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Face images are widely used in many applications, such as face
recognition and face identification. Regarding security, face identification is used to
track the crimes. However, the camera's low resolution and environmental
degradation problem hinders the face application's performance. In this thesis, we
study face image super-resolution to restore the image from low-resolution to

high-resolution.

We proposed deep learning with an attention mechanism for iterative face
super-resolution that included an image super-resolution network and face
alignment network combined. The input low-resolution image is enlarged into a
super-resolution face image. Then, the image has repeatedly estimated the

alignment to enhance the super-resolution image.

The experiment was conducted on well-known facial datasets. Peak Signal
to Noise Ratio (PSNR) and Structural Similarity (SSIM) are measured for objective
performance evaluation. The performance of the proposed method is compared
with bicubic interpolation and other referenced methods. The experimental results
demonstrate that the proposed method has the highest performance compared

with other reference methods.
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CHAPTER 1
INTRODUCTION

1.1 Motivation and Significance of the Research Problem

Nowadays, image and video analysis technologies continuously develop for
security with advanced algorithms. Closed-circuit television (CCTV) is used to record
scenes. It also applies to detecting and recognizing objects and people. CCTV can
help track down the crimes by face identification. However, most recoding images
and video from CCTV or digital cameras are low-quality because of various noises
and low-resolution cameras. These problems hinder face analysis and other
applications.

The development of face image restoration can solve the low-resolution and
degradation problems of face images by using a deep leamning technique called
“Face super-resolution.” Face super-resolution can enhance the low-resolution face
image to be high-resolution with the deep learning-based method.

Face super-resolution is developed based on single-image super-resolution
(SISR) and face alignment networks. SISR can increase the resolution of an image
from low-resolution to a higher resolution by using a deep learning network. At the
same time, face alignment can get the important parts such as the eyes, nose, and
mouth to be the input of SISR. Face super-resolution combining SISR, and face
alisnment can produce betterresults in face images than SISR.

This research studies the methods of face super-resolution, focusing on an
iterative model based on single-image super-resolution and face alignment networks.
The combination of two networks can recover face images effectively. Figure 1 shows

the concept of collaboration between two networks. Firstly, the super-resolution



network enlarges the face image and then finds the facial landmarks from the face

alisnment network to guide and improve the face super-resolution performance.

1t SR image 1st SR image with landmarks 2nd SR image 2nd SR image with landmarks 3rd SR image

Figure 1. The enhanced face image with single-image super-resolution and face

alisnment models.

1.2 Research objectives

1. Develop an algorithm for face image restoration by using iterative face super-

resolution.

2. Propose an attention-based and non-local convolutional neural network for
improving the face super-resolution performance.
1.3 Scopes
1. Proposed an optimized method of face super-resolution with an iterative
network by using single image super-resolution and face alisnment network.
2. Proposed an attention-based and non-local method for improving the face
super-resolution performance.
1.4 Research procedure
1. Review literature related on image super-resolution, face image super-
resolution, and face alignment.
2. Study the methodology of face super-resolution and select the datasets.
Design and develop the architecture of the face super-resolution network.
3. Design and develop the architecture of the face super-resolution network.
4. Train the face super-resolution network with the selected face datasets.

5. Test performance of the proposed method compared with previous research.



6. Summary and analyze the experimental results of the proposed framework.

1.5 Expected results
1. Enlarges low-resolution face image to be high-resolution face image by using
deep attention for iterative face super-resolution (DAPnet).
2. The attention-based and non-local method improves the performance of
face super-resolution.

1.6 Outline of Thesis

This thesis has five chapters, including this chapter. The rest of the contents

are provided with descriptions as follows:

Chapter 2: describes background and literature reviews related to traditional
methods and modern methods of increasing the resolution of face images, such as
the interpolation method, single image super-resolution with deep learning, and face

alisnment with deep learning.

Chapter 3: describes a proposed method that includes each module's overall

network structure, algorithm, and learning process.

Chapter 4: demonstrates and analyzes the experimental results compared

with the previous research.

Chapter 5: consists of conclusions and future works.



CHAPTER 2

LITERATURE REVIEWS AND BACKGROUND

This chapter provides an overview of face image super-resolution. The first
part provides a background of the traditional method, which are interpolation
methods that use mathematics to increase image resolution. Then, the deep leamning
approach includes single image super-resolution, face alicnment, and face image
super-resolution.

2.1 Traditional interpolation method

Interpolation methods are classical techniques to increase the resolution of
an image in image processing by using the pixels themselves to recreate the new
pixels. The recreated pixels can calculate with the mathematical models that use
the old pixels to produce the new pixels. The image output is up to the image itself
and the complexity of the method. Currently, there are three methods commonly
used as follows:

2.1.1 Nearest neighbor interpolation

Nearest neighbor interpolation is the simplest interpolation method. It can
produce the new pixels by copying the nearest pixels. Figure 2 demonstrates how
the image with 2x2 pixels can produce to be the image with 4xd pixels. In the
example, the value pixel 1 can represent in orange. When the image is increased to
be 4x4 pixels from 2x2 pixels, the rule of nearest neighbor is applied. The new pixels
copy the value of the nearest pixels, which is one, and reproduce without doing any
additional calculation.

However, this method is the fastest method to increase the pixels, but it also
has the poorest quality compared with other methods, and the pixels are easy to

observe as blocks.



4 pixels

2 pixels
1
2 pixels ) picls
3

Figure 2. Nearest neighbor interpolation 2x2 pixels to 4x4 pixels

2.1.2 Bilinear interpolation

Bilinear interpolation is the method that uses the neighbor pixels with linear
equations. The result of bilinear interpolation is better than Nearest neighbor
interpolation because the target pixel is up to the four nearest pixels while the
nearest neighbor computes with only the nearest pixel. Figure 3 shows how 2x2

pixels can be computed to be 8x8 pixels.

y is the target value that can be produced by using the four nearest pixels (A,

B, C, and D of the original image following the equations (2.1-2.3).

a=A+ h(C —A4) (2.1)
b=B+ h(D —B) (2.2)
y=a+wh-a) (2.3)

Where a and b represent the first interpolation in the height side. In this case,
we assume W =1 and H = 1. a can compute by the linear equation with pixels A and
Cin Eqg. (2.1). b can compute by the linear equation with pixels B and D in Eq. (2.2).
Then, both of a and b can produce the target pixel y with the linear equation in

width side as Eq. (2.3).



