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CHAPTER I

Introduction

The factorial |A|! is the cardinality of the set of permutations of a set A. Dawson
and Howard showed in [2] that, in the Zermelo-Fraenkel set theory (ZF) with the
Axiom of Choice (AC), |A|! = 214l for any infinite set A, where 214 is the cardinality
of the power set of A. They also showed that, without AC, each of “|A|! < 2/4I”,
“l4 < A|!”, and “|A|! and 2| are not comparable” for some infinite set A is
consistent with ZF.

Relations between the cardinality of the set of finite sequences of elements of
a set A, written seq(A), and 24l have been studied in [5] and [6]. Halbeisen and
Shelah showed that “|seq(A)| # 2! for any infinite set A” is the best possible result
in ZF while [seq(A)| < 2/l for any infinite set A when AC is assumed. The same
results also hold when seq(A) is replaced by the set of one-to-one finite sequences of
elements of A, written seq'~!(A4). Although, without AC, we cannot conclude any
relationship between |A|! and 2/l for an arbitrary infinite set A, it has been shown
in [11] that, in ZF, relations between [seq(A)| and |A|! (also [seq'™(A)| and |A|!)
are exactly the same as those of |seq(A)| and 2/4/ for infinite sets A. In contrast, the
main theorem in [10] showed, in ZF, that |seq,, (A)| < |A|! for any infinite set A and
any natural number n, where seq,(A) is the set of sequences of elements of A with
length n, although Specker showed in [12] that “|seqy(A)| < 2/4/ for any infinite set
A” is not provable in ZF.

In this thesis, we investigate relationships between |S,(A)| and |seq}™(A)| as
well as [seq,,(A)| for infinite sets A, where S,,(A) is the set of permutations of A
with n non-fixed points and seql~!(A) is the set of one-to-one sequences of elements

of A with length n where n is a natural number greater than 1. With AC, |S,,(A)|,



|seql™1(A)[, and |seq,,(A)| are equal for all infinite sets A. Among our results, we
show, in ZF, that |S,(A)| < [seqt™!(A)] for any infinite set A under some weak form
of AC and this assumption cannot be removed. In the other direction, we show that
lseql ™1 (A)| < |S,41(A)| for any infinite set A and the subscript n + 1 cannot be
reduced to n. Moreover, we also show that “|S,(A)| < |S,+1(A)| for any infinite set
A” is not provable in ZF.

The thesis is arranged as follows. First, we give some background on set theory
in Chapter II, and permutation models in Chapter III. Results in ZF are in Chapter

IV and consistency results are in Chapter V. We conclude our thesis in Chapter VI.



CHAPTER II

Preliminaries

Firstly, G. Cantor used sets as collections of objects but this leads to paradoxes. To
avoid this problem, we can use an axiomatic method and leave set be undefined.
This is called axiomatic set theory. Nowadays, Zermelo-Frankel set theory (ZF) with
the Axiom of Choice (AC), denoted by ZFC, is the most well-known axiomatic set
theory. In this thesis, we shall work in ZF.

In this section, we give some prerequisite knowledge on set theory. Proofs of all

theorems will be omitted but it can be found in [3].

2.1 Cardinal Numbers

A cardinal (number) is a number used to measure the size of a set, i.e. the number
of all elements of a set. Denote the cardinal number of a set X by |X|. Cardinals
are defined so that for any sets X and Y, | X| = |Y| if and only if there is a bijection
from X onto Y, written X =~ Y.

Definition. Natural numbers are constructed as follows:
0=0,1={0},2=1{0,1},3={0,1,2},....
Let w be the set of all natural numbers.

Definition. Let X be a set. If X ~ n for some n € w, X is said to be finite and
define | X| = n; otherwise, X is said to be infinite. We call |X| a finite cardinal if

X is finite; otherwise, | X| is an infinite cardinal.

Note. Fvery finite cardinal is a natural number and vice-versa.



Definition. Let X; = |w].
Definition. Let X and Y be sets with k = | X| and A\ = |Y'|. Define

I. k+ A= |XUY]| where X NY =0,

2. k- A=|X xY]|,

3.k =Nf|f:Y = X}

Some basic properties of cardinal arithmetic are listed in the following theorem.
Theorem 2.1.1. Let k, A and p be cardinals. Then

1. K+ A= A+k,

o

(K+AN)+pu=r+ N+ p),
3. K- A= XK,

4o (K- A) - p=rK-(A-p),

5. k- A+ p)=Kr-A+K- U,

6. KMHE = A kP

Definition. Let X and Y be sets with k = | X| and A = |Y|.
Then we say that

1. k < X if there is an injection from X into Y, written X <Y,
2. k< Aif k < Xand Kk # .

Theorem 2.1.2 (Cantor-Bernstein Theorem). For any cardinal numbers k and X,

if Kk < Xand A <k, then kK = \.

Note that < partially orders the cardinal numbers. Moreover, the following

theorem shows that < also preserves cardinal arithmetic.



Theorem 2.1.3. Let k, A and p be cardinals such that kK < A. Then
1. k4+p < A+ p,
2. K< A p,
3. kP < AH,
4. put < pr ifp#0 or k #0.

