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CHAPTER 1
Introduction

1.1. Rational

Coastal upwelling is an important physical process of the dense, cooler
and nutrient-rich water moving upward to displace the warmer and
nutrient-depleted surface water (Lehmann and Myrberg, 2008). Therefore,
the upwelling usually links to the high biological productivity, powerful
economic and major fisheries region (Hein et al., 2013; Ndah et al., 2017).

Wind-driven coastal upwelling is generated by along shore winds which
induce Ekman transport (ET) in the direction perpendicular to shoreline
(Teresa K and James F, 2001). Hence, the Ekman transport upwelling
index (Ulgr), calculated using wind stress components at coastal sea
surface, can be used to indicate the magnitude of amount of water
upwelling that replaces the surface water driven offshore (Bakun, 1973,
1975). In addition, the sea surface temperature (SST) upwelling index
(Ulgsr) is also used as an indicator of coastal upwelling, which is
calculated as the difference of coastal and oceanic sea surface temperature
at the same latitude (Cropper et al., 2014; Kok et al., 2017).

Coastal upwelling off the west coast of Hainan Island in China Sea was
detected by L0 et al. (2008) using satellite remote sensing sea surface
temperature, field observations and numerical modeling. The presence of
upwelling was verified by monthly SST satellite images showing the
coldest water and by field observations showing uplifting contours of
decreasing temperature and increasing salinity. Besides, the low SST
center and the upwelling velocity were numerically modeled as an
evidence of upwelling off west coast of Hainan Island.

Additionally, the contributors of coastal upwelling occurring along the
east coast of Peninsular Malaysia (ECPM) throughout southwest monsoon
were examined by Kok et al. (2017) using Ekman transport calculation,
wind-induced upwelling index (UIgr) calculation and SST upwelling index
(Ulgsr). Along southern and middle coast, Ekman transport was mostly
eastward and perpendicular to coastline in offshore direction, while along
north coastline Ekman transport was southeastward parallel to the coast.
Maximum upwelling happened when Ekman transport was perpendicular
to the coast. The intensity of Ekman transport and the positive values of



upwelling index which indicated favorable upwelling increased from May
and peaked in August before declining in September.

Coastal upwelling in the Gulf of Thailand (GoT) was found along east
coast during northeast monsoon and along southwest coast during
southwest monsoon (Cushing, 1971; Robinson, 1974; Sojisuporn et al.,
2010). This finding is associated with the circulation pattern found in
Yanagi and Takao (1998a) during southwest monsoon that
counterclockwise circulation flows toward the shore along the western
coast. Additionally, Singhruck (2001) applied ocean color data to study
circulation features in the GoT. The study showed high chlorophyll_a
concentration as a proxy of phytoplankton that might be the evidence of
upwelling was found all year round around Samui Island.

Even the upwelling in the GoT has been mentioned in researches above,
the knowledge is still incomplete. Understanding coastal upwelling will
provide insight geophysical mapping and mechanism of fisheries resources
(e.g., habitats, fish eggs and larvae grounds). They would be required for
the development of future actions to draw a policy for efficiency fisheries
managements including fisheries law, habitat rehabilitation and fisheries
enhancement and to deal with fishery problems like exploitation in the GoT
(Ahmed et al., 2007; Ingthamjitr and Sricharoendham, 2016; Kongseng et
al., 2020Db).

Thus, this study aims to analyze the characteristics and mechanisms of
coastal upwelling found in the GoT (see black box in Fig. 3.1) under the
influences of tide, meteorological forcing, sea surface temperature and
salinity using three-dimensional numerical model. Furthermore, to define
the area of upwelling in the study area the classical wind-driven coastal
upwelling will be studied (black box in Fig. 1.1) through the calculation of
upwelling index related to Ekman transport (Ulg;) and sea surface
temperature gradient (Ulggr).

1.2. Hypothesis

The locations of coastal upwelling found in the Gulf of Thailand are
seasonally alternated. They occur on the east coast during northeast
monsoon and vice versa during southwest monsoon.



1.3. Objective
To reveal characteristics and mechanisms of coastal upwelling in the
GoT

1.4. Study framework

In this study coastal upwelling in the GoT is investigated through two
methods: (1) upwelling index estimations and (2) hydrodynamic model
(Delft3D-FLOW).

The upwelling index estimation was applied to figure out the possibility
of coastal upwelling locations in the study area of 98.5 °E to 105.5 °E and
5.5 °N to 14.0 °N (see Fig. 1.1) through two approaches: (1) Ekman
transport upwelling index (Ulg;) estimation using wind stress components
at coastal sea surface to indicate the magnitude of amount of water
upwelling to replace the surface water driven offshore, and (2) sea surface
temperature index (Ulsgr) estimation using the difference of coastal and
oceanic sea surface temperature at the same latitude.

The two-dimensional model covering the study area of 98.0 °E to 112.0
°E and 2.0 °N to 15.0 °N (see Fig. 3.1), was prepared, calibrated and
validated. Then, the model was simulated in three dimensions for one-year
period under the influences of tides, winds, temperature, salinity and river
discharge.

1.5. Expected beneficial outcome
To better understand the characteristics and mechanisms of upwelling
in the GoT which could be useful for living resource management



CHAPTER 2

Theory and literature reviews
2.1. Upwelling

In open ocean, upwelling is associated with spatial variations of zonal
wind stresses, patterns of Ekman transport, and ocean current gyres (see
Fig. 2.1). When wind is blowing along and beating on ocean surface, the
constancy and slowly varying current, Ekman transport, is generated. Due
to effects of wind stress and Earth’s rotation, the current is flowing in
different direction from the wind direction. Typically the speed of Ekman
flow is 0.05-0.1 m/s with the depth of 1-100 m extent from the surface
(Teresa and James, 2019). The spatial variations of zonal wind stresses
with the Coriolis effect cause Ekman transport in the right and the left of
the wind direction in northern hemisphere and southern hemisphere,
respectively. Ekman convergence contributes to a clockwise current gyre
of high sea surface with downwelling in subtropics, while Ekman
divergence contributes to a counterclockwise current gyre of low sea
surface with upwelling in subpolar.

In coastal ocean of northern hemisphere, the wind blowing parallel to
the right of coastline and the Coriolis force leads to Ekman transport and
Ekman pumping (see Fig. 2.2). The deeper water is pumped to the surface
water which is known as coastal upwelling. The upwelled water is colder
and higher of nutrient concentration providing staple energy sources for
marine organism, then the upwelling regions offer high fisheries
production and major fishing grounds (Kuo et al., 2000b).
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current gyres (right) of northern hemisphere.
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Ekman transport
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Upwelling

Fig. 2.2. Coastal upwelling of northern hemisphere.

The main drivers of coastal upwelling typically are wind-induced
Ekman transport and Ekman pumping (Li et al., 2018), however there are
other mechanisms used to explain coastal upwelling. The upwelling (shelf-
break upwelling) along inshore edge of western boundary currents is
related to the dynamic uplift, due to being strong and persistent current
with a steeply rising thermocline. In regions of the strong tidal flows, the
upwelling is generated by tidal pumping known as tidally induced
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upwelling. The topography also leads to upwelling such as in submarine
canyons, which generated deep water upwelling moving from the upper
continental slope onto the continental shelf (Kampf and Chapman, 2016).

2.2. The Gulf of Thailand (GoT)

The Gulf of Thailand is a shallow semi-enclosed bay in rectangular-like
shape bordered by Malaysia, Thailand, Cambodia and Vietnam in the
southwestern of South China Sea (SCS) with the length about 720 km, the
width about 460 km, the average depth about 40 m and the maximum depth
about 80 m in the central gulf (Sojisuporn et al., 2010; Yanagi and Takao,
199 8a). The monsoonal wind of northeast and southwest controls
circulation patterns over the GoT (Chaiongkarn and Sojisuporn, 2012). The
counterclockwise and clockwise circulation develops in the GoT during
northeast monsoon of winter time and southwest monsoon of summer time,
respectively (Yanagi and Takao, 1998b).

2.3. Satellite observation of upwelling

The signal of upwelling is detected using the climatological sea surface
temperature satellite images. As the upwelling moves the colder water
toward the surface water, the appearance of water colder than the
surrounding area in the surface water is an indicator of upwelling (Jing et
al., 2011). The temporal satellite remote sensing images is used to figure
out the variation and strength of seasonal upwelling in different areas (Su
and Pohlmann, 2009). Further, according to Strass (1992)’s study, the
upwelling region is related to where the patch of highest chlorophyll _a
concentration located in, a good proxy of primary production, which is
detected using satellite-based images (Patti et al., 2010).

2.4. Delft3D modeling suite

Delft3D is a numerical model developed by Deltares, Netherlands,
which explains wave, currents, sediment transport and bed level changes
(Jiao, 2014). The Delft3D-FLOW module is used as a core module in this
study, which calculates the momentum and continuity equation in
horizontal direction. Delft3D-FLOW in horizontal direction supports
Cartesian co-ordinate (&, ) and Spherical co-ordinate (A, ). The vertical
velocities in three dimensions is computed from the continuity equation.
The hydrostatic pressure equation is conducted, as the vertical acceleration
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Is ignored in the vertical momentum equation (Breemen, 2008; Deltares,
2013). Equations used in this modeling suite are shown as following.

Spherical co-ordinates system

E= 1 (2.1)
n=¢ (2.2)
\ Gez = Recos¢ (2.3)
Gy = R (2.4)
A Is the longitude (deg)
¢ is the latitude (deg)
R is the Earth radius given 6378.137 km (WGS84)
The o co-ordinate system
_LX2Tq 12 °¢
TREGTER 5 (2.5)
z is the vertical co-ordinate in physical space
¢ is the free space elevation above the reference planeatz =0
d = the depth below the reference plane (m)
H = the total water depth (given by d + ¢) (m)
Continuity equation
6¢ 1 8[(d+)U,/Gyy] 1 8[(d+Q)V, [Geg]
—+ + =(d+
8t~ JGgey/Gny 6§ VGegy/Gnn &7 (d+9)Q
(2.6)
¢ —
U= 17 J,udz = [" udo (2.7)
1 0
V= ﬁfd vdz = [~ vdo (2.8)

Q= f_ol(qw - QOut)dO- +P—-E (2.9)
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U and V is the depth averaged velocities (m/s)

Q is the contributions per unit area due to the discharge or withdrawal of
water, precipitation and evaporation

qin and q,,,; 1S the local source and sink of water per unit of volume [1/s]
P is the non-local source term of precipitation

E is the non-local sink term due to evaporation

Momentum equations in horizontal direction

_+ u 6_u+ v 6_u+ w_ Su v? 6. /Gnn
[Gez 68 [Gaon | (d+)00  [GerfGum 6%
uww  6,/Ggg 1 6
P Fr + M
/foJGn on f po‘/ 3 = E (a+ {)2 Yo ( ) t $
(2.10)
u év _|_ w_ bv 4 uv /Gy _
[Gez 8¢ /_(;77 an (d+9) 60 | [Gez /_Gn 5¢
u? 6,/Gee )
JGee\[Gny 61 + fu - pO GTI Pn + F t a2 (d+{)2 8o (UU 60') + M
(2.11)

u and v is flow velocities (m/s)

w is flow velocity relative to the horizontal plane (m/s)
d is water depth (m)

( is free surface elevation (m)

o is vertical coordinate defined by Z;é in which z = vertical coordinate in
physical space

f is Coriolis parameter (1/s)

p, is reference density of water (kg/m?)

