGACGCTTATG
TCCAAGGGGATCCTGCAGGTGCATCCTCCGATCTGCGACTGCCCGGGECTGCCGAATATCLCTCC
CCGGTGAACCGGGEGECEGECTGGCAGACAAGAGGACAGTCGCCCTGCCTGCCGCCCGGAACCT

GAAGAAGGAGCGAACTCCCAGCT TCTCTGCCAGCGATGGTGACAGCGACGGGAGTGGCCCCA

Figure 5: An example of a protein-coding transcript from GENCODE in FASTA format

3.1 Data Preparation and Preprocessing

We obtained the human datasets for training the proposed model from GENCODE
(release 32) [29] and LNCipedia (Version 5.2) [30]. The sequences dataset of GENCODE
contains 48,351 (ncRNAs and 100,291 PCTs. For LNCipedia, we selected only high
confidence ncRNAs, which contain 107,039 (ncRNAs. Since we obtained datasets
from multiple sources, we further removed identical (ncRNAs from GENCODE and
LNCipedia by using the CD-HIS-EST-2D program [31]. We removed sequences with
more than 95% similarity out, leaving a total of 72,803 (ncRNAs from LNCipedia.

To evaluate the generalization of the model, we prepared cross-species datasets
from multiple species, including mouse (GENCODE, release M23) [29], chicken, gorilla,
and cow (Ensembl, release 102) [32]. The generalization datasets of mouse, chicken,
gorilla, and cow contained each with an equal number of sequences from each class
32,000, 11,000, 8,000, and 8,000 sequences, respectively.

Finally, we preprocessed the sequences from all datasets by discarding
sequences shorter than 200 bases and longer than 3,000 bases. We then performed
one-hot encoding to encode sequences before training the proposed model. We set
the IncRNAs and PCTs as the positive (1) and negative (0) class, respectively. We then
stratified split the human dataset for training the model by 80% and 20% into the
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training and test sets. The summary of human datasets for training the proposed

model is shown in Table 4 and their distribution in Figure 6.

Table 4: The summary of human datasets from GENCODE and LNCipedia

<200 | >3,000 |[Number of transcripts
Sequence | Species Data Source Dataset Size
bps bps after cleansing
mRNA | Human |GENCODE (release 32)| 100,291 374 23,464 76,453
(NcRNA | Human |GENCODE (release 32)| 48,351 291 3,486 44,574
INncRNA | Human |LNCipedia (version 5.2) 72,803 0 8,799 64,004

A B
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=3 IncRNA
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Count
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58.68 % 41.32 % 3,000

40,000 1
(108,578) (76,453)

2,000

20,000 4

1,000

IncRNA mRNA

Figure 6: (A) Distribution of target class (B) Distribution of the sequences' length

3.2 Model Architecture and Training Procedure

In this study, we built and designed XInc1DCNN architecture from scratch. We trained
our model in Python3 using Tensorflow library on NVIDIA GeForce GTX 1080 Ti, Intel
Xeon Silver 4112 Processor, and CentOS Linux 7. The overview of the model

architecture is shown in Table 5.



Table 5: Hyperparameters of the proposed 1D-CNN architecture

Layer Hyperparameter
Conv 1D kernel size=57, stride=1
Max-Pooling pool size=2
Dropout p=0.3
Conv 1D kernel size=57, stride=1
Max-Pooling pool size=2
Dropout p=0.3
Conv 1D kernel size=57, stride=1
Max-Pooling pool size=2
Dropout p=0.3
Flatten -
Dense 256
Dropout p=0.5
Dense 256
Dropout p=0.5
SoftMax 2

3.2.1 Model Hyperparameters Optimization

To get the above hyperparameters, we utilized 10% of the training set to perform
hyperparameter tuning. We performed the grid search algorithm over the kernel and
stride size of each convolutional layer, dropout rate of each dropout layer, batch
size, and learning rate for model learning. The best kernel size was around 50 to 60,
as shown in Figure TA. After experimenting with various hyperparameters, we settled
on a kernel size of 57 and a stride size of 1 for all convolutional layers. As shown in
Figure 7B, the model performance always decreases after increasing the stride size

for almost every kernel size in the search spaces.
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Figure 7: The model performance on the validation set. (A) The model performance

for each kernel size (B) The model accuracy of a kernel size of 57 for each stride size

3.2.2Model Hyperparameters in Details

Input data: We used 2D arrays of nucleotide sequences as the input data. The

shape of the input data was (4, 3000).