Note that in the above theorem, if we assume x < A, we cannot replace < in

each statement in the list by <. For example, Ng + 1 = Ry = Ny + 2.

2.2 Ordinals

Definition. We say that a set A is a transitive set if and only if
a C Aforall a € A.

Definition. We say that « is an ordinal (number) if and only if « is a transitive set

and € well orders a.

For example, every natural numbers and w are ordinals.
Theorem 2.2.1. Fvery well-ordered set is isomorphic to a unique ordinal.
Definition. Let ON = {« | v is an ordinal}.

Definition. Let «, 8 be ordinals. We define a < 3 if and only if o € # and define

a<pifa<pfora=p.
Theorem 2.2.2. Let «, 3,7 be ordinals. Then
1. a £ a,
2. ifa < f and B <7, then a <,
3. exactly one of the statements “a < 7, “a =7, “B < a” is true,

4. any nonempty set of ordinals has a least element.



In conclusion, the above theorem tell us that < well orders ON.
Definition. For a set A, let AT = AU {A}.
Theorem 2.2.3. If « is an ordinal, o™ is the least ordinal greater than «.
Theorem 2.2.4. If A is a set of ordinals, then | J A = sup A.

Definition. Let a # 0 be an ordinal. We say that « is a successor ordinal if o = 8+

for some ordinal [, otherwise « is said to be a limit ordinal.

Furthermore, ordinal numbers also have arithmetic structure. In this thesis, we

only use the addition of ordinals.
Definition. Define the ordinal addition recursively as follows:
1. a+0=q,
2 a+ 8% =(a+ B,
3. a+ A=J{a+ ¢ < A} if Ais a limit ordinal.
Addition on ordinals is not commutative. For example,
1+w:U{1—|—n|n<w}:w7éw+1.
However, left addition preserves order.

Theorem 2.2.5. If a and 8 are ordinals such that o < 3, then v+ a < v+ [ for

any ordinal .

2.3 Axiom of Choice

Definition. A choice function f for a set X is a function f: X \ {0} — |J X such
that for any z € X \ {0}, f(z) € .

The following statements are some equivalent forms of the Axiom of Choice (AC).

1. Well-Ordering Theorem: Every set can be well-ordered.



2. Cardinal Comparability: For any cardinal numbers x and A\, kK < A or A < k.
3. Every set has a choice function.

4. For every infinite cardinal x, k* = k.

Since the Axiom of Choice is equivalent to the Well-Ordering Theorem, if we

assume AC, then cardinal numbers can be defined as follows:
Definition. The cardinal number of a set A is the least ordinal « such that A =~ a.

For example, |w'| = w since w™ ~ w and every ordinal which is less than w is
finite.

The following are consequences of AC.

Theorem 2.3.1 (Absorption law of arithmetic). For any cardinals k and X of which

at least one is infinite,
1. K4+ X = max{k, \},
2. k- A =max{r, A} if min{x, A} # 0.

More details about AC can be found in [g].

2.4 Cardinal numbers without AC

Since the Axiom of Choice is equivalent to the Well-Ordering Theorem, without
AC, we cannot guarantee that every set can be well-ordered. As a result, in gen-
eral, we cannot define the cardinal number of a set to be an ordinal. To solve
this problem, we can use Foundation Axiom and the rank function to define a
cardinal number of a set. However, the definition is not needed here. We use
only the fact that cardinal numbers are defined so that for any sets A and B,
|A| = |B| if and only if A~ B.

Since the Cardinal Comparability is equivalent to AC, without AC, we cannot

guarantee whether two infinite cardinals are comparable or not. In particular, infi-

nite cardinals may not be compared with N.



Definition. A set X is Dedekind-infinite if Xy < |X|; otherwise, X is a Dedekind-
finite.

Note. Every Dedekind-infinite set is infinite but the converse is not necessarily true

without AC.

Theorem 2.4.1. A set X is Dedekind-infinite if and only if X ~ 'Y for some
Y CX.

2.5 Weak forms of AC

Even though AC is equivalent to many important theorems, for example, Zorn’s
lemma, Tychonoft’s theorem, and “every vector space has a basis”, it also leads to
some counterintuitive results such as Banach-Tarski paradox. Thus some mathe-
maticians avoid using AC and sometimes use weaker forms of AC instead.

The following weak choice principles are relevant to our work. In the statements

below, n is a natural number greater than 1.

o AC,: Every family of n-element sets has a choice function. (This will be used

in Theorem @ and Corollary @)

o AC.,: Every family of nonempty sets with cardinalities less than or equal to

n has a choice function. (This will be used in Theorems @,@ and Corollary

b7



CHAPTER 111

Permutation Models

The Zermelo-Frankel set theory with atoms (ZFA) is a modified version of ZF, which
admits objects other than sets, called atoms. Atoms are objects which do not have
any elements.

For consistency results, we shall use permutation models, which are models of
ZFA. Proofs of all theorems in this chapter will be omitted. More details can be
found in [8, Chapter 4].

3.1 Permutation Models

Definition. Let S be a set. For each ordinal a, define P*(S) recursively as follows.
1. PYS) =28,
2. P(S) =PP(S)UP(PA(S)) ifa=p+1,

3. P*(S) = U P(S) if v is a limit ordinal.

(<a

Define P>*(S) = | P*(9).

aceON

We call P><(0) the kernel.