P¢ and P, is pressure gradient (kg/m?s?)

Fg and E, is turbulent momentum flux (Reynold’s stresses) (m/s?)

M and M, is the contributions due to external sources or sinks of

momentum
v, is vertical eddy viscosity (m?/s)
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Pressure term

1 8¢ 5+c 0,8p , 60’ 6 )
P =05+ —1,G =+ =) 80 (2.12)
15 _ 6&¢ 5+( 0 6p 8a’ 8p ,
EPY - g + f 6y Yot ) oa (2'13)

g is gravitational constant (m/s?)
p is density of water including the effect of salt (kg/m?)

Water level elevation
H(t) = AO + Z£€=1 Al‘FiCOS (wlt + (VO + u)i - Gl) (214)

H(t) is water level at time t (m)

A, is mean water level over a certain period (m)
k is number of relevant constituents

i is index of a constituents

A; is local tidal amplitude of a constituent (m)
F; is nodal amplitude of a constituent

w; 1s angular velocity (deg/s)

t = time (S)

(Vo + w) is astronomical argument (deg)

G; is local phase lag (deg)

Salinity

+8uc+5vc+5wc 1) (8 Sc) 1) (8 60) 1) (8 é‘c) _
ox oy 0z §x \ 5% 6x sy \ SV sy 5z\"5%s5z)

(2.15)

c is salinity concentration (ppt)
u, v and w is flow velocity (for each dimension x, y and z) (m/s)
¢ is eddy diffusivity (for each dimension x, y and z) (m?#/s)
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2.5. Coastal High Frequency (HF) radar system

The coastal HF radar system is used to measure sea surface current and
ocean wave based on the doppler shift of the reflected ocean wave of the
half the radio wavelength as presented in Fig. 2.3 (Wyatt, 2000). The
reflected wave is measured by the high frequency (3-30 MHz) radar
receiver located on the coast. The radar system can also measure the ocean
wave of more than 100 km offshore every 10 min to hour with the
resolution of 250 m to 15 km (Wyatt et al., 2011).

™ N\
\.
Transmitted signal
Reflected signal

Current '- —*’

Fig. 2.3. Coastal HF radar system.



16

CHAPTER 3
Methodology
The coastal upwelling event in the GoT is investigated through 2

approaches, upwelling index and numerical model. Details of these 2
approaches are described below.
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Fig. 3.1. Three-dimensional numerical model study area. Red solid lines
depict open boundaries, while red dots represent observed water level
stations. Area of upwelling index study is shown by the black box.

3.1. Upwelling index estimations
3.1.1. Ekman transport upwelling index (Ulg;) estimation

The alongshore wind components are considered for estimating the
wind stress (Egs. (3.1) — (3.4)) and Ekman transport upwelling index (Eq.
(3.5)). A positive value of Ulg; corresponds to a favorable upwelling
condition, while a negative value of Ul corresponds to an unfavorable
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upwelling condition (Alvarez et al., 2011; Santos et al., 2012). Where 7 is
the wind stress, p,, = 1025 kg m~3 is the density of seawater, and f =
20sin@ is the Coriolis parameter, 2 = 7.292 X 107> rad s~! is the
Earth’s angular velocity, and 8 is the latitude. The variables with x and y
subscripts refer to the zonal and meridional, respectively. p, =
1.22 kgm™3 is the density of air, C; = 1.3 x 1073 is the constant
dimensionless drag coefficient. Q is Ekman transport (m3s*m™). W is the
wind speed at 10 m and ¢ is the angle between coast line and equator (Kok
etal., 2017).

b (3.1)

Qy=—-= (3.2)

T = PaCaWy(Wy* + W, *)1/7 (3.3)

Ty = PaCaWy (W5 + W, )2 (3.4)

Ulgr = ~(sin(9 =3) @ +cos(0 =7) @) (35)

In this study, monthly means of daily means wind velocity components
with resolution 0.25°%0.25° at 10 m above sea surface during 2003-2018
were downloaded from the European Centre Medium-range Weather
Forecast (ECMWEF) Interim Reanalysis (ERA-Interim). The zonal and
meridional wind velocities were used to calculate the Ekman transport
upwelling index wusing Eg. (3.1) - (3.5). The upwelling
characteristics/locations in the GoT were then identified.

3.1.2. Sea surface temperature upwelling index (Ulsgy) estimation

The gradient SST between coastal SST nearest to the coast (SST¢pastar)
and the oceanic SST (SSTyceqanic) With the distance of 2 degree at the same
latitude were calculated using Eq. (3.6) and visualized to reveal upwelling
characterization. A negative value of Ulger indicates a favorable
upwelling condition while a positive Ulgsr indicates an unfavorable
upwelling condition (Benazzouz et al., 2014; Gomez-Gesteira et al., 2008).
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Ulsst = SSTcoastar — SSToceanic (3-6)

Daily multi-scale ultra-high resolution (MUR) sea surface temperature
(SST) analysis data is the sea surface temperature mapped mostly from
instruments like MODIS, AVHRR, AMSR-E, WindSat, buoys and ships.
MUR-SST data set during 2003-2018 were obtained from
https://oceancolor.gsfc.nasa.gov/. The monthly averaged of these data
were then used to estimate sea surface temperature upwelling index using
Eqg. (3.6).

3.2. Numerical model
3.2.1. Data collection

Some of required data were used for model input and some were used
for model calibration and validation. The required data are described as
following.
3.2.1.1. Model setup

e Extracted shoreline covering the GoT and SCS (see Fig. 3.1)
from GEODAS software provided by NOAA was used to
defined model domain.

e Bathymetry data from nautical charts surveyed by Hydrographic
Department, Royal Thai Navy, and General Bathymetric Chart
of the Oceans (GEBCO) were used for depth interpolation in
model grid.

3.2.1.2. Driving forces

e Harmonic constituents from Global Tide Model of OSU
TOPEX/Poseidon Global Inverse Solution TPXO Version 8.0
(Egbert and Erofeeva, 2002) were applied as driving forces of
model at open boundaries (red lines in Fig. 3.1).

e Spatial and temporal surface wind data with the 6-hour temporal
resolution, total cloud cover, dew point and air temperature
obtained from ERA-Interim (Dee et al.,, 2011) of ECMWF
(European for Medium-Range Weather Forecast) from
http://www.ecmwf.int was used as a driving force of model at
the surface.

e Monthly climatology sea surface temperature and salinity data
on 0.5° grid from the World Atlas 2018 (WOA 2018)
downloaded from http://www.nodc.noaa.gov was used to define


https://oceancolor.gsfc.nasa.gov/
http://www.ecmwf.int/
http://www.nodc.noaa.gov/
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the spatial-temporal distribution of temperature and salinity in
the model domain.

e River discharge data of Mae Klong River and Ta Chin River
downloaded from http://hydro-7.go.th, Chaopraya River
downloaded from http://nydro-5.go.th, and Bangpakong River
downloaded from http://hydro-6.go.th, and Mekong River from
The Mekong River Commission, was monthly averaged and
applied at river mouths in the model domain to investigate the
impact of fresh water on the circulation.

3.2.1.3. Model calibration and validation

e Observed water level surrounding the GoT from Hydrographic
Department, Royal Thai Navy, Marine Department, and
University of Hawaii Sea Level Center were utilized for tidal
analysis, model calibration and validation (two-dimensional
simulation).

e Sea surface current covering the upper, east and south GoT
downloaded from http://coastalradar.gistda.co.th was compared
with modeled surface current (three-dimensional simulation).

3.2.2. Model preparation

e The rectangular grid model domain with the resolution of
0.0416°x0.0416° degree covering the area of 98.0 °E to 112.0 °E
and 2.0 °N to 15.0 °N was prepared using Delft3D-RGFGRID
module (see Fig.3.1).

e Bathymetry data obtained from 3.2.1.1 was interpolated into
model grid prepared from 3.2.2.1 using Delft3D-QUICKIN
module.

e Generated water level using sixteen harmonic constituents (A0,
M2, S2, N2, K2, K1, O1, P1, Q1, MF, MM, M4, MS4, MN4, SA
and SSA) obtained from 3.2.1.2 was applied at three open
boundaries (see red lines in Fig. 3.1).

3.2.3 Model simulation

Open boundary conditions (tidal signal) and other forces were applied
in the GoT model using prepared model grid and bathymetry as mentioned
in section 3.2.2. Model calibration and model validation were performed


http://hydro-7.go.th/
http://hydro-5.go.th/
http://hydro-6.go.th/
http://coastalradar.gistda.co.th/
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to check whether prepared GoT model is valid (to simulate for other
applications). Details of model calibration and validation are shown below.

3.2.3.1 Model calibration (Case Tide2D)

The GoT model was simulated for one month to obtain the modeled
water level at each station (red dot) depicts in Fig 1.1. Both amplitude and
phase of 8 tidal components (M2, S2, N2, K2, K1, O1, P1, Q1) obtained
from harmonic analysis of one-month modeled water level using TIDE
module were compared with the observed one together with one-month
water level comparison between model and observed. Model performance
was examined using various indices as mentioned in 3.2.4. Adjustment of
amplitudes and phases of harmonic constituents at the open boundaries or
other parameters were conducted until the modeled and observed water
levels were satisfactory agreement.

3.2.3.2 Model validation

Calibrated model (Tide2D) obtained from 3.2.3.1 was validated by
simulating water level of different time period. Various indices mentioned
in 3.2.4 were applied to see the model performance.

3.2.3.3 Surface current comparison (Case Wind2D)

In this model study, the spatially varying wind from 3.2.1.6. was added
into the Tide2D modeling case. The model was simulated to cover the
period of February 1-28, 2019, where observed surface current obtained
from HF radar system were available. The modeled surface currents
covering upper, east and south gulf were compared with HF radar surface
currents (see Fig. 4.13 for locations of available area coverage). Statistical
indices, %RMSE and %MAE, were applied to see the model performance.