Convolution Layer: We defined 120 filters, 57 kernel sizes, and 1 stride with
zero-padding for each convolution layer in the model architecture. ReLu was used as
the activation function of the model. We applied a weight constraint to force weights

to have a magnitude below max-norm (3) to avoid overfitting.
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Max-Pooling Layer: We defined 2 pool sizes and 2 strides with zero-padding for

each max-pooling layer in the model architecture.

Dropout Layer: We defined a 30% dropout rate for dropout layers connected
with the max-pooling layer and a 50% dropout rate for dropout layers connected

with fully connected layers.

Fully Connected Layer: We defined 256 neurons for each fully connected layer
in the model architecture. ReLu was also used as the activation function of the

model. We also applied weight constraints below max-norm (3).

Output Layer: We defined 2 neurons and SoftMax as the activation function.

3.2.3Details of learning

We trained our models using stochastic gradient descent as a model optimizer with a
momentum of 0.9, 0.01 learning rate, 128 batch size, and 120 epochs. The training
and prediction time (on the test set) was around 5 hours and 11 seconds on NVIDIA

GeForce GTX 1080 Ti.

3.3 Model Selection

To find the best candidate model for understanding its prediction. In this section, we
compared our proposed 1D-CNN with other models presented here. All models were
trained and evaluated using the human dataset.

First, we trained ResNet501D [33] with the same dataset for training our proposed
1D-CNN. We then trained ResNet50V2 (2D-CNN) using the same dataset. However, we
must transform the sequences dataset to make it trainable for 2D-CNN models. The
transformation methods consist of basic, spiral, and pairwise features transformation,

as shown in Figure 8. The basic and spiral transformations transformed the
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sequences by rearranging them into a 2D rectangle with 60 x 50 input size. In the
spiral transformations, the first nucleotide starts in the middle of the rectangle, while
for the basic transformations, the first nucleotide starts at the left-most position, as
shown in Figures 8A, B. For the pairwise features transformation, we converted the
output of 1D-CNN into a 2D matrix by using the outer matrix product operation. The
pairwise features transformation was inspired by the deep learning architecture for

protein contact prediction [34].

A B Cc

1 2 3 4 |5 21 | 22 | 23| 24 | 25 ‘

CovlD ‘ ‘ ResNet50

10 [ 9 8 716 20 17 8 g (10

11 [ 12 | 13 | 14 | 15 19 |} 6 1 24|11
Pairwise
20 | 19 | 18 | 17 | 16 18 |1'5 4 3012 e

21 | 22 | 23 | 24 | 25 17 | 16 | 15 | 14 | 13

Basic Spiral Pairwise Features

Figure 8: Transformation methods for 2D-CNN (A) Basic (B) Spiral (C) Pairwise Features

Finally, we evaluated all models’ performance, as shown in Table 6. The best
model was our proposed 1D-CNN, which outperformed all other models. Thus, we
will call it as XIncIDCNN, and we will apply the model interpretation method to

obtain all insights from the model prediction result made by this model.

Table 6: Model performance of all candidate models

Model Accuracy  Sensitivity  Specificity  Precision F1
Proposed 1D-CNN 94.53 96.22 92.13 94.55  95.38
ResNet501D 87.66 95.22 76.91 85.42 90.06
ResNet50V2 (Basic) 83.70 93.95 69.14 81.22 87.12
ResNet50V2 (Spiral) 74.84 75.43 73.99 80.46 77.87

ResNet50V2 (Pairwise Features) 91.68 94.86 87.17 91.30 93.05
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3.4 Model Interpretation method

We used DeepSHAP to interpret the prediction result of the proposed 1D-CNN.
DeepSHAP requires input samples to be background distributions as references to
approximate the SHAP values on conditional expectation. If the entire training
dataset is used as a background, the expected values will be highly accurate;
nevertheless, this will result in an unreasonable increase in computational cost. We
then randomly selected the size of n background samples to observe the
explanation results and to find the optimal background sample size, as shown in
Figure 9. We found that the explanation results will remain unchanged on the
background sample size greater than 200. Thus, 175 sequences were randomly
selected from each class to serve as the representative backeround distributions. Due

to the limitations of the available GPU, a total of 350 sequences were utilized.