Throughout this section, let A be a set of atoms.
Theorem 3.1.1. P*(A) is a model of ZFA.
Let M =P>(A).

Definition. Let 7 be a permutation on A. We extend 7 by defining m(z), which

can also be written as mx, for every x in M recursively as follows.

(@) =0 and 7(x) = {7 (y) | y € z}.
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Theorem 3.1.2. Let w be a permutation on A and let x,y € M. Then
1. x €y if and only if T € my.
2. w{x,y} = {nz, 7y} and 7(z,y) = (7z,7y).

3. If f is a function on a set X containing x, then wf is a function on 7X and

(nf)(mz) = =(f(x)),
4. mx = x if x is in the kernel.

Definition. Let G be a group of permutations of A. A set F of subgroups of G is
a normal filter on G if for all subgroups H and K of G,

1. Ge F,
2. if He Fand H C K, then K € F,
3. if He Fand K € F,then HNK € F,

4. ifr€Gand H € F, then rHn ! € F,

(S8

. foreacha € A, {mr € G| n(a) =a} € F.

In the following, let G be a group of permutations of A and F be a normal filter
on G.

Definition. Let z € M. Define
symg(z) ={m € G | mx = x}.

Note that symg(z) is a subgroup of G.
Definition. For x € M, z is called symmetric if symg(x) € F.

The class V consisting of all hereditarily symmetric objects is called a permutation

model.

Theorem 3.1.3. The class V is a transitive model of ZFA which contains all the

elements of the kernel and A € V.

Definition. A set 7 of subsets of A is a normal ideal if



11

1. 0 e,
2. if F€eZ and F C E, then F € T,
3.if FeZand FeZ, then FUF €1,
4. if € Gand E € Z, then 7(E) € Z,
5. for each a € A, {a} € T.
Remark. The set of all finite subsets of A, denoted by fin(A) is a normal ideal.

Definition. For each x € M, define

fixg(z) ={m € G | my =y for all y € z}.

Theorem 3.1.4. Let Z be a normal ideal. Then
Fr={H | H is a subgroup of G such that fizg(E) C H for some E € T}

s a normal filter.

In the following, Z is a normal ideal.

Note. By Theorems and , T has a corresponding normal filter Fr and a

corresponding permutation model V. We call such permutation model, the permuta-

tion model determined by G and L.

Definition. For each x € M and each E € 7, we say

E is a support of x if fixg(E) C symg(z).
Remark. If V is a permutation model determined by G and I, then

1. x € V if and only if x has a support and x C V),

2. for each x € M and each E, F € Z, if E is a support of x and £ C F, then F

is also a support of x.
Definition. Let m € G and © € M. We say
1. 7 fixes x setwise if 7z =z, i.e. m € symg(x),

2. 7 fixes x pointwise if 7y = y for all y € z, i.e. w € fixg(z).
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3.2 Well-known Models

These following permutation models are used in this thesis.
The basic Fraenkel model

Definition. Let A be a denumerable set of atoms. Let G be the group of all permu-
tations on A. The basic Fraenkel model, V,, is the permutation model determined

by G and the normal ideal fin(A).

Theorem 3.2.1. /|7, page 177] AC, fails in Vg,.

The second Fraenkel model

Definition. Let the set of atoms A be the disjoint union of pairs P, = {a,,b,}
where n € w. Let G be the group of all permutations ¢) on A such that ¢[P,] = P,
for all n € w. The second Fraenkel model, Vg,, is the permutation model determined

by G and the normal ideal fin(A).

Note that ACy fails in this model since the set of atoms A is Dedekind-finite in
the model (see [[7, page 178])

3.3 Transferable statements

Let V be a permutation model. A formula ¢(z) is boundableif V |= ¢(x) < ¢7" @) (2)
for some ordinal . A statement is boundable if it is the existential closure of a
boundable formula.

From the Jech-Sochor First Embedding Theorem (cf. [8, Theorem 6.1]), we have
that if a boundable statement holds in a permutation model, then it is consistent
with ZF.

From our consistency results in Chapter V, all statements that are shown to hold

in some permutation models are boundable and thus they are consistent with ZF.
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CHAPTER IV
Results in ZF

In this chapter, we shall investigate relations between the permutations with n non-
fixed points and the sequences with length n of a set, where n is a natural number
greater than 1.

To get started, we list the notations used in this chapter below.

Notation. For a set A and a natural number n, let
L [A" ={X CA|[X]|=n},
2. [AJ<" = {X C A||X]| < n},

3. fin(4) = U[A,

kew

4. seq(A) ={f | f:n — A},

5. seq(A) = | seq,(A),

kew

6. seql ' (A) = {f € seq,(A) | f is injective},

7. seqt 71 (A) = | seq; '(A),

kEw

8. S(A) ={f: A— A| f is bijective},
9. Su(A) ={f € S(A) [ {a € A f(a) # a}| = n},

10. Sin(A) = U Si(A),

kEw

and for 7 € S(A), let () = {a € A | 7(a) # a}, in other words, (m) collects all
elements in A that 7 permutes.
We write (ag; a;...;a,) for the cyclic permutation such that

Qg — a1 — ... = ay — Qg.
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Throughout, n is a natural number which is greater than 1, unless otherwise
stated.
First, by using some combinatorial argument, we have the following relations for

the case of finite sets.