3.2.3.4  Full three-dimensional (3D) simulation

For full three-dimensional model simulation, the temperature and
salinity from 3.2.1.7, and river discharge from 3.2.1.8 were applied into
Tide2D model to see the characteristics and mechanisms of coastal
upwelling in the GoT covering area of black box in Fig. 3.1. Hence, Tide2D
model was modified to have a full three-dimensional. The 10 layers of
sigma coordinate, which has thickness of 2%, 3%, 4%, 6%, 8%, 10%, 12%,
15%, 20% and 20% of water depth measure from surface to bottom, was
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assigned. For stability of the 3D model, the maximum depth the model
domain was set to 250 m. In addition, ocean heat flux calculated from total
cloud cover, dew point and air temperature from 3.2.1.2 was also applied
in the model known as TWH3D case to investigate the circulation pattern,
temperature and salinity distribution in the Gulf of Thailand.

3.2.4 Model performance

Root mean square error (RMSE), mean absolute error (MAE), vectorial
difference (d) (Foreman et al., 1993; Tsimplis et al., 1995), root summed
square vector difference (RSS) and skill score (Liu and Huang, 2019) (see
Eg. 3.1-3.5) that are statistical indices were examined to show the model
performance.

Root mean square error (RMSE)

RMSE = 25, ((0): — (T)0? (3.)

Mean absolute error (MAE)
MAE = =3I 1(Y); = (Yo):] (3.2)
Skill score

. YN Ye)i—(Yo)il?
= 1- i=11tc _ .
Skill score N A AR ANSAE (3:3)

Vectorial difference (d)

d = \/(A,cosH, — A.cosH,)2+(A,sinH, — A.sinH.)2  (3.4)

Root summed square vector difference (RSS)

RSS = /zgvzl|xi|2 (3.5)



N is the total number of data points

Y. is the predicted water level (m)

Y, is the observed water level (m)

Y, is the mean value of the observed water level (m)

A, is the amplitude of observation data (m)

A_ i1s the amplitude of modeled data (m)

H, is the phase of observation data (degree)

H_ is the amplitude of modeled data (degree)

x; is the vectorial difference of each harmonic constituent (cm)

22
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CHAPTER 4

Results and discussions

This study aims to figure out the characteristics of coastal upwelling in
the GoT through two approaches: 1) upwelling index estimations and 2)
numerical model.

4.1. Upwelling index estimations
4.1.1. Seasonal wind patterns

The seasonal wind patterns of 16-year monthly averaged wind vectors
were represented in Fig. 4.1. During northeast monsoon represented with
January in Fig. 4.1a, the upper gulf and the entrance of the gulf was
dominated by northeasterly winds, while the easterly wind controlled the
central gulf. The wind speed of 4-5 m/s was observed at the lower gulf,
then gradually slowed down to 1-2 m/s at the upper gulf. During March
describing the 1% inter-monsoon in Fig. 4.1b the wind run westward in the
lower gulf, northwestward in the central gulf and northward in the upper
gulf with the magnitude about 4-5 m/s covering the whole gulf. In August
during southwest monsoon (see Fig. 4.1c) winds in the central gulf
prevailed east-northeastward, while northeastward winds controlled the
upper gulf and the lower gulf with the magnitude of 4-5 m/s for the whole
domain. During 2" inter-monsoon attributed by October in Fig. 4.1d, weak
winds with 1-2 m/s in the upper gulf and the central gulf run southward to
southeastward, respectively. Therefore, the seasonal monsoon winds effect
on the wind patterns in the gulf during both seasons. The northeastward
and southwestward winds covered the upper gulf and the lower gulf
depending on monsoonal winds, whereas winds in the central gulf blown
easterly and westerly during northeast monsoon and southwest monsoon,
respectively. Surface wind vector of February, April, May, June, July,
September, November and December were shown in Appendix Al.

4.1.2. Ekman transport upwelling index (Ulgr)

The seasonal wind velocity components in section 4.1.1 was used to
estimate the magnitude and direction of Ekman transport displayed in Fig.
4.2. Theoretically, the Ekman moved in the right and the left of the wind
vector in the northern hemisphere and the southern hemisphere,
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respectively. The more amount of water mass had been transported when
the wind speed was stronger. During northeast monsoon in January (see
Fig. 4.2a), the transport in the central gulf moved strongly northward, while
the transport moved northwestward in both the upper gulf and the lower
gulf. As the result of wind speed in Fig. 4.1, the transport in the upper gulf
was weaker than in the lower. In March during 1% inter-monsoon (see Fig.
4.2b) the transport was still strong in the lower gulf and weak in the upper
gulf. The transport run northward from the lower gulf, then turned
northeastward in the central gulf and eastward in the upper gulf, which may
lead the water to pile up on the eastern GoT. In August during southwest
monsoon (see Fig. 4.2c) the water in the gulf was transported out of the
gulf since the winds moved strongly east-northeastward for the whole gulf.

During 2™ inter-monsoon in October, the transport magnitude in Fig.
4.2d was multiplied with 10 as the obtained transport was very small. In
contrast to the transport direction of 1% inter monsoon, the transport clearly
moved to toward the western GoT, that caused the water was piling up in
the western gulf. Therefore, the Ekman transport pushed water in and out
the gulf during the northeast monsoon and southwest monsoon,
respectively. The results shown agreement with a result in Fig. 8a-d in
(Saramul and Ezer, 2014), which shown the higher sea level during
northeast monsoon, November-February, and lower sea level during
southwest monsoon, May-September. Besides, a result in (Saramul, 2017)
shown that the surface current near Samui Island moved northwestward
during northeast monsoon, and eastward during southwest monsoon. The
water was pushed toward the eastern GoT during 1% inter-monsoon, and
the western GoT during 2" inter-monsoon. Ekman transport (m3s*m) of
February, April, May, June, July, September, November and December
were shown in Appendix A2.

To investigate the upwelling/downwelling areas, the transport direction
to the shoreline angle with the respect to the Equator in Fig. 4.2 was
considered to determined Ekman upwelling index in Fig. 4.3. The transport
with seaward direction and shoreward direction will be considered as
upwelling favorable and unfavorable, respectively. In Fig. 4.2 Ekman
transport during northeast monsoon and southwest monsoon, and during 1%
inter-monsoon and 2" inter-monsoon, moved in the opposite direction. The
upwelling and downwelling areas also occurred in the opposite locations
depening on the considered monsoon.
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During northeast monsoon and 1% inter-monsoon in Fig. 4.3a and 4.3b,
the favorable upwelling conditions generally occurred along the west coast,
except the west coast of the upper gulf down to the central gulf. In contrast,
the favorable upwelling conditions existed along the east coast of the upper
gulf during northeast monsoon and the west side of Ca Mau Cape during
the 1 inter-monsoon. During southwest and 2" inter-monsoon in Fig. 4.3c
and 4.3d, the favorable upwelling conditionds were generally found along
the east coast of GoT, except the east coast of the upper gulf during
southwest monsoon and the west side of Ca Mau Cape during the 2" inter-
monsoon. The favorable upwelling conditions also were found along the
west coast of the upper gulf and the lower gulf during southwest monsoon.

In this section the favorable upwelling conditions were casued only by
wind, yet the upwelling area can be determined using gradients between
sea surface temperature of the coastal and the oceanic described in section
4.1.3.
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4.1.3. Sea surface temperature upwelling index (Ulsgr)

The 16-year monthly averaged seasonal sea surface temperature is
shown in Fig. 4.4. During northeast monsoon in January (see Fig. 4.4a),
the whole gulf was covered with the cooler water of 25.0-29.0 degree
Celsius. Along the west coast of the upper gulf and the lower gulf near Ca
Mau Cape, the clear cooler front of 25.0-27.0 degree Celsius was found
since the strong transport pushed the SCS water mass into the GoT. During
1%t inter-monsoon in Fig. 4.4b, the warm water generally developed for the
whole gulf with the temperature about 29.5 degree Celsius and with the
warmer degree mostly in the shallow area. The cooler water with the
temperature rising to 27.0-29.0 degree Celsius continued existing near Ca
Mau Cape. In the upper gulf, especially near the northern part of the upper
gulf, the cooler front from northeast monsoon was replaced with the
warmer of 29.0-32.0 degree Celsius.

In August during southwest monsoon in Fig. 4.4c, in the upper gulf the
warm water of 31.0-32.0 degree Celsius dispersed southward toward the
central gulf, and was also found in along the west coast of the lower gulf.
Near the entrance of the gulf the temperature was getting warmer, while
near the east coast remained the same degree as in 1% inter-monsoon. In
October of 2" inter-monsoon, the warmer water in the upper gulf and the
east gulf dispersed seaward, while the warmer water in the west coast of
the lower gulf was more concentrate near coastline. Further, the center of
the gulf and the west of Ca Mau Cape were with the wide patch of cooler
water of 28.5-29.5 degree Celsius.

The SST is clearly seasonally changed in Fig.4.4. Owning to the heat
lose in winter, the water during northeast monsoon was cooler than other
seasons. Cooler water from SCS intruded into the GoT via the gulf entrance
between Kotabaru in Malaysia and Ca Mau Cape in Vietnam. Due to the
heat gain in the summer, the warm SST was developed almost for the
whole gulf during 1%t and 2" inter-monsoon. Conversely, the cooler water
was still intruding from SCS during 1% inter-monsoon and disappeared
during southwest monsoon and 2" inter-monsoon. The found
characteristics of SST will be utilized to obtain the SST upwelling index
later.

Fig. 4.5 shows the seasonal variability of sea surface temperature
upwelling index (Ulggr) and sea surface temperature cross sections along
two transect lines number 1 and 2 off the west and east coast, respectively.
The distance of a transect line was two degrees from shoreline toward
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offshore on the same latitude degree. The offshore with higher temperature
attributes the favorable upwelling condition (blue color). In Fig. 4.5a
during northeast monsoon, the favorable upwelling conditions with a
difference about 0.6 degree Celsius appeared along the west coast and
around Samui Island, and with a difference about 0.8 degree Celsius along
the south of east coast around Ca Mau Cape. In August during southwest
monsoon (see Fig. 4.5¢), the favorable upwelling conditions with the
difference of 0.4 degree Celsius existed along the west coast, and with the
difference of 0.4 degree Celsius near Ca Mau Cape. As the result, the
favorable upwelling conditions were clearly developed during northeast
monsoon and southwest monsoon. It was existed only in the northern part
of the west gulf and the west coast of the Ca Mau Cape, while the
unfavorable upwelling conditions were dominated the rest of the GoT.