ENST00000528724.5|ENSG00000150433.9
Amino acid sequnce length: 372
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Figure 9: The explanation result from each size of the background sample
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DeepSHAP generates SHAP values that represent the contribution of each training
feature to the model prediction. The proposed model was trained by using solely
sequences data that were encoded by one-hot encoding. Thus, we summed up
SHAP values from the array of one-hot encoding to represent the SHAP value for a
single nucleotide. To represent the sequence of amino acids, we further summed up
the SHAP values of three consecutive nucleotides in three reading frames. Finally, we
plotted a color line representing each amino acid's contribution, as shown in Figure
10. The red and blue colors indicate the contribution of the sequences to be

classified as either an mRNA or a IncRNA.

3.5 Evaluation

3.5.1 Model Evaluation Metrics

We used the following metrics to evaluate the model performance and compare it
with other tools.

TP+TN

Accuracy =
TP+TN +FP+FN

Sensitivity = ———
TP+FN

o N
Specificity = ———
P Y INTFP

Precision = ————
TP+ FP

_ 2x precision x sensitivity
precision + sensitivity

F1

TP, true positive; TN, true negative; FP, false positive; FN, false negative

We then evaluate our model performance with other tools with their versions in
Table 7.

Table 7: Software version
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Software Version
CPC2 Web based
CNIT Web based
PLEK 1.2
CPAT 2.0.0

FEELNc 0.1.1
RNAsamba 0.2.4
LncADeep 1.0

(NcRNA_Mdeep -

3.5.2Interpretation Evaluation Method

We evaluated the explanation results of XInc1DCNN on the human test set by
comparing the visualization results as described in Chapter 3.4 with the annotation
results from bioinformatics tools/databases. We assumed that XIncIDCNN might
capture some underlying biological knowledge within sequences. Thus, we utilized
TMHMM [35] to identify transmembrane helices, Pfam [36] and InterPro [37] to
identify protein domains or families. From the annotation results of InterPro, we
considered the following InterPro entries, which include InterPro domain, family,
homologous superfamily, repeat, and sites (i.e., active site, binding site, conserved
site, PTM site). We also considered the results of MobiDB (integrated within InterPro)

[38] to identify intrinsically disordered regions within sequences.
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Chapter 4

Results

This chapter presents the model evaluation, interpretation, and annotation results of

the proposed model.

4.1 Model Evaluation Results

We evaluated the XInc1DCNN performance and compared it with eight selected
tools: CPAT, PLEK, FEELNC, CPC2, LncADeep, CNIT, RNAsamba, and (ncRNA_Mdeep by
using the human test set and cross-species datasets as described in Chapter 3.1.
Using our human training set, we retrained tools that have a training option, including
CPAT, FEELNc, and RNAsamba, and used the pre-trained models of tools that did not
provide a training option, including CPC2, CNIT, and LncADeep. Although
(ncRNA_Mdeep and PLEK provided a training option, retraining both was very time-

consuming. Thus, we decided to skip retraining and used their pre-trained models.
4.1.1 Performance Evaluation on Human Test set

The evaluation results on the human test set (Table 8) show that Xlnc1DCNN
achieved the highest on both accuracy (94.53) and F1-Score (95.38), the second-
highest precision (94.55) slightly lower than LncADeep, and the third-highest
specificity (92.13) slightly lower than FEELnc and LncADeep. CPAT, CNIT, and CPC2
achieved very high sensitivity, but their specificity was much lower. FEELnc was the
only tool that was trained by a machine learning algorithm (random forest) but could
achieve comparable performance with other tools trained with deep learning
models. FEELnc, LncADeep, RNAsamba, and (ncRNA Mdeep performed well on the

average of every metric, but overall, they were still lower than our proposed model.
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Table 8: Evaluation results of all tools on the human test set

Model TP FP TN FN Accuracy Sensitivity Specificity Precision F1
Xlnc1DCNN 20,895 1,204 14,087 821 94.53 96.22 92.13 94.55 95.38
CPC2 21,023 6,457 8,834 693 80.68 96.81 57.77 76.50 85.47
CNIT 21,307 3,580 11,711 409 89.22 98.12 76.59 85.61 91.44
PLEK 20,704 6,665 8,626 1,012 79.26 95.34 56.41 75.65 84.36
CPAT 20,646 2,597 12,694 1,070 90.09 95.07 83.02 88.83 91.84
FEELNC 20,023 1,182 14,109 1,693 92.23 92.20 92.27 94.43 93.30
RNASAMBA 20,998 1,795 13,496 718 93.21 96.69 88.26 92.12 94.35
(ncRNA_Mdeep 20,813 1,799 13,492 903 92.70 95.84 88.23 92.04 93.90
LncADeep 20,232 1,113 14,178 1,484 92.98 93.17 92.72 94.79 93.97