Therefore, the target value y is up to the 4 pixels (A, B, C, and D) and the

distance (w and h) of it.

Bilinear
interpolation

a Yy b H

Figure 3. Example of bilinear interpolation computation

2.1.3 Bicubic interpolation

Bicubic interpolation is the most popular traditional interpolation method.
This technique can produce a smooth, high-resolution image by 4 conner points
using a third polynomial equation. Equation (2.4) shows the interpolation surface

function, p(x,y).
p(xy) =Xl Xioa;x'y! (2.4)

Where (xy) denotes the location of the target pixels, and a;; denotes 16
coefficients of the function. The first 4 coefficients are the direct intensity value of

the 4 pixels conners which follow Eq. (2.5-2.8).

p(0,0) = ayp, (2.5)
p(l,O) = aOO + a10 + azo + a30, (26)
p(O,l) = Qoo + o1 + o2 + aop3, (27)

p(L1) =X X aij, (2.8)



And the 8 coefficients represent spatial derivate of the x and y direction following Eq.

(2.9-2.16)
Px(0,0) = a,
P (1,0) = aq9 + 2a,o + 3asy,
px(0,1) = ayo +ayy +ag; +ay3,
pr(1L,1) = X2 X a4,
py(0,0) = aoq,
py(1,0) = ag; +ay1 + azy +as,
py(0,1) = ag; + 2ap; + 3aos,

pe(1,1) = X2 X gay),

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

The last 4 coefficients are determined xy mixed partial derivative follow Eq. (2.17-

2.20)
Pxy (0,0) = ayy,
Pxy (1,0) = aq; + 2a; + 3as;,,
Pxy (0,1) = ay1 + 2a45 + 3ay3,

pxy (1!1) = [3=0 l'3=() aijij;

(2.17)

(2.18)

(2.19)

(2.20)

With the 4 initial pixels, the bicubic interpolation can increase the new pixel

smoother than the bilinear interpolation method. In figure 4, all three interpolation

methods are compared by increasing 4 times. The results show that nearest neighbor

interpolation has the poorest quality. We can observe that there are pixel blocks in

the image, while the bilinear interpolation shows a better result. However, the

bicubic interpolation provides the best result of the traditional method.



Thus, most of the research in image super-resolution also use bicubic

interpolation to be the baseline and represent all the traditional method.

Nearest neighbor Bilinear Bicubic

mﬂ

Figure 4. The comparison interpolation method of nearest neighbor, bilinear

interpolation, and bicubic with scale x4.

2.2 Single image super-resolution (SISR) with deep learning

The accuracy of image super-resolution from deep learning is higher than the
interpolation method. Still, deep learning needs high computation and requires a
large dataset for training the network before using it to enhance the image. Single
image super-resolution is assumed to find the relation between low-resolution and
high-resolution images. Throughout the training method, that represents the
relationship in terms of the parameters of the network. The network can learn by
comparing the result with the ground-truth image and trying to minimize the error by
optimization of the network. Currently, deep learning for super-resolution is classified
by the network [1] five networks as follows:
2.2.1 Linear network

A linear network is the most straightforward network. Dong, Chao, et al. [2]
introduced SRCNN, the first super-resolution using a convolutional neural network
(CNN). The network contains only three convolution layers and two rectified linear
activation functions (RelLU), as shown in figure 5. The first convolution layer with

RelLU extracts low-resolution images to the feature map. The second pair maps the



feature map to high-dimensional features, and the last convolution layer
reconstructs the feature map into a high-resolution image.

The network is assumed that it can find the relation between low-resolution
images and high-resolution throughout the training process. The convolution layers
and activation function can extract the information of the image to the high
dimensions and reconstruct it into a high-resolution image. This method has

significant improvement compared with the traditional interpolation methods.

mn
- X
[ (=
Q
@)

¥
Conv 9%9

ReLU

¥

N
X
N
Z
Q
@

Figure 5. The network structure of SRCNN [3, 4]. Conv 9x9 indicates that the kermnel
size is 9x9 and the stride is 1. LR* indicates the low-resolution with bicubic
interpolation.

2.2.2 Residual network

Residual network for super-resolution is inspired by deep residual learning for
image recognition (ResNet) [3] that stacked more convolution layers with ReLU and
applied to skip connection to avoid gradient vanishing. Lim, Bee, et al. [4] proposed
enhanced deep residual networks for super-resolution (EDSR) that apply the stack of
convolution layer and activation function as Resblock and skip connection, as shown
in Figure 6

A residual network has more advantages in terms of parameters compared
with a linear network. The stacked of convolution layers and activation function with

skip connection technique are given more dept levels and more parameters. The
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information of the low-resolution input can be utilized more, and it can get more the
relation between low-resolution images and high-resolution images.

However, the computation time will increase when the layers and the
number of parameters are higher. Therefore, the researchers try to find a new

technique to reduce the computation time of the training process.

ReLU/PReLU
Conv
ReLU/PReL.U

5
=
g
o
=3
-]

Figure 6. Structure of residual network. Input can be an LR image or the previous

Resblock.
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2.2.3 Recursive network

Kim, J et al. [5] proposed a Deeply-recursive convolutional for image super-
resolution (DRCN) to make the CNN deeper without increasing parameters by
designing the recursive layer. DRRN has increased the recursive layer to 16 layers. Tai,
Y et al. [6] proposed a deep recursive residual network with 56 recursive layers, as
shown in Figure 7. The recursive technique not only reduces the parameters but also
increases the quality of the super-resolution image output. The recursive network
showed a very deep residual of convolution layer not always give the best
performance. The input, which is the bicubic interpolation passed through the
feature extraction and then is fed to the recursive layer that can loop the
information with the shared parameters. The shared parameters can be trained as
the same as the usual parameters. After looping, the feature will construct to the

super-resolution.

Recursive layer

Shared parameter

Figure 7. The basic structure of a recursive network.

Li, Zhen, et al. [7] introduced Super-resolution Feedback Network. The
network can repeatedly improve the performance by feedback design and applying
to upsample module to speed up the training process, as shown in Figure 8. A
feedback network is developed from the recursive network that tries to improve the
training process. They applied to upsample module, which is a bicubic interpolation

to increase the low-resolution image to a high-resolution image and sum with the
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output of the recursive network. The bicubic interpolation can reduce the time of
the training process by guiding the network as a base image instead of training from
zero. The network can improve the output image by improving from the bicubic

result, but it can keep the original low-resolution image for the recursive network.

