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ในวิทยานิพนธนี้เราศึกษาความสัมพันธระหวาง |Sn(A)| และ |seq1−1
n (A)| รวมถึง |seqn(A)|

สำหรับเซตอนันต A โดยที่ Sn(A) เปนเซตของการเรียงสับเปลี่ยนบนเซต A ทั้งหมดที่มีจุดไมตรึง
n จุด seqn(A) และ seq1−1
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เซตแซรเมโล-แฟรงเคลวา |Sn(A)| ≤ |seq1−1

n (A)| สำหรับทุกเซตอนันตA ภายใตสัจพจนการเลือก
แบบออนบางสัจพจน และขอสมมตินี้ไมสามารถเอาออกได ในอีกทิศทาง เราไดแสดงวา |seq1−1
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เราไดแสดงวา ขอความ “|Sn(A)| ≤ |Sn+1(A)| สำหรับทุกเซตอนันตA” ไมสามารถพิสูจนไดใน
ทฤษฎีเซตแซรเมโล-แฟรงเคล
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CHAPTER I
Introduction

The factorial |A|! is the cardinality of the set of permutations of a set A. Dawson

and Howard showed in [2] that, in the Zermelo-Fraenkel set theory (ZF) with the

Axiom of Choice (AC), |A|! = 2|A| for any infinite set A, where 2|A| is the cardinality

of the power set of A. They also showed that, without AC, each of “|A|! < 2|A|”,

“2|A| < |A|!”, and “|A|! and 2|A| are not comparable” for some infinite set A is

consistent with ZF.

Relations between the cardinality of the set of finite sequences of elements of

a set A, written seq(A), and 2|A| have been studied in [5] and [6]. Halbeisen and

Shelah showed that “|seq(A)| ̸= 2|A| for any infinite set A” is the best possible result

in ZF while |seq(A)| < 2|A| for any infinite set A when AC is assumed. The same

results also hold when seq(A) is replaced by the set of one-to-one finite sequences of

elements of A, written seq1−1(A). Although, without AC, we cannot conclude any

relationship between |A|! and 2|A| for an arbitrary infinite set A, it has been shown

in [11] that, in ZF, relations between |seq(A)| and |A|! (also |seq1−1(A)| and |A|!)

are exactly the same as those of |seq(A)| and 2|A| for infinite sets A. In contrast, the

main theorem in [10] showed, in ZF, that |seqn(A)| < |A|! for any infinite set A and

any natural number n, where seqn(A) is the set of sequences of elements of A with

length n, although Specker showed in [12] that “|seq2(A)| ≤ 2|A| for any infinite set

A” is not provable in ZF.

In this thesis, we investigate relationships between |Sn(A)| and |seq1−1
n (A)| as

well as |seqn(A)| for infinite sets A, where Sn(A) is the set of permutations of A

with n non-fixed points and seq1−1
n (A) is the set of one-to-one sequences of elements

of A with length n where n is a natural number greater than 1. With AC, |Sn(A)|,



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

|seq1−1
n (A)|, and |seqn(A)| are equal for all infinite sets A. Among our results, we

show, in ZF, that |Sn(A)| ≤ |seq1−1
n (A)| for any infinite set A under some weak form

of AC and this assumption cannot be removed. In the other direction, we show that

|seq1−1
n (A)| ≤ |Sn+1(A)| for any infinite set A and the subscript n + 1 cannot be

reduced to n. Moreover, we also show that “|Sn(A)| ≤ |Sn+1(A)| for any infinite set

A” is not provable in ZF.

The thesis is arranged as follows. First, we give some background on set theory

in Chapter II, and permutation models in Chapter III. Results in ZF are in Chapter

IV and consistency results are in Chapter V. We conclude our thesis in Chapter VI.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

CHAPTER II
Preliminaries

Firstly, G. Cantor used sets as collections of objects but this leads to paradoxes. To

avoid this problem, we can use an axiomatic method and leave set be undefined.

This is called axiomatic set theory. Nowadays, Zermelo-Frankel set theory (ZF) with

the Axiom of Choice (AC), denoted by ZFC, is the most well-known axiomatic set

theory. In this thesis, we shall work in ZF.