Theorem 4.1. For any finite set X with | X| =m > n,

[Sn(X)] < [sea, ™ (X)].
Proof. Let X be a finite set with |X| = m > n. For each A € [X]", define

Sp(X;A) = {r € S, (X) | () = A} and

seqy (X3 A) = {f € seq,, (X)) | ran(f) = A}.

Then S,(X) = U 8Su(X;A), seqlH(X) = U seqi '(X;A) and for any dis-
Ae[X]™ Ae[X]™
tinct A, A’ € [X]™, we have

Su(X;A)NS, (X, A) =0 and seq. *(X; A) Nseq. 1(X; A) = 0.

Hence

= > 8.4 =) |S.(4)] and

Ae[X]n Ae[X]n

seq( Z lseqr H(X; A)].
Ae[X]n

Since for any A € [X]", we have S,,(4) C S(A) and |S(A)] = n! = |seq. 1 (X; A)],

we conclude that

= 3 i< (7)ot = seatx)

Aeg[X]n

as desired. O]

Theorem 4.2. For any set X with | X| = n,
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Proof. Let X = {x1,...,2,} be a set. For each i < n, define X; = {m € S(X) |
m(z;) = x;} and X{ = S(X) \ X;. Then

1S, (X)) = | XSN...AXE| = [S(X)] — |X1U... UX,|

and forany 1 <! <nand 1<y <...<y<n,|X;N...NX;,|=(n-0
By the inclusion-exclusion principle, we have

XU UX = S X = 3D X N X e ()X NN X

1<i1<n 1<ii<ig<n

_ (T) (n— 1) - (Z) (=2 (1) (Z)O!

1 (=Bt
=nl|—
Sl

n

and so |S,(X)| =n! [% -+t (1) ] as desired. O

Next, we give a relation between |S,,(A4)| and |seq), ' (A)| for an infinite set A
under the weak form AC.,. Later, we shall show in the next chapter that this

assumption cannot be removed.
Theorem 4.3. AC.,, implies that |S,(A)] < [seqt 1 (A)] for every infinite set A.

Proof. Let A be an infinite set. By AC<,,, [A]=" has a choice function, say F. Hence
every B € [A]" has a linear order <p induced by the ordering on w via the map
¢p : |B] = B defined recursively by ¢p(k) = F(B\¢glk]).

For each 7 € S,(A) where (1) = {b1,..., by} and by <(z) - -+ <(x) by, we define
F+ Su(A) = seq!(4) by

f(m) = (7(ba), - - w(bn))-

We will show that f is an injection. Let 7,19 € S, (A) be distinct permutations. We
distinguish into cases below.

Case 1 (m) # (¥).

Since each entry of f(x) is a member of () and vice versa for any x € S, (A),
f(m) # f().

Case 2 () = (¢).
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Hence there exists an integer 1 < k < n such that 7(bg) # 1 (bx) where (1) =
{b,...,by} and by <(n) ... <(x) by. Since 7(by) and )(by) are the k™ entries of f(r)
and f(1) respectively, f(m) # f(4). O

From the above proof, the theorem below shows that if we restrict the domain
of f to C,(A) = {m € S,(A) | 7 is a cyclic permutation}, then AC<,, in the above

theorem can be weaken to AC,,.
Theorem 4.4. AC,, implies that |C,(A)| < [seq. ' (A)] for every infinite set A.

Proof. Let A be an infinite set. By AC,,, there exists a choice function F' : [A]" — A.
Now, define g : C,,(A) — seq. '(A) by

where b = F(()).

To show that g is an injection, suppose m,v% € C,(A) are distinct permutations.

If () # (¥), then, for the same reason as Case 1 in the proof of the above
theorem, we have g(7) # g(v).

Suppose () = (1)). Since 7 and ¥ are distinct cyclic permutations, 7% (b) # 1*(b)
for some 1 < k < n, where b = F((r)). Since 7¥(b) and 1*(b) are the k'™ entries of

g(r) and g(v)) respectively, g(r) # g(1). =

Note that for n < 3, S§,(A) = C,(A) for any set A with |A] > 3. As a result,

from the above theorem, we obtain the following corollary.

Corollary 4.5. If n < 3, then AC,, implies |S,(A)| < [seq. ' (A)| for every infinite
set A.

Relations between [seq(A)| and |fin(A)| for infinite sets A have been studied in

[1]. The theorem below is a result which is related to our work.
Theorem 4.6. AC.,, implies that |seq,, (A)| < [fin(A)| for every infinite set A.
Proof. Cf. [, Corollary 2.2]. O

Thus the following corollary follows immediately from the above theorems.
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Corollary 4.7. AC.,, implies that |S,(A)| < [fin(A)| for every infinite set A.

Next, we show relationships between |S,,(«)| and other related cardinals when «

is an infinite ordinal.
Theorem 4.8. For any infinite ordinal o, o« < S, ().