The result [1] showed that the super-resolution feedback network could have

a better performance than the deep recursive residual network.

Conv
ReLU/PReLU

Conv
ReLU/PReLU
ReLU/PReLU

Feedback

Upsample

Figure 8. Structure of feedback network.

2.24 Densely connected network

Tong T. et al. [8] proposed dense skip connections forimage super-resolution
that avoid the vanishing gradient problems by using the previous output block to
be the input of the other block, as shown in Figure 9. Y. Zhang et al. [9] proposed
a dense connection with skipped connection (RDN). The idea of a densely
connected network is to make the network can fully learn the hierarchical
feature. When the network is deeper, the backpropagation will lose because of
the gradient vanishing problem. Although the skip connects help to solve these
problems, the gradient will occur when the network is too deep. The dense
connection has the skip connection in all layers. This technique has a better
performance of the output super-resolution result, but it also has a higher

number of parameters.
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ReLU/PReLU
ReLU/PReLU

Figure 9. Structure of densely Connected Networks.
2.2.5 Attention-based network
Choi and Kim [10] introduced SelNet with an attention method by using a
sigmoid function as the selective gate for on and off. This method demonstrated
that super-resolution neural networks could perform better by ignoring some
channels. Zhang, Y et al. [11] proposed very residual channel attention networks
(RCAN) that apply the channel attention with the residual network. Figure 10.

Shows SelNet Block that used sigmoid function in super-resolution networks.

The attention-based network aims to reduce the redundancy features or
information of the input. The main algorithm of this network is applying the short
skip connection and using the sigmoid function for the activation function in the
layer of the module. The network allows low-frequency features to pass through
the skip connection, which is the blur or not an important feature and focuses
more on the high-frequency features. The sigmoid function is used as the on and
off switch that has a value of 0 or 1 to determine which features can pass or not
pass. If the value is close to 1, it means that the feature can pass. If the value is

close to 0, it means the value cannot pass this activation function.
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ReLU/PReLU
ReLU/PReLU

Figure 10. the network structure of the SelNet block [10]
2.2.6 Non-local network
Buades et al. [12] introduced the NL-means algorithm, which is the

mathematical method of denoise the image. The idea of NL means as follows:
NLv] (@) = Xjew( Dv() (2.5)

Where NL[v](i) denotes the estimated value of the output, w(i,) is the average
weight of the image, and v(j) is the value of image input. In figure 11, the picture
explains that the area with similarities will have a large weight compared with the
area that does not have similarities. The estimated-out value can denoise the noisy

image by replacing the noise with the mean value.

Figure 11. The demonstration of the different weights that explain the weight of

w(p,ql) and w(p,q2) is large, while w(p,g3) is smaller. [12]

Liu, Ding, et al. [13] introduced a non-local recurrent network (NLRN) that

applies non-local self-similarity from the classic method to a deep network.
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Following the non-local operation, we can redefine the operation of non-local in
neural networks as:
zi = Wzyi +x; (2.6)

Where z; denoted the output of the non-local operation, W, y; denoted the similarity
weight with the target value, and x; is the input value. Figure 11. shows the structure
of non-local module in neural networks that define 8(x;) = Wyx; and qb(xj) =

Wex; and y; follow:
Vi = s Zwif (%0279 () 27
fx0,27) = PG00 (2.8)
Where setting C(x) = Zy; fx;, xj)i Figure 12. Shows the structure of the non-local
module, and figure 13. Shows the result of NLRN. Where H denotes the height of the

image input, W denotes the width of the image input, and C denotes channel of the

image input.

- [

HxWxO)

j_

(HxWxC)

Figure 12. The Network structure of a non-local module



16

Noisy NLRN Ground truth

Figure 13. The comparison of restoration a result by NLRN, noisy, and ground truth

image [14]

Dai ,Tao, et al. introduced SAN [15] that applied the non-local module to
improve the image super-resolution network when it is put at the front and the
bottom of the super-resolution network. Figure 14 shows the overall structure of
SAN. The non-local modules slightly improve the performance of the super-
resolution output by increase very less parameters (lower than 1,500 for each

module).

Share-source Residual Group

Conv
Activation

Figure 14. Network structure of SAN [15]

2.3 Face alignment with deep learning

Face alignment is the method that aims to find the crucial points of the face
or facial landmarks. The location of the facial landmarks can help to analyze and
understand people by face. Facial landmarks can apply to face analysis, face
recognition, human emotion, and animation. The stacked hourglass inspires the
successful landmarks estimation for human pose [16] that uses the hourglass

network to find the human pose. Similarly, Yang, J et al. [17] applied an hourglass
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network to estimate facial landmarks. Hourglass architecture is shown in Figure 15.

L]

ResBlock
Upsampler
ResBlock
Upsampler
D
ResBlock
Upsampler

Y7,
ResBlock
@

Figure 15. Network structure of Hourglass module.

The structure of the Hourglass module concludes with the residual blocks
(the group of convolutional layers and activation function), pooling modules, and
upsampler modules. The residual blocks are used for extracting the features from
the input image to high-dimensional features. The pooling modules are applied to
reduce the size of the image. In contrast, the upsampler modules are used to
increase the size of the image. Hourglass modules learn how to detect the landmarks
by comparing the landmark points, which are assumed to represent the key attribute
of the face (eyes, mouth, nose, and shape), with the landmark point from the
networks. Then it can set the loss function to optimize the loss between the
assumed and the output from the network. Figure 16 shows the original image and

the assumed landmarks on it.

-

-

Figure 16. The comparison between original image and the image with landmarks.

L
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2.4 Face super-resolution

Face super-resolution is the specific task of single image super-resolution for
enlarged face images from very low-resolution to high-resolution. Chen, Y et al. [18]
introduced FSRNet to demonstrate that face information, which is facial landmarks,
and heatmap can improve the performance of face super-resolution. Ma, C et al. [19]
proposed an iterative network that applied a super-resolution feedback neural
network [7] combined with face alignment from the hourglass model. Figure 16
shows the overall framework. The feature extraction module extracts the low-
resolution input, then is enlarged with the super-resolution module to get the first
super-resolution image output. After that, the facial alignment is estimated to
improve the super-resolution output continuously.

