

MITIGATING SINKHOLE ATTACK ON LOW-POWER AND LOSSY NETWORKS WITH TRAFFIC
AWARE SCHEDULING ALGORITHM USING DUAL PARENT MECHANISM

Mr. Tay Zar Bhone Maung

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Engineering in Electrical Engineering

Department of Electrical Engineering
FACULTY OF ENGINEERING
Chulalongkorn University

Academic Year 2021
Copyright of Chulalongkorn University

การบรรเทาผลของการโจมตีแบบซิงค์โฮลบนโครงข่ายก่าลังต่่าและมีการสูญเสียที่ใช้อัลกอริทึมการจัด
สรรตามปริมาณการใช้โดยใช้กลไกพาเรนต์คู่

นายเท ซา โบน หม่อง

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต
สาขาวิชาวิศวกรรมไฟฟ้า ภาควิชาวิศวกรรมไฟฟ้า
คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2564
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title MITIGATING SINKHOLE ATTACK ON LOW-POWER AND LOSSY
NETWORKS WITH TRAFFIC AWARE SCHEDULING ALGORITHM
USING DUAL PARENT MECHANISM

By Mr. Tay Zar Bhone Maung
Field of Study Electrical Engineering
Thesis Advisor Associate Professor LUNCHAKORN WUTTISITTIKULKIJ, Ph.D.

Accepted by the FACULTY OF ENGINEERING, Chulalongkorn University in Partial
Fulfillment of the Requirement for the Master of Engineering

Dean of the FACULTY OF ENGINEERING

 (Professor SUPOT TEACHAVORASINSKUN, D.Eng.)

THESIS COMMITTEE

Chairman

 (Professor WATIT BENJAPOLAKUL, Ph.D.)

Thesis Advisor

 (Associate Professor LUNCHAKORN WUTTISITTIKULKIJ, Ph.D.)

Examiner

 (Assistant Professor PASU KAEWPLUNG, Ph.D.)

External Examiner

 (Pisit Vanichchanunt, Ph.D.)

 iii

ABSTRACT (THAI)
 เท ซา โบน หมอ่ง :

การบรรเทาผลของการโจมตแีบบซิงค์โฮลบนโครงข่ายก่าลังต่่าและมกีารสูญเสียที่ใช้อัลกอริทมึการจัดสรรตามปริมาณการใช้โดยใ
ช้กลไกพาเรนต์คู่. (MITIGATING SINKHOLE ATTACK ON LOW-POWER AND LOSSY NETWORKS WITH TRAFFIC
AWARE SCHEDULING ALGORITHM USING DUAL PARENT MECHANISM) อ.ที่ปรึกษาหลกั : ลญัฉกร วุฒิสิทธิกุลกิจ

โครงข่ายก่าลังงานต่่าและมีการสูญเสียเป็นโครงข่ายข่ายที่เราเตอร์และอุปกรณ์อินเตอร์เน็ตของทุกสรรพสิ่งทั้งหมดท่างานโดยใช้

ก่าลังงานหน่วยความจ่า และ พลังงานในการค่านวณ อย่างจ่ากัด เนื่องจากโครงสร้างที่มีข้อจ่ากัดของโครงข่ายก่าลังงานต่่าและมีการสูญเสีย
เ ช่ น ก า ร มี ท รั พ ย า ก ร ที่ จ่ า กั ด ก า ร เ ชื่ อ ม ต่ อ มี ก า ร สู ญ เ สี ย แ ล ะ ข า ด ค ว า ม ป ล อ ด ภั ย เ ชิ ง ก า ย ภ า พ
ก า ร โ จ ม ตี ด้ า น ค ว า ม ป ล อ ด ภั ย ส า ม า ร ถ เ กิ ด ขึ้ น ไ ด้ เ มื่ อ มี ก า ร ก่ า ห น ด เ ส้ น ท า ง ใ น โ ค ร ง ข่ า ย
โ ป ร โ ต ค อ ล ก า ร ก่ า ห น ด เ ส้ น ท า ง ส่ า ห รั บ โ ค ร ง ข่ า ย ก่ า ลั ง ง า น ต่่ า แ ล ะ มี ก า ร สู ญ เ สี ย ข้ อ มู ล
หรือ RPL ได้ถูกพัฒนาเพื่ อตอบสนองความต้องการของแอปพลิ เคชันที่หลากหลายในด้านโครงข่ ายเ ซ็น เซอร์ ไร้สา และ
อินเตอร์เน็ตของทุกสรรพสิ่ง โหนดเซ็นเซอร์บางตัวในโครงข่าย RPL ไม่แข็งแกร่งพอที่จะทนต่อการโจมตีต่างๆ เช่น การโจมตีแบบซิงค์โฮล
ก าร โ จมตี ปร ะ เภทนี้ ส าม ารถสร้ า งคว าม เสี ยหาย ใ ห้กั บ โ คร งข่ า ย ได้ ด้ ว ยตั ว เ อ งหรื อ ในจุ ด เ ชื่ อ ม ร่ ว มกั บการ โ จมตีอื่ น ๆ
ผู้ โจมตีสามารถสร้ างพฤติกรรมการโจมตี ได้อ ย่างง่ ายดาย และ อาจท่าใ ห้ เกิดการแยกตัวอ ย่างรุนแรงจากโครงข่ าย และ
เกิดการสูญเสียแพ็กเก็ตที่รับส่งของการจราจรในโครงข่าย เนื่องจากความเสียหายของการโจมตีแบบซิงค์โฮลในโครงข่าย RPL
นั้ น ใ ห ญ่ ม า ก แ ล ะ ท่ า ใ ห้ เ กิ ด ผ ล ก ร ะ ท บ สู ง ต่ อ โ ค ร ง ข่ า ย ต่ า แ ห น่ ง ข อ ง โ ห น ด โ จ ม ตี จึ ง มี ค ว า ม ส่ า คั ญ ม า ก ใ น เ ค รื อ ข่ า ย
แ ล ะ ส า ม า ร ถ ท่ า ใ ห้ โ ค ร ง ข่ า ย แ ย ก ตั ว ข น า ด ใ ห ญ่ แ ล ะ สู ญ เ สี ย เ ป อ ร์ เ ซ็ น ต์ สู ง ข อ ง ก า ร จ ร า จ ร ที่ สู ญ เ สี ย
วิ ท ย า นิ พ น ธ์ นี้ ศึ ก ษ า ค ว า ม เ สี ย ห า ย ข อ ง ก า ร โ จ ม ตี แ บ บ ซิ ง ค์ โ ฮ ล ใ น โ ค ร ง ข่ า ย R P L
แ ล ะ เ ส น อ ห น ท า ง ที่ ง่ า ย แ ล ะ มี ป ร ะ สิ ท ธิ ภ า พ สู ง ข อ ก ล ไ ก ก า ร ป้ อ ง กั น เ พื่ อ บ ร ร เ ท า ก า ร โ จ ม ตี ซิ ง ค์ โ ฮ ล
วิ ธี ก า ร น่ า เ ส น อ นั้ น ส ร้ า ง รู ป แ บ บ พ า เ ร น ต์ เ ชิ ง คู่ ส่ า ห รั บ โ ห น ด ย่ อ ย แ ต่ ล ะ โ ห น ด ใ น โ ค ร ง ข่ า ย เ มื่ อ ติ ด ตั้ ง โ ท โ พ โ ล ยี
ซ่ึ ง เ ป็ น วิ ธี ที่ มี ป ร ะ สิ ท ธิ ภ า พ ใ น ก า ร ป้ อ ง กั น ก า ร โ จ ม ตี แ บ บ ซิ ง ค์ โ ฮ ล
วิทยานิพนธ์นี้ ยังใช้การปรับสมดุลการจราจรของโครงข่ายโดยใช้อัลกอริทึมการจัดการการรับรู้จราจร หรือ TASA การใช้ TASA
ใ น โ ท โ พ โ ล ยี โ ค ร ง ข่ า ย R P L เ ป็ น วิ ธี ที่ ดี ใ น ก า ร จั ด ก า ร ป ริ ม า ณ ก า ร จ ร า จ ร ทั้ ง ห ม ด ข อ ง โ ค ร ง ข่ า ย ก า ร เ ก็ บ ข้ อ มู ล
หลี ก เ ลี่ ย ง ก าร ชนกั น ร ะหว่ า งก า รส่ ง ข้ อ มู ลข อ ง โ หนด ย่ อยแ ละ โ หนดหลั ก แ ล ะ ลด เ ว ลา และความล่ า ช้ า ข อ ง โคร งข่ า ย
ผ ล ลั พ ธ์ แ ส ด ง ใ ห้ เ ห็ น ว่ า ส า ม า ร ถ บ ร ร เ ท า ก า ร โ จ ม ตี ซิ ง ค์ โ ฮ ล แ ล ะ ใ ห้ ง ทั้ ง โ ค ร ง ข่ า ย ไ ด้ อ ย่ า ง เ ต็ ม ที่
และวิทยานิพนธ์นี้ได้เปรียบเทียบจ่านวนช่องเวลาและการสูญเสียแพ็กเก็ตในกลไกทั้งสอง โดยมีและไม่มีพาเรนต์คู่ ภายใต้การโจมตีแบบซิงค์โฮล
และ รายละเอียดของการเปรียบเทียบช่องเวลาของพฤติกรรมการโจมตีหนึง่อย่างเพื่อตรวจสอบความถูกต้องของวิธกีารและการจา่ลองทีน่่าเสนอ
สุดท้ายนี้สามารถสรุปได้ว่ากลไกป้องกันการโจมตีจากซิงค์โฮลแบบพาเรนต์คู่สามารถท่างานได้ดีโดยการตรวจสอบผลการเปรียบเทียบ

สาขาวิชา วิศวกรรมไฟฟ้า ลายมือชื่อนิสิต ..
ปีการศึกษา 2564 ลายมือชื่อ อ.ที่ปรกึษาหลัก

 iv

ABSTRACT (ENGLISH)
6170503621 : MAJOR ELECTRICAL ENGINEERING
KEYWORD: Routing Protocol, Low-Power and Lossy Networks, Security, Sinkhole Attack, Dual-Parent

Mechanism, Traffic Aware Scheduling Algorithm, RPL, IoT
 Tay Zar Bhone Maung : MITIGATING SINKHOLE ATTACK ON LOW-POWER AND LOSSY NETWORKS WITH TRAFFIC

AWARE SCHEDULING ALGORITHM USING DUAL PARENT MECHANISM. Advisor: Assoc. Prof. LUNCHAKORN
WUTTISITTIKULKIJ, Ph.D.

Low-Power and Lossy Networks (LLN) are networks where all the routers and IoT devices are working on a

limited power, memory, and computational energy. Due to the constrained structures of LLN networks such as limited
resources, lossy connection and lack of physical security, security attacks can occur when routing in an LLN network. The
Routing Protocol for Low-Power and Lossy Networks (RPL) was developed to meet the needs of multiple applications in
the fields of Wireless Sensor Networks (WSN) and Internet of Things (IoT). Some sensor nodes in a RPL network are not
strong enough to withstand a variety of attacks, such as a sinkhole attack. This type of attack can damage the network by
itself or in conjunction with other attacks. The attacker can easily create attacking behavior and can cause serious isolation
from the network and loss of delivered packets of the network traffic. As the damage of sinkhole Attack in the RPL network
is very big and it makes a high impact to the network, position of the attack node is very important in the network, and it
can make a huge network isolation and loss the high percentage of traffic loss. This thesis studies the damage of Sinkhole
attack in RPL networks and proposed the simple and very effective way of defense mechanism to mitigate that sinkhole
attack. Our proposed method, making a dual-parent formation for each child node in the network when the topology is
set up, is the effective way to defense the Sinkhole Attack. This thesis also implements the traffic load balancing of the
network by applying Traffic Aware Scheduling Algorithm (TASA). Applying the TASA in the RPL network topology is a good
way to concern the total traffic load of our data acquisition network, avoid the collision between child nodes and parent
node transmission and reduce the time and delay of the network. Results show that we can mitigate the sinkhole attack
and fully deliver the total traffics of the network. And this thesis compares the number of time slots and packets loss in
both mechanisms, with and without dual parent, under sinkhole attack and details of time slots comparison of one
attacking behavior to check the correctness of our proposed method and simulation. Finally, we can conclude that our
dual-parent sinkhole attack defense mechanism is worked well by checking the comparisons results.

Field of Study: Electrical Engineering Student's Signature
Academic Year: 2021 Advisor's Signature

 v

ACKNOWLEDGE MENTS

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my advisor,
Associate Professor Dr. Lunchakorn Wuttisittikulkij, for his patient and wise counsel. My
experience at Chulalongkorn University was made more enjoyable by your advice and
knowledge.

Without the assistance and support of the Chulalongkorn University scholarship
program for ASEAN countries to study for a Master's Degree, my research would not have been
possible. Additionally, I want to thank the Department of Electrical Engineering for their
financial assistance.

I am grateful to my colleagues from Smart Wireless Communication Ecosystem
Research Unit who gave valuable suggestions and advice during our meeting.

I also would like to thank to committee members of my thesis examinations for your
valuable comments and suggestion.

I want to express my sincere gratitude to Dr. Thiri Thitsar Khaing for her assistance
during the initial stages of this master's thesis journey.

I also want to express my gratitude to my parents, brother, and sister for their financial
and emotional support. While I was a student at Chulalongkorn University, my friends
supported me. I want to express my gratitude to Dr. Ei Ei Tun, Dr. Ei Ei Mon, Dr. Hsu Mon Lai
Aung, Mr. Htain Lynn Aung and Ms. Phoo Phoo Thet Lyar Tun for their unwavering assistance
in helping me apply for the scholarship and finish my dissertation. I want to express my
gratitude to Dr. Sanika Wijayasekara and Mr. Pruk Sasithong for their insightful advice and
assistance. Finally, I'd want to express my gratitude to Mr. Soe Ye Htet, Mr. Ye Moe Myint, Ms.
Nang Htet Htet Aung, and Mr. Aung Myo Htut for their support throughout our discussion and
assistance with my thesis and would like to thank to my beloved person who, in the last stage
of my struggle, gave me emotional support and encouragement.