Proof. Let a be an infinite ordinal. We define f: a — S, (a) by

1) = B+1L6+2...56+n) iff+n<a,
(k+2;k+4;...;k+2n) ff+k=a<pB+n.

To show that f is an injection, suppose [ < v < a. We distinguish into cases as
follows:
Case 1 v+n < a.

Then 6+i<y+n<aforalll<i<n and so

fB)=@B+LB+2..58+n)#(+1Ly+2...57+n) = f(7)

Case 2 a < f+n.

Since f<a<pB+n<~y+n,a=p+kand a =+ for somel < k < n.
Hence f(B) = (k+2;k+4;.. sk+2n) # ({1 +2;1+4;...;14+2n) = f(7y).

Case 3 f+n<a<y+n.

Since (f(B)) ={f+1,8+2,...,8+n} and

(f(y)=4k+2,k+4,...k+2n} where v+ k = «a,

(f(5)) is the set of n consecutive ordinals where n > 2, meanwhile (f()) is not.

Hence £(8) # (7). =

Fact 4.9. For any infinite ordinal o, o = seq(«).
Proof. Cf. [4, Theorem 5.19]. O

Corollary 4.10. For all infinite ordinals «,

a = seqt Ha) & seq, (a) = Sy(a) ~ S, (a).
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Proof. Let a be an infinite ordinal. By Theorems @ and @ and Fact @, we have
seq(a) = a < S,(a) < seqr (o) < seq,(a) < seq(a).

By the Cantor-Bernstein theorem, we have that a &~ S, (a) ~ seql ™ (a) ~ seq,,(a).

Since n is arbitrary, we also have o & S,41(a). O

We have shown that if AC<,, is assumed, then |S,(A4)| < |seq,,(A)| for all infinite
sets A. Now we shift our focus to the other direction. It has been shown in [J,
Lemma 3.27] that for any set A with |A| > 2n(n + 1), [seq,(A)| < [S<an+1(A)],
where S<o,,41(A) is the set of permutations of A which move at most 2n+1 elements
of A. Now, we shall show that [seq,(A)| < |S,+1(A)| for any large enough finite set
A and [seq) 1 (A)] < [Spi1(A)] for any infinite set A. First, we look at the finite

case.

Theorem 4.11. Let A be a finite set with |A| > 32" + n. Then |seq, (A)] <
|Snta(A)]-

Proof. For convenience, let |A| = a. For any natural number n > 1, we have

LR L SRR
o 1! (n 1) = 2 6 3
Since a > 3-2" +n > 2n, a < 2(a — n) and so
[seq, (A)] = a" < (2(a —n))"
<a(a=1) 00 (@ —(n+1))2"
Sa-(a—l)-...-(a—n—f—l)la;n}

1 1 (_1)n+1
<a-(a=1)-...-(a=n)|=—=+...
sa-(a=1)-...-(a ”)[0! TRy

a 11 (—1)n+1
= = - — 4+ ...40 > 7
(n+1)(”+1)'[0! TRy
= [Snr1(4)]
as desired. ]

For the infinite case, we need some “large enough” finite set to construct an

injection.
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Lemma 4.12. There exists a natural number K, > 2n+ 1 such that for all natural

numbers k < n,

RG) (7)< (ke + D)
Proof. Note that for any natural number x > n,

G (G) = k() - =5 and (k+ D) = (+ 1)) 2525

Hence, for any natural number x such that £ < n < z, the condition k'(;) (z) <

(k+ 1)!(kil) is equivalent to (}) <z — k, that is, z > (}) + k.
Therefore, x = K,, = max{2n + 1, (8) +0,..., ( " ) + n — 1} satisfies the in-

n—1

equalities. O

We shall create an equivalence relation ~ on seq,(X) which tells us that two

related sequences will generate the same cyclic permutation.
Definition 4.13. For any (ag, ..., ay), (bo, ..., b,) € seqp;;(X),
(ag,...,a,) ~ (by,...,b,) iff there exists k € w such that a; = b,y for all [ € w,

where the indices of a; and b; are considered in modulo n + 1.
The lemma below shows that this definition gives the desired property.

Lemma 4.14. For any (ay, .. .,a,), (b, .-, by) € seqy1(X), we have

(ao,...,a,n)'\-/(bo,...,bn) Zﬁ(ao,,an):(bo,,bn)

Proof. Let a = (ag,...,a,) € seq,;(X) and b = (by,...,b,) € seqy;1(X). In this
proof, we consider the indices of a;’s and b;’s in modulo n + 1.
(—) : Suppose that a ~ b. Then there exists & € w such that for all I € w, we

have a; = b;x and so

(ao; cee an)(az) =41 = byps = (bo; .. ;bn)(bl+k) = (503 cee bn)(al)'

Thus these two permutations are equal.

(«) : Suppose that (ag;...;a,) = (bo;...;b,). Then we have

(bo; - -5 b)) (a0) = (ao; ... ;an)(ao) = ar # ao.
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Since (bo; .. .;b,) moves only elements in the set {bo, ..., b,}, we conclude that ag =

by for some k € w. Hence for any s € w, we have

as = (ag;...;a,)°(ag) = (bo; . ..;0,)°(bg) = by
as desired. O]

Next, we shall construct a cyclic permutation from two injective sequences of

two disjoint sets.