In the training process, the face super-resolution networks must train the
objective function with two functions because the image super-resolution and face
aliscnment have different objective functions. For the image super-resolution, pixel
loss is applied with L1 loss, while alignment loss is applied with L2 loss.

In this research, we develop the network based on a face super-resolution
iterative network, which has two main modules: super-resolution and faces alignment
module. And we improve the performance by developing the feature extraction and

fusion module that make the network can perform more efficiently.

. Output
Fact:na(::iguliement <«—| super-resolution
face image

¢ Iterative collaboration T
Input

. Feature . Super-resolution
low-refolutmn - extraction -l Fusion Module |l module
face image

Figure 17. The overall framework of face super-resolution iterative network
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CHAPTER 3

PROPOSED METHOD

In this chapter, we provide the information of the prosed method in three
main parts. The first part explains our proposed network structure to improve the
image super-resolution performance. The second part describes the objective
function of our method. Finally, the last part presents the evaluation metrics we
applied to compare the performance.

3.1 Network structure

Our network structure is based on the iterative face super-resolution network
that combines modules of image super-resolution and face alisnment. The previous
work, which is DIC [19], significantly improved the key attributes of the face image.
However, we notice that the feature extraction and the module of merging the
feature between image super-resolution and face super-resolution are not efficient.
Thus, we propose a new structure focusing on feature extraction and how to merge
the two main modules (image super-resolution and face alignment).

This thesis proposes two techniques to develop the iterative face super-
resolution network. The first technique is applying channel attention [11] in low-
resolution feature extraction to make the network focus on important information
because merging it with the alignment information. And the second technique is
applying a non-local module to improve the image super-resolution performance.

The overall framework of network is summarized in Figure 17. The first
procedure of our network (DAPnet), a low-resolution input image (I;g), is input for
enlarging the image to be first super-resolution image (sgr(1) . Irg is extracted
features by low-resolution feature extraction (Hgc4) and upscale by super-resolution

recurrent module. Then summation with upsampling (U) of /5 as Eq. (3.1)
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Isp(y = Hg (Hpea(ULR)) - U(I1R), (3.1)

Isp(pyis estimated by the face alignment module as 68 landmarks.
Furthermore, all landmarks are constructed to be five heatmaps (Agg(y)) representing
five essential parts of the face, including the face's left eye, right eye, nose, mouth,
and face shape. In the second procedure, the fusion module (f,) has two inputs
which are the extracted feature from Hgca and heatmap (Agg(1)). The computation

of fn follows Eq. (3.2)

fa= HRCA(ILR;ISR(n—l)) 'ASR(n—l); (3.2)
After that, the target output Igg(mcan compute with SR recurrent module and

upsampling of I} g, following Eq. (3.3)

Ispn) = Hg (f) + U 1R), (3.3)

Heatmaps (ASR(n—l))

SR

1
PReLU LReLU ReLU ] |
] 1 .
XAk : 1 1
B Average Pooling [ Sigmoid function ! Face alignment
1 | module
® Element-wise Concatenation ® Element-wise production H |
'

N

Low-resolution feature extraction (Hpcy)

_____________________________________________________

Iterative Collaboration

h

LR i
‘ : = [}
iy - - E Attentive | | SR recurrent
§ E fusion module (Hs,)

Conv 1x1
{
Conv 1x1
Conv 1x1
Qe
______‘________

_____________________________________________________ Feedback

Figure 18. the network architecture of our deep attention for iterative face super-
resolution network (DAPnet)
3.1.1 Low-resolution feature extraction with an attention mechanism
The explanation is in figure 18. Where H denotes the feature's height, W
denotes the width of the feature, C denotes the channel of the feature, and G
denotes the group of the feature. To train the model, start with a low-resolution

image with 16 x 16 pixels, RGB channel. Then, after passing the first Conv 3x3, the
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image is extracted feature into feature maps in high-dimensional space in size 16 x
16, and the channel is increased to 192 channels. After that, the feature maps pass
through pixels to increase the size to 32 x 32 pixels and reduce the channel to 48, as
shown in Figure 15. Next, it passes the non-local module, and concatenates with the
feedback feature, as shown in Figure 16. After concatenation, the feature maps are
compressed by Conv 1x1 to 32x32 pixels and 48 channels.

After that, the feature maps are increased to five groups and feed the
features to Conv 3x3 with average pooling and skipped connection. After average
pooling, the future maps are reduced to 1x1 pixel and then pass through the Conv
1x1, reducing the channel to 3 channels. The feature maps go to the last Conv 1x1
and pass the sigmoid activation function. Finally, multiply the feature maps from the
last layer with the skipped pass.

Low-resolution feature extraction (Hgea)

(32x32x96x1) (1x1x48x5) (1x1x48x5)
3 i

Conv 1x1
— ‘,
Qe
—]

LR : * (32x32x48x 1) ]
r +E L, ‘ L _‘...@ 2
! ‘ E module ]

(HxWxCxG) |
(16x16x3x1) !

(16x16x192x 1) (32x32x48x 1) (32x32x48x1) (32x32x48x5) (1x1x3x5)

____________________________________________________________________________

Feedback (32x32x48x1)

Figure 18. Low-resolution feature extraction with tensor size.

Figures 19 and 20 show the comparison of the information between the
feature before passing the image super-resolution network and the feedback feature
after passing the network. Both of them are concatenated and compressed to be
32x32 pixels with 48 feature channels. We can observe that the feedback features in
Figure 20 have clear information about the face attribute, compared with the feature,
which only passed the first convolutional layers, pixel shuffle, and non-local module

in Figure19.
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Figure 19. The 5 examples of 48 feature maps after non-local in low-resolution

feature extraction.

Figure 20. The 5 examples of 48 feedback feature maps.

3.1.2 Non-local module
We applied non-local module in the network aiming for restoration the input
of the image before the features are extracted to the deep network. We define the

output of the module as z; follow:
zi =Wy + x; (3.4)
Where W, is weight of y;, x; is the input and y; follow:
Vi = softmax(x] Wox{ Wy)g(x;), (3.5)

We assumed that W, is the weight of similarity of the input x; compared with the
local region in the image. The structure of non-local module is showed in figure 21.
The input of the module is 32x32 pixels and 48 channels, and it is separated
into four paths with 32x32 pixels and 24 channels for each path. We assume the first
path is x] Wy and the second path is xiTW¢‘ The first two paths represent the
similarity weight between the input x; and the overall feature by applying the

softmax function. Then, this path multiples with g (x;) which we assumed as a value
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of the pixels following the concept of non-local fitter Eqg. (2.5) and added with the

input as Eq. (3.4).