Tay Zar Bhone Maung

TABLE OF CONTENTS

 Page
ABSTRACT (THAI) ... iii

ABSTRACT (ENGLISH) .. iv

ACKNOWLEDGEMENTS ..v

TABLE OF CONTENTS ... vi

LIST OF TABLES ... ix

List of Abbreviations .. 1

Chapter 1 .. 3

Introduction ... 3

1.1: Motivation .. 4

1.2: Problem Statement ... 4

1.3: Objective .. 6

1.4: Scope of the Thesis ... 6

1.5: Contributions ... 7

1.6: Literature Review .. 7

1.7: Thesis Layout .. 11

Chapter 2 Background ... 12

2.1 Internet of Things .. 12

2.2 Low-Power and Lossy Networks .. 13

2.3 Internet Protocol version 6 (IPv6) over Low-Power Wireless Personal Area
Network ... 14

2.4 Routing Protocol for Low-Power and Lossy Networks .. 15

 vii

2.4.1 RPL Architecture .. 15

2.4.2 RPL Control Message ... 18

2.4.2.1 DODAD Information Object (DIO) ... 19

2.4.3 DODAG Configuration ... 20

2.4.4 RPL Vulnerabilities .. 23

2.4.5 Attacks on RPL ... 24

2.4.5.1 Attacks on Resources .. 25

2.4.5.2 Attacks on Traffic ... 26

2.4.5.3 Attacks on Topology ... 26

2.4.6 Security of RPL .. 27

2.5 Traffic Aware Scheduling Algorithm ... 27

Chapter 3 Sinkhole Attacks in Routing Protocol for Low Power and Lossy Network... 29

3.1 Sinkhole Attack .. 29

3.1.1 Sinkhole Attack Behavior ... 30

3.1.2 Sinkhole Attack Formation .. 31

3.2 Implementation of Sinkhole Attack in RPL Network ... 34

3.3 Results and Discussion ... 37

Chapter 4 DODAG Implementation in RPL with Dual-Parents Topology to mitigate
Sinkhole Attack and Load balancing Approach with TASA Algorithm 50

4.1: Routing Protocol for Low Power and Lossy Network (RPL) with Dual-Parent
Topology ... 50

4.2: Parent Selection in RPL ... 51

4.3: RPL with Traffic Aware Scheduling Algorithm (TASA) .. 53

4.4 Implementation of RPL network with TASA without Sinkhole Attack 54

 viii

4.5 Implementation of RPL with TASA under Sinkhole Attack 59

Chapter 5 Conclusion ... 76

5.1 Conclusion .. 76

5.2 Future Work .. 77

REFERENCES ... 91

REFERENCES ... 96

VITA .. 97

LIST OF TABLES

 Page
Table 1 Literature Review of State of Arts ... 9

Table 2 Parameters for Simulation .. 34

Table 3 Traffic Loss of the Network when the Sinkhole Attack is located at Each
Specific Node ID .. 45

Table 4 Traffic loss of the Network when the Attacker is located at Nodes of
Different Node Levels .. 47

Table 5 Time Slot Comparison in Different Scenarios ... 63

Table 6 Comparison of Number of Time Slots and Packets Loss Under Sinkhole
Attack with and without Dual Parent Mechanisms ... 66

List of Abbreviations
6LoWPAN IPv6 over Low Power Personal Area Network
DAO DODAG Advertisement Object

DAO-ACK DODAG Advertisement Object Acknowledgement
DIO DODAG Information Object

DIS DODAG Information Solicitation

DODAG Destination Oriented Directed Acrylic Graph
DTSN Destination Advertisement Trigger Sequence Number

ETX Expected Transmission Count

ICMP Internet Control Message Protocol
ICMPv6 Internet Control Message Protocol version 6

IDS Intrusion Detection System

IETF Internet Engineering Task Force
IoT Internet of Things

IPv6 Internet Protocol version 6
LLN Low Power and Lossy Networks

LBR Low Power Border Router

M2P Multipoint to Point
MAC Medium Access Control

MOP Mode of Operation

MRHOF Minimum Rank with Hysteresis Objective Function
OF Objective Function

OSPF Open Shortest Path First

P2M Point to Multipoint
P2P Point to Point

RPL Routing Protocol for Low Power and Lossy Networks
TASA Traffic Aware Scheduling Algorithm

TSCH Time Synchronized Channel Hopping

UNS Unheard Node Set

 2

VERA Version Number and Rank Authentication

WSN Wireless Sensor Networks

 3

Chapter 1

Introduction

In recent years, along with the rise of the usage of Internet of Things (IoT)

devices, the applications of wireless ad-hoc networks and sensor networks for smart

systems have increased. In a wireless ad-hoc network, many sensor devices (nodes)

can be installed easily to collect the data and each sensor node connects to all its

surrounding nodes for data forwarding and successful communication. When a smart

system like environmental monitoring is implemented, sensor nodes and

interconnected devices are connected wirelessly. On the other hand, with the

increasing demand for cyber security, the communication links in an IoT wireless sensor

network need to be secured. With the implementation of IoT, the physical objects in

the real world can relate to each other to share information and communicate in real-

time with a higher degree of performance as well as security. Therefore, finding the

secure path between the two sensor nodes and sending the collected data from one

node to another trusted one are big problems in the wireless routing protocol.

Routing Protocol for Low Power and Lossy Networks (RPL) is the Distance Vector

Routing Protocol for Low Power and Lossy Networks (LLN) where many Internet of

Things (IoT) devices are implemented through the wireless connection. That kind of

Wireless Sensor Networks (WSN) are very popular nowadays because that is convenient

to use and can be set up easily for various purposes. When a WSN network is built up,

a routing protocol for IoT devices is played a vital role in effective, reliable, and

successful communication among sensor nodes. RPL meets that kind of criteria for

low-power sensor nodes that have constrained memory and limited energy.

Because of wireless connection and low power working procedure, RPL cannot

work well for the strong security issue. Many kinds of attacks can happen in the RPL

 4

network based on resources, network topology and network traffic. Among them, a

sinkhole attack is the kind of network topology, and it can create easily in an RPL

network but the damage of a sinkhole attack to the network is excessively big.

1.1: Motivation

 Increasing building many smart systems; smart parking, smart healthcare

system, smart farm, smart city, etc. nowadays, the application of Wireless Sensor

Networks (WSN) is exceedingly popular. In WSN, many routers, gateways, sensor nodes

and network accumulators are involved to build up a smart system or smart

environment. Some WSN networks are built up as strong networks which have many

powerful sensor nodes and routers for network connection, but some networks are

working with low power and limited energy nodes. These kinds of networks are called

Low Power and Lossy Networks (LLN). LLN works with lower power sensor nodes which

are constrained energy, power, and memory nodes for wireless connection.

Routing Protocol for Low Power and Lossy Network (RPL) is the originating

routing protocol for low-power IoT devices. RPL has been proposed by the Internet

Engineering Task Force (IETF) as a standard routing protocol for LLN networks and

6LoWPAN (IPv6 over Low Power Personal Area Network) networks. The working

procedure of RPL is simple and quite efficient for low-power networks and RPL is one

of the best routing protocols for data transportation and routing in IoT devices.

Applying RPL protocol in a wireless sensor network is a good way to set up to

create a smart system, especially for low power networks. RPL works proficiently with

limited power sensor nodes, and it is very useful for massive data transmission.

1.2: Problem Statement

 5

 Building a smart wireless system with many sensor nodes is easy to implement

at this moment but creating a secure network that has a secure connection and no

malicious node in the network is quite challenging for a low-power lossy network. For

example, in a smart data acquisitions network, creating a reliable connection between

two sensor nodes and forwarding the sensed data from one sensor node to another

node have existed till now. A sensor node forwards the data packet to its up-level

node to deliver to the server or user application. When the up-level sensor node does

not forward the data to the next up-level node, the server does not get the useful

data and users do not know what is happening in the real situation outside.

 Moreover, so many attackers are still waiting to get useful data from our sensor

network, or they want to make trouble in our data transmission. In the RPL network,

there are many kinds of attacks are figured out due to their attack behaviors. An attack

can easily happen in the RPL network compared with other normal networks. Because

of the network structure of RPL, some attacks make serious damage to the network in

data forwarding and acquisition.

 To create a secure sensor network, there have many protections, applying

protection mechanisms and using security features are available. We can use various

data encryption algorithms, hashing algorithms and node authentication security

features in our sensor network to make a secure connection. Implementing these kinds

of security features in normal networks is not a serious issue. But it is a big concern for

RPL networks for using high-security features because RPL works in low-power and

lossy networks. Many sensor nodes in the RPL network are low power, constrained

memory and limited energy. So, applying for the big security program in sensor nodes

is not easy, and that can use a lot of power consumption to run the program. Avoiding

serious harmful attacks, e.g., Sinkhole Attacks in RPL with a simple protection

mechanism and making the successful data transmission within a minimum timeframe

are good challenging in the research field of RPL network.

 6

1.3: Objective

This thesis’s main objective is to investigate how to mitigate the negative effect

of sinkhole attacks in a secure low power and lossy network routing protocol where a

few dozens of low-power internet of things (IoT) devices are connected wirelessly. We

first identify the amount of damage measured in terms of packets loss due to the

sinkhole attack at different levels of nodes in the networks. Then we propose to avert

the sinkhole attack in an effective manner by ensuring that every member nodes are

reachable by the root node through at least two parent nodes. A network simulator is

designed and implemented specifically for this study and used extensively to

determine whether dual-parent mechanism can effectively advert the sinkhole attack

with respect to the traffic loss and packet delivery time.

1.4: Scope of the Thesis

The scope of this thesis is as follow:

1. To implement a network simulator to simulate routing protocol

based on TASA for low-power and lossy networks for normal

operation and under a Sinkhole attack, one of the serious topology

attacks of RPL that makes network isolation at different level in the

networks.

2. To propose a dual-parent concept as an effective mechanism to

mitigate the impact of sinkhole attack, where traffic loss and packet

delivery time can be maintained despite the attack.

 7

3. To numerically compare the results of traffic loss of the network

under network with and without dual-parent mechanism under

sinkhole attack.

1.5: Contributions

 Sinkhole attack is one kind of topology attack in an RPL network, and it attacks

the network internally and makes the sub-network that will be isolated from the main

network. It is seriously damaging to those networks which employ data acquisition and

data transmission.

Dual-parent network formation is verified as an effective way to combat against

the sinkhole attack in the RPL networks. It is simple to create but a very effective way

to avoid the attack. For working in Low Power and Lossy Network (LLN) structure,

implementation of dual parent for every child node in the network is no need to

consume extra power for protection from attack. By combining the Traffic Aware

Scheduling Algorithm (TASA) algorithm with dual-parent implementation, sensor nodes

in the RPL network can work very effective way for power consumption and can avoid

the traffic conjunction of the data transmission in the network.

1.6: Literature Review

For detecting the internal attack like a Sinkhole attack in the RPL network, there

are two Intrusion Detection System (IDS) approaches [1], agent cluster based, or

specification-based IDS and agent distributed based or anomaly-based IDS. For first

approach, Le et al [2] proposed a specification-based IDS in 2016, in that each IDS

agent works as a cluster-based type. The IDS agent is placed in the center of the

 8

DODAG to cut down the overhead on the root node and its surrounding member

nodes, and this approach is adopted from the SVELTE. For second approach anomaly-

based IDS, Raza et al [3] conducted a newly intrusion detection system called SVELTE.

They used three main modules; first is to collect the information of RPL network and

rebuild the network, second is to analyse the data and detect intrusion and the last is

looks like a mini firewall to filter undesirable traffic. All three modules are placed in

the border router and nodes of the RPL network. In 2015, Cervantes et al. [4] proposed

another anomaly-based IDS called INTI. For mitigation of Sinkhole attack, the INTI

analyses the devise performance of every node by working together with three units

such as watchdog, reputation, and trust approach.

Dvir et al. [5] offered a new Sinkhole against mechanism called VERA (version

number and rank authentication) in 2011. When a DODAG is create, the node sent its

rank value in the DIO message and this rank value shows the individual position of the

node that is how it is closer to the root node. So, an attacker node can modify this

rank value to the lower value than real rank value to impersonate to the other nodes.

To prevent the forging true rank value or obtaining lower rank value, VERA uses a one-

way hashing method that is sequence and strict the changing rank value form the root

to the nodes. The rooted node has already sent hash value to all members DODAG

nodes while they are creating a DODAG. A node checks the hash value that id changed

or not by the previous node when it received an encrypted rank value that was put in

DIO message. In 2012, Weekly et al. [6] proposed another Sinkhole defence mechanism

that was based on parent fail-over technique. The DODAG rooted node make an

unheard node set (UNS) field that was added in the DIO message as an extra to prevent

the alternation of DODAG information. To fix some drawbacks of VERA, in 2013, TRAIL

[7] was conducted. Perrey et al. proposed a new topology authentication in RPL that

was TRAIL which presents a more powerful version of VERA and designs to minimize a

network message exchange and resource power consumption. Iuchi et al. in [8]

proposed a new DIO message-based [1][65]Sinkhole against mechanism in 2015. Their

 9

system is based on selecting a secure parent method and a child might choose its

parent that might be a legitimate node base on the standard threshold value. But a

node that has extremely lower rank value than a threshold, then this node will be

skipped for choosing as preferred parent by others. In 2020, Zaminkar et al. [48]

presented a novel approach to against the sinkhole attack by rating and ranking on

operation of the node in the network. Their system, SoS-RPL has better performance

results comparing with other methods, but they did not test on power consumption

that is important for low-power IoT devices.