We further analyzed the classification power of all tools, as shown in Figure 11A.
We plotted a receiver operating characteristic curve (ROC) and calculated the area
under the curve (AUC) of all tools on the human test set which Xinc1DCNN achieved
the highest AUC (0.9825). We also calculated the accuracy of all tools on each range
of sequence lengths as shown in Figure 11B, and X{nc1DCNN also outperformed all

tools on any range of sequences on the human test set.
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Figure 11: (A) ROC curve of all tools and their AUC on the human test set (B)

Accuracy of all tools for any range of sequence lengths on the human test set
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4.1.2Performance Evaluation on Cross-Species Datasets

In the previous section, we showed that XInc1DCNN could achieve high performance
compared with other tools on the human test set. Thus, we also need to evaluate
the generalization of the model to verify that it was not overfitting on the human
dataset. We used cross-species datasets (mouse, gorilla, chicken, and cow) as
described in Chapter 3.1 to evaluate the generalization of XInc1DCNN. Table 9
shows that XIncIDCNN achieved the highest accuracy on gorilla dataset alongside
RNAsamba and the second highest accuracy on mouse dataset. While on both
mouse and cow datasets, LncADeep achieved the highest accuracy. Other evaluation

metrics are shown in Appendices Al-A4.

Table 9: Accuracy of all models on cross-species datasets

Model Mouse Gorilla Chicken Cow

XInc1DCNN 9258  96.06 92.35 95.92

CPC2 80.06  94.96 93.51 94.48
CNIT 87.68  94.00 9294  95.18
PLEK 73.62  89.53 79.54  86.22
CPAT 89.46 95.1 93.70 9552
FEELNC 90.51 94.8 92.75 93.97

RNAsamba 9191  96.06 93.98  96.39
LncADeep 94.95  96.05 93.46  96.70
(NcRNA Mdeep  91.38  95.58 9259  95.63

Figure 12 shows that the ROC curves and AUCs of XIncIDCNN for cross-species
datasets are comparable to other methods. LncADeep had the best generalization
performance on cross-species datasets based on AUCs. In summary, the evaluation
results of all species showed that XIncIDCNN has the generalization for classifying

(ncRNAs and mRNAs for other species.
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Figure 12: Receiver operating characteristic curves and AUCs of nine models on the

datasets of (A) mouse (B) gorilla (C) cow and (D) chicken

4.2 Model Interpretation Results

XInc1DCNN was built based on the CNN model, which is also known as one of the
deep learning techniques that can learn complex patterns within the data. We can
presume that our trained 1D-CNN captured some patterns within sequences that
could be used to classify between (ncRNAs and mRNAs. To understand these

patterns. In this section, we used DeepSHAP to explain what the model has learned
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by plotting the contribution of each nucleotide for the entire sequence, as we
described in Chapter 3.4.

In the following subsections, we will present the explanation results of
XIncIDCNN for true positive, true negative, false positive, and false negative

sequences, respectively.

4.2.1True Positive Sequences

True positive sequences (TPs) are IncRNAs that are correctly classified as IncRNA. The
explanation results highlighted the important regions that contributed to the correct
classification as (ncRNA in blue color. We summarized the patterns that we found
from the explanation results of TPs into four categories.

In the first category, XInc1DCNN highlishted weak signals across the entire
sequence, as shown in Figures 13A, B. The explanation results of the
ENST00000658844.1 and nc-REXO4-2:1 suggested that XIncIDCNN classified a
transcript sequence as a IncRNA if any important regions or distinctive patterns within
the sequence were not captured. The annotation result of InterPro also couldn’t
identify any entries.

In the second category, XInc1DCNN particularly highlighted important regions in
some parts of the sequence, as shown in Figure 14A. To understand these important
regions, we utilized the bioinformatic tools, as described in Chapter 3.5. The
prediction of TMHMM (Figure 14B) shows that these regions were predicted as a
transmembrane helix. Thus, the explanation results of the (nc-NXNL1-3:11 have
shown that XIncIDCNN has learnt transmembrane helices as one of the patterns that
contributed to the prediction as IncRNA.