(32x32x24x1)

(32x32x48x1)

(32x32x24x1)
(32x32x48x 1) ‘n

(32x32x48x 1)

(32x32x48x 1)

Figure 21. the network structure of non-local module.
3.1.3 Fusion module

The fusion module combines the information between image super-
resolution and face aligcnment. The five groups of feature maps are utilized to gain
information on face alignment separately. This module started with the five feature
groups from the low-resolution feature extraction, which are sizes 32 x 32 pixels and
48 channels. Each group us multiplied by the heatmaps of face alignment that
represented the key attributes of the face, which was sized 32 x32 pixels, one
channel. Then, summarizing all the five groups to be only 32 x 32 pixels and 48

channels, as shown in figure 22.

(32x32x48x1)

Fusion module @ = H

(32x32x48x95) (32x32x1x5) (32x32x48x1)

Figure 22. the network structure of fusion module

3.1.4 Super-resolution recurrent module
We apply a super-resolution feedback network [7] for the image super-

resolution module following [19]. The essential parts of this module are the
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feedback layer and DeConv layer. The feedback layer has two techniques with dense
connection and recursive. DeConv layer or deconvolutional layeris used to increase
the image's resolution following Eq. (3.6).

H/W,,; = stride x(H/W;, — 1)Kkernel size - 2(padding) (3.6)

Where H /W, denotes the height or width output, H/W;, denotes the height or

width input. In our experiment, we conduct only a scale x8. Thus, we set up the

value of stride, kemnel size, and padding equal to 4,8,2, respectively.

Figure 23. show the structure of the SR recurrent module. The input from the
fusion module with 32x32 pixels and 48 channels passed through the convolution
layer and feedback layers which are the main parameters of the face super-
resolution network. And then, it passes the Deconv to enlarge the resolution from
32x32 pixels to 128x128 pixels with the same channels. And the last convolution
layer reconstructs the features as an RGB image before summing with the bicubic
interpolation from the upsampling module. Finally, we can get the super-resolution

image.

SR recurrent module

(32x32x48) (128 x 128x 3)

\
1T

| (128x128x48)

PReLU

DeConv

(32x32x48)

Upsample

Figure 23. the network structure of SR recurrent module.

3.1.5 Upsample module

Upsample module is one of the necessary modules for the face super-

resolution network training process because this module can speed up the training
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process to converge faster. We apply the traditional bicubic interpolation for
upsample module. When the training process starts, the network can utilize the
bicubic interpolation to guide the overall parameters that are random at the starting
point. It means it can perform better after the network is trained in the early

iterations than the bicubic interpolation method.

3.1.6 Face alignment module

We apply the hourglass module to estimate the landmarks and find the
heatmaps of the super-resolution image. The input image is a super-resolution image
sized 128x128 pixels and 3 RGB channels. Then, it passes the pre-Conv layer that
prepares the feature for the hourglass module. Then, the hourglass can estimate 68
landmarks, and then all of the landmarks are merged into five heatmaps which are
32x32 pixels and five channels. Finally, the heatmaps are sent to the fusion module

to improve the image super-resolution output.

(32x32x5)

Face alignment module

(128x 128x 3)
Merge 68
‘ landmarks to
Pre-
conv

5 heatmaps

(32x32x512)

Figure 24. the network structure of face alignment module

3.2 Objective functions

The objective of training the network is to minimize loss of the objective

function, including pixel loss and alignment loss, as shown in Eq (3.6).
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3.2.1 Overall Objective:

Liotar = Lpixer + IBalign "Latign, (3.6)
Where Lpixe; denotes pixel loss function of the image super-resolution part, Lgign
denotes alignment loss function of the face alignment part, and 4,4, indicates the
weight of alignment loss. The pre-trained on the face alignment model has been

usedin [17] following [19].
3.2.2 Pixel Loss:

Lpixer = %ZL”U;R — Il (3.7)

Where ILR denotes HR image, and IéR denotes the last step of SR image output of

the face image super-resolution part.
3.2.3 Alignment Loss:

1 i i 2
Lalign = ;Z%\I=1Zj,k”A1HR (],k) - AISR (]'k)” ’ (3.8)

Where, A}L,R(j, k) denotes the reference landmarks using Openface [20-22]
following DIC [19], and AéR (j, k) denotes the landmarks estimation of the last step
of the image output of the face alignment module.

3.3 Evaluation metrics

In this thesis, we compare the result by using the peak signal-to-noise ratio
(PSNR) and structural similarity index measure (SSIM) to evaluate our models
compared to other methods in terms of qualitative results.
3.3.1 Peak signal-to-noise ratio (PSNR) is a ratio representation between the peak
signal and corrupting noise. The calculation follows Eq. (3.9) and (3.10)

PSNR = 10log—, (3.9)
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NGB () -y ()
- nxXm

MSE (3.10)

Where x (i, ) is a high-resolution image, y(i, j) is a low-resolution image, n is wide of
the image, and m is the height of the image.

3.3.2 Structural similarity index measure (SSIM) is the method that measures the
similarity between the two images. The index can show the quality of the result of
the image output of the prediction compared with the reference image. The

calculation follows Eq. (3.11)

(2uxpy+cq)(20xy+c2)
tx?+ly2+c1)(ox2+0y2+c2)

SSIM(x,y) = ( (3.11)

where iy is the average of x, uy, is the average of y, gy is the variance of x, gy, is the

variance of vy, dyyis the covariance of x and y, ¢ =(0.01 X 255)2 | ¢, =

(0.03 x 255)2
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CHAPTER 4

EXPERIMENTS AND RESULTS

4.1 Experimental setting

We experiment on CelebA [23] and Helen [24] datasets, which are wide-
known face super-resolution datasets. There are 168,854 training images and 1,000
testing images from CelebA datasets. and 2,005 training images with random flipped
and rotated augmentation, and 50 testing images from Helen datasets. The input of
training and testing images input is applied bicubic downscale to 128 x 128 pixels
and 16 x 16 pixels, respectively. We use ADAM optimizer [25] for training
withBgiign = 0.1 for the weight of alignment loss. The initial leaming rate =
1 x107* and halving at 2 x 10%,4 x 10% and 8 x 10* iterations. Experiment on
PyTorch with an NVIDIA GeForce RTX 2080 Ti.