Table 1 Literature Review of State of Arts

Mechanism
Security
Protocol

Techniques Testing Details

Specification
cluster-

based IDS

Detection IDS:
with three

specification-
based

algorithms,

Simulation
in Cooja

In this paper, authors propose a specification-
based IDS agent system that is placed in each
same size cluster of the network. To detect
the five kinds of internal attacks, the proposed
system works with three IDS algorithms.
In each cluster, the algorithm 1 and 2 of the
IDS agent extracts the states and transitions of
the sensor nodes and algorithm 3 works based
on the collected data to detect the attacks.
Because of its cluster-based system, there
might need more IDS agents and due to the
centralization, there may have a high
probability of IDS failure rate.

SVELTE Detection IDS:
with 6LoWPAN

Mapper,
Intrusion
detection

Simulation
in Cooja

In this paper, the authors implement an
Intrusion Detection System (IDS), is called
SVELTE, with three main modules to detect
the sinkhole attack.

 10

component,
Mini firewall

They simulated their system with three types
of attacking behaviors not only in lossless but
also in lossy network.
The positive rate of SVELTE is good when the
network is small, but it has a pretty low result
when the network is increase and the power
consumption rate is a little bit higher.

INTI Detection IDS:
watchdog,
reputation,
and trust
strategies

Simulation
in Cooja

This paper is about a new Intrusion Detection
System named INTI to detect, prevent and
make an isolation sinkhole attack in the
network. To compare the former IDS system,
SVELTE, the authors consider the concept of
mobility of attacker node in their
implementation and show the comparison
results.

VERA Protection Hash Chains:
Hash function

(SHA-1)
MAC function

Digital
signature

Proposed In this paper, the authors propose a new
security service that prevents any misbehaving
node from illegitimately increasing the Version
Number and compromise illegitimate
decreased Rank values.

Parent fail-
over

Detection Rank
authentication,

Parent fail-
over

Simulation
in a

custom-
built

The authors present a combine method of
Rank Authentication with one-way hash
function and Parent fail-over technique, which
uses a special set (UNS) like a blacklist to
protect the Sinkhole attack in routing.
The Parent fail-over has a little problem to
create a set of unheard nodes and the result
shows that there have not too much different
when compared with no defense method. But
the combination of two techniques has a
good result as a result.

 11

TRAIL Detection Algorithm
based on first-
hand principle,

Bloom filter

Simulation
in RIOT OS

In this paper, a topology authentication
scheme named TRAIL is created to fix some
weakness of VERA. It is based on VERA but
authors reduce the cryptographic workload in
their system. Authors apply the cryptographic
operation only in root node and set the root
node as a trust anchor using with a Bloom
filter.

Secure
parent

Detection Algorithm
based on rank

threshold

Simulation
in Cooja

Authors have presented a secure parent
selection method by performing the
calculation mechanism of rank threshold in
the node. The node chooses it parent that is
trusted or not based on threshold. The
authors proposed to fix the drawback of TRAIL
when a child node chose a parent node.

SoS-RPL Detection Node rating
and ranking

Simulation
in SN-3

The authors present an easy and
understandable mechanism to detect the
sinkhole attack by rating two rank values; rank
variation between child node is DV-RANK, and
between source node and receive node is DI-
RANK.
Then they simulated their implementation
with 500 nodes and showed the better results
compared with other four approaches

1.7: Thesis Layout

There are five chapters in this thesis. Chapter 1 describes thesis motivation,

problem statement, objective, contributions, and literature review. Chapter 2 studies

background technology such as RPL, Attack in RPL, TASA, etc. Chapter 3 explains the

 12

sinkhole attack that is easily creatable but serious damage to the network and

discusses the different damages of sinkhole attacks in each level of the network with

simulation results. Chapter 4 demonstrates the simulation testing that avoids the

sinkhole attack and implements the RPL with TASA to know the traffic of the network

and make scheduling in a simulated network. Finally, Chapter 5 will conclude the

thesis with future work. References are also outlined at the end of Chapter 5.

Chapter 2

Background

2.1 Internet of Things

 13

Nowadays the usage of IoT devices is more year after year. The Internet of

Things (IoT) devices are sensors, actuators and some smart devices which can access

internet connection and applied in our everyday activities [1][2]. They are very useful

to build a smart environment like smart farming, smart city, smart health-care system.

The IoT involves billions of connected devices which are collecting and sharing data

between each other. The development of IoT has been taking since last ten years ago

but the security issues go down the rapidity of the development of IoT. The IoT

architecture was proposed by at least three layers or four or five layers according to

different point of views.

In the literature, the architecture of IoT network system was proposed variously

by their different interests of the researchers like three-layers based, four or five-layers

based, middleware based and services-oriented based. Among them, the three-layers

based architecture: 1) Perception Layer, 2) Network Layer and 3) Application Layer is

seen commonly in many states of art.

2.2 Low-Power and Lossy Networks

According to [27], Low power and Lossy Network (LLN) is a type of network

where all the routers and IoT devices are working on constrained power, memory and

computational energy. Generally, LLN routers work with constraints one of those of

energy, memory and processing power and all their interconnected nodes are also

working on this in wireless medium. In an LLN, there may has a few tens of routers and

interconnected devices and up to a hundred or thousands of devices can involve. And

the connections between the LLN routers and their interconnected nodes are point to

multipoint traffic (P2M), that is from router to all its neighbour nodes, multipoint to

point traffic (M2P), from interconnected nodes to router, and point to point traffic (P2P)

which is traffic between the interconnected nodes in some special case.

 14

2.3 Internet Protocol version 6 (IPv6) over Low-Power Wireless Personal

Area Network

Internet Protocol version 6 (IPv6) over low-power wireless personal area

networks (6LoWPAN) is the key protocol for communications over IoT networks. It is a

standardized protocol that supports higher layer functions for IEEE 802.15.4 networks,

which is characterized by low power and lossy links with scarce resources such as

memory and throughput. IoT networks are based on the IEEE 802.15.4 standard, which

defines the physical and data link layers of the IoT network stack [4]. From [5], we find

that 6LoWPAN enables network connectivity for IPv6 packets over an IP-based

infrastructure such as the Internet. This is done through the border router, which is

also known as the sink node in an IoT network. 6LoWPAN can also be viewed as a

network adaptation layer that allows vertical communications between the Medium

Access Control (MAC) layer and the network layer. Its functions include fragmentation

and reassembly of datagrams between these two layers as well as header compression

on network addresses to allow IPv6 packets to be sent and received over IEEE 802.15.4-

based networks. Shown in Figure 1 is the communication paradigm for packets

traversing between the IPv6 Internet and IoT enabled network. The network stacks for

the Internet and IoT network are also depicted. The IPv6 address that is used by the

Internet is compressed into a 6LoWPAN datagram for communications within an IoT

network.

 15

Figure 1 IoT Network Architecture [24]

2.4 Routing Protocol for Low-Power and Lossy Networks

RPL was introduced by Internet Engineering Task Force (IETF) as a suitable

standard routing for low-power IoT devices. It has been standardized as RFC 6550 in

2012 [28]. It was designed to meet the requirements of several applications in the

Wireless Sensor Network (WSN) and Internet of Things (IoT) domains.

2.4.1 RPL Architecture

RPL is proposed for LLN network and the overview of the RPL architecture is

shown in Figure 2 [9]. In a LLN, there might be at least one border router or root node

and many low-power IoT devices called non-root nodes. All sensor nodes are

connected to the root as a tree structure and in RPL, it is called Destination Oriented

Directed Acrylic Graph (DODAG). The border router or root node is also called DODAG

root, and it has a unique ID and is represented by the IPv6 address. The border router

 16

or DODAG root is the main component of the LLN network and that can only connect

to the internet.

 According to the RPL network topology, there has another important one is

RPL Instance that is a compound of one or more DODAGs. A RPL Instance also has a

RPL Instance identifier called RPLInstanceID and DODAGs in same RPL Instance share

same RPLInstanceID. Each RPL instance shares a specific Objective Function (OF) [28] .

This OF is used to compute the position of the nodes in the DODAG and that is called

as Rank. Based on the rank value, a node can choose it preferred parent that has lower

rank value than child node. The less value of the rank means the closer to the root

node and the root node has always the lowest rank value in the DODAG. The last

important identifier of RPL is the DODAGVersionNumber that is a specific number of

iterations of a DODAG. Sometime a DODAG is reconstructed from the root node to

maintain the topology. Then the root node sets the increased version number for the

new DAG. The combination of four RPL identifiers, RPLInstanceID, DODAGID,

DODAGVersionNumber and Rank value, uniquely identifies a DODAG.

A node’s rank is computed by the defined objective function [21] in RPL

instance and this rank value is increased when the node is farther away from the

DODAG root. A parent node that has lower rank value than its child node and nodes

which have same rank are called siblings nodes. A node that has no incoming link or

that is not a parent of any other nodes is called a leaf node. The rank is increased

when route goes to downward, and it is decreased when it goes from the leaf nodes

to the root node. And to determine the nodes which are roots or parents or child

nodes, rank property is played in vital role in RPL instance. So, maintain the right rank

value is the very important for effective routing operation of RPL network. each RPL

instance.

According to RFC 6552, a node’s rank is determined by the OF and the OF is

an optimizing criterion based on different operating scenarios, applications, and

 17

network designs. It can be thought of as a set of rules in terms of link metrics and/or

constraints to enhance the routing paths in a network based on different design

considerations. These include distance, bandwidth, latency, energy, etc. The routing

topology in a DODAG is formulated by the selection of the parent with best route link.

For this parent selection and rout formation between parent and child nodes, RPL uses

four types of control messages. They are DODAG Information Object (DIO), DODAG

Information Solicitation (DIS), DODAG Advertisement Object (DAO) and DODAG

Advertisement Object Acknowledgement (DAO-ACK). RPL uses trickle timer mechanism

[11] to control the sending rate of above control messages especially for DIO messages

which are main responsible for DODAG formation in RPL networks. The timer algorithm

decides when DIO message is send and can adjust the transmission of DIO message by

setting of higher or lower value of trickle timer results [12].

Figure 2. RPL Network Architecture [19]

 18

 2.4.2 RPL Control Message

Because RPL use Internet Protocol version 6 (IPv6) for communication, it

controls messages are put in the IPv6 packet format called ICMPv6 messages. For the

RPL control message, the type of value of ICMPv6 is 155 and next code field shows

what kind of this message. The main RPL control message places in the base field of

ICMP (Internet Control Message Protocol). Figure 3 shows the brief structure of all RPL

control messages, their basic functions and where they have been put in the IPv6

message. The four basic control messages of RPL are

 0x00: DODAG Information Solicitation (DIS) - Request message of a

new node to the RPL node to solicit the routing information.

 0x01: DODAG Information Object (DIO) - Carries information that

allows a node to discover an RPL Instance, learn its configuration

parameters and select DODAG parents.

 0x02: Destination Advertisement Object (DAO) - Used to propagate

destination information upwards along the DODAG.

 0x03 Destination Advertisement Object Acknowledgement (DAO-

ACK) – Response message from the DAO parent or DODAG root node.

 19

Figure 3 RPL Control Message Structure [23]

2.4.2.1 DODAD Information Object (DIO)

When a DODAG in RPL network is created, there have two ways links for

connection. Mostly IoT networks work as data collection networks in smart systems.

For sending the collected data to the parent node and then forward these data packets

to the root node or border router, the formation of upward link is very important in

data collected networks. In RPL, the border router or root node uses DODAG

Information Object (DIO) message to create an upward link in networks. The DIO only

has the important information such RPLInstanceID, DODAGID, Rank value and Version

Number, for DODAG formation in RPL network. The first 8 bits is RPLInstanceID and

next 8 bits is Version Number of the current DODAG. Rank occupies 16 bits, and 1 bit

 20

‘G’ flag defines the goal of the DODAG. Mode of Operation (MOP) is 3 bits to show

what type of mode is used for DODAG operation and DODAGPreference (Prf) indicates

the level of preferable of the DODAG root. Destination Advertisement Trigger Sequence

Number (DTSN) is for the maintenance of the downward routes in DODAG. Flags and

Reserved fields are 8 bits unused fields and already assigned with 0 numbers. 128 bits

DODAGID is IPv6 address and that is set by the DODAG root or border router. The

standard structure of DIO message is shown in Figure 4.

Figure 4 The DIO base Message [28]

2.4.3 DODAG Configuration

 21

Figure 5.. DODAG Configuration Process [16]:(i) a root node multicasts DIO messages
to the nodes in its transmission range, (ii) by getting the DIO message, the neighbor
node selects the root node as its parent, then calculate its rank value according to
specific objective function and later multicasts another new DIO to its surroundings
(iii) next level node does same procedure as its parent node and (iv) the
configuration process is finished when all node in the RPL network have connected
to the root node.

The general task of RPL is to set up the optimal DODAG in an LLN. In RPL, every

node constructs a tree-based topology network that has no loop, and it is called

Destination Oriented Directed Acyclic Graph. The RPL DODAG configuration process is

briefly shown in Figure 5. DODAG is formed by an iterative exchange of DIO and DAO

messages between sets of parent and child nodes. Assuming that the OF is a minimum

function, such as distance, we see that a lower rank indicates a distance closer to the

source.

 22

In the initial stage, the sink node or bolder router multicasts DIO messages to

all its neighbours, indicating its presence. Upon receiving the message, the neighbour

nodes, yellow ones, which are essentially the child nodes in this case, calculate their

associated ranks based on the rank of the sender and the distance to the source. This

is followed by a DAO response to the sink node with corresponding advertisement on

its route information. Upon accepting this information, the sink node then provides an

acknowledgement with a DAO-ACK message.

This process repeats iteratively at the next tier with the parent nodes as Rank

2. In a separate scenario where there is a route update due to the change of rank, the

process is similar. Multicast DIO messages are sent to all neighbours first, followed by

the exchange of DAO and DAO-ACK messages to complete the route update process.