During the 1% inter-monsoon and the 2" inter-monsoon, the
unfavorable upwelling conditions were existed for the whole gulf as shown
in Fig. 4.5b and 4.5c. The unfavorable upwelling conditions was depicted
with the higher coastal sea surface temperature than the oceanic sea surface
temperature.

4.1.4. Relations of Ekman transport upwelling index (Ulg;) and sea
surface temperature upwelling index (Ulsgsry in GoT

As results mentioned in 4.1.3, the favorable upwelling condition of
Ulssr was showed along the northern part of the west coast and the western
part of Ca Mau Cape during northeast monsoon and southwest monsoon.
The signal was also found around Samui Island during northeast monsoon.
Compared with the obtained favorable upwelling condition of Ulgy,
during northeast monsoon only around Samui Island shown an agreement.
Further, during southwest monsoon the conditions around the northern part
of the west coast of the GoT and west coast of Ca Mau Cape agreed with
the favorable condition of Ulg;.

However, several locations in the GoT expressed the disagreement
between the obtained favorable condition of Ul and Ulgsr. The
discrepancy may come from the following. The Ulgy is directly
contributed to alongshore surface wind direction. In northern hemisphere
the Ekman transport is directed at the right angle to the wind stress. During
northeast monsoon the Ekman transport was flowing mostly northward. It
was pushing upward the water along the west coast of the lower gulf, which
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was considered as the area of the favorable upwelling index. As the same
reason of the Ekman transport direction and the wind stress direction, the
result related to Ulgy was not in an agreement with the Ulggr during 1%
inter-monsoon and 2" inter-monsoon.
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4.2. Numerical model results

The model was setup and simulated during January 1-31, 2004 with 11
water level observation stations (see Fig. 1.1); Bangpakong River (BK),
Rayong (RY), Ko Lak (KL), Ko Prap (KP), Kuantan (KT), LaemNgob
(LG), MaeKlong River (MK), Ko Mattaphon (MP), Narathiwat (NR), Qui
Nhon (QN) and Getting (GT). Phase and amplitude values of the first
simulated water levels were compared with observed water levels without
non-tidal signal, which was filtered through Godin low-pass filter. After
the first simulation, amplitude and phase values of eight harmonic
constituents at open boundaries were adjusted until modeled and observed
water levels were satisfactory in agreement. This process is called the
calibration.

The model validation was performed using calibration model (case
Tide2D as mentioned above), but it was simulated in different period,
which was January 1-31, 2013. The root mean square error (RMSE), mean
absolute error (MAE), R?, vectorial difference (d), root summed square
vector difference (RSS) and skill scores were used to see the differences
between simulated water levels and observed water levels. After prepared
model was calibrated and validated, spatial and temporal winds were
applied as a driving force at the surface to see the effect of tides and winds
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on sea surface current circulation in the GoT (case Wind2D). The sea
surface currents during February 1-28, 2019 were simulated and compared
with coastal HF radar.

Then, the model was setup to 3D model. The depth model was divided
into 10 layers with thickness 2%, 3%, 4%, 6%, 8%, 10%, 12%, 15%, 20%
and 20% of the water depth (Deltares, 2013). The thickness was measured
from the bottom of overlying layer to the bottom of each layer. The
temperature, salinity and river discharged data mentioned in 3.2.1, were
applied to the model. Then, the model was simulated for two-year period
of 2015 and 2016 to see the characteristics coastal upwelling in the GoT.

4.2.1. First model simulation and calibration

Figures 4.6. and 4.7. show water level and tidal constituent comparison
between modeled data obtained from the first simulation (before model
tuning) and observed data during January 1-31, 2004 at Kuantan and Ko
Lak stations as the representative of all 11 stations. Red and blue colors
represent the modeled and observed data, respectively. From Figs 4.6 and
4.7, it was clearly seen high discrepancy between modeled and observed
for both water level and tidal constituents at both stations. The R? for both
stations were small (less than 0.3), hence the modeled and observed data
were disagreed. The amplitudes and phases at open boundaries of 2D
model were therefore adjusted until reaching the best agreement between
modeled and observed data (see Figs. 4.8. and 4.9). From Figs. 4.8 and 4.9,
it was clearly shown the improvement of modeled water level and tidal
constituents at both stations. The RMSE, MAE, R?, skill scores, vectorial
difference and Root-summed vector difference of the first simulation and
after calibration (case Tide2D) were represented in Tables 4.1 and 4.2. The
results of other 9 stations were shown in Appendix B1 and B2. From Table
4.1, the ranges of RMSE and MAE was 14.28-38.74 cm and 11.44-31.16
cm, respectively. The value of R? is in the range of 0.73-0.83. Skill score
Is one of indices representing the excellent performance of the model was
in the range of 0.92-0.96. The vectorial difference (d) and root summed
square vector difference (RSS) was calculated using phases and amplitudes
of tides at each station and shown in Table 4.2. The difference between the
first simulated and calibrated was maximum at Kuantan station and
minimum at Geting station. The comparisons of amplitude and phase
between calibration and observation at Kuantan station and Ko Lak station
were shown in Tables. 4.3 and 4.4, respectively.
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Table 4.1. RMSE, MAE, R? and skill scores of first simulation and Tide2D
at 11 stations.

First simulation Tide2D
Station  RMSE MAE R?2 RMSE MAE 2 skill
(cm) (cm) (cm) (cm) scores
BK 73.13 59.97 0.26 36.26 29.23 0.82 0.95
GT 31.28 25.53 0.24 14.28 11.44 0.86 0.95
KL 51.17 43.20 0.26 21.42 17.56 0.85 0.96
KP 50.76 42.03 0.25 25.48 20.58 0.78 0.94
KT 75.62 62.96 0.13 38.74 31.16 0.73 0.92
LG 47.95 40.73 0.25 20.56 17.20 0.84 0.95
MK 75.53 61.91 0.26 36.30 29.13 0.81 0.95
MP 45.34 38.46 0.27 20.29 16.58 0.83 0.95
NR 28.50 22.84 0.21 14.41 11.74 0.82 0.93
QN 43.40 36.43 0.09 15.38 12.95 0.85 0.95
RY 54.49 45.90 0.26 23.47 19.60 0.84 0.96

Table 4.2. Vectorial difference (d) and root summed square vector
difference (RSS) of calibrated model (Tide2D) at 11 stations.

Station Vectorial difference (d) in cm Ez?ns)
K1 P1 01 Q1 M2 S2 K2 N2
BK 1940 6.37 1779 3.01 10.64 6.65 1.89 167 30.11
GT 5403 17.72 4540 7.42 27.09 15.02 426 479 79.69
KL 33.60 1102 3190 472 1821 1115 317 239 5256
KP 4708 1544 4126 685 2118 13.05 371 283 69.60
KT 60.38 1980 5138 788 31.78 1732 491 552 90.03
LG 8.52 280 6.06 056 3.78 1.39 040 0.46 1158
MK 28.04 920 2547 404 1780 1078 3.06 225 4454
MP 4062 1332 3514 577 1899 1169 332 255 60.08
NR 5050 656 4263 723 2598 1499 425 412 75.02
QN 2.22 073 467 017 235 0.08 0.03 014 573
RY 1594 523 947 163 5.00 2.34 0.67 0.71 20.12
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Table 4.3. Amplitude and phase of water levels between calibration
(Tide2D) and observation at Kuantan station

Tide2D Observation

Constituents  Amplitude Phase Amplitude Phase

(cm) (deg) (cm) (deg)
M2 0.629 253.450 0.513 254.900
N2 0.206 253.450 0.168 254.900
S2 0.504 183.519 0.367 219.300
K2 0.092 158.458 0.062 190.500
K1 0.341 22.668 0.490 28.000
01 0.107 17.202 0.169 64.400
Q1 0.030 17.202 0.048 64.400

P1 0.095 52.162 0.115 0.800

Table 4.4. Amplitude and phase of water levels between calibration and
observation (Tide2D) at Ko Lak station

Tide2D Observation

Constituents ~ Amplitude Phase Amplitude Phase

(cm) (deg) (cm) (deg)

M2 0.461 66.737 0.494 62.000
N2 0.151 66.737 0.162 62.000
S2 0.431 10.371 0.346 20.000
K2 0.085 321.860 0.065 348.100
K1 0.041 220.501 0.057 288.600
01 0.034 266.406 0.018 358.600
Q1 0.010 266.406 0.005 358.600
P1 0.013 205.799 0.010 251.400

4.2.2. Model Validation

Results of water levels simulated during January 1-31, 2013, at Kuantan
station and Ko Lak station were shown in Fig. 4.10 and 4.11. Results of
other nine stations were shown in an Appendix B3. RMSE, MAE, R? and
skill scores of validation were shown in Table. 4.5. The range of RMSE
and MAE was 13.54-38.81 ¢cm and 11.14-31.39 cm, respectively. R? is
between 0.73-0.83. Skill score was represented the excellent performance
with a range of 0.68-0.86. The vectorial difference (d) and root summed
square vector difference (RSS) was shown in Table 4.6. The difference
between the simulated and calibrated was maximum at Kuantan station and
minimum at Geting station. The results of validation at Rayong,
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Bangpakong, Narathiwat, Ko Mattaphon, MeaKlong, LaemNgob, Ko
Prap, Getting and Qui Nhon stations were shown in Appendix B3. The
comparisons of amplitude and phase between validation and observation
at Kuantan station and Ko Lak station were shown in Tables. 4.7 and 4.8,
respectively.
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Table 4.5. RMSE, MAE, R? and skill scores of validated model

Validated model

Station RMSE MAE R?2 Skill score
(cm) (cm)
BK 32.65 26.27 0.84 0.95
GT 14.24 11.14 0.85 0.94
KL 19.09 15.92 0.85 0.96
KP 24.30 20.04 0.76 0.93
KT 38.81 31.39 0.68 0.91
LG 18.89 15.88 0.84 0.95
MK 34.91 27.07 0.81 0.94
MP 22.04 18.38 0.75 0.93
NR 14.68 11.54 0.82 0.92
QN 13.54 11.36 0.86 0.95
RY 20.27 17.31 0.86 0.96