In the third category, XInc1DCNN highlighted important regions, particularly in the
front part of the sequence, as shown in Figure 15A. The explanation result of the
ENST00000663782.1 highlighted important regions which corresponded with the

identification by InterPro as signal N peptide terminal region as shown in Figure 15B.
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Figure13: Explanation results of XInclDCNN highlighted weak signals on TP

sequences (A) ENST00000658844.1, a IncRNA sequence obtained from GENCODE and

(B) Inc-REXO4-2:1, a IncRNA sequence obtained from LNCipedia.
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Figure 14: (A) Explanation result of XIncIDCNN and (B) the prediction result of the
transmembrane helices by TMHMM program on the true positive sequence, Inc-

NXNL1-3:11 which corresponds to the explanation result of Xinc1DCNN.
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Figure 15: (A) Explanation result of XIncIDCNN and (B) the signal peptide identified
by InterPro on the true positive sequence, ENST00000663782.1 obtained from
GENCODE.

In the last category, XInc1DCNN particularly highlighted important regions in some
parts of the sequence. However, these regions do not correspond with any
identification results from InterPro, Pfam, and TMHMM. Figure 16 shows the
explanation results of the Inc-THTPA-2:32 and [nc-VIM-3:1 and these important

regions do not correspond to any InterPro entries.
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4.2.2True Negative Sequences
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sequences of the

True negative sequences (TNs) are mRNAs that are correctly classified as mRNA. The

important regions of the explanation results were highlishted in red, indicating

MRNAs' prediction contribution, as shown in Figures 17A-C. We found that most of

the import regions of TNs were found with protein domains and/or families, as shown

in Figures 17D-E. Figure 17D, the ENST00000528724.5 transcript, shows the
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prediction result of transmembrane helix regions by TMHMM, which corresponds to
the important regions highlighted by the XInc1DCNN in Figure 17A. Figure 17B, the
ENST00000593088.5 transcript, shows the important region highlighted by Xinc1DCNN
which overlapped the identification result of the KRAB box (Krippel associated box)
by Pfam as shown in Figure 17E. Figure 17F, the ENST00000589852.5 transcript,
shows the identification result of the FAM32A family (family with sequence similarity
32 member A) by InterPro, which also corresponds to the important region
highlighted by the XInc1DCNN as shown Figure 17C. This transcript has been related

to an ovarian tumor gene [39].

4.2.3 False Positive Sequences

False positive sequences (FPs) are mRNA transcript sequences that are incorrectly
classified as (ncRNAs. Unlike the explanation results of TNs, the explanation results of
FPs had a similar pattern to the explanation results of TPs, which did not contain any
important regions in red color. Figure 18A, the ENST00000408930.6 transcript, shows
the explanation result which did not highlight any important regions that contributed
to the prediction as an mRNA in red. The identification results of Pfam and InteroPro
also couldn’t identify any protein domains or families, as shown in Figures 18B, C.
We then investigated the ENST00000408930.6 across all databases. We found that
while the Ensembl database reports the ENST00000408930.6 as a protein-coding
transcript of the HEPN1 (ENSG00000221932) gene, the Gene database at NCBI reports
HEPN1 as the ncRNA gene (https://www.ncbi.nlm.nih.gov/gene/641654) and the
RefSeq database reports the NR 170124.1 (ENST00000408930.6) as a long non-coding
RNA (https://www.ncbi.nlm.nih.gov/nuccore/NR 170124.1). The prediction results of
other top tools (FEELnc, LncADeep, RNAsamba, IncRNA Mdeep) also classified this
sequence as IncRNA. This sequence illustrates an instance of conflicting annotations
among public databases, which impact the performance of the model and its

explanation.
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ENST00000408930.6 protein-coding transcript, predicted as a ncRNA (B) the

identification result from Pfam and (C) the identification result from InterPro.

4.2.4False Negative Sequences

False negative sequences (FNs) are IncRNAs that incorrectly classified as mRNAs.
Figures 19A, B, the LNC-SIGIRR-2:1 and ENST00000616537.4, show the highlighted
important regions that contributed to misclassifying as mRNA transcripts. The
identification results of InterPro identified protein families of Anoctamin and Taxilin,
respectively, as shown in Figures 19C, D. In contrast to typical IncRNAs, these FNs

contain protein domains/families regions.
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Figure 19: Comparison between the explanation result of XIncIDCNN on the long
non-coding RNA transcripts (A) Inc-SIGIRR-2:1 and (B) ENST00000616537.4, predicted
as MRNAs (C) the Anoctamin family within the (nc-SIGIRR-2:1 transcript and (D) the
Taxilin family within the ENST00000616537.4 transcript identified by InterPro.