In this section, we give some prerequisite knowledge on set theory. Proofs of all

theorems will be omitted but it can be found in [3].

2.1 Cardinal Numbers

A cardinal (number) is a number used to measure the size of a set, i.e. the number

of all elements of a set. Denote the cardinal number of a set X by |X|. Cardinals

are defined so that for any sets X and Y , |X| = |Y | if and only if there is a bijection

from X onto Y , written X ≈ Y .

Definition. Natural numbers are constructed as follows:

0 = ∅, 1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2}, . . . .

Let ω be the set of all natural numbers.

Definition. Let X be a set. If X ≈ n for some n ∈ ω, X is said to be finite and

define |X| = n; otherwise, X is said to be infinite. We call |X| a finite cardinal if

X is finite; otherwise, |X| is an infinite cardinal.

Note. Every finite cardinal is a natural number and vice-versa.
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Definition. Let ℵ0 = |ω|.

Definition. Let X and Y be sets with κ = |X| and λ = |Y |. Define

1. κ+ λ = |X ∪ Y | where X ∩ Y = ∅,

2. κ · λ = |X × Y |,

3. κλ = |{f | f : Y → X}|.

Some basic properties of cardinal arithmetic are listed in the following theorem.

Theorem 2.1.1. Let κ, λ and µ be cardinals. Then

1. κ+ λ = λ+ κ,

2. (κ+ λ) + µ = κ+ (λ+ µ),

3. κ · λ = λ · κ,

4. (κ · λ) · µ = κ · (λ · µ),

5. κ · (λ+ µ) = κ · λ+ κ · µ,

6. κλ+µ = κλ · κµ,

7. (κ · λ)µ = κµ · λµ,

8. (κλ)µ = κλ·µ.

Definition. Let X and Y be sets with κ = |X| and λ = |Y |.

Then we say that

1. κ ≤ λ if there is an injection from X into Y , written X ⪯ Y ,

2. κ < λ if κ ≤ λ and κ ̸= λ.

Theorem 2.1.2 (Cantor-Bernstein Theorem). For any cardinal numbers κ and λ,

if κ ≤ λ and λ ≤ κ, then κ = λ.

Note that ≤ partially orders the cardinal numbers. Moreover, the following

theorem shows that ≤ also preserves cardinal arithmetic.
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Theorem 2.1.3. Let κ, λ and µ be cardinals such that κ ≤ λ. Then

1. κ+ µ ≤ λ+ µ,

2. κ · µ ≤ λ · µ,

3. κµ ≤ λµ,

4. µκ ≤ µλ, if µ ̸= 0 or κ ̸= 0.

Note that in the above theorem, if we assume κ < λ, we cannot replace ≤ in

each statement in the list by <. For example, ℵ0 + 1 = ℵ0 = ℵ0 + 2.

2.2 Ordinals

Definition. We say that a set A is a transitive set if and only if

a ⊆ A for all a ∈ A.

Definition. We say that α is an ordinal (number) if and only if α is a transitive set

and ∈ well orders α.

For example, every natural numbers and ω are ordinals.

Theorem 2.2.1. Every well-ordered set is isomorphic to a unique ordinal.

Definition. Let ON = {α | α is an ordinal}.

Definition. Let α, β be ordinals. We define α < β if and only if α ∈ β and define

α ≤ β if α < β or α = β.

Theorem 2.2.2. Let α, β, γ be ordinals. Then

1. α ≮ α,

2. if α < β and β < γ, then α < γ,

3. exactly one of the statements “α < β”, “α = β”, “β < α” is true,

4. any nonempty set of ordinals has a least element.
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In conclusion, the above theorem tell us that < well orders ON.

Definition. For a set A, let A+ = A ∪ {A}.

Theorem 2.2.3. If α is an ordinal, α+ is the least ordinal greater than α.

Theorem 2.2.4. If A is a set of ordinals, then
∪
A = supA.