Table 4.6. Vectorial difference (d) and root summed

difference (RSS) of validated model

40

square vector

. Vectorial difference (d) in cm of validated model RSS

Station (cm)
K1 P1 01 Q1 M2 S2 K2 N2

BK 1290 423 2200 311 862 660 188 3.04 2844
GT 46.39 1521 4421 6.83 20.80 14.18 4.02 6.33 71.24
KL 29.35 9.63 33.02 472 1394 10.01 2.84 4.69 48.90
KP 39.99 1311 4144 6.24 1573 1233 349 533 62.99
KT 56.14 1841 4544 716 2434 1465 415 6.92 80.49
LG 642 210 621 158 142 277 079 095 9.89
MK 2250 738 2872 453 1329 970 275 450 4129
MP 3348 10.98 35.76 5.13 1455 10.67 3.02 490 53.90
NR 43.48 1426 4335 6.35 1846 1348 382 570 67.70
ON 243 080 470 056 056 135 038 042 561
RY 887 291 1319 221 364 398 113 145 17.28
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4.2.3. Characteristics of principal tidal constituents in the GoT

The co-range and co-tidal charts of M2, S2, K1 and O1 are presented in
Fig. 4.12. The amphidromic system of M2 and S2 obtained from Tide2D
model rotated in clockwise direction with an amphidromic point off the
east coast near Ca Mau Cape. The M2 and S2 waves run from SCS into the
GoT along Vietnam’s coast with highest amplitude found in front of
Mekong River. However, after passing tip of Ca Mau, generally small
amplitudes were found for the whole gulf, except at the upper GoT, where
tidal signal was amplified due to shallowness of bathymetry. For K1 and
O1 tidal waves, they also propagated from the SCS reaching the entrance
of the GoT and moved northwestward toward the upper GoT. Both tidal
waves seemed to propagate along the axis of the GoT, that laid in northwest
and southeast direction. Hence, the trough of diurnal tidal waves was found
around the lower GoT, while the crests were found at the upper GoT and
the entrance of the GoT. The amphidromic point of K1 positioned on the
southwest of the GoT with the rotation in counterclockwise direction.
Except for O1 tidal waves, the amphidromic points of other 3 tidal waves
were in agreement with what were found by Zu et al. (2008). The
amphidromic point of O1 was located along the west coast of the GoT with
the rotation in counterclockwise direction. Even there was no point of O1
obviously located, the O1 point was likely to occur around the same
location as in the mentioned studies. Furthermore, the amphidromic system
of O1 tides also shown counterclockwise rotation.

The discrepancy found in this study compared to other studies might
due to the insufficient of tidal stations in ocean (Fang et al., 1999), that
leads to the shortage in accurate harmonic data. In this model study, the
open boundaries were assigned at the north, the east and the south of the
model domain (see Fig. 1.1). Most of the north and the east open
boundaries was located in SCS without tidal stations. The applied
harmonic constituents were based on the adjusting phase and amplitude
values to give water levels with the perfect match to observed water levels.
Thus, the adjusted phase and amplitude values might not be accurate values
and effected the pattern of amphidromic system of O1 tidal wave.
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Fig. 4.12. Amphidromic system (amplitude and phase) of M2, S2, K1 and
O1 tides found in the GoT.

4.3. Surface current comparison

In the Wind2D case, the model was simulated during February 1-28,
2019 and applied spatio-temporal wind fields at the surface. In order to
obtain the modeled and observed HF surface current at the same location,
modeled surface current data were interpolated into a grid, which was
created based on position and resolution of the observed HF surface current
data. Besides, surface current from the coastal HF radar were filtered using
Godin Filter to get rid of the non-tidal signals. The simulated surface
current off four coasts, Upper, Eastl, East2 and Lower, were compared
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with observed HF surface current. The locations of 85% of observed data
off upper, eastl, and east2 coast, and 75% of observed data off lower coast
were compared as shown in Fig.4.13 (black patch color). The statistical
indices, %RMSE and %MAE (see Egs. (4.1) and (4.2)) of u and v velocity
components, were estimated to see the performance of the Wind2D model.

RMSE of u or v velocity component at each position

%RMSE = x 100  (4.1)

range of RMSE of all u or v velocity components

MAE of u or v velocity component at each position

YWMAE =

x 100 (4.2)

range of MAE of all u or v velocity components
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Fig. 4.13. Coastal HF radar system areas: Upper, Eastl, East2, and Lower
coast (Black patches).

The %RMSE and %MAE of surface current velocity off mentioned four
coasts were shown in Figs. 4.14-4.17 and Tables. 4.9-4.12. Off the Upper
coast in Fig. 4.14. the maximum difference of u-velocity was near
Bangpakong River Mouth and Maeklong River Mouth. The maximum
difference of v-velocity was widely in the southeast of area. The average
%RMSE of u-velocity and v-velocity was 5.32 and 14.16, respectively
shown in Table. 4.9. Spatially averaged surface current velocity In Fig.
4.15 the maximum difference of u-velocity off Eastl coast was in the
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northwest of area with the average of 13.37 cm/s, while of v-velocity was
in southwest area with the average of 13.58 cm/s as mentioned in Table.
4.10. The %RMSE and %MAE off the East2 coast was shown in Fig. 4.16
and Table. 4.11. The maximum difference of u-velocity widely spread in
the south of area with the average of 17.05. The maximum difference of v-
velocity was in the center and the west of area with the average of 16.90
cm/s. Off the lower coast the difference of u and v-velocity was shown in
Fig. 4.17 and Table. 4.12. The maximum difference of u-velocity was in
the west of area with the average of 15.88 cm/s, while the maximum
difference of v-velocity was in the north of area with the average of 17.08
cm/s.

The simulated and HF Radar surface current velocity off four
mentioned coasts were spatially averaged and compared with each other.
The results of comparison were shown in Appendix B4. The amplitude and
phase of simulated u and v-velocity off the Upper coast was in an
agreement with the HF Radar, while off East1, East2 and Lower coasts the
amplitude and phase patterns of u and v-velocity were not in an agreement
with the HF Radar. To fix the discrepancy of velocity found in this study,
the more detailed topography and open boundary forcing might be
necessary (Davies et al., 2001). Also, the more accurate wind velocities
would be valuable (Paduan and Shulman, 2004).
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Fig. 4.14. %RMSE and %MAE of surface current velocity off the Upper
coast during February 1-28, 2019 in case Wind2D.

Table 4.9. %RMSE, %MAE and average of surface current velocity off the
Upper coast during February 1-28, 2019 in case Wind2D

Surface %RMSE %MAE
current . .. . ..
Velocity maximum minimum average maximum minimum average
u. 20.24 1.56 5.33 15.62 1.25 4.26
velocity
v 23.46 2.20 14.16 19.08 1.85 12.05

velocity
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Fig. 4.15. %RMSE and %MAE of surface current velocity off the Eastl
coast during February 1-28, 2019 in case Wind2D.

Table 4.10. %RMSE, %MAE and average of surface current velocity off
the Eastl coast during February 1-28, 2019 in Wind2D.

%RMSE %MAE

Surface
current
velocity ~maximum minimum  average maximum minimum  average

u

i 23.45 8.26 13.37 19.03 6.75 10.68
velocity

Vv

i 24.77 1.79 13.58 21.56 1.41 11.46
velocity
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Fig. 4.16. %RMSE and %MAE of surface current velocity off the East2
coast during February 1-28, 2019 in Wind2D.

Table 4.11. %RMSE, %MAE and average of surface current velocity off
the East2 coast during February 1-28, 2019 in case Wind2D

Surface %RMSE %MAE
current _ o _ o
velocity maximum minimum average maximum minimum average
u 25.35 6.47 17.05 21.89 4.92 13.73
velocity
v 22.72 7.39 16.90 18.30 5.93 13.53

velocity
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Fig. 4.17. %RMSE, %MAE of surface current velocity off the Lower coast
during February 1-28, 2019 in case Wind2D.

Table 4.12. %RMSE, %MAE and average of surface current velocity off
the Lower coast during February 1-28, 2019 in case Wind2D.

%RMSE
Surface

%MAE

current

velocity ~maximum minimum average maximum minimum  average

U 25.40 8.17 15.88 21.85 6.51 13.11
velocity
v 22.72 12.60 17.08 19.22 10.22 14.04

velocity
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4.4. Seasonal sea surface temperature and current in the GoT

In the TWH3D case, surface current of 1 January to 31 December of
2012 was hourly simulated to investigate seasonal surface circulations
during northeast and southeast monsoons represented by January and
August, respectively. In addition, river discharge, surface heat flux, and
wind were also applied. The area averaged wind vectors of 2012 used in
the model were presented in Fig. 4.18, where the northeasterly winds
dominated during November to February, while the southwesterly winds
dominated during May to September.

Spatially Averaged Wind Velocity
7 — — T T

Southwest monsoon 'y
Y L a 24 Northeast monsoon

R . . PR, ) BENSTENN 5. ri/c  BESNE | ., B P Ui R R
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

LB T T T

Velocity (m/s)
-7.0 35 0 35 7.0
T

Northeast monsoon

Fig. 4.18. Averaged 6-hourly wind stress vectors cover the model domain
during January 1-December 31, 2012. Red box represents during
northeast monsoon. Blue represents during southwest monsoon.

The monthly averaged sea surface temperature and surface current
obtained from the TWH3D is shown in Fig. 4.19. During the northeast
monsoon (January) as is shown in Fig. 4.19a, the whole gulf was covered
with the cooler water of 26.5.0-29.5 degree Celsius. The clear cooler
waterfront of 26.5-27.5 degree Celsius was found along the west coast of
the upper gulf and the central gulf, which was associated with southward
flow. It was also found the lower gulf near Ca Mau Cape. At the GoT’s
entrance, the cooler water of 26.5-27.0 degree Celsius from the SCS flew
southwestward toward the Malaysian Peninsular and flew northwestward
into the GoT. The counterclockwise current of 28.5 degree Celsius were
generated along the west coast of the lower gulf. The water along the west
coast of the upper gulf moved southward then moved along the west coast
and the east coast before moving southward and westward at the central
gulf. The water along the west coast of the lower gulf moved eastward and
met the southwestward water from the east coast before moving northward
and westward. The coastal water was found cooler than the oceanic water
along the west coast of the upper gulf, the central gulf to the lower gulf and
the east coast near Ca Mau Cape. The difference of temperature was about
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1.0 degree Celsius which was represented as example lines no. 1, 2 and 3
in Fig. 4.24a.
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Fig. 4.19. Seasonal sea surface temperature and current of a) Northeast
monsoon, b) 1% Inter-monsoon, ¢) Southwest monsoon, and d) 2" Inter-
monsoon.