4.3 Sequences Annotation results

To reassure our findings from the explanation results in the previous section. In this
section, we summarized the annotation results of all sequences on the test by using

the result of InterPro entries as described in Chapter 3.5. The summary is shown in

Table 10.
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Table 10: Summary of test set sequences annotated with InterPro entries

Contain IDRs Contain
Found with Found without without Transmembrane
Metrics Amount
InterPro Entries InterPro Entries InterPro Helixes without
Entries InterPro Entries
TP 20,895 1,692 (8.10%) 19,203 (91.9%) 9,833 (47.06%) 7,713 (36.91%)
TN 14,087 13,085 (92.89%) 1,002 (7.11%) 822 (5.84%) 289 (2.05%)
FP 1,204 704 (58.47%) 500 (41.53%) 359 (29.82%) 161 (13.37%)
FN 821 463 (56.39%) 358 (43.61%) 264 (32.16%) 104 (12.67%)
AWl missed FP 344 93 (27.03%) 251 (72.97%) 164 (47.67%) 94 (27.33%)
All missed FN 105 90 (85.71%) 15 (14.92%) 5 (4.76%) 4 (3.81%)

We first considered the annotation results of true positive sequences. From the
total of 20,895 TPs, only 8.10% (1,692/20,895) TPs contained InterPro entries.
However, top protein domains and families of these entries on the test set were
found in only a few TNs (<5) (Appendices A5-A6). The 47.06% (9,833/20,895) TPs
were found with only intrinsically disordered regions (IDRs), and 36.91%
(11,490/20,895) TPs were found with transmembrane helices identified by TMHMM
without any InterPro entries. These annotation results showed that most IncRNAs did
not contain any InterPro entries.

As shown in Figure 15, the explanation results for true negative sequences
indicate that our model could capture the regions in the transcript sequences that
represent protein domains or families. From a total of 14,087 TNs, 92.86%
(13,079/14,087) were found with InterPro entries, 5.84% (882/14,087) were found with
only IDRs, and 2.05% (289/14,087) TNs contained only transmembrane helices
without any InterPro entries. Hence, the majority of TNs contained InterPro entries
and our model could correctly classify most of the input mRNAs.

The explanation results of false positive sequences typically do not contain the

important regions (red color) that contributed to the model prediction as mRNAs. Of
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the total 1,204 FPs, 42.53% (500/1204) FPs were found without any InterPro entries,
29.81% (359/1204) FPs were found with only IDRs, and 13.37% (161/1204) FPs were
found with transmembrane helices without any InterPro entries.

The 56.39% (463/821) FNs contained InterPro entries, and the explanation results
also highlighted the important regions in red, as shown in Figure 19. In addition,
32.16% (264/821) and 12.67% (104/821) FNs were found with IDRs and
transmembrane helices, respectively.

Finally, we could summarize the annotation results of InterPro entries from TP,
TN, FP, and FN as shown in Table 10. Most of the TPs were found without any
InterPro entries, while TNs, most of which were found with InterPro entries that
correspond with the explanation results of XInclDCNN. The number of TPs
annotated with only transmembrane helices or IDRs also highlighted these regions'
contributions to predicting the sequences as IncRNAs.

The 58.47% (704/1,204) and 43.61% (358/821) annotated FPs and FNs with and
without InterPro entries indicated the limitations of XIncIDCNN. We also analyzed
top tools (XInc1DCNN, FEELnc, LncADeep, RNAsamba, (ncRNA Mdeep) misclassified
FPs and FNs. The 27.03% (93/344) and 14.92% (15/105) annotated FPs and FNs with
and without InterPro entries misclassified by all top tools suggested complicated
sequences to classify. In addition, the misclassification of 72.97% (251/344) and
85.71% (90/105) annotated FPs and FNs without and with InterPro entries by all top
tools suggests the limitations of all top tools or inconsistent annotations among

public databases.
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Chapter 5

Discussion

We have shown that the explanation results can help understand how our model
learned to differentiate between (ncRNAs and mRNAs. Furthermore, these findings
from the explanation results are also consistent with other studies; for example, [40,
41] found a transmembrane helix within IncRNAs, and [42] reported hidden peptides
encoded inside non-coding RNAs, which is consistent with the highlighted regions
perceived by XIncIDCNN for classifying IncRNAs from mRNAs.

Besides, we also investicated how the single nucleotide, dinucleotide, and
trinucleotide (codon) contributed to the prediction results by plotting their mean of
absolute SHAP values, as shown in Figure 20. The higher the mean of absolute SHAP
values, the more significant contribution of that genetic code. The stop codons TAA,
TGA, and TTA, were the top three codons with the highest contribution to IncRNA
prediction, while the stop codon (TGA), the start codon (ATG), and arginine (CGA)
were the top three codons for mRNA prediction. The CG was the top dinucleotides
contributing to the mRNA prediction, consistent with [43].