Definition. Let α ̸= 0 be an ordinal. We say that α is a successor ordinal if α = β+

for some ordinal β, otherwise α is said to be a limit ordinal.

Furthermore, ordinal numbers also have arithmetic structure. In this thesis, we

only use the addition of ordinals.

Definition. Define the ordinal addition recursively as follows:

1. α + 0 = α,

2. α + β+ = (α + β)+,

3. α + λ =
∪
{α + ξ|ξ < λ} if λ is a limit ordinal.

Addition on ordinals is not commutative. For example,

1 + ω =
∪
{1 + n|n < ω} = ω ̸= ω + 1.

However, left addition preserves order.

Theorem 2.2.5. If α and β are ordinals such that α < β, then γ + α < γ + β for

any ordinal γ.

2.3 Axiom of Choice

Definition. A choice function f for a set X is a function f : X \ {∅} →
∪
X such

that for any x ∈ X \ {∅}, f(x) ∈ x.

The following statements are some equivalent forms of the Axiom of Choice (AC).

1. Well-Ordering Theorem: Every set can be well-ordered.
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2. Cardinal Comparability: For any cardinal numbers κ and λ, κ ≤ λ or λ ≤ κ.

3. Every set has a choice function.

4. For every infinite cardinal κ, κ2 = κ.

Since the Axiom of Choice is equivalent to the Well-Ordering Theorem, if we

assume AC, then cardinal numbers can be defined as follows:

Definition. The cardinal number of a set A is the least ordinal α such that A ≈ α.

For example, |ω+| = ω since ω+ ≈ ω and every ordinal which is less than ω is

finite.

The following are consequences of AC.

Theorem 2.3.1 (Absorption law of arithmetic). For any cardinals κ and λ of which

at least one is infinite,

1. κ+ λ = max{κ, λ},

2. κ · λ = max{κ, λ} if min{κ, λ} ≠ 0.

More details about AC can be found in [8].

2.4 Cardinal numbers without AC

Since the Axiom of Choice is equivalent to the Well-Ordering Theorem, without

AC, we cannot guarantee that every set can be well-ordered. As a result, in gen-

eral, we cannot define the cardinal number of a set to be an ordinal. To solve

this problem, we can use Foundation Axiom and the rank function to define a

cardinal number of a set. However, the definition is not needed here. We use

only the fact that cardinal numbers are defined so that for any sets A and B,

|A| = |B| if and only if A ≈ B.

Since the Cardinal Comparability is equivalent to AC, without AC, we cannot

guarantee whether two infinite cardinals are comparable or not. In particular, infi-

nite cardinals may not be compared with ℵ0.
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Definition. A set X is Dedekind-infinite if ℵ0 ≤ |X|; otherwise, X is a Dedekind-

finite.

Note. Every Dedekind-infinite set is infinite but the converse is not necessarily true

without AC.

Theorem 2.4.1. A set X is Dedekind-infinite if and only if X ≈ Y for some

Y ⊂ X.

2.5 Weak forms of AC

Even though AC is equivalent to many important theorems, for example, Zorn’s

lemma, Tychonoff’s theorem, and “every vector space has a basis”, it also leads to

some counterintuitive results such as Banach-Tarski paradox. Thus some mathe-

maticians avoid using AC and sometimes use weaker forms of AC instead.

The following weak choice principles are relevant to our work. In the statements

below, n is a natural number greater than 1.

• ACn: Every family of n-element sets has a choice function. (This will be used

in Theorem 4.4 and Corollary 4.5.)

• AC≤n: Every family of nonempty sets with cardinalities less than or equal to

n has a choice function. (This will be used in Theorems 4.3,4.6 and Corollary

4.7.)
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CHAPTER III
Permutation Models

The Zermelo-Frankel set theory with atoms (ZFA) is a modified version of ZF, which

admits objects other than sets, called atoms. Atoms are objects which do not have

any elements.

For consistency results, we shall use permutation models, which are models of

ZFA. Proofs of all theorems in this chapter will be omitted. More details can be

found in [8, Chapter 4].

3.1 Permutation Models

Definition. Let S be a set. For each ordinal α, define Pα(S) recursively as follows.