Additionally, in the case when a new node enters the network, the only difference is

that the new node first multicasts DIS messages to its neighbours. The neighbours then

respond with multicast DIO messages, and the follow-on process is the same as what

has been discussed.

 23

Figure 6 Flowchart of Node Operation in DODAG [14]

 2.4.4 RPL Vulnerabilities

RPL works on low power devices and in lossy networks. Like other networks,

RPL networks also have the same security issues. They have the vulnerability of both

passive and active attacks [28]. Because they have constrained storage and limited

 24

power and are low cost, RPL nodes are not very week and not always said good enough

to defence a kind of attack.

Some special function nodes such as Low Power Border Router (LBR)can also

vulnerable RPL networks [10]. They require the assurance in a security context of the

availability of communication channels and the neighbour discovery process.

2.4.5 Attacks on RPL

Because of the constrained structures of LLN networks such as poor

infrastructures, limited resources, lossy connection and lack of physical security, there

might be many security attacks happened in the routing in a LLN network. Although

many attacks can easily happen in RPL, it is very hard to detect or protect these attacks.

But RPL provides some basic mechanisms like local and global repair mechanisms and

to detect or avoid the loop formation in the network. Moreover, RPL supports three

security modes for routing, but standard RPL works in unsecured mode to reduce the

energy consumption because they are working on low power devices. Therefore, a

standard RPL can assume a very week in routing protocol comparing with the others

routing protocol like Open Shortest Path First (OSPF).

Because of RPL’s lightweight structure, there have been many attacks on the

RPL routing protocol. All these attacks are basically classified into two kinds: direct and

indirect attack. In active attack, the adversary node cracks the network in order to

modify, isolate, exhaust and obliterate the data. The passive attack sniffs the crucial

information between the legitimate nodes or inside the network. Mostly attacks in RPL

are active type and passive is a few. Both active and passive can harm part of the

network or even the whole system.

For more details, the attacking types on RPL protocol can classify into three

groups [22]. In Figure 6, a taxonomy of attacks on RPL routing protocol is clearly

graphed based on three base groups: 1). Attacks on Network Resources: Attacks are

 25

targeting the exhaustion of network resources and they are very damaging for

constrained networks because they have low power, memory, and energy, 2). Attacks

on Network Topology: These attacks focus to disrupt the topology of RPL network and

attackers target the isolating of some RPL nodes from the main network or the sub-

optimization of the network topology. 3). Attacks on Network Traffic: This group of

attacks harm the network traffics by eavesdropping or impersonation behaviours.

Figure 7. Taxonomy of Attacks on RPL [22]

2.4.5.1 Attacks on Resources

Some attacks on RPL are classified as resources attacks according to their

attacking behaviors. The resources attacks on RPL are categorized again into two types:

direct attack and indirect attack. In this kind of direct attack, the attacker node directly

attacks to the node for exhaustion of the node resources such as power, memory, by

sending many hello messages. These attacks can call Hello flooding attacks because

of their attack type, and these can be divided in two like DIS flooding and DIO flooding

attack in RPL. In indirect attack type, the adversary node causes the other legitimate

nodes create an overwhelm for the network. These kind of attack on RPL are, ETX

 26

(Expected Transmission Count) manipulation, Version number attack, Local repair

attack, Increased rank attack, routing choice intrusion and DAG inconsistency attack.

2.4.5.2 Attacks on Traffic

Based on the effects of attacking structures, some attacks are named as attacks

on the RPL routing traffic. In this kind, it also mainly subdivides into two forms:

eavesdropping and impersonation or misappropriation attacks. The attacks act like

eavesdroppers in the network to access the routing information. Later they can re-

apply this information in unauthorized action or share to other to do more advance

actions. Sniffing attack and Traffic analysis attacks are two kinds of eavesdropping

attack on RPL. In this group of attack, the attacking node copies or clone the

information of legitimate nodes and acts onto another node to get access the large

part of network. There have two kinds of impersonation attack; Decreased rank attack

and Identity attacks, the Identity attack is sub-divided into two, Clone ID and Sybil

attack.

 2.4.5.3 Attacks on Topology

On RPL routing protocol, some attacks disrupt the network topology, make

false route and route disruption. These kinds of attacks are named topology attacks

and are classified into two types on detail of their harming structure: sub optimization

attack and isolation attack. The attacker node makes the network as sub-optimization

from the main network by disrupting between two legitimate nodes. Sinkhole attack,

Wormhole attack, Worst parent attack, Neighbour or replay attack, Routing table

falsification attack and DIO suppression attack are under this kind of sub optimization

attack on RPL routing protocol. In some case, a malicious nodes make some part of

network isolate from the main network. Then this isolated part lost the connectivity

of the whole network and far away from the current activity of the network. This

 27

isolation attack mainly includes Blackhole attack, DAO inconsistency attack and

Selective forwarding attack.

2.4.6 Security of RPL

RPL supports three security modes for DODAG operation. They are Unsecured

mode, Preinstalled mode, and Authentication mode.

Unsecured Mode: In this mode, the RPL control messages are sent freely that

means no need to add any security protection when a DIO, DIS, DAO or DAO-ACK

message is sent.

Preinstalled Mode: By compiling with cryptographic secure mechanism, RPL

control messages are sent in this secure mode. To get the successful secure

connection, every node must have a preinstalled key at boot time and use this key

for joining RPL network.

Authentication Mode: In this secure mode, the node works same as

preinstalled mode mechanism, but it is only for host node joining the network. For the

node that works as a router in the network, it must need another key from a key

authority and need to authenticate with him.

2.5 Traffic Aware Scheduling Algorithm

 The Traffic Aware Scheduling Algorithm (TASA) was introduced as a centralized

scheduling algorithm for Time Synchronized Channel Hopping (TSCH) that is highly

reliable low-power Medium Access Control (MAC) protocols [29]. TASA provides a

highly efficient plan for TSCH with the concepts of combination matching and coloring.

In TASA, low power and lossy network routing protocols are considered network layer

protocols over IEEE 802.15.4eMAC. TASA can provide for many smart wireless systems

which need to work with low latency at low power consumption [30].

 28

 TASA works based on the network topology that must has a tree topology like

a DODAG of the RPL network and network traffic load of sensor node of the network

that is a constant integer number of packets. When running the TASA procedure in the

RPL, TASA constructs time/frequency patterns for the nodes in the network. The root

node knows the whole topology of the network and all the other nodes in the network

are forwarded the traffic load to the root. Node in the network neither can do

transmitting or receiving the packet to the other node at the same time nor receive

the packet from many nodes at the same time. After that, the main two steps of

Matching and Colouring are performed in the network and then forwards the traffic

within a minimum timeslot.

 29

Chapter 3

Sinkhole Attacks in Routing Protocol for Low Power and Lossy

Network

In this chapter, we will study the impact of the Sinkhole attack on the RPL

network. A sinkhole attack is one of the topology attacks and it can create attacking

behaviour easily and make serious damage to the network. According to the network

structure of RPL, the position of a node in the network is very important and the

damage of the sinkhole node can be varied due to the different locations. We will

create an RPL network and plot various effects of the Sinkhole attack in different ranks

(level). We will evaluate the impact of the sinkhole node in our routing topology and

measure and compare the throughput of every single node in the RPL network.

3.1 Sinkhole Attack

Among the many types of topology attacks in RPL routing, the sinkhole attack

is an internal attack, and it is very easy to create by decreasing the actual rank value

of the node [15]. To launch a simple Sinkhole attack in the RPL network, the adversary

node makes its fake DIO messages with a false rank value that is lower than its actual

rank value. Then it broadcast its fake DIO message to its neighbour to persuade them

to become the preferred parent of all nodes in its coverage range. The adversary node

will make its fake rank value as low as possible to induce the neighbours. The less the

rank value, the more attracted to not only its child nodes and neighbour nodes that

have the same rank value, but its parent node also will join back to its as it preferred

parent.

 30

So, adversary nodes are created the sinkhole attack by reducing their own rank

value but rank 0, the rank of the root node, and rank 1 the closest level of the root

node are hard to make it.

Figure 8 Example of Sinkhole Attack on RPL Network

3.1.1 Sinkhole Attack Behavior

In sinkhole attacks, the attacker node advertises a beneficial path to attract

many nearby nodes to route traffic through it. This attack disrupts the network

operation, and it can become very powerful when combined with another sinkhole

attack, which becomes a Blackhole attack. RPL does not have the self-healing capacity

against the sinkhole.

 The attacks against the topology also serve as a support for isolating a node or

a subset of nodes in the RPL network which means that those nodes are no longer

able to communicate with their parents or with the root. In a Blackhole attack, a

malicious intruder drops all the packets that it is supposed to forward. This attack can

 31

be very damaging when combined with a sinkhole attack causing the loss of a large

part of the traffic. It can be seen as a type of denial-of-service attack. If the attacker is

located at a strategic position in the graph, it can isolate several nodes from the

network. There is also a variant of this attack called gray hole (or also selective

forwarding attack) where the attacker only discards a specific subpart of the network

traffic.

3.1.2 Sinkhole Attack Formation

An attacker can create a sinkhole attack easily by reducing the actual rank value

of the node as low as possible. In the RPL network, every node in the DODAG is placed

by its specific DODAG ID, Instance ID and its own Rank value. The lowest rank is the

root node of the network, and the highest rank is the end nodes or child nodes which

have no child nodes anymore in the DODAG. Sinkhole attacks can form at every level

node except level 0 node (Rank 1 of the root node) and level 1 nodes (primary child

nodes of the root node) which are very hard to change their rank values. Many

attackers make the sinkhole attack at the nearest level of the root node because it

has a big impact on the local network. Although the attacker node is not placed at the

low level, if the position of the attacker node is very central or close to many other

nodes, it may harm or make serious damage to the network. Therefore, the formation

of the sinkhole node in the RPL network is very important to determine how much a

malicious node can be harmful to the entire network.

In Figure 9 (i), the root node is at the topmost level, and it broadcasts the DIO

message to its neighbour nodes, node 1 and node 2. Node 1 transmits the DIO message

again to the neighbours, and node 3 has become its child node. At the same time,

node 2 makes a DODAG formation by transmitting a DIO message to the last end node

that has no child node anymore. In Figure 9 (ii), when creating an attack behaviour,

 32

node 6 is a malicious node and it broadcasts its DIO message again in the range of its

transmission. Because of the fake lower rank value, not only its child node but also its

parent node and same level nodes are chosen as their preferred parent. They forward

their data packets to node 6 to make a shorter way for data transmission. But the

malicious node, node 6 is a sinkhole attack node so it will not forward and discard all

the packets which are coming to it. Then the sub DODAG that is forming at node 6 is

isolated from the main network that can see in Figure 9 (iii).

 33

Figure 9 Sinkhole Attack formation in RPL network

 34

3.2 Implementation of Sinkhole Attack in RPL Network

 In this section, we will implement sinkhole attack formation in the RPL network.

We will implement the sinkhole attack at every single node on different levels in the

same topology. Our implementation is simulated with python programming and runs

the topology with the different local traffic. In our implementation, the root node is

Rank 1 (level 0) and other sources/child nodes are placed randomly by different levels.

We will assume every child node has dual parents except Rank 1 (level 1) nodes

because they have only the root node as their preferred parent. Because of the

behaviour of the sinkhole node, attack formation will not make in level 1 nodes, but

other remaining levels of nodes will make. The main parameters of the

implementation are given in the following table.

 Table 2 Parameters for Simulation
Parameter Value

Simulation Tool Python

Routing Protocol RPL
Simulation Coverage 120x120cm

Inference Range 70cm
Total Number of Nodes 50

Root Node 1

Malicious Nodes 1

 Figures 10 and 11 show the implementation results of the RPL network. In

Figure 10, the RPL network is simulated with random traffic value at each node. Root

node in level 0 and all the other 50 nodes are placed randomly in the network to

form the DODAG. When we create a sinkhole attack that is formed at the node ID 22

 35

in the network, not only its child nodes of node ID 28 and 20, but also some child

nodes of node ID 24, same level node, node 8, 14, 24, 36 and 49, and its preferred

parent node 20 are reconnected back to it because of sinkhole attack behaviour. We

can see the simulation result in Figure 11.

Figure 10. Example of RPL Network with Random Traffic Value

 36

Figure 11. RPL Network with Sinkhole Attack with Traffic Loss

 37

3.3 Results and Discussion

This section will present the effects of different sinkhole attacks at every node

of levels 2, 4, 5, and 6 in the same topology. We simulate an RPL topology with fifty

sensor nodes randomly placed at various levels. The node number is the root node

(red colour in the plot) that has the lowest rank (Rank 1) and the other fifty nodes;

Rank 2 nodes are 5 nodes, Rank 3 nodes are 10, Rank 4 nodes are 15, Rank 5 nodes

are 15 and Rank 6 nodes are 5, are coloured with a different colour; green, yellow,

purple, blue and pink. An attacking node is formed at every single node of each level,

and we run our simulation with the same topology to get the obvious results which

are needed to compare which one has the lowest traffic loss and which one has the

highest impact on the network. In each figure, we plot the attack node ID, where the

attack node has existed (the level of the node) and the percentage of traffic loss that

is we calculated based on the total traffic of the topology. The traffic losses of each

node are presented in the Table 3.