In Fig. 4.19b, during the 1% inter-monsoon in March the whole gulf was
warmer than during the northeast monsoon. The temperature range was
27.5-31.0 degree Celsius. In the upper gulf, the water along the west coast
remained flowing southward, while the water along the east coast moved
southward and turned eastward at 100.25°E longitude and 12.0°N latitude
where the 28.5 degree Celsius surface water occurred. Furthermore, at the
northern part of the upper gulf, warmest surface water was found in the
GoT. In the center of the central gulf a counterclockwise and clockwise
circulations were developed. The lower gulf was generally dominated with
the cooler water of 28.5-29.5 degree Celsius which was the result of cooler
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water flowing westward from the SCS. In this period, strong jet of cold
water from the SCS intruded into the GoT more than during the northeast
monsoon as shown in Fig. 4.19a. The cooler coastal water was found along
at the 100.25°E longitude and 12.0°N latitude with the difference of
temperature of 0.20 degree Celsius (see line 1. in Fig. 4.20b) and along the
west coast of the lower gulf with the difference of 0.15 degree Celsius (see
line 2 in Fig. 4.20b). The strong southward flow along the Malaysian
Peninsular as existing in Fig. 4.19a still found in this period.

During southwest monsoon as seen in Fig. 4.19c, the warmer water of
29.0-32.0 degree Celsius was covering the whole gulf with the warmest
water situated in the upper gulf and along the west coast of the lower gulf.
Generally, water in the gulf was moving southeastward from the central
gulf to the lower gulf then dispersed southwestward and eastward to the
SCS. The southward water from the upper gulf met the northeastward
water flowing along the west coast at 100.5°E longitude and 11.5°N
latitude, where cooler water of 29.5 degree Celsius occurred then moved
southeastward to the lower gulf. The clockwise circulation was generated
along the west coast of the lower gulf near the entrance of the gulf. The
cooler coastal water was found along the west coast and the east coast with
the difference of temperature of 0.60-0.20 degree Celsius (see line 1-3 in
Fig. 4.20c). Near the GoT’s entrance, flow seemed to propagate
northeastward toward the Vietnam’s coast.

During the 2" inter monsoon as seen in Fig. 4.19d, the warmer water of
29.0-32.0 degree Celsius was remained covering the upper gulf and the
west coast of the lower gulf, while the central gulf the surface temperature
was about 30.0-31.0 degree Celsius. Strong southeastward jet as previous
shown in Fig. 4.19c still existed in the GoT. In addition, large discharge
was found at the mouth of Mekong River. It is depicted by the strong jet
out of the river mouth (near 106.5°E longitude and 9.5°N latitude). It is
also found at Chao Phraya River Mouth in the upper gulf. The
counterclockwise circulation was found at the center of the gulf. Like in
August the water in the upper gulf mostly flowed southward along the west
coast and turned southeastward at where the cooler water of 30.0 degree
Celsius occurred with the difference of 0.34 degree Celsius between the
coastal and oceanic water (see line 1-2 in Fig. 4.20d).
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Fig. 4.20. Seasonal sea surface temperature cross section profile (right) of
line number 1 (upper) and line number 2 (bottom) extracted from shoreline
to offshore of a) Northeast monsoon, b) 1% Inter-monsoon, c) Southwest
monsoon, and d) 2" Inter- monsoon.
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4.5. Seasonal distribution of water temperature in the GoT

In this section, the spatial monthly averaged temperature and flow
circulation (streamline) at each layer was investigated. During the
northeast monsoon, the movement patterns of water at each layer are
shown in Fig. 4.21 and Appendix B5. At the depth 50 m the cooler water
of 27.0 degree Celsius from SCS moved northward into the gulf (see also
a streamline of flow coming from SCS at the bottom). The water was
getting warmer of 29.0-29.5 degree Celsius as the result of mixing with the
clockwise warmer water at the center of the gulf. This anti-cyclonic gyre
appeared at depth 26 m down to the bottom can lead to the downward
movement of underlying water. As a result, warmer water exhibited
underneath sublayer. At the depth about 26 m the water along the west
coast seperated and moved northward to the upper gulf, and southward to
the lower gulf. Then, at the depth 10 m the water (26.5-27.0 degree Celsius)
in the upper gulf moved southward along the west coast. The water along
the east coast at the depth about 14 m (figure is shown in Appendix B5)
moved southward to mix the cooler water from SCS. That’s why there
existed of cooler water near Ca Mau Cape.
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Fig. 4.21. The distribution of monthly averaged water temperature at depth
10, 26, 40 and 50 m in the GoT of Northeast monsoon.

During the 1% inter-monsoon, the movement patterns of water at each
layer are shown in Fig. 4.22 and Appendix B6. In this period, the cold
tougue of SCS water was clearly observed at all layers. At the depth about
50.0 m the southwestward cooler water of 26.5-27.0 degree Celsius from
SCS was moving northward to the gulf. And, the water dispersed to the
west and the east coast. The water turned notheastward and southward
along the east coast. At the depth 38 m the water at the center of the lower
gulf turned clockwise and moved out to the SCS. The water in the east
coast of the central gulf was getting warmer at the depth about 38-40 m.
The water in the lower gulf and the west coast of the central gulf remained
cooler than along the east coast becaused of the cooler water from the SCS
kept flowing to the west of the lower gulf. The 29.5 degree Celsius water
along the west coast of the central gulf existed at bottom toward depth
about 20 m then started getting warmer until reaching the surface.
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Fig. 4.22. The distribution of monthly avreaged water temperature at depth
2, 20, 40 and 50 m in the GoT of 1% Inter-monsoon.

During the southwest monsoon, the patterns of water at each layer are
shown in Fig. 4.23 and Appendix B7. The water of 28.0 degree Celsius
flowed northward from the SCS into the lower gulf at the depth about 50
m downward. This signal, espeically the bottom water, propagated
northward until reaching the central gulf. Along the way north, the SCS
water got warmer as it mixed with the local warm water. Until the depth
about 30 m the water along the east coast moved in counterclockwise
direction, while the water along the west coast started moving in clockwise
derection. It caused the cooler water existing along the west and the east
coast. Water near surface water (2 m depth), espeically along the middle of
the gulf axis, seemed to propagate in the southeast direction toward SCS.
Hence, it is clear seen that surface and bottom waters propagated in the
different direction, moving out the gulf at the top layer and moving in at
the lower layer.
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Fig. 4.23. The distribution of monthly averaged water temperature at depth
2, 26, 30 and 50 m in the GoT of Southwest monsoon.

During the 2" inter-monsoon, the patterns of water at each layer are
shown in Fig. 4.24 and Appendix B8. In this period, the flow patterns in
each layer were similar to the southwest monsoon. At the depth about 50
m the cooler water of 28.5-29.0 degree from SCS moved northward to the
gulf. The water dispersed to the west and the east coast of the central gulf.
About the depth 28 m the cooler water was flowing counterclockwise at
the center of the gulf, and clockwise along the west coast of the central
gulf. It led the water there to keep cooler than other areas til the depth about
24 m where the water was getting warmer til the surface.
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Fig. 4.24. The distribution of monthly averaged water temperature at depth
2,24, 28 and 50 m in the GoT of 2" Inter-monsoon.

4.6. Seasonal sea surface salinity in the GoT

Generally, the saltier water from SCS was flowing through the central
channel into the GoT. It caused the water in the central of the gulf saltier
than the coastal water. The bottom water was saltier than the surface water.
In January (Fig. 4.25a) and March (Fig. 4.25b), the less salty water was
found along the west and the east coast of the upper gulf and near Ca Mau
Cape which was a result of discharge from main 4 rivers in the upper gulf
and Mekong River, respectively. In August (Fig. 4.25c) and October,
saltier water covered the whole GoT, except the upper gulf and Ca Mau
Cape, where water remained fresher. The water in the east side of the gulf
was saltier than the west side of the gulf because of the saltier water
flowing into the GoT from SCS has been pushed to the right due to Coriolis
force. The saltier water from SCS kept flowing into the GoT all year round,
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especially with the huge amount of water during northeast monsoon (see
Fig. 4.25a) and 1% inter-monsoon (see Fig. 4.25h).
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Fig. 4.25. The distribution of monthly averaged sea surface salinity in the
GoT of a) Northeast monsoon, b) 1% Inter-monsoon, ¢) Southwest monsoon,
and d) 2" Inter- monsoon.

4.7. Seasonal distribution of water salinity in the GoT

The distribution of water salinity during January during northeast
monsoon in the GoT is shown in Fig. 4.26 and Appendix B9. The water
about 34 ppt was flowing northward from SCS into the gulf. The water was
getting less salty about 30.0-30.5 ppt due to the mixing with the clockwise
water of at the center of the gulf which appeared at the depth about 26 m.
At the depth 26 m the water along the west coast was separating northward
and southward. And it was getting less salty of 29.0 ppt. At the depth 14 m
(see figure in Appendix B9) the water at the center of the gulf was 30.0-
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31.0 ppt, while the coastal water along the west coast and the east coast
was about 27.0-28.5 ppt and about 25.5-26.0 ppt in the upper gulf. The
water at the west of Ca Mau Cape was 27.0-28.0 ppt and was getting water
of 29.0 ppt from Mekong River. At the depth 10 m the water along the west
of Ca Mau Cape was getting less salty of 26.5-27.0 ppt as the water from
SCS remained flowing into there.
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Fig. 4.26. The distribution of monthly averaged water salinity at depth 10,
26, 40 and 50 m in the GoT of Northeast monsoon.

The distribution of water salinity in March during 1% inter-monsoon is
shown in Fig. 4.27 and Appendix B10. The water of 33.0-34.0 ppt from
SCS at the depth 50 m was flowing northward into the gulf through the
gulf’s entrance. Then, the water was 30.5-31.0 ppt due to the mxing with
the water at the center of the gulf. At the depth 40 m the water from SCS
remained flowing into the gulf. The mixed water of 30.0-31.0 ppt at the
center gulf was flowing westward and eastward. And, the eastward water
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was flowing in clockwise direction along the east coast to mix with the
wate from SCS near Ca Mau Cape. At the depth 20 m the water along the
east coast kept flowing in southward and was getting less salty of 28.5-29.0
ppt. The water along the west coast also was getting less salty of 27.5-29.0
ppt, especially in the upper gulf with 27.0 ppt. At the depth 12 m (see
figures in Appendix B10) the water of 26.0 ppt from Mekong River was
flowing to mix with the water near Ca Mau Cape, and let the water there
was less salty of 27.5-28.5 ppt. The coastal water kept getting less salty
until surface layers, expecially in the upper gulf, along the west coast of
the lower gulf and around Ca Mau Cape.