According to findings from more recent research, some putative IncRNAs contain
a short open reading frame (sORF) [44]. We also tried to analyze the relationship
between ncRNAs and sORF using the explanation results of Xlnc1IDCNN. We
randomly selected some false negative sequences and verified whether they
contained sORFs by using MetemORF [45]. Some of the false negative sequences
were found with sORFs. However, the important regions highlishted by the

explanation results and the reported regions of sORFs were inconsistent.
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Figure 20: Mean of absolute SHAP values for (A) single nucleotide (B) dinucleotide

and (C) trinucleotide, indicating the impact of each genetic code on the model

prediction as IncRNA or mRNA.

Conclusion

This thesis proposed XInc1DCNN, a simple but effective 1D-CNN model for classifying

(INncRNA and mRNAs (protein-coding transcripts) integrated with prediction explanation

results. Furthermore, we have shown that using 1D-CNN as a feature extractor instead
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of applying traditional feature extraction methods can result in a more accurate
prediction than other available tools.

The explanation results revealed several insights about how XInc1IDCNN learned
to differentiate the (ncRNAs from mRNAs. The recent findings of transmembrane
microproteins  within  IncRNAs agreed with the transmembrane helices area
highlighted by the explanation results of multiple true positive IncRNAs while several
misclassified (ncRNAs contained protein domains or families in Pfam and/or InterPro.
In addition, several misclassified mRNAs were disordered proteins that did not
contain any highlighted regions in the explanation results. These findings bring
insights into the complexities of long non-coding RNAs and suggest the necessity of
regular evaluations of cross-referenced gene annotations among public databases.
XIncIDCNN, together with all explanation results, are publicly available at
https://sithub.com/cucpbioinfo/XInc1DCNN.

Future Work

Although our model could outperform other long non-coding identification tools
using a simple 1D-CNN architecture, different approaches could be used to improve
the model performance further. For example, set the dilation rate to expand the
convolution kernel size instead of increasing the kernel size, experiment with other
deep learning models, or use different hyperparameter tuning algorithms instead of
the ¢rid search algorithm.

LSTM (Long Short-Term Memory), RNN (Recurrent Neural Networks), and GRU
(Gated Recurrent Units) could be a candidate model for improving the model
performance if the order of the nucleotide sequences is important. The grid search
algorithm could be replaced with NNI (Neural Network Intelligence) [46] or OPTUNA
[47] which is one of the popular hyperparameter tuning algorithms for searching the

optimal hyperparameter and neural architecture.


https://github.com/cucpbioinfo/Xlnc1DCNN
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Appendix

Table A1: Evaluation results of all tools on gorilla transcripts

Model TP FP TN FN Accuracy  Sensitivity  Specificity  Precision  F1-Score
XInc1DCNN 3902 217 3,783 98 96.06 97.55 94.58 94.73 96.12
CPC2 3,878 281 3,719 122 94.96 96.95 92.98 93.24 95.06
CNIT 3944 424 3,576 56 94.00 98.60 89.40 90.29 94.26
PLEK 3,847 685 3,315 153 89.53 96.18 82.88 84.89 90.18
CPAT 3,824 216 3,784 176 95.10 95.60 94.60 94.65 95.12
FEELNnc 3,723 139 3,861 277 94.80 93.08 96.53 96.40 94.71
RNAsamba 3,899 214 3,786 101 96.06 97.48 94.65 94.80 96.12
(NcRNA Mdeep 3,863 217 3,783 137 95.58 96.58 94.58 94.68 95.62
LncADeep 3,842 158 3,842 158 96.05 96.05 96.05 96.05 96.05

Table A2: Evaluation results of all tools on chicken transcripts

Model TP FP TN FN Accuracy  Sensitivity  Specificity  Precision  F1-Score
XlncIDCNN 3,606 218 3,782 394 92.35 90.15 94.55 94.30 92.18
CPC2 3,679 198 3,802 321 93.51 91.98 95.05 94.89 93.41
CNIT 3,737 302 3,698 263 92.94 93.43 92.45 9252 92.97
PLEK 3,119 756 3,244 881 79.54 77.98 81.10 80.49 79.21
CPAT 3,593 97 3,903 407 93.70 89.83 97.58 97.37 93.45
FEELNC 3,485 65 3,935 515 92.75 87.13 98.38 98.17 92.32
RNAsamba 3,618 100 3,900 382 93.98 90.45 97.50 97.31 93.75
(NcRNA_Mdeep 3,538 131 3,869 462 92.59 88.45 96.73 96.43 92.27
LncADeep 3,586 109 3,891 414 93.46 89.65 97.28 97.05 93.20