(i) (ii)

 38

(iii) (iv)

 (v) (vi)

(vii) (viii)

 39

(ix) (x)

(xi) (xii)

(xiii) (xiv)

 40

(xv) (xvi)

(xvii) (xviii)

(xix) (xx)

 41

(xxi) (xxii)

 (xxiii) (xxiv)

 (xxv) (xxvi)

 42

 (xxvii) (xxviii)

 (xxix) (xxx)

 (xxxi) (xxxii)

 43

(xxxiii) (xxxiv)

 (xxxv) (xxxvi)

 (xxxvii) (xxxviii)

 44

 (xxxix) (xl)

 (xli) (xlii)

 (xliii) (xliv)

 45

 (xlv) (xlvi)

Figure 12 Sinkhole Attack in Specific Node at Different Levels in RPL network

Table 3 Traffic Loss of the Network when the Sinkhole Attack is located at Each
Specific Node ID

Node ID Level Traffic Loss (%)

1 4 35.25

2 5 18.03

3 2 32.79

4 4 27.87

5 3 13.93

6 3 27.87

7 4 10.66

8 3 68.03

9 4 16.39

10 2 54.92
11 2 52.46

13 3 46.72

14 3 61.48

15 2 68.03

16 5 22.95

17 2 52.46

 46

18 2 32.79

19 4 27.87

20 4 27.87

22 3 38.52

23 3 13.93

24 3 36.89

25 4 31.97

26 3 22.95

27 4 27.87

28 4 35.25

29 2 1.64

30 5 11.48

31 3 48.36

32 4 18.85

33 2 52.46

34 4 16.39

35 5 13.93

36 3 63.11

37 4 27.87

38 3 13.93

40 2 32.79

41 5 13.93

42 2 54.92

45 4 17.21

46 3 22.95

47 4 18.85

48 4 27.05

49 3 40.16

0 3 31.15

 47

Table 4 Traffic loss of the Network when the Attacker is located at Nodes of
Different Node Levels

Level Number
of Nodes

Minimum Traffic
Loss (%)

Maximum Traffic
Loss (%)

Average Traffic
Loss (%)

2 10 1.64 68.03 43.03
3 15 13.93 68.03 36.67

4 15 10.66 35.25 24.48

5 5 11.48 22.95 16.06

 Table 3 discusses the traffic loss of the whole network when the sinkhole attack

is located at each specific node ID of in every level except in level 1. We make every

single node at a different level to know each impact of the sinkhole attack on our

same RPL topology. Even though the node is a bit far away from the root node, it can

make big isolation and the percentage of traffic loss is high, see traffic loss of node

number 16 in Table 3. In our topology, the effect of node number 29 is the lowest,

and node number 15 in level 2 and node number 8 in level 3 have the highest effect.

We can check what is the minimum and maximum traffic losses of each level of our

testing in the Table 4. According to that table, the minimum traffic loss of the whole

topology is at level 2, and levels 2 and 3 have maximum traffic loss. When we do the

average traffic loss of each level, the nearest level has the highest percentage and the

furthest level from the root node has the lowest value as see in Table 4.

 Figure 13 shows the comparison of the traffic loss of each attack node in the

RPL network. We plot the bar chart with assorted colours for each level, but we arrange

every single bar according to the ascending order of the node ID. In Figure 13, the x-

axis represents the node ID of our topology, and the y-axis represents the percentage

of traffic loss of the attack node. According to our simulation, there have 4 levels of

attacking nodes and these levels are represented in colour, blue, orange, green and

 48

red. Because nodes are placed randomly, the colour is diffused in the figure and a

little hard to classify which node has the height traffic loss and which level has the

highest or lowest traffic loss too. Therefore, we plot another figure, Figure 14, to show

the traffic loss at each level of the network. In Figure 14, nodes are gathered by their

same level and arranged the bars to follow the level.

Figure 13 Comparison of the traffic loss of the network by the sinkhole attack

at each specific node ID

 49

Figure 14. Comparison of Traffic Loss of the Network when the Attacker is

located at Nodes of Different Node Levels

 50

Chapter 4

DODAG Implementation in RPL with Dual-Parents Topology to

mitigate Sinkhole Attack and Load balancing Approach with TASA

Algorithm

4.1: Routing Protocol for Low Power and Lossy Network (RPL) with Dual-

Parent Topology

Implementing the RPL network with many random nodes is hardly assigned to

get dual parents for each sensor node. And it is hard to implement Traffic Aware

Scheduling Algorithm (TASA) in other RPL network simulators. So, we use python

language to implement the simulation of an RPL network that has one root node

(router) and other sensor nodes which have dual parents at every level (Rank).

 We created an experimental simulation with Python Programming to simulate

the RPL network for testing. The router (root node) is assigned first at the topmost

level of the network. To form the suitable network topology for our testing, the root

node has the lowest rank (Rank 0) and calculates the rank value of its neighbour nodes

by the help of Objective Function Zero (OF0). Moreover, we use Minimum Rank with

Hysteresis Objective Function (MRHOF) which is based on the Expected Transmission

Count (ETX) to create the DODAG and that MRHOF helps us to find the preferred parent

that is chosen with the minimum rank value among the candidate neighbour nodes

[31].

The rood node broadcasts its very first DIO message to its neighbour nodes

which are in the cover range of its wireless transmission. That DIO message carries all

the information to create a DODAG in the RPL network. The first neighbour nodes

receive the DIO message, and they calculate their rank value based on the objective

 51

function. After finished calculating their rank value, they broadcast their DIO message

to the neighbours, the next-level nodes. The next-level neighbour nodes can receive

more than one DIO message from the above-level nodes. After receiving a DIO message

from the above node, a node calculates its own rank value and creates a routing table

for connection. To create a dual-parent network topology, we assume that every single

node has at least two parents. So, a child node in our simulated network will get

another DIO message from another above-level node. A child node chooses its

preferred parent among the above-level nodes which have the same rank value based

on the minimum cost path. And the remaining node is put in the routing table as a

second parent to make a connection if the preferred parent node is down or

disconnected from the root node. The process will take at every single node of each

level until the end of DODAG where all the child nodes in that level have no child

node which means they are not the preferred parent node of other child nodes of this

network.

4.2: Parent Selection in RPL

 In Figure 14, the root node broadcasts the rank value in a DIO message to the

neighbour nodes. The neighbour nodes, P1 to Pn, receive the DIO message and

calculate their and retransmit the DIO message with their own rank. The rank of the

node is controlled by hop rank increase value (∆). When the child node, receives the

rank value from its upper-level nodes, it calculates its own rank on it. According to

Figure 14, after child node Xk has received the DIO message from parent node Pi, and

then it calculates its own rank based on Rank (Pi) + ∆ i,k.

∆𝑖,𝑘 = 𝐸𝑇𝑋(𝑘,𝑖) =
1

𝐷𝑓×𝐷𝑟
 (1)

 52

where ETX matrix is the number of transmissions a node expects to make to a

destination in order to successfully deliver a packet which may not be integer [32]

and Df is the measured probability that a packet is received by the neighbor, and Dr is

the measured probability that the acknowledgment packet is successfully received.

 Xk gets its rank value, Rank (Xk| Pi), that is the path cost between parent Pi and

child node Xk , and Xk chooses Pi as its preferred parent and puts the name in the

routing table. Later it receives another DIO message from Pm, and then it calculates it

new rank value, new path cost, again based on the Rank (Xk| Pm). When a child node

receives the path cost more than one, it compares them according to the objective

function.

Rankold (Xk) = OldPathCost = Rank (Xk|Pi) = Rank (Pi) + ∆𝑖,𝑘 (2)

Ranknew (Xk) = NewPathCost = Rank (Xk|Pm) = Rank (Pm) + ∆𝑚,𝑘 (3)

New Path Cost < Old Path Cost - ∂, (4)

where ∂ is the parent switch threshold in DODAG. If the old cast cost is higher than

new path cost, the child node Xk changes its preferred parent list, and it makes the

parent list and puts the name second parent name in it.

 53

Figure 15 Parent Selection Process in RPL Network

4.3: RPL with Traffic Aware Scheduling Algorithm (TASA)

 TASA assumes that the root node of the network is aware of the network

topology, single-slot frame traffic load, one-hop neighbor node, and parent node. Two

types of queue lengths are defined to represent local and global traffic load

information. Each node's local queue specifies the number of packets in its own

internal queue, while each node's global queue contains all packets from its own

stream node and its own packets. TASA is designed for wireless sensor networks where

sensor nodes are configured as directed acyclic graphs, DODAGs of the RPL network.

The destination oriented directed acyclic graph (DODAG) is represented as G. G = (V,

E), where V = {n0,n1,n2,…,nN-1} is the set of nodes, and |V| = N is the total number of

nodes in the network.

 54

 Figure 16 Graph G = (V, E) Modeling A Network with A Tree Topology

It works in two steps: Matching and Coloring. The comparison identifies a set of

duplex node pairs (links) with no sender and receiver conflicts. Coloring, on the other

hand, assigns the correct frequency channel to all links and ensures that there is no

interference between them.

Qi(k) = max {Qj (k) | nj ∈ ch(pi) ∧ qj (k) ≠ 0} (5)

4.4 Implementation of RPL network with TASA without Sinkhole Attack

 To create an experimental network topology, we build up the same topology

that has been simulated as in Chapter 3. All the nodes are placed randomly and set

up the various levels position according to their rank values. Our topology has different

traffic loads at each node, and all these traffic loads are forwarded to the root node.

By applying the TASA algorithm in the RPL network, we forward all data packs in a

minimum timeslot. Our topology has one root node, other 50 sensor nodes, 5 levels

and total of 126 traffic loads. All these traffic loads are delivered to root node with a

minimum time slot by TASA. Figure 16 is the first step of RPL network formation with

TASA algorithm.

 55

Figure 17. RPL Network with TASA Algorithm

 Figure 17 is the first time slot of our topology which has no sinkhole attack. In
Figure 17, we make the pair for our matching and do for colouring by TASA algorithm.
The vertexes pairs are [(21,0) (20,22) (34,50) (2,48) | (24,20) (3,12) | (15,44) (5,11) (32,46)
(16,19)] and they are coloured in assorted colours.

 56

Figure 18. The Connection of RPL Network at the First Time Slot with TASA Algorithm

 Figures 18,19, and 20 are next 3 time slots of our topology and they show the

pairs for matching and colored the pairs step by step.

 57

Figure 19 The Connection of RPL Network at the Second Time Slot with TASA
Algorithm

Figure 20 The Connection of RPL Network at the Third Time Slot with TASA

Algorithm

 58

Figure 21 The Connection of RPL Network at the Fourth Time Slot with TASA

Algorithm

 After the last data packet from the node 21 to root node is delivered, the total

time slot of transmitting all traffic load is 137. Figure 21 shows the result of our

simulation.

Figure 22 Final Simulated Result with TASA algorithm

 59

4.5 Implementation of RPL with TASA under Sinkhole Attack

 This session presents the simulation results of RPL network with TASA algorithm

under the running of a sinkhole attack. Our topology is same as the previous session

in Figure 16. Numbers of root node, other sensor nodes and channel are same as

previous one, but the total traffic load are different. We make a sinkhole attack

formation at node ID 24. Therefore, the traffic load of node 24 is 0, the total traffic is

changed from 126 to 124. Because node 24 is a malicious node, the child nodes of

node 24 are changed their preferred parent. Node 1,4,19,25,27 and 37 connect to node

22 and node 48 connects to node 13 instead of their preferred parent node. The

rerouting or rescheduling of our RPL network is seen in Figure 22.

 60

 Figure 23 RPL Network with TASA Algorithm Under Sinkhole Attack

Figure 24 The Connection of RPL Network at the First Time Slot with TASA
Algorithm Under Sinkhole Attack

 61

Figure 25 The Connection of RPL Network at the Second Time Slot with TASA

Algorithm Under Sinkhole Attack

Figure 26 The Connection of RPL Network at the Third Time Slot with TASA
Algorithm Under Sinkhole Attack

 62

Figure 27 The Connection of RPL Network at the Fourth Time Slot with TASA

Algorithm Under Sinkhole Attack

 In Figure 25, we can the total time slot number of our topology that is running

under the sinkhole attack. The number of total time slots is the same as the number

of time slots that was given in Figure 21. Therefore, dual-parent formation in RPL

network can avoid the sinkhole attack effectively and we can transmit the traffic load

of each node within in minimum time slot.

Figure 28 Final Simulated result with TASA algorithm Under Sinkhole Attack

 63

4.6 Results and Discussion

 To check the process of our simulation how it is work well or not, we run the

simulation with attack and without attack at every single node at level 2,3,4 and 5. We

collect the data of every simulation process and tabulate the data. Table 5 shows the

results of minimum time slots of the network with sinkhole attack and without sinkhole

attack.

Table 5 Time Slot Comparison in Different Scenarios

Level Sinkhole Node ID Number of Time Slots
(Without Attack)

Number of Time Slots
(Under Attack)

2 3 141 141
2 10 133 133

2 11 135 135

2 15 141 141
2 17 139 139

2 18 141 141

2 29 141 141

2 33 137 137

2 40 141 141
2 42 133 133

3 5 133 133
3 6 141 141

3 8 141 141

3 13 137 137
3 14 141 141

3 22 135 135

3 23 137 137
3 24 137 137

 64

3 26 141 141

3 31 137 137
3 36 141 141

3 38 139 139

3 46 141 141
3 49 135 135

3 50 141 141

4 1 137 137
4 4 133 133

4 7 139 139
4 9 141 141

4 19 137 137

4 20 139 139
4 25 135 135

4 27 135 135

4 28 139 139
4 32 141 141

4 34 141 141

4 37 135 135
4 45 141 141

4 47 141 141
4 48 137 137

5 2 135 135

5 16 137 137
5 30 133 133

5 35 135 135

5 41 137 137

 65

In Figure 26, we can check the comparison of number of time slots of each

level where attack is having. There is no change in each level before and after the

sinkhole attack. Therefore, our comparison results are same at every level.

 Figure 29. Comparison of Time Slots between with Attack and without Attack

 After we have simulated and compared the results of number of time slots in

both situations (with and without attack) in Table 5, we make other simulations which

have no dual parents under sinkhole attacking node at different levels. Table 6

discusses the comparison of number of time slots and packet loss under without and

with sinkhole attack. Because there are no dual parent nodes under sinkhole attack,

the child nodes of sinkhole attack node have no chance to switch its preferred parents.