During the southwest monsoon in August the distribution of water
salinity is shown in Fig. 4.28 and Appendix B11. At the depth 50 m the
water of 33.5 ppt from SCS was flowing northward into the gulf. The water
was lessen to 32.0-32.5 ppt and reamined northward flowing at the center
of the gulf. At the depth 30 m the clockwise water along the east coast was
32.0 ppt, while the water along the counterclockwise water occurred along
the west coast with 30.5-31.0 ppt. The water at the depth 14 m (see figures
in Appendix B11) the coastal water along the west and the east was less
salty, especially with 27.5 ppt in the upper gulf, while the water at the east
of the lower gulf remained high salnity of 32.5-33.0 ppt. The water around
Ca Mau Cape was less salty of 28.5-29.0 ppt as the result of the water from
Mekong River, and kept getting less salty until the surface layers.

The distribution of water salnity in October during 2" inter-monsoon is
shown in Fig. 4.29 and Appendix B12. The saltier water from SCS
remained flowing northward into the gulf at the depth 50 m and was 31.0-
32.0 ppt as the result of mixing with the water at the center of the gulf. At
the depth 28 m the clockwise water along the west coast of the central gulf
was 30.5 ppt, while the water at the east side of the lower gulf and the
counterclockwise water at the center of the gulf was saltier of 31.5-32.5
ppt due to the water from SCS flowing northward to mix with the water in
the gulf. At the depth 14 m (see figures in Appendix B12) the water
generally was getting less salty with 27.5-28.5 ppt in the upper gulf, 29.5-
30.0 ppt along the west and the east coast. The water of the east side of the
gulf toward the entrance of the gulf was saltier of 31.0-32.0 ppt, especially
33.0 ppt at the gulf entrance. The water from Mekong River remained
flowing into the water at the west of Ca Mau Cape and let the water to 29.5-
30.5 ppt.



61

20m

az az
< 35 S 35
s s
34 34
z 33 z 33
ok o}
o o
- 32 - 32
= g 3z
S| &g 2| &
2 o 30 22 o 30 2
= ER T £
| =3 =
29 0 290
z z
Sl 28 o b 28
@ @
27 27
> 26 > 26
‘or of
© 25 © 25
99.0°E 1010°E 103.0°E 1050°E 107.0°E 99.0°E 1010°E 103.0°E 105.0'E 107.0°E
Longitude Longitude
=2 =2
E 4 E
o om 35 o 50m 35
s s
34 34
=z 33 =z 33
=35 (=1
o o
- 32 - 32

z 2y =z z
85| 28 5| 2
2o 3022 o 30 2
= £ER T £
-~ T =

200 200
=2 =2

g 28 g 28

@ @

27 27

= 26 = 26

‘of ‘of

© 25 © 25

99.0°E 1010°E 1030°E 1050°E 107.0'E 99.0°E 1010°E 1030°E 1050°E 107.0'E
Longitude Longitude

Fig. 4.27. The distribution of monthly averaged water salinity at depth 2,
14, 40 and 50 m in the GoT of 1% Inter-monsoon.
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Fig. 4.28. The distribution of monthly averaged water salinity at depth 2,
14, 30 and 50 m in the GoT of Southwest monsoon.
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Fig. 4.29. The distribution of monthly averaged water salinity at depth 2,
14, 30 and 50 m in the GoT of 2" Inter-monsoon.

4.8. Seasonal distribution of vertical velocity in the GoT

To investigate the coastal upwelling the vertical velocity also was
considered as shown in Fig. 4.30-4.33. The blue color represents a positive
vertical velocity on the way up, while the red color represents a negative
vertical velocity on the way down. The velocity magnitude directly
variants to the color density. Generally, the distribution of vertical velocity
did not show the variation in different layers. During northeast monsoon in
January shown in Fig. 4.30 and Appendix B13 the vertical velocity in
positive and negative direction was occurring widely the whole gulf. As
mentioned in Fig. 4.21 the cooler water occurred along the west coast of
the gulf in January, there was also the vertical velocity in positive direction
at the same location. In March during 1% inter-monsoon in Fig. 4.31 and
Appendix B14 the water with vertical velocity in positive direction also
dispersed the whole gulf, especially the right and left side of the gulf
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central, where the warmer water from the gulf flowing southward to mix
with the cooler water from SCS. During southwest monsoon in August the
cooler water occurred along the west coast of the central gulf and at the
entrance’s gulf where the patch of vertical velocity in positive direction
also happened in Fig. 4.32 and Appendix B15. In October during 2" inter-
monsoon the distribution also dispersed the whole gulf like during other
monsoons. As mentioned in Fig. 4.33 and Appendix B16 the cooler water
occurred at the gulf’s entrance at the depth 28 m, but the positive vertical
velocity did not obviously happen at the same location.
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Fig. 4.30. The distribution of monthly averaged vertical velocity at depth
2, 26, 40 and 50 m in the GoT of Northeast monsoon.
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Fig. 4.32. The distribution of monthly averaged vertical velocity at depth
2, 26, 30 and 50 m in the GoT of Southwest monsoon.
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Fig. 4.33. The distribution of monthly averaged vertical velocity at depth
2,24, 28 and 50 m in the GoT of 2" Inter-monsoon.

4.9. Simulation-oriented the coastal upwelling in the GoT

The coastal upwelling is the movement toward the surface water of the
deeper water with cooler temperature and saltier (Kuo et al., 2000a). The
distributions of monthly averaged water temperature could indicate the
coastal upwelling. While, the salinity distributions did not shown the
possibility of upwelling in GoT. Neither the saltier water along the coastal
nor near the surface water was found. Besides, the distribution of vertical
velocity with a positive direction did not completely show the upwelling
since the vertical velocity also happened at other locations without the
cooler water. As regards to the distributions of water temperature, along
the west coast of the GoT the coastal upwelling occurred obviously in
January during northeast monsoon and in August during southwest
monsoon, slightly in March during 1%t inter-monsoon and in October during
2" inter-monsoon. Along the east coast, the coastal upwelling was spotted
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near Ca Mau Cape in January, March and August. Additionally, the GoT
Is a potential resources of the short-mackerel. The short-macekerl was
spawning all year round with highest peaks during northeast monsoon and
southwest monsoon with major spawning grounds of Prachuap Khiri Khan,
Pattani, SuratThani, Samut Songkhram and the Mu Ko Chang National
Park, Trat Province (Kongseng et al., 2020a). And, around Ca Mau Cape
in Cambodia the spawning grounds were along Sihanouk coast with peaks
during northeast monsoon and southwest monsoon, and along Kampot
coast with the high peak during southwest monsoon (Tint et al., 2020). The
locations of the short-mackerel spawning grounds found in the GoT and
around Ca Mau Cape shown an agreement with the upwelling areas found
In this study.

The distributions of temperature shown the possibility of upwelling in
the GoT. In contrast the distributions of salinity did not. It might be effected
by reasons as followings. Coastal upwelling regions mostly have the steep
and deep coastal like the east coast of Malaysian Penninsular with the steep
coast (Malaysia et al., 2014), and southeast coast of Vietnam, where the
steep continental slope and the maximum depth 5000 m exists (Dippner et
al., 2006). The GoT is the shallow basin with averaged depth 40 m and the
maximum depth about 80 m , which might be not deep and steep enough
for Ekman current to completely generate and pull upward the deep water
to the surface depth. However, detailed model study (local domain for
example east coast of Samui Island or other potential upwelling areas) may
need to be consider for further study. Further, the heat and solar radiation
which was aded into the model needed to be calibrated more in order to get
more accurated results. In addition, the modeled surface temperature over
some regions was lower/higher than the satellite observations. Since, this
model rarely indicate the upwelling phenomena in the GoT, the following
section, will demonstrate whether this TWH3D model can generate coastal
upwelling in other well documented coastal upwelling area; e.g. Vietnam’s
coast.

4.10. Seasurface temperature along southeastern Vietnam coast during
southwest monsoon

The TWH3D model was subset to the domain covering the southeastern
coast of Vietnam (see red box in Fig. 4.34), where the monsoon-induced
upwelling had occurred during southwest monsoon (Chen et al., 2012; Xie,
2003). As presented in Fig. 4.35, the cooler water front of upwelling along
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the southeastern Vietnam coast started to occur in June, and the signal got
stronger in July. Then it reached the coolest of 27.0 degree Celsius in
August and started to decay in September. The range of the cooler water
was 27.0-28.5 degree Celsius, which was close to the satellite sea surface
temperature presented in Xie (2003). The southward longshore currents
from the north met the northeastward longshore current from the south off
the southeastern Vietnam coast. In June and August, the combined cooler
water front moved eastward, while moved northeastward and
southeastward in July and September, respectively. The movement pattern
of the longshore current in this study showed an agreement with a study
result found in Chen et al. (2012). The cooler water was initially generated
at the depth about 26-36 m during southwest monsoon (see Fig. 4.36). The
upwelling also was clued by the vertical velocity distribution. The counter-
clockwise circulation was found around the upwelling areas with the
vertical velocity (red color) which was completely higher than surrounding
(see Fig. 4.37). While the upwelling was not clued by the salinity
disribution as is shwon in Fig. 4.38. The water with higher salinity was not
generated at the shallower water around where the upwelling area. This
may be the evaporation added in the model was not enough.

Fig. 4.34. Upwelling area along southeastern coast of Vietnam.
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CHAPTER 5
Conclusion and Suggestions

5.1. Conclusion

The characteristics of coastal upwelling in the Gulf of Thailand was
investigated using two methods 1) Ekman transport upwelling
index (Ulgr) and sea surface temperature upwelling index (Ulggr) and 2)
Numerical model under influences of tide, wind, temperature, salinity and
river discharge.

The Ekman transport upwelling index expressed the favorable
upwelling conditions along the west coast of GoT generally during
northeast monsoon and 1% inter-monsoon. The favorable upwelling along
the east coast of GoT was expressed generally during southwest monsoon
and 2" inter-monsoon.

The sea surface temperature upwelling index shown the favorable
upwelling conditions along the west coast of the central gulf and the east
coast near Ca Mau Cape during northeast monsoon and southwest
monsoon.

The model results indicated the possibility of coastal upwelling in GoT
with obvious temperature gradient between coastal water and oceanic
water during northeast monsoon and southwest monsoon, and with slight
gradient during 1% inter-monsoon and 2" inter-monsoon. The model
results didn’t indicate the coastal water with higher salinity which is a
characteristic of upwelling. Besides, the coastal upwelling along southeast
coast of Vietnam was represented with the cooler coastal water during
southwest monsoon in June to September.