1. P0(S) = S,

2. Pα(S) = Pβ(S) ∪ P(Pβ(S)) if α = β + 1,

3. Pα(S) =
∪
ξ<α

Pξ(S) if α is a limit ordinal.

Define P∞(S) =
∪

α∈ON
Pα(S).

We call P∞(∅) the kernel.

Throughout this section, let A be a set of atoms.

Theorem 3.1.1. P∞(A) is a model of ZFA.

Let M = P∞(A).

Definition. Let π be a permutation on A. We extend π by defining π(x), which

can also be written as πx, for every x in M recursively as follows.

π(∅) = ∅ and π(x) = {π(y) | y ∈ x}.
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Theorem 3.1.2. Let π be a permutation on A and let x, y ∈M. Then

1. x ∈ y if and only if πx ∈ πy.

2. π{x, y} = {πx, πy} and π(x, y) = (πx, πy).

3. If f is a function on a set X containing x, then πf is a function on πX and

(πf)(πx) = π(f(x)),

4. πx = x if x is in the kernel.

Definition. Let G be a group of permutations of A. A set F of subgroups of G is

a normal filter on G if for all subgroups H and K of G,

1. G ∈ F ,

2. if H ∈ F and H ⊆ K, then K ∈ F ,

3. if H ∈ F and K ∈ F , then H ∩K ∈ F ,

4. if π ∈ G and H ∈ F , then πHπ−1 ∈ F ,

5. for each a ∈ A, {π ∈ G | π(a) = a} ∈ F .

In the following, let G be a group of permutations of A and F be a normal filter

on G.

Definition. Let x ∈M. Define

symG(x) = {π ∈ G | πx = x}.

Note that symG(x) is a subgroup of G.

Definition. For x ∈M, x is called symmetric if symG(x) ∈ F .

The class V consisting of all hereditarily symmetric objects is called a permutation

model.

Theorem 3.1.3. The class V is a transitive model of ZFA which contains all the

elements of the kernel and A ∈ V.

Definition. A set I of subsets of A is a normal ideal if
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1. ∅ ∈ I,

2. if E ∈ I and F ⊆ E, then F ∈ I,

3. if E ∈ I and F ∈ I, then E ∪ F ∈ I,

4. if π ∈ G and E ∈ I, then π(E) ∈ I,

5. for each a ∈ A, {a} ∈ I.

Remark. The set of all finite subsets of A, denoted by fin(A) is a normal ideal.

Definition. For each x ∈M, define

fixG(x) = {π ∈ G | πy = y for all y ∈ x}.

Theorem 3.1.4. Let I be a normal ideal. Then

FI = {H | H is a subgroup of G such that fixG(E) ⊆ H for some E ∈ I}

is a normal filter.

In the following, I is a normal ideal.

Note. By Theorems 3.1.3 and 3.1.4, I has a corresponding normal filter FI and a

corresponding permutation model V. We call such permutation model, the permuta-

tion model determined by G and I.

Definition. For each x ∈M and each E ∈ I, we say

E is a support of x if fixG(E) ⊆ symG(x).

Remark. If V is a permutation model determined by G and I, then

1. x ∈ V if and only if x has a support and x ⊆ V ,

2. for each x ∈M and each E,F ∈ I, if E is a support of x and E ⊆ F , then F

is also a support of x.

Definition. Let π ∈ G and x ∈M. We say

1. π fixes x setwise if πx = x, i.e. π ∈ symG(x),

2. π fixes x pointwise if πy = y for all y ∈ x, i.e. π ∈ fixG(x).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12

3.2 Well-known Models

These following permutation models are used in this thesis.

The basic Fraenkel model

Definition. Let A be a denumerable set of atoms. Let G be the group of all permu-

tations on A. The basic Fraenkel model, VF0 , is the permutation model determined

by G and the normal ideal fin(A).

Theorem 3.2.1. [7, page 177] ACn fails in VF0.