There is no parent to deliver the packets, the number of packet loss is high, and the

number of time slots is lower than the number of time slots of without sinkhole attack

condition.

In Table. 6, we can see one of the sinkhole attack nodes in level 2 is node ID

10 and the total number of time slots is 133 under dual parent mechanisms. If there

is no dual parent situation under sinkhole attack node 3, at first the total traffic of the

network is changed from 126 to 122 because node 3 has 4 local traffic. After we run

the simulation with sinkhole attack under no dual parent mechanisms, we deliver total

 66

79 packets out 122 and we loss 43 packets. Because of increasing packets loss, the

number of time slots is decrease and it changes from 133 to 79. But in some attack

nodes which have no child nodes, the packet loss and number of time slots are not

change. We can see the comparison results of time slots of with and without dual

parent mechanisms under sinkhole attack in Figure 30 and the total packets to

delivered packets in different levels is seen in Figure 31.

Table 6 Comparison of Number of Time Slots and Packets Loss Under Sinkhole
Attack with and without Dual Parent Mechanisms

Level Sinkhole
Node ID

Number
of Time
Slots
(Dual

parent)

Number
of

Delivered
/ Total
Packets
(Dual

Parent)

Packet
Loss
(%)

(Dual
Parent)

Number
of Time
Slots

(No Dual
Parent)

Number of
Delivered
/ Total
Packets
(No Dual
Parent)

Packet
Loss
(%)
(No
Dual

Parent)

2 3 141 125/125 0 141 99/125 20.8

2 10 133 122/122 0 79 79/122 35.25

2 11 135 123/123 0 111 111/123 9.76
2 15 141 123/123 0 141 121/123 1.63

2 17 139 125/125 0 139 125/125 0

2 18 141 123/123 0 141 123/123 0

2 29 141 123/123 0 141 123/123 0

2 33 137 124/124 0 137 124/124 0

2 40 141 123/123 0 141 121/123 1.63

2 42 133 122/122 0 133 122/122 0

3 5 133 122/122 0 133 122/122 0
3 6 141 124/124 0 141 124/124 0

 67

3 8 141 125/125 0 141 125/125 0

3 13 137 124/124 0 135 123/124 0.8
3 14 141 123/123 0 141 123/123 0

3 22 135 123/123 0 119 115/123 6.5

3 23 137 124/124 0 137 124/124 0
3 24 137 124/124 0 97 97/124 21.77

3 26 141 123/123 0 141 123/123 0

3 31 137 124/124 0 137 124/124 0
3 36 141 125/125 0 141 125/125 0

3 38 139 125/125 0 139 125/125 0
3 46 141 122/122 0 141 119/122 2.46

3 49 135 123/123 0 135 123/123 0

3 50 141 123/123 0 141 113/123 8.13
4 1 137 124/124 0 137 124/124 0

4 4 133 122/122 0 133 122/122 0

4 7 139 125/125 0 139 125/125 0
4 9 141 125/125 0 141 125/125 0

4 19 137 124/124 0 133 122/124 1.61

4 20 139 125/125 0 127 119/125 4.8
4 25 135 123/123 0 135 123/123 0

4 27 135 123/123 0 135 123/123 0
4 28 139 125/125 0 139 125/125 0

4 32 141 124/124 0 141 124/124 0

4 34 141 122/122 0 141 122/122 0
4 37 135 123/123 0 135 123/123 0

4 45 141 122/122 0 141 122/122 0

4 47 141 124/124 0 141 124/124 0
4 48 137 124/124 0 125 118/124 4.84

5 2 135 123/123 0 135 123/123 0

5 16 137 124/124 0 137 124/124 0

 68

5 30 133 122/122 0 133 122/122 0

5 35 135 123/123 0 135 123/123 0
5 41 137 124/124 0 137 124/124 0

Figure 30 Comparison of Time Slots between with and without Dual Parent under

Attack

 69

Figure 31 Comparison of Total Packets to Delivered Packets Without Dual Parent

Mechanisms Under Sinkhole Attack

 To check the correctness of our simulation, we run the simulator twice with

the dual parent mechanism and no dual parents’ formation in child node under the

attack. The sinkhole attack node is node ID 10 and topology is same as the Figure 10

in Chapter 3. By applying the TASA algorithm in our simulation, we clearly know the

pairs of nodes and how many channels are used to deliver the packets per slot. The

comparison results are shown in Table 7 and 8. After plotting the channels and time

slot of each topology, number of the time slots results are same as time slots numbers

of sinkhole attack ID 10 in Table 6.

Table 7. Details of Time Slots Formation of
the Network with Dual Parent Mechanism
under the Attack

Channel 1 Channel 2 Channel 3 Slot
21,0
20,22
34,50
2,48

24,10
3,12

15,44
5,11
32,46
16,19

1

Table 8. Details of Time Slots Formation of

the Network with No Dual Parent Mechanism
under the Attack

Channel 1 Channel 2 Channel 3 Slot

12,0
48,24
32,46

11,21
50,3
20,22

15,44
16,19
 7,13

1

 70

21,0
50,3
30,20
35,48

24,10
40,12
32,46

15,44
5,11
28,22

2

21,0
48,24
45,50

3,12
22,10

13,11 1
5,44
30,20
9,46

3

10,21
50,3
16,19

12,0
48,24
5,11

20,22
6,40
7,13

4

21,0
20,22
34,50
2,48

24,10
3,12

13,11
6,40

5

10,21
50,3
41,20

12,0
48,24
23,11

36,15 6

21,0
20,22
45,50
35,48

24,10
3,12

31,11
15,44

7

10,21
50,3
30,20

12,0
48,24
5,11

8,15 8

21,0
20,22
34,50
2,48

24,10
3,12

38,11
15,44

9

10,21
50,3
35,48
41,20

12,0
4,24
13,11

 10

21,0
20,22
45,50

24,10
3,12

23,11 11

10,21
50,3
30,20

12,0
48,24
31,11

 12

21,0
47,50

24,10
3,12

 13

3,12
48,24
5,11

21,0
34,50
30,20

15,44
28,22
32,46

2

12,0
20,22
2,48
9,46

11,21
50,3
4,24

15,44
16,19

3

3,12
48,24
5,11

21,0
45,50
30,20

6,40 4

12,0
20,22
35,48

11,21
50,3
19,24

6,40 5

3,12
48,24

21,0
34,50
41,20

13,11
36,15

6

12,0
20,22
2,48

11,21
50,3
4,24

15,44 7

3,12
48,24
5,11

11,21
50,3
4,24

15,44 8

3,12
48,24
5,11

21,0
45,50
30,20

8,15 9

12,0
37,24

11,21
50,3
20,22
35,48

15,44 10

3,12
48,24

21,0
34,50
41,20

13,11 11

12,0
19,24

11,21
50,3
20,22
2,48

 12

3,12
25,24
23,11

21,0
45,50
35,48
30,20

 13

12,0 11,21 14

 71

20,22

10,21
46,3

12,0
19,24
34,50

 14

21,0
45,50

24,10
3,12

 15

10,21
50,3

12,0
4,24

 16

21,0 47,50 24,10
3,12

 17

10,21
46,3

12,0
37,24

 18

21,0 24,10
3,12

 19

10,21 50,3 12,0
48,24

 20

21,0 24,10
3,12

 21

10,21
46,3

12,0
19,24

 22

21,0 24,10
3,12

 23

10,21
50,3

12,0
25,24

 24

21,0 24,10
3,12

 25

10,21 46,3 12,0
27,24

 26

21,0 24,10
3,12

 27

10,21
50,3

12,0
1,24

 28

21,0 24,10
3,12

 29

10,21
14,3

12,0
4,24

 30

21,0 24,10
3,12

 31

10,21
46,3

12,0
37,24

 32

27,24
47,50

46,3
20,22

3,12
1,24
31,11

21,0
34,50

 15

12,0
4,24

11,21
50,3

 16

3,12
37,24
5,11

21,0
45,50

 17

12,0
48,24
47,50

11,21
46,3

 18

3,12
19,24
38,11

21,0 19

12,0
25,24

50,3
11,21

 20

3,12
27,24
13,11

3,12
27,24
13,11

 21

12,0
1,24

46,3
11,21

 22

3,12
4,24
23,11

3,12
4,24
23,11

12,0
37,24

50,3
11,21

 23

3,12
48,24
31,11

21,0 24

12,0
19,24

12,0
19,24

 25

3,12
25,24

21,0 26

12,0
27,24

50,3
11,21

 27

3,12 21,0 28

12,0 14,3
42,21

 29

 72

21,0 24,10
3,12

 33

10,21
50,3

12,0
48,24

 34

21,0 24,10
3,12

 35

10,21
26,3

12,0
19,24

 36

21,0 24,10
3,12

 37

10,21
14,3

12,0
25,24

 38

21,0
27,24

22,10
3,12

 39

10,21
46,3

12,0
1,24

 40

21,0 24,10
3,12

 41

10,21
50,3

12,0
4,24

 42

21,0
37,24

22,10
3,12

 43

10,21
26,3

12,0
48,24

 44

21,0 24,10
3,12

 45

10,21
14,3

12,0
19,24

 46

21,0
25,24

22,10
3,12

 47

10,21
46,3

12,0
27,24

 48

21,0
50,3

24,10
40,12

 49

10,21
26,3

12,0 50

21,0 22,10
3,12

 51

10,21 12,0 52
21,0 24,10 53

3,12 21,0 30

12,0 46,3
33,21

 31

3,12 21,0 32

12,0 50,3
11,21

 33

3,12 21,0 34

12,0 26,3
42,21

 35

3,12 44,0 33,21 36

12,0 14,3
11,21

 37

3,12 21,0 38

12,0 46,3
42,21

 39

3,12 44,0 17,21 40

12,0 50,3 41

21,0 3,12 42

12,0 26,3 43

44,0 3,12 44

12,0 14,3 45

21,0 3,12 46

12,0 46,3 47

44,0
50,3

40,12 48

12,0 26,3 49

21,0 3,12 50

12,0 51

43,0 40,12 52

12,0 53

44,0 3,12 54

12,0 55

21,0 40,12 56

12,0 57

39,0 18,12 58

12,0 59

43,0 29,12 60

12,0 61

44,0 3,12 62

12,0 63

 73

40,12

10,21 12,0 54
21,0 22,10

18,12
 55

10,21 12,0 56
21,0 24,10

29,12
 57

10,21 12,0 58
21,0 22,10

3,12
 59

10,21 12,0 60
21,0 24,10

3,12
 61

11,21 12,0
22,10

 62

21,0 24,10
18,12

 63

10,21 12,0 64
21,0 49,10

29,12
 65

11,21 12,0
22,10

 66

21,0 24,10
3,12

 67

10,21 44,0 40,12 68
21,0 49,10

18,12
 69

11,21 12,0
22,10

 70

21,0 24,10
29,12

 71

10,21 44,0 72
21,0 49,10 73
11,21 12,0

22,10
 74

21,0 24,10 75
10,21 44,0 76

21,0 40,12 64

12,0 65

39,0 18,12 66

12,0 67

43,0 29,12 68

12,0 69

44,0 3,12 70

12,0 71

21,0 40,12 72

12,0 73

39,0 18,12 74

12,0 75

43,0 29,12 76

12,0 77

44,0 78

21,0 79

 74

21,0 77
11,21 12,0 78
21,0 79
10,21 44,0 80
21,0 81
11,21 43,0 82
21,0 83
10,21 12,0 84
21,0 85
11,21 44,0 86
21,0 87
10,21 39,0 88
21,0 89
11,21 43,0 90
21,0 91
10,21 12,0 92
21,0 93
11,21 44,0 94
21,0 95
10,21 39,0 96
21,0 97
11,21 43,0 98
21,0 99
10,21 12,0 100
21,0 101
11,21 44,0 102
21,0 103
10,21 39,0 104
21,0 105
11,21 43,0 106

 75

21,0 107
42,21 12,0 108
21,0 109
10,21 44,0 110
21,0 111
11,21 112
21,0 113
42,21 114
21,0 115
33,21 116
21,0 117
10,21 118
21,0 119
11,21 120
21,0 121
42,21 122
21,0 123
33,21 124
21,0 125
10,21 126
21,0 127
11,21 128
21,0 129
42,21 130
21,0 131
17,21 132
21,0 133

 76

Chapter 5

Conclusion

5.1 Conclusion

This thesis studied the damage of a Sinkhole Attack in the RPL network and

proposed the simple and very effective way of defense mechanism to mitigate that

sinkhole attack. According to our simulated results, we can conclude the damage of

Sinkhole Attack in the RPL network is very big and it makes a high impact to the main

network. Position of the attack node is very important in the network, and even

thought the attack node is far away from the root node, but it close to the many

sensor nodes, it can make a huge network isolation and loss the high percentage of

traffic loss. We can aware the impact of the Sinkhole attacking behaviour very

dangerous especially for low-power and lossy networks. Our proposed method, making

a dual-parent formation for each child node in the network when the topology is set

up, is the effective way to defense the Sinkhole Attack. It can mitigate the attack when

the attack is happening in the network by switching their preferred parent in their

parent list. The DODAG formation in the RPL network is changed at every period, but

we will update and change only the sub-DODAG of the network where attack is

happening when we do not receive the Acknowledge message from that attack parent

node. Our proposed system does not need to set up and install another extra

protection mechanisms to defense the Sinkhole Attack.

This thesis also implements the traffic load balancing of the network by

applying Traffic Aware Scheduling Algorithm (TASA). To save the time consuming of

low-power sensor nodes, we need to forward the total traffic load of the whole

network to the root node within a minimum time slots. Applying the TASA in the RPL

network topology is a good way to concern the total traffic load of our data acquisition

 77

network, avoid the collision between child nodes and parent node transmission and

reduce the time and delay of the network. And then we also implement and compare

the results of running the RPL network without Sinkhole Attack and with Attack

applying the TASA. We can conclude that our dual-parent Sinkhole Attack defense

mechanism is worked well by checking the comparisons of time slot because there is

no change the number for every single node and level. We can avoid the Sinkhole

Attack formation in the network effectively by our proposed dual parent mechanisms.