Definition 4.15. Let X and Y be two disjoint sets and p and g be natural numbers
such that p,q > 1. For each a = (a1,...,a,) € seq, " (X) and b = (b1,...,b,) €
seqy (V). We define a™b = (a1;...;ap;b1;...50g).

Note that a™b € S,44(X UY).
We shall show that two concatenations give the same permutation if and only if

each corresponding “components” are equal.

Lemma 4.16. Let X and Y be two disjoint sets, p,q > 1 be natural numbers,
a,a’ € seqy ' (X) and b,b' € seq, '(Y) be such that a=b = a'~'. Then we have

a=a andb=1V.

Proof. Let ¢ = b = a7V and cx = (¢) N X and ¢y = (¢)NY. Let a =
(a,...,ap),b = (b,...,bg),a" = (ay,...,a,), and b’ = (b,...,b;). From the con-
struction of ¢ = b = o'V, there exists a unique pair (¢*,c,) € cx X ¢y such that

(C(C*>> C(C*)) € cy Xcx. Since
clap) = by, e(ay) = b}, c(by) = ay, and (b)) = ai,

where a,, ay,, a1, a; € cx and by, by, by, by, € ¢y, a, = ¢* = aj, and by = ¢, = b,
Since c(a;) = aj41 and c(aj) = aj,, for all 1 < i < p where c is injective, by
backward induction on i, we have a; = a; for all 1 < ¢ < p. Similarly, we have

b;- = b, for all 1 < j <g. We conclude that a = o' and b =’ as desired. O]
Now we are ready for the main theorem.

Theorem 4.17. For all infinite sets A, |seql™(A)] < |S,1(A)].
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Proof. Let A be an infinite set. By Lemma , there exists a natural number

K, > 2n + 1 such that for all natural numbers k < n,

k'(Z) (i”) < (k+1) (kﬁnl)

Since K,, > 2n + 1, we also have that (Ii”) < (rfi"l)

Let X = {x1,29,...,7k,} C A and for each natural number k < n, we define
A ={(ar,...,a,) €seq H(A) | {ai,...,a,} N X| = k}.

It suffices to show that for each natural number & < n, there exists an injection
fr: A = Spt1(A) where fy, ..., f, have disjoint images.

First we deal with the case k¥ = n. From Lemma , we have that the map
[(ag, - an)]~ — (ag;...;a,) is a well-defined injection and thus seqy;;(X)/~=

Sni1(A). Since

|A,| = n! <Kn) < n!( A )
n n+1

[sed 1 (X)| = [seq,;1(X)/~],

P n—+1
there exists an injection f,: A, — Sp11(A) as desired.
Now, let k£ < n be a natural number. We may assume that 0,1 ¢ A. We start

by defining functions ix, Qx, and Q' from the same domain seq!™'(A) as follows:

ix(ar,...,a,) = (€1,...,€,), where ¢; = 1 if a; € X and
€; = 0 otherwise, for each 1 < j < n,
Qx(ay,...,an) = (ai,...,q;,) if {a1,...;a,} N X ={a;,...,a;,},

Qx(ar,...,a,) = (aj,,...,a;) if {ar,...,a,} \ X ={ay,,...,q;},

where the indices iy, ...,4, and ji,...,J; are increasing.

Define By = {ix(a) | a € Ax}. We have that

_ n K, K, _
| By, X s.eq,lf 1(X)] = (k)k‘( f ) < (k+ 1)!(k—|— 1) = |seq,1€+1(X)].

Hence there exists an injection hy: By, x seq,” ' (X) — seq; 1 (X).

Now, we define fi: Ay — S,11(A) by

fi(a) = hi(ix(a), Qx(a))” Qx(a).
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Note that f; moves exactly k + 1 elements in X.

To show that f; is injective, let a,b € Ay be such that fy(a) = fx(b). Then,
by Lemma (.16, iy (ix(a), Qx(a)) = hi(ix(b), Qx (b)) and Q' (a) = Q' (b). Since
hy is injective, ix(a) = ix(b) and Qx(a) = Qx(b). Therefore we can retrieve the
sequence a from the information Qx(a), Q’x(a), and ix(a) as follows:

Change the p'" occurrence of 1 in the sequence ix(a) to Qx(a)(p — 1) for each
1 < p < k and change the ¢ occurrence of 0 in the sequence iy (a) to Q' (a)(g—1)
for each 1 < ¢ < n—k. We can see that the resulting sequence is a. Since the values
of ix,Qx, and Q% at a and b are equal, we can conclude that a = b. Therefore fj
is injective.

Finally, since for each natural number m < n and each a € A,,, f,,(a) moves ex-
actly m+1 elements in X, fy,..., f, have disjoint images. Thus Lnj firseqt™1(A) —
Sn+1(A) is an injection. = O

Note that the above proof requires the choice of elements zq,xo,...,
xrg, from A. Thus, in the absence of AC, we cannot make such choices for in-
finitely many n. Therefore, from the above theorem, we cannot conclude that
|seq'1(A)| < |A|! for any infinite set A. It has been shown in [11, Theorem 3.1]
that this statement is not provable in ZF as well.