The second Fraenkel model

Definition. Let the set of atoms A be the disjoint union of pairs Pn = {an, bn}

where n ∈ ω. Let G be the group of all permutations ψ on A such that ψ[Pn] = Pn

for all n ∈ ω. The second Fraenkel model, VF2 , is the permutation model determined

by G and the normal ideal fin(A).

Note that AC2 fails in this model since the set of atoms A is Dedekind-finite in

the model (see [7, page 178])

3.3 Transferable statements

Let V be a permutation model. A formula ϕ(x) is boundable if V |= ϕ(x)↔ ϕPγ(x)(x)

for some ordinal γ. A statement is boundable if it is the existential closure of a

boundable formula.

From the Jech-Sochor First Embedding Theorem (cf. [8, Theorem 6.1]), we have

that if a boundable statement holds in a permutation model, then it is consistent

with ZF.

From our consistency results in Chapter V, all statements that are shown to hold

in some permutation models are boundable and thus they are consistent with ZF.
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CHAPTER IV
Results in ZF

In this chapter, we shall investigate relations between the permutations with n non-

fixed points and the sequences with length n of a set, where n is a natural number

greater than 1.

To get started, we list the notations used in this chapter below.

Notation. For a set A and a natural number n, let

1. [A]n = {X ⊆ A | |X| = n},

2. [A]≤n = {X ⊆ A | |X| ≤ n},

3. fin(A) =
∪
k∈ω

[A]k,

4. seqn(A) = {f | f : n→ A},

5. seq(A) =
∪
k∈ω

seqk(A),

6. seq1−1
n (A) = {f ∈ seqn(A) | f is injective},

7. seq1−1(A) =
∪
k∈ω

seq1−1
k (A),

8. S(A) = {f : A→ A | f is bijective},

9. Sn(A) = {f ∈ S(A) | |{a ∈ A | f(a) ̸= a}| = n},

10. Sfin(A) =
∪
k∈ω
Sk(A),

and for π ∈ S(A), let (π) = {a ∈ A | π(a) ̸= a}, in other words, (π) collects all

elements in A that π permutes.

We write (a0; a1; . . . ; an) for the cyclic permutation such that

a0 7→ a1 7→ . . . 7→ an 7→ a0.
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Throughout, n is a natural number which is greater than 1, unless otherwise

stated.

First, by using some combinatorial argument, we have the following relations for

the case of finite sets.

Theorem 4.1. For any finite set X with |X| = m ≥ n,

|Sn(X)| ≤ |seq1−1
n (X)|.

Proof. Let X be a finite set with |X| = m ≥ n. For each A ∈ [X]n, define

Sn(X;A) = {π ∈ Sn(X) | (π) = A} and

seq1−1
n (X;A) = {f ∈ seq1−1

n (X) | ran(f) = A}.

Then Sn(X) =
∪

A∈[X]n
Sn(X;A), seq1−1

n (X) =
∪

A∈[X]n
seq1−1

n (X;A) and for any dis-

tinct A,A′ ∈ [X]n, we have

Sn(X;A) ∩ Sn(X,A′) = ∅ and seq1−1
n (X;A) ∩ seq1−1

n (X;A′) = ∅.

Hence

|Sn(X)| =
∑

A∈[X]n

|Sn(X;A)| =
∑

A∈[X]n

|Sn(A)| and

|seq1−1
n (X)| =

∑
A∈[X]n

|seq1−1
n (X;A)|.

Since for any A ∈ [X]n, we have Sn(A) ⊆ S(A) and |S(A)| = n! = |seq1−1
n (X;A)|,

we conclude that

|Sn(X)| =
∑

A∈[X]n

|Sn(A)| ≤
(
m

n

)
n! = |seq1−1

n (X)|

as desired.

Theorem 4.2. For any set X with |X| = n,

|Sn(X)| = n!

[
1

0!
− 1

1!
+ . . .+

(−1)n

n!

]
.
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Proof. Let X = {x1, . . . , xn} be a set. For each i ≤ n, define Xi = {π ∈ S(X) |

π(xi) = xi} and Xc
i = S(X) \Xi. Then

|Sn(X)| = |Xc
1 ∩ . . . ∩Xc

n| = |S(X)| − |X1 ∪ . . . ∪Xn|

and for any 1 ≤ l ≤ n and 1 ≤ i1 < . . . < il ≤ n, |Xi1 ∩ . . . ∩Xil | = (n− l)!.