5.2 Future Work

 If there is no dual-parent node in the network, how to avoid the Sinkhole Attack

is the main problem of our research work. If we have time to implement to solve that

issue, we are considering the concept that the powerful child node expands its cover

range of transmission and can help for rescheduling as a preferred parent.

Appendix 1

 78

TASA Algorithm:

Procedure SCHEDULING (G, P, q, Q, nch) > G : Graph, P : PHY Connectivity Graph, q: qi (k) vector, Q: Qi (k)
vector, nch: number of available channels

k ← 0 > slot initial value
pattern ← [] > time/frequency pattern initial value
while q0 (k) ≠ Q do > The procedure is run until a pattern that allows to delivery to the PAN
Coordinator all the packets generated in one time slot frame, is built

DCFL (k) ← MATCHING (G, q, Q, n0, k)
I (k) ← FINDINTERFGRAPG ((DCFL (k), P) > Building the Interference Conflict graph for DCFL(k)
colored ← COLORING (I (k), Q)
selected ← []
for n ← 1 to nch do
 selected ← GETFIRST (colored)
end for
UPDATE (q,Q, selected) > Updating q,Q according to links scheduled at k
pattern ← pattern + [(k, selected)]
k ← k + 1
 end while
 return pattern > returning time/ frequency pattern
end procedure

Appendix 2

************************* This is importing the modules to run the simulation *************************

import matplotlib.pyplot as plt

 79

import math
import random

********************************* This is parameters for Network Setting ******************************

RoomWidth = 120

RoomHeight = 120

CoverageRadius = 35

NumMobile = 50

channels = 3

X = 4

method = 'Heuristic TASA algorithm'

seedval = 555555555551510198924011996

random.seed(seedval)

mycolor = ['red','green','orange','darkorchid','blue','pink','magenta','skyblue']

channel_color = ['blue','orange','pink','magenta','skyblue']

****************************** This is generated traffic q for each node ******************************

seedval_q = 4
random.seed(seedval_q)
q = [0]
for k in range(1,NumMobile+1):
 traff = random.randint(1,X)
 q.append(traff)
Q0 = sum(q)
print("q:\t",q)
print(" Q0:\t", Q0)

*************** This is only the q of sink_hole_node is set to zero. Set the Sinkhole node ************

sink_hole_node = 49

seedval_q2 = seedval_q

random.seed(seedval_q2)

 80

q = [0]

**************************** This is the effect caused by the sink hole node *************************

Not only the q of sink_hole_node is set to zero, but also other neighoring nodes are affected.

for k in range(1,NumMobile+1):

 traff = random.randint(1,X)

 q.append(traff)

q[sink_hole_node] = 0

#q[sink_hole_node1] = 0

Q0 = sum(q)

print("q:\t",q)

print(" Q0:\t", Q0)

**************************** This is Random location (x,y) for each node *************************

All_Nodes_loc = []

All_Nodes_loc.append((10,110))

for k in range(1,NumMobile+1):

 xloc = random.randint(0,RoomWidth)

 yloc = random.randint(0,RoomHeight)

 All_Nodes_loc.append((xloc,yloc))

*********************** This is manual set up of locations to make Dual parent ************************

All_Nodes_loc[1] = (60,20)

All_Nodes_loc[41] = (105,30)

All_Nodes_loc[18] = (65,95)

All_Nodes_loc[33] = (25,50)

All_Nodes_loc[24] = (63,38)

All_Nodes_loc[10] = (38,50)

All_Nodes_loc[50] = (90,90)

**************************** This is all nodes are shown with traffic ******************************

fig, ax = plt.subplots()

plt.plot([0,RoomWidth,RoomWidth,0,0],[0,0,RoomHeight,RoomHeight,0],

 color='maroon',linestyle=':',linewidth=1.5)

 81

for k in range(NumMobile+1):

 xloc = All_Nodes_loc[k][0]

 yloc = All_Nodes_loc[k][1]

 if k==0:

 plt.plot([xloc],[yloc],marker='o',markersize=10, color='red')

 else:

 plt.plot([xloc],[yloc],marker='o',markersize=4, color='gray')

 plt.text(xloc+1,yloc,str(k)+' ('+str(q[k])+')',fontsize=8)

plt.title('RPL with Sinkhole Attack')

plt.pause(0.1)

**************************** This is assigning appropriate level to each node *************************

NodesAtLevel = {}

NodesAtLevel[0] = [0]

NodesTobeAssignedLevel = list(range(1,NumMobile+1))

NodeInPrevLevel = [0]

level = 1

Net_Creation_Success = True

while len(NodesTobeAssignedLevel)>0:

 nodesInCurrLevel = []

 for n in NodeInPrevLevel:

 for m in NodesTobeAssignedLevel:

 dist = math.sqrt((All_Nodes_loc[m][0]-All_Nodes_loc[n][0])**2

 + (All_Nodes_loc[m][1]-All_Nodes_loc[n][1])**2)

 if dist <= CoverageRadius:

 nodesInCurrLevel.append(m)

 nodesInCurrLevel = list(set(nodesInCurrLevel))

 if len(nodesInCurrLevel)>0:

 NodesAtLevel[level] = [k for k in nodesInCurrLevel]

 for k in nodesInCurrLevel:

 NodesTobeAssignedLevel.remove(k)

 level = level + 1

 NodeInPrevLevel = [k for k in nodesInCurrLevel]

 else:

 82

 print('Network unconnected........................')

 print('Nodes',NodesTobeAssignedLevel,'are isolated')

 Net_Creation_Success = False

 break

maxLevel = level – 1

************** This is making nodes in square shape are colored differently for each levels. ***********

if Net_Creation_Success:

 for level in range(maxLevel+1):

 for node_id in NodesAtLevel[level]:

 xloc = All_Nodes_loc[node_id][0]

 yloc = All_Nodes_loc[node_id][1]

 if level==0:

 pass

 else:

 plt.plot([xloc],[yloc],marker='s',markersize=5, color=mycolor[level%len(mycolor)])

 if level in []:

 pass

 plt.pause(0.1)

************* This is finding the parent and children relationship based on nearest parent ***************

 chosen_parents = {0:-1}

 for i in range(1,maxLevel+1):

 parents = NodesAtLevel[i-1]

 for k in NodesAtLevel[i]:

 min_dist = float('Inf')

 min_parent = -1

 loc_x = All_Nodes_loc[k][0]

 loc_y = All_Nodes_loc[k][1]

 for p in parents:

 if p!= sink_hole_node:

 dist = (All_Nodes_loc[p][0]-loc_x)**2 +(All_Nodes_loc[p][1]-loc_y)**2

 83

 if dist<min_dist:

 min_dist = dist

 min_parent = p

 chosen_parents[k] = min_parent

 chosen_children = {}

 for j in range (NumMobile+1):

 chosen_children[j]= [key for key,value in chosen_parents.items() if value == j]

**************************** This is finding all possible parents in Network *************************

 possible_parents = {0:[-1]}

 for i in range(1,maxLevel+1):

 parents = NodesAtLevel[i-1]

 for k in NodesAtLevel[i]:

 possible_parents[k] = []

 loc_x = All_Nodes_loc[k][0]

 loc_y = All_Nodes_loc[k][1]

 for p in parents:

 if p!= sink_hole_node:

 dist = ((All_Nodes_loc[p][0]-loc_x)**2 +(All_Nodes_loc[p][1]-loc_y)**2)**0.5

 if dist<CoverageRadius:

 possible_parents[k].append(p)

 success = True

 for j in range(1, NumMobile+1):

 if j not in NodesAtLevel[1]:

 if j not in NodesAtLevel[2]:

 nParents = len(possible_parents[j])

 if nParents<1:

 print("Some nodes have only NOOOO parent.........................")

 print('Node ',j,':', possible_parents[j])

 Q = [k for k in q]

 for i in range(maxLevel,0,-1):

 nodes = NodesAtLevel[i]

 for n in nodes:

 parent = chosen_parents[n]

 84

 Q[parent] += Q[n]

 Q_ = Q[0]

*************************** This is plotting parents and children relationship *************************

 for i in range(maxLevel):

 nodes = NodesAtLevel[i]

 for n in nodes:

 xloc = All_Nodes_loc[n][0]

 yloc = All_Nodes_loc[n][1]

 for c in chosen_children[n]:

 child_xloc = All_Nodes_loc[c][0]

 child_yloc = All_Nodes_loc[c][1]

 plt.plot([xloc,child_xloc],[yloc,child_yloc],color=mycolor[i%len(mycolor)])

 plt.pause(0.1)

 **************************** This is finding neighboring nodes in Network *************************

 neighbor_nodes = {}

 for k in range(NumMobile+1):

 loc_x = All_Nodes_loc[k][0]

 loc_y = All_Nodes_loc[k][1]

 my_neighbors = []

 for n in range(NumMobile+1):

 if n!=k:

 dist = ((All_Nodes_loc[n][0]-loc_x)**2

 +(All_Nodes_loc[n][1]-loc_y)**2)**0.5

 if dist<=CoverageRadius:

 my_neighbors.append(n)

 neighbor_nodes[k] = my_neighbors

 85

************************************ This is TASA algorithm begins ***********************************

 slot = 0

 while q[0] != Q_:

 slot += 1

 chosen_children_temp = {}

 for j in range (NumMobile+1):

 chosen_children_temp[j] = [key for key,value in chosen_parents.items() if value == j]

 parent_candidates = list(range(NumMobile+1))

 for k in range(NumMobile+1):

 if chosen_children_temp[k]==[]:

 parent_candidates.remove(k)

 DFCLk = []

 selectednodes_DFCL = []

 while len(parent_candidates)>0:

 Qparent_candidates = [Q[k] for k in parent_candidates]

 maxQ = max(Qparent_candidates)

 no_maxQ_nodes = 0

 indexval_maxQ = []

 it = 0

 for valQ in Qparent_candidates:

 if valQ == maxQ:

 no_maxQ_nodes += 1

 indexval_maxQ.append(it)

 it += 1

 level_Parent = {}

 if no_maxQ_nodes > 1:

 for i in range(level):

 level_Parent[i] = []

 86

 nodes = NodesAtLevel[i]

 for n in nodes:

 for index_v in indexval_maxQ:

 if n == parent_candidates[index_v]:

 level_Parent[i].append(parent_candidates[index_v])

 for k,val in level_Parent.items():

 if len(val) > 0:

 if len(val) == 1:

 select_parent = val[0]

 break

 elif len(val) > 1:

 select_parent = random.choice(val)

 break

 else:

 idx = Qparent_candidates.index(maxQ)

 select_parent = parent_candidates[idx]

 children = chosen_children_temp[select_parent]

 Qchildren_candidates = [Q[k] for k in children]

 qchildren_candidates = [q[k] for k in children]

 maxQ = max(Qchildren_candidates)

 idx = Qchildren_candidates.index(maxQ)

 selectedChild = children[idx]

 selecchild_q = qchildren_candidates[idx]

 inthelist = 1

 while inthelist == 1:

 if selectedChild in selectednodes_DFCL or selecchild_q == 0:

 #print("In DFCL or q = 0")

 children.remove(children[idx])

 if children == []:

 parent_candidates.remove(select_parent)

 break

 Qchildren_candidates = [Q[k] for k in children]

 qchildren_candidates = [q[k] for k in children]

 87

 maxQ = max(Qchildren_candidates)

 idx = Qchildren_candidates.index(maxQ)

 selectedChild = children[idx]

 selecchild_q = qchildren_candidates[idx]

 else:

 inthelist = 0

 selectednodes_DFCL.append(select_parent)

 selectednodes_DFCL.append(selectedChild)

 DFCLk.append((select_parent,selectedChild))

 parent_candidates.remove(select_parent)

 if selectedChild in parent_candidates:

 parent_candidates.remove(selectedChild)

************************ This is making Interference Conflict graph in Network ***********************

 DCFL_nodes = []

 DFCL_Parents = []

 DFCL_Children = []

 for k in DFCLk:

 DCFL_nodes.append(k[0])

 DCFL_nodes.append(k[1])

 DFCL_Parents.append(k[0])

 DFCL_Children.append(k[1])

 IK = {}

 for j in DCFL_nodes:

 neighbor_array = []

 neighborsofDCFL = neighbor_nodes[j]

 for neighbor in neighborsofDCFL:

 if neighbor in DCFL_nodes:

 neighbor_array.append(neighbor)

 IK[j] = neighbor_array

*********************************** This is coloring for each node ************************************

 88

 remaining_Parents = []

 remaining_Children = []

 for k in DFCLk:

 remaining_Parents.append(k[0])

 remaining_Children.append(k[1])

 Channel_pattern = {}

 Ch_assigned_nodes = []

 for ch in range(channels):

 Channel_pattern[ch] = []

 while remaining_Children != []:

 if Channel_pattern[ch] == []:

 Qchildren_candidates = [Q[k] for k in remaining_Children]

 maxQ = max(Qchildren_candidates)

 idx = Qchildren_candidates.index(maxQ)

 select_child = remaining_Children[idx]

 select_parent = remaining_Parents[idx]

 Channel_pattern[ch].append((select_parent,select_child))

 remaining_Children.remove(select_child)

 remaining_Parents.remove(select_parent)

 else:

 Qchildren_candidates = [Q[k] for k in remaining_Children]

 maxQ = max(Qchildren_candidates)

 idx = Qchildren_candidates.index(maxQ)

 select_child = remaining_Children[idx]

 select_parent = remaining_Parents[idx]

 intherange = 0

 for val in Channel_pattern[ch]:

 for k,v in IK.items():

 if k == select_child:

 if val[0] in v or val[1] in v :

 intherange = 1

 elif k == select_parent:

 89

 if val[0] in v or val[1] in v :

 intherange = 1

 if intherange == 0:

 Channel_pattern[ch].append((select_parent,select_child))

 remaining_Children.remove(select_child)

 remaining_Parents.remove(select_parent)

 for v in Channel_pattern[ch]:

 DFCL_Children.remove(v[1])

 DFCL_Parents.remove(v[0])

 remaining_Parents = list(DFCL_Parents)

 remaining_Children = list(DFCL_Children)

 txnode = []

 rxnode = []

 for key,coloredLinks in Channel_pattern.items()

 for nodepair in coloredLinks:

 q[nodepair[0]] += 1

 q[nodepair[1]] -= 1

 Q = [k for k in q]

 for i in range(maxLevel,0,-1):

 nodes = NodesAtLevel[i]

 for n in nodes:

 parent = chosen_parents[n]

 Q[parent] += Q[n]

 string = ""

 for ch in Channel_pattern:

 for n in Channel_pattern[ch]:

 string += str(n[1])+","+str(n[0])+ " "

 string += "\t|"

 string += str(slot)

 print(string)

 ********************************* This is drawing nodes in the network *****************************

 if slot in [1,2,3]:

 fig2, ax2 = plt.subplots()

 90

 plt.title('Slot: '+str(slot))

 for i in range(maxLevel+1):

 nodes = NodesAtLevel[i]

 for n in nodes:

 xloc = All_Nodes_loc[n][0]

 yloc = All_Nodes_loc[n][1]

 plt.plot([xloc],[yloc],marker='o',markersize=6, color=mycolor[i])

 plt.text(xloc+1,yloc,str(n),fontsize=10)

 plt.text(xloc+1,yloc+3,str(q[n])+','+str(Q[n]),fontsize=10,color='blue')

 for c in chosen_children[n]:

 child_xloc = All_Nodes_loc[c][0]

 child_yloc = All_Nodes_loc[c][1]

 plt.plot([xloc,child_xloc],[yloc,child_yloc],color=mycolor[i])

 for k in DFCLk:

 rxnode = k[0]

 txnode = k[1]

 xloc_tx = All_Nodes_loc[txnode][0]

 yloc_tx = All_Nodes_loc[txnode][1]

 xloc_rx = All_Nodes_loc[rxnode][0]

 yloc_rx = All_Nodes_loc[rxnode][1]

 plt.plot([xloc_tx,xloc_rx],[yloc_tx,yloc_rx],color='gray',linewidth=7,alpha=0.3)

 for ch in range(channels):

 if (rxnode ,txnode) in Channel_pattern[ch]:

 link_col = mycolor[ch%len(mycolor)]

 plt.plot([xloc_tx,xloc_rx],[yloc_tx,yloc_rx],color= link_col,linewidth=4)

 plt.pause(0.1)

**************************** This is printing the results *************************

print('Sinhole Attack Node \t', sink_hole_node)

print('Number of channels\t', channels)

print('Coverage \t',CoverageRadius)

 91

print('Number of mobiles \t',NumMobile)

print('Traffic (max) \t',X)

print('Total time slots =',slot)

REFERENCES

 92

[1] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” Comput.

Networks, vol. 54, no. 15, pp. 2787–2805, 2010, doi: 10.1016/j.comnet.2010.05.010.

[2] B. T. Mi, X. Liang, and S. Sen Zhang, “A Survey on Social Internet of Things,”

Jisuanji Xuebao/Chinese J. Comput., vol. 41, no. 7, pp. 1448–1475, 2018, doi:

10.11897/SP.J.1016.2018.01448.

[3] Cisco Systems Inc., “Routing Protocol for LLN (RPL) Configuration Guide, Cisco

IOS Release 15M&T,” p. 20, 2015.

[4] G. A. Da Costa and J. H. Kleinschmidt, “Implementation of a wireless sensor

network using standardized IoT protocols,” Proc. Int. Symp. Consum. Electron. ISCE,

pp. 17–18, 2016, doi: 10.1109/ISCE.2016.7797327.

[5] N. F. Andhini, “済無 No Title No Title,” J. Chem. Inf. Model., vol. 53, no. 9,

pp. 1689–1699, 2017.

[6] A. Dhumane, A. Bagul, and P. Kulkarni, “A review on routing protocol for low

power and lossy networks in IoT,” Int. J. Adv. Eng. Glob. Technol., vol. 3, no. 12, pp.

1440–1444, 2015.

[7] 2011 Citra Kunia putri dan trisna insan Noor, “済無 No Title No Title,” Anal.

pendapatan dan tingkat Kesejaht. rumah tangga petani, vol. 53, no. 9, pp. 1689–1699,

2013.

[8] lucia maria aversa Villela, “済無 No Title No Title,” J. Chem. Inf. Model., vol.

53, no. 9, pp. 1689–1699, 2013.

[9] P. Levis, N. Patel, D. Culler, and S. Shenker, “Trickle: A self-regulating algorithm

for code propagation and maintenance in wireless sensor networks,” 1st Symp.

Networked Syst. Des. Implementation, NSDI 2004, 2004.

 93

[10] H. S. Kim, J. Ko, D. E. Culler, and J. Paek, “Challenging the IPv6 Routing Protocol

for Low-Power and Lossy Networks (RPL): A Survey,” IEEE Commun. Surv. Tutorials, vol.

19, no. 4, pp. 2502–2525, 2017, doi: 10.1109/COMST.2017.2751617.

[11] L. Networks and J. Hui, “RPL : IPv6 Routing Protocol for Low,” no. October,

2009.

[12] F. Medjek, D. Tandjaoui, M. R. Abdmeziem, and N. Djedjig, “Analytical evaluation

of the impacts of Sybil attacks against RPL under mobility,” 12th Int. Symp. Program.

Syst. ISPS 2015, pp. 13–21, 2015, doi: 10.1109/ISPS.2015.7244960.

[13] A. J. H. Witwit and A. K. Idrees, “A comprehensive review for rpl routing protocol

in low power and lossy networks,” Commun. Comput. Inf. Sci., vol. 938, no. September,

pp. 50–66, 2018, doi: 10.1007/978-3-030-01653-1_4.

[14] Tsao T, Alexander R, Dohler M, Daza V, Lozano A, Richardson M. A security

threat analysis for the routing protocol for low-power and lossy networks (RPLs).

RFC7416. 2015 Jan:131.

[15] A. Mayzaud, R. Badonnel, and I. Chrisment, “A taxonomy of attacks in RPL-

based internet of things,” Int. J. Netw. Secur., vol. 18, no. 3, pp. 459–473, 2016.

[16] A. Raoof, A. Matrawy, and C. H. Lung, “Routing Attacks and Mitigation Methods

for RPL-Based Internet of Things,” IEEE Commun. Surv. Tutorials, vol. 21, no. 2, pp.

1582–1606, 2019, doi: 10.1109/COMST.2018.2885894.

[17] M. Alzubaidi, M. Anbar, S. Al-Saleem, S. Al-Sarawi, and K. Alieyan, “Review on

mechanisms for detecting sinkhole attacks on RPLs,” ICIT 2017 - 8th Int. Conf. Inf.

Technol. Proc., pp. 369–374, 2017, doi: 10.1109/ICITECH.2017.8080028.

[18] A. Le, J. Loo, K. K. Chai, and M. Aiash, “A specification-based IDS for detecting

attacks on RPL-based network topology,” Inf., vol. 7, no. 2, 2016, doi:

10.3390/info7020025.

 94

[19] S. Raza, L. Wallgren, and T. Voigt, “SVELTE: Real-time intrusion detection in the

Internet of Things,” Ad Hoc Networks, vol. 11, no. 8, pp. 2661–2674, 2013, doi:

10.1016/j.adhoc.2013.04.014.

[20] C. Cervantes, D. Poplade, M. Nogueira, and A. Santos, “Detection of sinkhole

attacks for supporting secure routing on 6LoWPAN for Internet of Things,” Proc. 2015

IFIP/IEEE Int. Symp. Integr. Netw. Manag. IM 2015, pp. 606–611, 2015, doi:

10.1109/INM.2015.7140344.

[21] A. Dvir, T. Holczer, and L. Buttyan, “VeRA - Version number and rank

authentication in RPL,” Proc. - 8th IEEE Int. Conf. Mob. Ad-hoc Sens. Syst. MASS 2011,

pp. 709–714, 2011, doi: 10.1109/MASS.2011.76.

[22] K. Weekly and K. Pister, “Evaluating sinkhole defense techniques in RPL

networks,” Proc. - Int. Conf. Netw. Protoc. ICNP, 2012, doi: 10.1109/ICNP.2012.6459948.

[23] H. Perrey, M. Landsmann, O. Ugus, T. C. Schmidt, and M. Wählisch, “TRAIL:

Topology Authentication in RPL,” 2013, [Online]. Available:

http://arxiv.org/abs/1312.0984.

[24] K. Iuchi, T. Matsunaga, K. Toyoda, and I. Sasase, “Secure parent node selection

scheme in route construction to exclude attacking nodes from RPL network,” 2015

21st Asia-Pacific Conf. Commun. APCC 2015, pp. 299–303, 2016, doi:

10.1109/APCC.2015.7412530.

[25] M. Zaminkar and R. Fotohi, “SoS-RPL: Securing Internet of Things Against

Sinkhole Attack Using RPL Protocol-Based Node Rating and Ranking Mechanism,” Wirel.

Pers. Commun., vol. 114, no. 2, pp. 1287–1312, 2020, doi: 10.1007/s11277-020-07421-

z.

[26] R. Damasevicius, G. Ziberkas, V. Stuikys, and J. Toldinas, “Energy consumption

of hash functions,” Elektron. ir Elektrotechnika, vol. 18, no. 10, pp. 81–84, 2012, doi:

10.5755/j01.eee.18.10.3069.

 95

[27] Palattella MR, Accettura N, Dohler M, Grieco LA, Boggia G. Traffic aware scheduling

algorithm for reliable low-power multi-hop IEEE 802.15. 4e networks. In2012 IEEE 23rd

International Symposium on Personal, Indoor and Mobile Radio Communications-

(PIMRC) 2012 Sep 9 (pp. 327-332). IEEE.

[29] L. Paradis and Q. Han, “TIGRA: TImely sensor data collection usingdistributed

GRAph coloring,” in Proc. of 6th IEEE Int. Conf. on Pervasive Computing and

Communications (PerCom), Hong Kong, Mar. 2008

[30] M. R. Palattella, N. Accettura, L. A. Grieco, G. Boggia, M. Dohler and T. Engel, “On
Optimal Scheduling in Duty-Cycled Industrial IoT Applications Using IEEE802.15.4e
TSCH," in IEEE Sensors Journal, vol.13, no. 10, pp. 3655-3666, Oct. 2013, doi:
10.1109/JSEN.2013.2266417.

[31] M. R. Palattella, N. Accettura, M. Dohler, L. A. Grieco and G. Boggia, “Traffic Aware
Scheduling Algorithm for reliable low-power multi-hop IEEE 802.15.4e networks,"IEEE
23rd International Symposium on Personal, Indoor and Mobile Radio Communications
- (PIMRC), 2012, pp. 327-332, doi: 10.1109/PIMRC.2012.6362805.

REFERENCES

REFERENCES

VITA

VITA

NAME Tay Zar Bhone Maung

DATE OF BIRTH 15 Oct 1989

PLACE OF BIRTH Myanmar

INSTITUTIONS ATTENDED Computer University (Taungoo)
University of Computer Studies Yangon, Myanmar

PUBLICATION 14th RC-EEE 2021 International Conference in Thailand
 "A Comprehensive Survey of Sinkhole Attack in Routing
Protocol for Low-Power and Lossy Networks for IoT
Devices"

AWARD RECEIVED Student Poster Award in 15th ISST 2021

	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	List of Abbreviations
	Chapter 1
	Introduction
	1.1: Motivation
	1.2: Problem Statement
	1.3: Objective
	1.4: Scope of the Thesis
	1.5: Contributions
	1.6: Literature Review
	1.7: Thesis Layout

	Chapter 2 Background
	2.1 Internet of Things
	2.2 Low-Power and Lossy Networks
	2.3 Internet Protocol version 6 (IPv6) over Low-Power Wireless Personal Area Network
	2.4 Routing Protocol for Low-Power and Lossy Networks
	2.4.1 RPL Architecture
	2.4.2 RPL Control Message
	2.4.2.1 DODAD Information Object (DIO)

	2.4.3 DODAG Configuration
	2.4.4 RPL Vulnerabilities
	2.4.5 Attacks on RPL
	2.4.5.1 Attacks on Resources
	2.4.5.2 Attacks on Traffic
	2.4.5.3 Attacks on Topology

	2.4.6 Security of RPL

	2.5 Traffic Aware Scheduling Algorithm

	Chapter 3 Sinkhole Attacks in Routing Protocol for Low Power and Lossy Network
	3.1 Sinkhole Attack
	3.1.1 Sinkhole Attack Behavior
	3.1.2 Sinkhole Attack Formation

	3.2 Implementation of Sinkhole Attack in RPL Network
	3.3 Results and Discussion

	Chapter 4 DODAG Implementation in RPL with Dual-Parents Topology to mitigate Sinkhole Attack and Load balancing Approach with TASA Algorithm
	4.1: Routing Protocol for Low Power and Lossy Network (RPL) with Dual-Parent Topology
	4.2: Parent Selection in RPL
	4.3: RPL with Traffic Aware Scheduling Algorithm (TASA)
	4.4 Implementation of RPL network with TASA without Sinkhole Attack
	4.5 Implementation of RPL with TASA under Sinkhole Attack

	Chapter 5 Conclusion
	5.1 Conclusion
	5.2 Future Work

	REFERENCES
	REFERENCES
	VITA