In addition, we experiment on different datasets, which are AFLW2000-3D
(400 images) and WFLW (280 images). Both are face datasets with other head poses
at different angles to test our models. We assume these additional datasets are the
actual cases of face images.
4.1.1 Dataset

CelebA [23] and Helen [24] datasets are wide-known face super-solution
datasets, and the additional head pose datasets are also known as a reference for
face alignment. Our models are from CelebA and Helen training set, and we test our
model to the test set of CelebA and Helen to compare our network performance
with other state-of-the-art methods. We also tested AFLW2000-3D and WFLW
datasets to test the models we created on the different head pose images.

We prepare the datasets by cropping the face and resizing it to 128x128
pixels for high-resolution ground truth images. For low-resolution images, we apply

the bicubic degradation from the ground truth to 16x16 pixels, as shown in figure 23.
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Actual size

128x128 pixel  16x16 pixel

Figure 23. The image is cropped and resized to be 128x128 pixels (HR image) and
16x16 pixels (LR image).
4.1.1.1 CelebFaces Attributes Dataset (CelebA)

CelebFaces Attributes Dataset has a large dataset with 168,854 training images
and 1,000 testing images from the celebrity. This dataset covers various poses and
nationalities. CelebA also has the annotation of face for face alisnment network for
training in multiple applications. Figures 24-25 show the example of training data
from the CelebA dataset, and figure 26 shows the example of testing data from the
CelebA dataset.

Because CelebA has a vast training image set, we did not implement the
augmentation as the other smaller datasets. We expected that we would have higher
quality results from CelebA compared to the Helen dataset, that have only 2,005

images for training.
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Figure 24. Examples of training images of CelebA dataset (1) [23]
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Figure 25. Examples of training images of CelebA dataset (2) [23].
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Figure 26. Examples of testingimages of CelebA dataset [23].

4.1.1.2 Helen dataset

Helen includes a variety of poses, light, expression, and occlusion with 2005
training images. Thus, we expect our models from the Helen dataset to perform well
in occlusion images. Figure 27 shows the examples of training data from the Helen

dataset, and figure 28 shows the example of testing data from the Helen dataset.
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Figure 27. Examples of training images of Helen dataset [24].
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Figure 28. Examples of testingimages of Helen dataset [24]

4.1.1.3 Additional head pose datasets

We experiment more on the different conditions to find the limitation of our
models following the face alignment research [26, 27]. We choose two datasets
which are AFLW2000-3D [28] and WFLW [29] to test the models with the unnormal
case of facial image (head pose). Figure 29 shows the example from AFLW2000-3D

datasets, while figure 30 shows the example from WFWL datasets.
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Figure 29. Example images from AFLW2000-3D datasets [28].
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Figure 30. Example images from WFLW datasets [29].



37

4.1.2 Iterative setting

We find the optimized iterative setting by using our models to test the low-
resolution image to be a super-resolution image compared with the ground truth
image. We found there are no significant improvements in our method if the iteration
is more than four iters. Figure 31 shows the output super-resolution image of our
model that is improved from iter 1 to iter 4. The iter 3 has the PSNR result as 32.80,
while at iter four, it improves PSNR from iter three only PNSR 0.01. Therefore, in this

experiment, we set up the iteration of our feedback loop as four iters.

HR image iter1 iter 2 iter 3 iter 4
PSNR/31.34 PSNR/32.59 PSNR/32.80 PSNR/32.81

Figure 31. The comparison of 4 iters of our face super-resolution network.

4.2 Experimental results

We evaluate the experimental results in three terms: quantitative, qualitative,
and the number of parameters. The higher quantitative results can imply a better
quality of the output compared to the ground truth. The qualitative results
demonstrate the quality by our eyes. And the number of parameters relates to the
speed of the training and testing process.
4.2.1 Quantitative results

The comparison of bicubic interpolation, state-of-the-art FSR, and our method
is demonstrated in tablel. Our methods DAPnet and DAPnet+NL have the highest
performance of both evaluation metrics on both datasets, especially on the Helen
dataset, which improved significantly compared to DIC [19]. Table 2 shows the
experimental results of the model of our method compared to the reference

models, and our models have a higher performance than reference models.



Table 1. Quantitative results of bicubic, state-of-the-art methods, and our methods.

The best and second performances are red and blue.

CelebA Helen
Method
PSNR SSIM PSNR SSIM
Bicubic 23.58 0.6285 23.89 0.6751
SRResNet [30] 25.82 0.7369 25.30 0.7297
RDN [9] 26.13 0.7412 25.34 0.7249
PFSR [31] 24.43 0.6991 24.73 0.7323
FSRNet [18] 26.48 0.7718 26.90 0.7759
FSRGAN [18] 25.06 0.7311 24.99 0.7424
DIC [19] 27.41 0.7983 26.69 0.7933
DICGAN [19] 26.34 0.7562 25.96 0.7624
DAPNet (our) 27.50 0.8019 27.02 0.8031
DAPNet+NL (our) 27.55 0.8041 27.05 0.8065

The comparison between our networks DAPNet and DAPNet+NL shows the

performance of the non-local module that we added. The non-local module can

slightly improve the PSNR and SSIM values for both CelebA and Helen datasets.

For the AFWL2000-3D dataset, the information of the low-resolution image

input has an effect on the super-resolution image output. The overall results of

AFWL2000-3D are lower than other datasets because the input is less detailed. We

can notice that the PNSR and SSIM results of the bicubic interpolation are lower than

20.00 and 0.55, respectively, while the other datasets have the PSNR value of bicubic

interpolation more than 22.00..
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Table 2.Quantitative results on AFWL2000-3D and WFLW dataset for scale x8 of

bicubic, DIC, and our methods. The best performance is red highlight.