By the inclusion-exclusion principle, we have

|X1 ∪ . . . ∪Xn| =
∑

1≤i1≤n

|Xi1 | −
∑

1≤i1<i2≤n

|Xi1 ∩Xi2 |+ . . .+ (−1)n−1|X1 ∩ . . . ∩Xn|

=

(
n

1

)
(n− 1)!−

(
n

2

)
(n− 2)! + . . .+ (−1)n−1

(
n

n

)
0!

= n!

[
1

1!
+ . . .+

(−1)n−1

n!

]
,

and so |Sn(X)| = n!
[

1
0!
− 1

1!
+ . . .+ (−1)n

n!

]
as desired.

Next, we give a relation between |Sn(A)| and |seq1−1
n (A)| for an infinite set A

under the weak form AC≤n. Later, we shall show in the next chapter that this

assumption cannot be removed.

Theorem 4.3. AC≤n implies that |Sn(A)| ≤ |seq1−1
n (A)| for every infinite set A.

Proof. Let A be an infinite set. By AC≤n, [A]≤n has a choice function, say F . Hence

every B ∈ [A]n has a linear order <B induced by the ordering on ω via the map

ϕB : |B| → B defined recursively by ϕB(k) = F (B\ϕB[k]).

For each π ∈ Sn(A) where (π) = {b1, . . . , bn} and b1 <(π) · · · <(π) bn, we define

f : Sn(A)→ seq1−1
n (A) by

f(π) = (π(b1), . . . , π(bn)).

We will show that f is an injection. Let π, ψ ∈ Sn(A) be distinct permutations. We

distinguish into cases below.

Case 1 (π) ̸= (ψ).

Since each entry of f(χ) is a member of (χ) and vice versa for any χ ∈ Sn(A),

f(π) ̸= f(ψ).

Case 2 (π) = (ψ).
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Hence there exists an integer 1 ≤ k ≤ n such that π(bk) ̸= ψ(bk) where (π) =

{b1, . . . , bn} and b1 <(π) . . . <(π) bn. Since π(bk) and ψ(bk) are the kth entries of f(π)

and f(ψ) respectively, f(π) ̸= f(ψ).

From the above proof, the theorem below shows that if we restrict the domain

of f to Cn(A) = {π ∈ Sn(A) | π is a cyclic permutation}, then AC≤n in the above

theorem can be weaken to ACn.

Theorem 4.4. ACn implies that |Cn(A)| ≤ |seq1−1
n (A)| for every infinite set A.

Proof. Let A be an infinite set. By ACn, there exists a choice function F : [A]n → A.

Now, define g : Cn(A)→ seq1−1
n (A) by

g(π) = (π(b), π(π(b)), . . . , πn(b)),

where b = F ((π)).

To show that g is an injection, suppose π, ψ ∈ Cn(A) are distinct permutations.

If (π) ̸= (ψ), then, for the same reason as Case 1 in the proof of the above

theorem, we have g(π) ̸= g(ψ).

Suppose (π) = (ψ). Since π and ψ are distinct cyclic permutations, πk(b) ̸= ψk(b)

for some 1 ≤ k ≤ n, where b = F ((π)). Since πk(b) and ψk(b) are the kth entries of

g(π) and g(ψ) respectively, g(π) ̸= g(ψ).

Note that for n ≤ 3, Sn(A) = Cn(A) for any set A with |A| ≥ 3. As a result,

from the above theorem, we obtain the following corollary.

Corollary 4.5. If n ≤ 3, then ACn implies |Sn(A)| ≤ |seq1−1
n (A)| for every infinite

set A.

Relations between |seq(A)| and |fin(A)| for infinite sets A have been studied in

[1]. The theorem below is a result which is related to our work.

Theorem 4.6. AC≤n implies that |seqn(A)| ≤ |fin(A)| for every infinite set A.