It is still questionable whether we can obtain a stronger result by replacing
seq. !(A) in Theorem by seq,,(A). Shen and Yuan showed in [9, Corollary 2.23]
that for any set A, [seq(A)| = [seq'~'(A)| if and only if A = () or A is Dedekind

infinite. For the set of sequences with length n, we also have the following result.

Theorem 4.18. For any Dedekind infinite set A,

[seq,, (A)] = [seq;, " (A)].

Proof. Let A be a Dedekind infinite set. Without loss of generality, suppose that
AN (n xn)=1(0. Since there is a canonical bijection from AU (n X n) onto A, it is
enough to construct an injection from seq,,(A) into seq: (AU (n x n)).

n

For each a = (ag,...,an,-1) € seq,(A) and k < n, let By = {l < k| a; = ax}
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and define f : seq, (A) — seq. "' (AU (n x n)) by

Flayw) =" B =
(min By, |Bax|) otherwise.
To show that f is injective, let s, € seq,(A) be distinct sequences. Therefore
there exists a least [ < n such that s(l) # t(I). It is clear that f(s) # f(t) if one
of f(s)(1), f(t)(]) is in n x n while the other is not. We are left to deal with two
following cases:

Case 1 f(s)(1), f(£)(1) € A.

We have f(s)(1) = s(l) # t(l) = f(t)(l). Hence f(s) # f(t).

Case 2 f(s)(1), f(t)(I) € n x n.

The minimality of [ implies that s(k) = t(k) for all & < [. However, since
s(l) # t(l), Bs;NBy; = 0 and both sets are not empty because f(s)(l), f(t)(l) € nxn.
Therefore min By; and min By ;, which are the first coordinates of f(s)(l) and f(¢)(()
respectively, are not equal.

We conclude that f(s) # f(t). Then f is injective, so

[sed,, (A)] < [seqy (AU (n x n))| = [seq,” (A)].

n

However, since seq! '(A) C seq,,(A4), we must have that |seq)'(A)| = |seq,,(A4)]| as
desired. O

Thus the following corollary follows immediately from Theorems and .

Corollary 4.19. For all Dedekind infinite sets A, |seq,,(A)] < |Sn+1(A)].
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CHAPTER V

Consistency Results

For relative consistency results, we shall work in permutation models.

First, we use the basic Fraenkel model Vg. We have shown in Theorem
that “|seq)™(X)| < |Sn41(X)| for any infinite set X is provable in ZF. Now, we
show that the subscript n + 1 cannot be reduced to n. Let A be the set of atoms of
Vig,.

Theorem 5.1. Vg, = [seq, ' (A)] £ |S.(4)].

Proof. Assume there is an injection f: seqt *(A) — S,(A) with a support E. Let
M C A\E be such that |[M| =n and let u € seq. ' (M). So ran(u) = M.

Suppose that there is v € M\ (f(u)). We select w € A\(F U (f(u))) which is
distinct from v and let 7 = (v;w). Since 7 € fixg(E U (f(u))),

f(u) = 7f(u) = (rf)(Tu) = f(Tu)

but, since v € ran(u), Tu # u whereas f is injective, a contradiction.

Thus M C (f(u)). Since |M| =n = |(f(u))], M = (f(u)). Thus f(s) [ M €
S, (M) for all s € seq.™'(M). Since f is an injection, |seq.™(M)| < |S,(M)| but
|seql Y (M)| = n! > |S,(M)], a contradiction. O

Intuitively, among the sets of permutations of a set with finitely many non-fixed
points, it seems the size of the set with smaller number of non-fixed points is less
than or equal to those with greater numbers. However, in this model, we show that

such relation does not generally hold.

Theorem 5.2. Vg, = |S,(A)| £ [Sns+1(A)].
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Proof. Suppose there is an injection f: S,(A) — S,41(A) with a support E such
that |[E| > n+ 1. Let L = |S,41(E)| + 1, My, ..., My be distinct subsets of A\F
with cardinality n, and 7y, ..., 7 be permutations of A such that (m;) = M; for all
1<i< L.

Let 1 <t < L. To show that (f(m;)) € E U M, suppose to the contrary that
there is y € (f(m)) such that y ¢ E'U M;. Then y = f(m)(z) for some z € A such
that © # v.

Case 1 ¢ € M,.

Let z € A\(EUM,;U{y}) and 0 = (y; z). Then o fixes E'U M, pointwise and so

z=o0(y) = o(f(m)(x)) = (0 f(om))(ox) = f(m)(z) =y

but y # z.

Case 2 z € A\ M,.

Since |My| = n, |(f(m))| =n+ 1, and x,y € (f(m)) \ M, there exists r € M,
such that f(m) fixes r. Let s € A\(E'U M; U (f(m))) and 7 = (r;s). Then 7 fixes
E and f(m;) fixes {r, s} pointwise. Hence

f(m) = 7f(m) = (7 f)(77e) = f(Tmp)

but 7m; # 7 whereas f is an injection.