Table A3: Evaluation results of all tools on mouse transcripts

Model TP FP TN FN Accuracy  Sensitivity  Specificity ~ Precision F1
Xlnc1DCNN 15,307 1,680 14,320 693 92.58 95.67 89.50 90.11 92.81
CPC2 15,186 5568 10,432 814 80.06 94.91 65.20 73.17 82.64
CNIT 15,530 3,473 12,527 470 87.68 97.06 78.29 81.72 88.74
PLEK 14,731 7,172 8,828 1,269 73.62 92.07 55.18 67.26 77.73
CPAT 14,812 2,186 13,814 1,188 89.46 92.58 86.34 87.14 89.78
FEELNC 14,244 1281 14,719 1,756 90.51 89.03 91.99 91.75 90.37
RNAsamba 15,161 1,749 14,251 839 91.91 94.76 89.07 89.66 92.14
(NcRNA_Mdeep 14,858 1,616 14,384 1,142 91.38 92.86 89.90 90.19 91.51

LncADeep 15,388 1,003 14,997 612 94.95 96.18 93.73 93.88 95.01




Table A4: Evaluation results of all tools on cow transcripts

51

Model TP FP N FN Accuracy  Sensitivity  Specificity  Precision F1
XInc1DCNN 5,259 208 5,292 241 95.92 95.62 96.22 96.20 95.91
CPC2 5,201 308 5,192 299 94.48 94.56 94.40 94.41 94.49
CNIT 5,324 354 5,146 176 95.18 96.80 93.56 93.77 95.26
PLEK 4,751 767 4,733 749 86.22 86.38 86.05 86.10 86.24
CPAT 5,194 187 5,313 306 95.52 94.44 96.60 96.52 95.47
FEELNC 4,491 124 5,376 509 93.97 89.82 97.75 97.31 93.42
RNAsamba 5,294 191 5,309 206 96.39 96.25 96.53 96.52 96.39
(NcCRNA _Mdeep 5,188 169 5,331 312 95.63 94.33 96.93 96.85 95.57
LncADeep 5,262 121 5,379 238 96.74 95.67 97.80 97.75 96.70

Table A5: Top protein domains found within TPs compared with TNs

Protein Domain Found in TPs Found in TNs

Murine leukemia virus integrase, C-terminal 30
Domain of unknown function DUF1725 29
Reverse transcriptase domain 17
L1 transposable element, dsRBD-like domain 13
L1 transposable element, RRM domain 13
NADH:quinone oxidoreductase/Mrp antiporter, membrane subunit 13
Ribosomal protein S10 domain 9
Mos1 transposase, HTH domain 9
Retro-transcribing virus envelope glycoprotein 9
Integrase, catalytic core 8
DDE superfamily endonuclease domain 7
Ribosomal protein L23/L25, N-terminal 6
Cytochrome c-like domain 6
Ribosomal protein L30, ferredoxin-like fold domain 5
Domain of unknown function DUF4764 5
Reverse transcriptase/retrotransposon-derived protein, RNase H-like domain 5
Mitochondrial cytochrome c oxidase subunit Vic/Vlls 5
Cytochrome c oxidase subunit Il-like C-terminal 5
Integrase, C-terminal, retroviral 5
Cytochrome b/b6, N-terminal 5




Table A6: Top protein families found within TPs compared with TNs

52

Protein Family Found in TPs Found in TNs
TLV/ENV coat polyprotein 23 2
Ribosomal protein L21e 18 1
High mobility group protein HMGN 16 5
BNIP3 11 3
Transposase, L1 11 0
Ribosomal protein L4de 10 2
Ribosomal protein S26e 10 0
Ribosomal protein S10 10 2
Ribosomal protein L34Ae 9 0
Ribosomal protein S27 7 2
Ribosomal protein S12e 7 0
Ribosomal protein S8 7 2
Vomeronasal receptor, type 1 7 0
Transposase, type 1 7 0
High mobility eroup protein HMGB1 7 0
FAM27D/FAM2T7E 6 0
Protein FAM27 6 0
NADH-ubiquinone reductase complex 1 MLRQ subunit 6 1
Elongin-C 6 4
Ribosomal protein S3Ae 6 2
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