Proof. Cf. [1, Corollary 2.2].

Thus the following corollary follows immediately from the above theorems.
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Corollary 4.7. AC≤n implies that |Sn(A)| ≤ |fin(A)| for every infinite set A.

Next, we show relationships between |Sn(α)| and other related cardinals when α

is an infinite ordinal.

Theorem 4.8. For any infinite ordinal α, α ⪯ Sn(α).

Proof. Let α be an infinite ordinal. We define f : α→ Sn(α) by

f(β) =

(β + 1; β + 2; . . . ; β + n) if β + n < α,

(k + 2; k + 4; . . . ; k + 2n) if β + k = α ≤ β + n.

To show that f is an injection, suppose β < γ < α. We distinguish into cases as

follows:

Case 1 γ + n < α.

Then β + i < γ + n < α for all 1 ≤ i ≤ n and so

f(β) = (β + 1; β + 2; . . . ; β + n) ̸= (γ + 1; γ + 2; . . . ; γ + n) = f(γ).

Case 2 α ≤ β + n.

Since β < α ≤ β + n < γ + n, α = β + k and α = γ + l for some l < k ≤ n.

Hence f(β) = (k + 2; k + 4; . . . ; k + 2n) ̸= (l + 2; l + 4; . . . ; l + 2n) = f(γ).

Case 3 β + n < α ≤ γ + n.

Since (f(β)) = {β + 1, β + 2, ..., β + n} and

(f(γ)) = {k + 2, k + 4, ..., k + 2n} where γ + k = α,

(f(β)) is the set of n consecutive ordinals where n ≥ 2, meanwhile (f(γ)) is not.

Hence f(β) ̸= f(γ).

Fact 4.9. For any infinite ordinal α, α ≈ seq(α).

Proof. Cf. [4, Theorem 5.19].

Corollary 4.10. For all infinite ordinals α,

α ≈ seq1−1
n (α) ≈ seqn(α) ≈ Sn(α) ≈ Sn+1(α).
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Proof. Let α be an infinite ordinal. By Theorems 4.3 and 4.8 and Fact 4.9, we have

seq(α) ≈ α ⪯ Sn(α) ⪯ seq1−1
n (α) ⪯ seqn(α) ⪯ seq(α).

By the Cantor-Bernstein theorem, we have that α ≈ Sn(α) ≈ seq1−1
n (α) ≈ seqn(α).

Since n is arbitrary, we also have α ≈ Sn+1(α).

We have shown that if AC≤n is assumed, then |Sn(A)| ≤ |seqn(A)| for all infinite

sets A. Now we shift our focus to the other direction. It has been shown in [9,

Lemma 3.27] that for any set A with |A| ≥ 2n(n + 1), |seqn(A)| ≤ |S≤2n+1(A)|,

where S≤2n+1(A) is the set of permutations of A which move at most 2n+1 elements

of A. Now, we shall show that |seqn(A)| ≤ |Sn+1(A)| for any large enough finite set

A and |seq1−1
n (A)| ≤ |Sn+1(A)| for any infinite set A. First, we look at the finite

case.

Theorem 4.11. Let A be a finite set with |A| ≥ 3 · 2n + n. Then |seqn(A)| ≤

|Sn+1(A)|.

Proof. For convenience, let |A| = a. For any natural number n ≥ 1, we have

1

0!
− 1

1!
+ · · ·+ (−1)n+1

(n+ 1)!
≥ 1− 1 +

1

2
− 1

6
=

1

3
.

Since a ≥ 3 · 2n + n > 2n, a < 2(a− n) and so

|seqn(A)| = an < (2(a− n))n

< a · (a− 1) · . . . · (a− (n− 1))2n

≤ a · (a− 1) · . . . · (a− n+ 1)

[
a− n
3

]
≤ a · (a− 1) · . . . · (a− n)

[
1

0!
− 1

1!
+ . . .+

(−1)n+1

(n+ 1)!

]
=

(
a

n+ 1

)
(n+ 1)!

[
1

0!
− 1

1!
+ · · ·+ (−1)n+1

(n+ 1)!