Therefore, (f(m:)) € EU M,. Since |[{f(m) | i € {1,...,L}}| = L > |Sp+1(E)],
there exists s € {1,..., L} such that f(ms) [g¢ Sn+1(E). Hence, since |M;| =n <
n+1=|(f(m))|, there exists w € M; such that f(m)(w) € E. Since m, fixes E

pointwise and 7w = 7 for all w € fixg(F), we have

f(ms)(w) = mo(f (ms) (w)) = (7o f)(msms) (msw) = f(7s)(m5w)
but ms(w) # w whereas f(7,) is injective, a contradiction. O

It follows from Theorems @ and that AC<, implies |S,(X)| < [Sp41(X)]
for any infinite set X. The above theorem tells us that, in the absence of AC<,,,
“ISn(X)] < |Sp1(X)| for any infinite set X7 may fail. Since this statement is not

provable in ZF, this condition in Theorem @ cannot be removed as well. However,
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we shall give a model in which |S,(X)| £ |seq, (X)| for some infinite set X by
modifying the second Fraenkel model as follows:

Let the set of atoms A = |J{P|m € w} where |P,,| = n for all m € w and all
P,.’s are mutually disjoint. Let G be the group of all permutation of A which fix
each P, setwise, i.e, 7[P,,] = P, for all m € w. Let Vp, be the permutation model

induced by the normal ideal fin(A).

Theorem 5.3. Vg, =[S, (A)| £ [seq,,(A)].

Proof. Assume there is an injection f: S,(A) — seq,(A) with a support E =
U{P. | m < k}. Let ¢ be a permutation of A such that (¢) = B for some
[ > k. Suppose f(¢)(i) € E for some i < n. Then f(¢)(i) € P, for some t > k. Let
7 be a permutation of A such that (m;) = P, and if t = [, let 7, = . Then mp =)

and m; € fixg(FE). Hence

m(f()(0) = (mf)(m) (@) = F(¥)(0)

but m; moves all elements of P;, a contradiction.
Therefore each entry of f(¢) must be in E. This leads to a contradiction since
seq,,(F) is finite but {f(x) | x € Su(A) and (x) = P for some r > k} is infinite

whereas f is injective. O
Actually, the statement in the above theorem also hold in Vg, as shown below.
Theorem 5.4. Vg, = |S,(A)| £ [seq,(4)].

Proof. Assume there is an injection f: S, (A) — seq,(A) with a support E. Let
m € S,(A\FE). Suppose to the contrary that there is x € (7) \ ran(f(7)). We select
y € A\(E U (m) Uran(f(mr))) which is distinct from z and let 7 = (z;y). Since
T € fixg(E Uran(f(n))), f(7) = 7f(7) = (7f)(r7) = f(r7) but 7w # 7 whereas f
is injective, a contradiction. Thus (7) C ran(f(7)). Since |(7)] = n > |ran(f(7))],
() = ran(f(x)). Thus f(7) € seq.™'((7)). Since 7 € fixg(F) and 77 = 7 for all
7 € fixg(E), n(f(7)) = (nf)(mm) = f(m) but w(f(7)) # f(7) because the first entry

of f(m) must be moved by 7, a contradiction. O
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The result from all theorems in this section can be transferred to ZF by using
the Jech-Sochor First Embedding Theorem (cf. [8, Theorem 6.1]). For example,
from Theorem @, we have that “3X(|S,(X)| £ [seq,(X)])” holds in Vpg,. Let
¢(X) be a formula which represent “|S,(X)| £ |seq, (X)|”, L.e. “Vf(f : Sp(X) —
seq,,(X) is not injective)”. We can see that V = ¢(X) < ¢7" " (X). Hence
¢(X) is boundable, and so is the statement “3X (]S, (X)| £ |seq,,(X)])”. Therefore
this statement is consistent with ZF. The results from Theorem @ and @ can be
transferred to ZF in a similar way.

It is known that AC, fails in Vg, (cf. [7, page 177]). Obviously, AC, fails in
Vr, as well since the set of atoms of this models is Dedekind finite in the model.

Since AC,, implies AC,,, AC, fails in these models too. This fact also follows from

Theorem and @
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CHAPTER VI

Conclusion

In conclusion, our main results in ZF together with related consistency results are

listed below.

1. AC.,, implies that |S,(A)] < |seqi™'(A)| for every infinite set A and the
assumption can be weakened to AC, for n < 3 but Vg, = JA(|S.(4)] £

|seq,,(A)|) (Theorems @ and @ and Corollary @ .

2. For all infinite ordinals o, S, (@) = S,11 () but Vi, = JA(|SH(A)| £ |Snt1(A)])

(Theorems Y - and @

3. For all infinite sets A, [seqy, '(A)] < [Shs1(A)| but Vg, = JA(Jseqp, H(A)| £

S, (A)]) (Theorems [£.17 and b.1).

However, there are some problems left unsolved. For example,

1. Can AC., in the statement of Theorem be replaced by some other weak

forms of AC, in particular, some weaker one?
2. Can the condition “A is Dedekind-infinite” in Theorem be weaken?
3. Can Theorem @ be generalized to “Vg, = Vm > n(|S,(A)| £ |S,(A)])"?

These problems are left open for further research.
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