AFWL2000-3D WFLW
Method

PSNR SSIM PSNR SSIM
Bicubic 19.17 0.5347 22.38 0.6657
DIC _CelebA[19] 24.15 0.7095 27.47 0.7879
DIC Helen [19] 23.58 0.6783 27.63 0.7979
DAPNet_CelebA (our) 24.13 0.7105 27.55 0.7906
DAPNet_Helen (our) 23.60 0.6787 27.79 0.8008
DAPNet+NL_CelebA (our) 24.19 0.7132 27.59 0.7921
DAPNet+NL_Helen (our) 23.52 0.6753 271.67 0.7977

4.2.2 Qualitative results

Regarding the qualitative in the primary datasets (CelebA and Helen), overall
SR outputs are visualized in Figure 32. Compared with bicubic interpolation, DIC [19],
and our methods, the visualized results demonstrate that DAPnet and DAPnet+NL
overall image better than Bicubic. Compared with DIC, the right eye enhancement for
the first two rows from the CelebA dataset is slightly better. In comparison, in the 3rd
and 4th rows representing the Helen dataset, DAPnet shows the better enhancement
of 4 key attributes: right/left eye, nose, and mouth. Figure 34-55 show the example
results for CelebA and Helen.

In terms of the qualitative that represented the real cases with the head pose
datasets, figure 33 shows our method significantly improved the eyes and nose of
the images. Figure 56-71 show the example results for AFWL2000-3D and WFWL.

However, our models are limited in that they only get significant results when they
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can get the five key attributes of face image: right/left eye, nose, mouth, and shape.

We analyze the qualitative results in (4.4).

Input Bicubic RDN [13] DIC [2] DAPnet (Our) DAPnet+NL

\CACAGAGAGAG

' -

Figure 32. Visualization of SR outputs of the bicubic, FSR state-of-the-art and our

methods for CelebA and Helen datasets.

Figure 33. Visualization of SR outputs of the bicubic, DIC and our methods for

AFLW2000-3D and WFLW dataset.
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4.2.3 Parameters optimization

With an attentive mechanism, DAPnet can remove the abundant parameters
for the LR feature extraction module. The parameters can imply the speed of the
deep learning training and testing process. Table 3 indicates the comparison of
parameters between DAPnet, DAPnet+NL, and DIC that DAPnet+NL can reduce
1,222,302 parameters compared to DIC.

Table 3. the comparison of parameters between DIC and DAPnet.

Method Parameter
DIC [19] 21,803,849
DAPnet (our) 20,580,329
DAPnet+NL (our) 20,581,547

4.3 Results analysis

This topic analyzes and discusses the experimental results of four datasets.
We compare quantitative and qualitative results with four methods: bicubic
interpolation, DIC, DAPnet, and DAPnet+NL.
4.3.1 Analyze the results of the CelebA dataset

Figure 34 and Table 4 demonstrate how our methods (DAPnet, DAPnet+NL)
improve the super-resolution image compared to bicubic interpolation and DIC. The
bicubic interpolation can only get the blurred output and cannot provide the detail
of the face. Compared to DIC, the eyes of the image are considerably different. Our
method improves both eyes and nose, especially on the right eyes of the face image,

while the right eye of the result of DAPnet+NL is slightly clear than DAPnet.

Table 4. The comparison of PSNR and SSIM in figure 34 with bicubic, DIC, DAPnet and

DAPnet+NL
Method Bicubic DIC [19] DAPnet DAPnet+NL
PSNR/SSIM 18.59/0.5148 24.83/0.7136 25.36/0.7290 25.39/0.7295
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Figure 34. The comparison of face images in CelebA from 16x16 pixels to 128x128

pixels (1)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL

Ficure 35 and Table 5 demonstrate the otherresults from the CelebA

dataset. Our model can predict the better alignment of eyes and nose compared to

DIC. In this figure, the non-local module can restore the eyes of the image to be

clearer and restore the color of the nose better than DAPnet.

Table 5. The comparison of PSNR and SSIM in figure 35 with bicubic, DIC, DAPnet and

DAPnet+NL
Method Bicubic DIC [19] DAPnet DAPnet+NL
PSNR/SSIM 18.19/0.5198 26.42/0.7980 27.07/0.8040 27.25/0.8057
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Figure 35. The comparison of face image in CelebA from 16x16 pixels to 128x128

pixels (2)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL

4.3.2 Analyze the results of the Helen dataset

Figure 36 and Table 6 show the example result from the Helen dataset.

DAPnet+NL shows the best performance for the qualitative result, and the super-

resolution image output also demonstrates higher quality, especially the eyes and

nose. Overall image, DAPnet provides less blur compared with other methods.

Table 6.The comparison of PSNR and SSIM in figure 36 with bicubic, DIC, DAPnet and

DAPnet+NL
Method Bicubic DIC [19] DAPnet DAPnet+NL
PSNR/SSIM 23.14/0.5901 28.20/0.7816 28.45/0.7884 28.55/0.7914
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Figure 36. The comparison of face image in Helen from 16x16 pixels to 128x128

pixels (1)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL

Figure 37 and Table7 demonstrate the other results from the Helen dataset.

This figure shows the improvements by our DAPnet+NL method of the four key

attributes of face image (the left/right eyes, nose, and mouth). However, our model

can only restore the texture of the image to be smooth, but it cannot restore the

actual spots and wrinkles.

Table 7. The comparison of PSNR and SSIM in figure 37 with bicubic, DIC, DAPnet and

DAPnet+NL
Method Bicubic DIC [19] DAPnet DAPnet+NL
PSNR/SSIM 19.35/0.4993 23.17/0.6822 23.52/0.7044 23.88/0.7231
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Figure 37. The comparison of face image in Helen from 16x16 pixels to 128x128
pixels (2)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL

4.3.3 Analyze the results of the AFWL2000-3D and WFWL datasets

Figure 38 and Table 8 show the example performance from AFWL2000-3D by
DIC, DAPnet, and DAPnet+NL, which were trained on the CelebA datasets. On head
pose datasets, there is a slight improvement. We can notice the eyebrows, nose, and

mouth that our method has better quality compared to the DIC method.

Table 8. The comparison of PSNR and SSIM in figure 38 with bicubic, DIC, DAPnet and

DAPnet+NL

Method Bicubic DIC [19] DAPnet DAPnet+NL

PSNR/SSIM 15.88/0.3631 21.26/0.6511 21.57/0.6643 21.47/0.6604
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Figure 38. The comparison of face image in AFWL from 16x16 pixels to 128x128 pixels

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL

Figure 39 and Table 9 show the example performance from WFWL by DIC,

DAPnet, and DAPnet+NL, which were trained on the Helen datasets. This figure

represents the image, which almost has half face. The result shows that the output

images are a blur, and there are slightly different in the image's texture. We conclude

that the head pose image with this angle has no benefit with the non-local module.