The coastal upwelling clued by the Ulg; was different from by the
Ulsgr and the model simulation. The Ul directly indicated the wind-
driven coastal upwelling. It was related to Ekman transport direction which
was in the right of wind direction in northern hemisphere. And, the
locations with offshore Ekman transport was mostly considered as the
favorable upwelling conditions. Conversely, the coastal upwelling which
Ulssr and the model simulation indicated, was made of the gradient of sea
surface temperature between the coastal and the oceanic water. The Ulsgy
was directly associated with satellite-observed sea surface temperature.
The sea surface temperature found in the model simulation was estimated
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by factors like tide, wind, temperature, salinity, river discharge and heat.
Thus, the marked positions of the coastal upwelling were shown in
difference.

The upwelling plays role in nutrient transport and closely links to
significant fisheries grounds. Thus, the clues of upwelling found in this
study might address problems and fill the gap of knowledge of nutrient
distributions, immediately increasing of plankton bloom and over-
exploitation of fisheries resources.

5.2. Suggestions

For the further research, the good harmonic components are vital for
calibrating the model to get the accurate water levels in the GoT. The huge
effort is needed for tuning the heat to generate the accurate water
temperature. And, to gain deep knowledge in mechanisms of upwelling in
the GoT, further three simulating cases of temperature, salinity and river
discharge 1) without wind, 2) without tide, and 3) without wind and tide,
should be conducted. In addition, increasing the number of layers (more
than 10 layers) defined in the three-dimensional simulation would help for
stability issue in the model.
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APPENDIX A. Upwelling Index Estimations

Al. Monthly averaged surface wind vector (m/s) during 2003-2018
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APPENDIX B. Numerical Model

B1. First simulation
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calibration and observed data during January 1-31, 2004 at MaeKlong
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Fig. B20. Water level, phase and amplitude comparison between validation
and observed data during January 1-31, 2013 at Bangpakong Station.
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Fig. B21. Water level, phase and amplitude comparison between validation
and observed data during January 1-31, 2013 at Narathiwat Station.
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Fig. B22. Water level, phase and amplitude comparison between validation
and observed data during January 1-31, 2013 at Ko Mattaphon Station.
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Fig. B24. Water level, phase and amplitude comparison between validation
and observed data during January 1-31, 2013 at LaemNgob Station.
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Fig. B25. Water level, phase and amplitude comparison between validation
and observed data during January 1-31, 2013 at Ko Prap Station.
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Fig. B26. Water level, phase and amplitude comparison between validation
and observed data during January 1-31, 2013 at Geting Station.
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Fig. B27. Water level, phase and amplitude comparison between validation
and observed data during January 1-31, 2013 at Qui Nhon Station.

B4. Comparison of spatially averaged surface velocity
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Fig. B28. Comparison of spatially averaged surface current velocity
between the simulated (Red) and HF Radar (Blue) off the Upper coast
during February 1-28, 2019 in case Wind2D.
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Fig. B29. Comparison of spatially averaged surface current velocity
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during February 1-28, 2019 in case Wind2D.
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during February 1-28, 2019 in Case Wind2D.
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B5. The distributions of monthly averaged water temperature of northeast
monsoon
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B6. The distributions of monthly averaged water temperature of 1% inter-

monsoon
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Fig. B33. The distributions of monthly averaged water temperature of 1%
Inter-monsoon in GoT at depths of 2-70 m
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B7. The distributions of monthly averaged water temperature of southwest
monsoon
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Fig. B34. The distributions of monthly averaged water temperature of
southwest monsoon in GoT at depths of 2-70 m.
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B8. The distributions of monthly averaged water temperature of 2" inter-
monsoon

Latitude

Latitude

Latitude

10.0'N 12.0'N 14.0'N

8ON

10.0'N 12.0'N 14.0'N B.ON

80N

60N

99.0°E

99.0E

99.0E

1010 E

1010 E

1010 E

1030°E
Longitude
6m

1030°E
Longitude
10m

1030°E
Longitude

1050'E

1050°E

1050°E

1070°E

107.0°E

1070°E

32

32

32

Celsius)
e

Temperature
Lamué

Temperature éCelsius)
Latitude

Latitude

Temperature (Celsius)

10.0'N 12.0'N 14.0'N

8ON

10.0'N 12.0'N 14.0'N B.ON

80N

60N

99.0°E

99.0E

99.0E

1010 E

1010 E

1010 E

1030°E
Longitude
8m

1030°E
Longitude
12m

1030°E
Longitude

1050

1050°E

1050°E

1070°E

107.0°E

1070°E

32

32

32

Temperature (Celsius)

Temperature (Celsius)

Temperature (Celsius)



114

8 3 { & & {
[ —
w
o
~
o
W
o
@
3
w
o
-]
§ g2k
s 28
i}
w
e
g
w
=3
=
3
NO¥E NOTH N, OO0 NO8 N.09 NO¥E NOZH N, 00 NO8 N09
apnie nne?
(snisjeD) aimesadwe | (snisjeD) aimesadwo |
8 5 3 & & & 8 & 8 3 ] & & {
w
o
=
o
W
o
@
3
w
o
-]
£ 82
3 =X
= gx
3
w
]
g
w
=3
=
3

NO¥E NOTH N, 004 NO8 NO09
apnige

NOPE

N0ZH

N,OOL
opnie

1070 E

| 3

1050

1030°E
Longitude

=

101.0

E

99.0

1070 E

{ 3

1050

1030°E
Longitude

=

101.0

Ju .
& o
= =
e e
o o
o o
@ @
3 3
A u
o o
«a®B @

£ S2E e

S 2]

S
3

w w
= o
N N
o u
= S
= =
) 3

NOVE NOZH N,00F NO'8 N.09 N, 00

apnje apne
(snisjeD) ainjesadwo | (snisjeD) aimesaduwe |
o =) 2 @ I~ o 3 @ @ ~ © 0
8

Ju S
& o
= =
e e
A e
o o
@ @
3 3
A o
o o

£ 3 3

£ e e

N
w w
= o
N N
o u
= S
= =
) 3

NOTE

NOTH

N,00
opnye)

NO'8

NO9

N,OTH N,004
apnie

Longitude

Longitude



Latitude

Latitude

Latitude

Latitude

10.0'N 12.0'N 14.0'N 6.0'N 8.0'N 10.0'N 12.0'N 14.0'N

8.0'N

BON

30m

99.0°E 1010°E 1030°E 1050°E 1070°E
Longitude
34m

99.0'E 1010°E 1030°E 1050°E 1070°E
Longitude
38m

99.0°E 1010°E 1030°E 1050'E 1070°E
Longitude
42m

99.0°E 1010°E 1030°E 1050°E 1070°E
Longitude

Yemperalqreécdsius)
Latitude

Latitu

Temperature (Celsivs)

Temperature (Celsius)
Laﬁtu(ge

Temperature (Celsius)
Laliluée

10.0'N 12.0'N 14.0'N 6.0'N 8.0'N 10.0'N 12.0'N 14.0'N

8.0'N

BON

99.0°E

99.0'E

99.0°E

99.0°E

1010°E

1010°E

1010°E

1010°E

1030°E
Longitude
36m

1030°E
Longitude
40m

1030°E
Longitude
44m

1030°E
Longitude

1050'E

1050°E

1070°E

1070°E

1070°E

1070°E

Temperature (Celsius)

Temperature (Celsius)

Temperature (Celsius)

Temperature (Celsius)

115



116

w
=
2
2
w
=
5
E
w
2 2 3 2
2 E 2E 2E E

2& 28 28

3 3 3
w
]
a
u
E]
2
. : A .
NOTL NOTH NOO NOB NOS NOOL i : N,OOL 5 5 NOO
apnie aprie apre apnye
(snisjo0) aimesadwa | (snisp0) aimesadua | {snispP0) aimeiadwa {snisjon) aimeradua L
o & 3 2 @ s 9 @ o - = 2 = N ° 9 o . = 2 = - o o o = = 2 = . < 3

M S u—t o
o o = =
g : : =
M L w o
° o S =
3 3 3 5
8 E B E
M L o e
oo oo o o =]
8 £ 3 2
g2 ¢ RN g2¢ E

28 23 28

K} 3 3
w w w w
o E E =
s 5 5 5
o M M o
< E E E]
8 2 2 2
P P i L : A .
NOTL NOZH N,00L N0 N.OY N OOk NOO NOO

sprige opnie] opnyie] opnine’)

Longitude

Longitude



117

32 32
31 31
30 30
B B
29 % 29 %
[} Qo Q
] =3 <
3 5 s
= EE] El
g g
- 28 34 28 8
5 5
- -
27 27
26 26
o o o o o & o o o o o &
99.0°E 101.0°E 1030°E 1050°E 1070°E 99.0°E 101.0°E 1030°E 1050°E 1070°E
Longitude Longitude
m m
661 2 681 2
31 31
30 30
I3 I3
E E
2 E w0
) So S
3 =3 =3
3 PE] o
£ 55
z z
- 28 34 28 §
E E
[ [
27 27
26 26
25 25
99.0°E 101.0°E 1030°E 1050'E 1070'E 99.0°E 101.0°E 1030°E 1050'E 1070'E
Longitude Longitude
=z
2 32
s
31
=
=)
o
. 30
T
2
29 %
z
8% =
2¢e o
T 7
©
- %8
g
2
Z
< 27
o«
26
z
=
<
25
99.0°E 101.0°E 103.0°E 105.0'E 107.0°E
Longitude

Fig. B35. The distributions of monthly averaged water temperature of 2"
Inter-monsoon in GoT at depths of 2-70 m
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B9. The distributions of monthly averaged salinity of northeast monsoon
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Fig. B36. The distributions of monthly averaged salinity of Northeast
monsoon in GoT at depths of 2-70 m
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B10. The distributions of monthly averaged salinity of 1% inter-monsoon
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monsoon in GoT at depths of 2-70 m
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B11. The distributions of monthly averaged salinity of southwest monsoon
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Fig. B38. The distributions of monthly averaged salinity of southwest
monsoon in GoT at depths of 2-70 m
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B12. The distributions of monthly averaged salinity of 2" inter-monsoon
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Fig. B39. The distributions of monthly averaged salinity of 1% Inter-

monsoon in GoT at depths of 2-70 m.
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B13. The distributions of monthly averaged vertical velocity of northeast
monsoon
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Fig. B41. The distributions of monthly averaged vertical velocity of 1%
Inter- monsoon in GoT at depths of 2-70 m.
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Fig. B42. The distributions of monthly averaged vertical velocity of
Southwest monsoon in GoT at depths of 2-70 m.
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B16. The distributions of monthly averaged vertical velocity of 2" inter-
monsoon
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Fig. B43. The distributions of monthly averaged vertical velocity of 2"
Inter- monsoon in GoT at depths of 2-70 m.
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