Table 9. The comparison of PSNR and SSIM in figure 39 with bicubic, DIC, DAPnet and

DAPnet+NL
Method Bicubic DIC [19] DAPnet DAPnet+NL
PSNR/SSIM 22.07/0.7003 28.20/0.8314 28.88/0.8348 28.63/0.8332




47

(b) ©
(e) ®

Figure 39. The comparison of face image in WFWL from 16x16 pixels to 128x128

(a)
s ?

(¢

pixels
(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL

Finally, our models have the limitation for predicting the face image that
does not have five key attributes as the training sets. Figure 40 and Table 10 show
the face images which only have a face. The reference models and our method
cannot predict the eyes and eyebrows of the testing images, while the nose and

mouth also have low quality.

Table 10. The comparison of PSNR and SSIM in figure 40 with bicubic, DIC, DAPnet

and DAPnet+NL

Method Bicubic DIC [19] DAPnet DAPnet+NL

PSNR/SSIM 20.99/0.7234 26.25/0.8127 27.25/0.8342 26.95/0.8320
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Figure 40. The comparison of half face image in AFWL from 16x16 pixels to 128x128

pixels

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL
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CHAPTER 5

CONCLUSION AND FUTURE WORKS

5.1 Conclusion

In this thesis, we propose deep learning with an attention mechanism for
iterative face super-resolution for restoring the low-resolution images to the high-
resolution image by the proposed attention-based and non-local methods in a deep
neural network.

We design the low-resolution feature extraction, which has channel attention
for reducing the redundant features, and non-local technique to restorative the low-
resolution input. The network performs two tasks, the first task is enlarging the image,
and the second task is estimating the landmarks for guiding the enlarging task to get
higher quality. The network performs repeatedly enlarges and utilizes landmarks to
improve the output. Finally, the network receives the best super-resolution output
when the network cannot achieve better results.

The experimental results of well-known face image datasets demonstrate
that our network has a better quantitative performance than the state-of-the-art
methods. Our qualitative results also significantly improve the keys attribute of the
face, especially the eyes and nose of the image. Finally, our network can
considerably reduce the number of parameters compared with the reference
network.

5.2 Future works

In the experiment, we noticed the training process is overfitting. In the future,

we can reduce the complexity of the network and remove redundancy parameters

to improve the network performance.
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For application, the network can develop to fit different input and output
sizes for the actual case. Our work can adapt to the pre-process of face recognition

and identification in other works.
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APPENDIX

(d) (e) (H)

Figure 41. The comparison of face image in CelebA from 16x16 pixels to 128x128
pixels (1)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL

e

Figure 42. The comparison of face image in CelebA from 16x16 pixels to 128x128
pixels (2)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL
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Figure 43. The comparison of face image in CelebA from 16x16 pixels to 128x128
pixels (3)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL
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Figure 44. The comparison of face image in CelebA from 16x16 pixels to 128x128

pixels (4)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL
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Figure 45. The comparison of face image in CelebA from 16x16 pixels to 128x128
pixels (5)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL

Figure 46. The comparison of face image in CelebA from 16x16 pixels to 128x128
pixels (6)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL
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(e)

Figure 47. The comparison of face image in CelebA from 16x16 pixels to 128x128
pixels (7)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL

Figure 48. The comparison of face image in CelebA from 16x16 pixels to 128x128
pixels (8)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL
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Figure 49. The comparison of face image in CelebA from 16x16 pixels to 128x128
pixels (9)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL

Figure 50. The comparison of face image in CelebA from 16x16 pixels to 128x128
pixels (10)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL
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Figure 51. The comparison of face image in Helen from 16x16 pixels to 128x128
pixels (1)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL

(d (e) ®

Figure 52. The comparison of face image in Helen from 16x16 pixels to 128x128
pixels (2)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL
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Figure 53. The comparison of face image in Helen from 16x16 pixels to 128x128
pixels (3)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL

(a) (b) ©

Figure 54. The comparison of face image in Helen from 16x16 pixels to 128x128

pixels (4)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL
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Figure 55. The comparison of face image in Helen from 16x16 pixels to 128x128

@

pixels (5)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL

Figure 56. The comparison of face image in Helen from 16x16 pixels to 128x128
pixels (6)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL
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Figure 57. The comparison of face image in Helen from 16x16 pixels to 128x128
pixels (7)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL

i\.

(b)

Figure 58. The comparison of face image in AFWL from 16x16 pixels to 128x128 pixels
(1)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL
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Figure 59. The comparison of face image in AFWL from 16x16 pixels to 128x128 pixels

(2)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL

> 4

(e)

Figure 60.The comparison of face image in AFWL from 16x16 pixels to 128x128 pixels
(3)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL
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Figure 61. The comparison of face image in AFWL from 16x16 pixels to 128x128 pixels
(4)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL

Figure 62. The comparison of face image in AFWL from 16x16 pixels to 128x128 pixels
(5)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL
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Figure 63.The comparison of face image in AFWL from 16x16 pixels to 128x128 pixels
(6)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL
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Figure 64. The comparison of face image in AFWL from 16x16 pixels to 128x128 pixels
(7)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL
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Figure 65. The comparison of face image in AFWL from 16x16 pixels to 128x128 pixels
(8)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL

Figure 66. The comparison of face image in AFWL from 16x16 pixels to 128x128 pixels
9)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL
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Figure 67. The comparison of face image in AFWL from 16x16 pixels to 128x128 pixels
(10)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL
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Figure 68. The comparison of face image in AFWL from 16x16 pixels to 128x128 pixels

(11)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL
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Figure 67.The comparison of face image in WFWL from 16x16 pixels to 128x128
pixels (1)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL

Figure68. The comparison of face image in WFWL from 16x16 pixels to 128x128 pixels
(2)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL
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Figure 69. The comparison of face image in WFWL from 16x16 pixels to 128x128
pixels (3)

(a) LR image (b) Bicubic interpolation (c) DIC (d) HR image (e) DAPnet (f) DAPnet+NL
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