]
= |Sn+1(A)|

as desired.

For the infinite case, we need some “large enough” finite set to construct an

injection.
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Lemma 4.12. There exists a natural number Kn ≥ 2n+1 such that for all natural

numbers k < n,

k!
(
n
k

)(
Kn

k

)
≤ (k + 1)!

(
Kn

k+1

)
.

Proof. Note that for any natural number x > n,

k!
(
n
k

)(
x
k

)
= k!

(
n
k

)
· x(x−1)...(x−k+1)

k!
and (k + 1)!

(
x

k+1

)
= (k + 1)! · x(x−1)...(x−k)

(k+1)!
.

Hence, for any natural number x such that k < n < x, the condition k!
(
n
k

)(
x
k

)
≤

(k + 1)!
(

x
k+1

)
is equivalent to

(
n
k

)
≤ x− k, that is, x ≥

(
n
k

)
+ k.

Therefore, x = Kn = max{2n + 1,
(
n
0

)
+ 0, . . . ,

(
n

n−1

)
+ n − 1} satisfies the in-

equalities.

We shall create an equivalence relation ∼ on seq1−1
n+1(X) which tells us that two

related sequences will generate the same cyclic permutation.

Definition 4.13. For any (a0, . . . , an), (b0, . . . , bn) ∈ seq1−1
n+1(X),

(a0, . . . , an) ∼ (b0, . . . , bn) iff there exists k ∈ ω such that al = bl+k for all l ∈ ω,

where the indices of ai and bi are considered in modulo n+ 1.

The lemma below shows that this definition gives the desired property.

Lemma 4.14. For any (a0, . . . , an), (b0, . . . , bn) ∈ seq1−1
n+1(X), we have

(a0, . . . , an) ∼ (b0, . . . , bn) iff (a0; . . . ; an) = (b0; . . . ; bn).

Proof. Let a = (a0, . . . , an) ∈ seq1−1
n+1(X) and b = (b0, . . . , bn) ∈ seq1−1

n+1(X). In this

proof, we consider the indices of ai’s and bi’s in modulo n+ 1.

(→) : Suppose that a ∼ b. Then there exists k ∈ ω such that for all l ∈ ω, we

have al = bl+k and so

(a0; . . . ; an)(al) = al+1 = bl+k+1 = (b0; . . . ; bn)(bl+k) = (b0; . . . ; bn)(al).

Thus these two permutations are equal.

(←) : Suppose that (a0; . . . ; an) = (b0; . . . ; bn). Then we have

(b0; . . . ; bn)(a0) = (a0; . . . ; an)(a0) = a1 ̸= a0.
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Since (b0; . . . ; bn) moves only elements in the set {b0, . . . , bn}, we conclude that a0 =

bk for some k ∈ ω. Hence for any s ∈ ω, we have

as = (a0; . . . ; an)
s(a0) = (b0; . . . ; bn)

s(bk) = bs+k

as desired.

Next, we shall construct a cyclic permutation from two injective sequences of

two disjoint sets.

Definition 4.15. Let X and Y be two disjoint sets and p and q be natural numbers

such that p, q ≥ 1. For each a = (a1, . . . , ap) ∈ seq1−1
p (X) and b = (b1, . . . , bq) ∈

seq1−1
q (Y ). We define a⌢b = (a1; . . . ; ap; b1; . . . ; bq).

Note that a⌢b ∈ Sp+q(X ∪ Y ).

We shall show that two concatenations give the same permutation if and only if

each corresponding “components” are equal.

Lemma 4.16. Let X and Y be two disjoint sets, p, q ≥ 1 be natural numbers,

a, a′ ∈ seq1−1
p (X) and b, b′ ∈ seq1−1

q (Y ) be such that a⌢b = a′⌢b′. Then we have

a = a′ and b = b′.

Proof. Let c = a⌢b = a′⌢b′ and cX = (c) ∩ X and cY = (c) ∩ Y. Let a =

(a1, . . . , ap), b = (b1, . . . , bq), a
′ = (a′1, . . . , a

′
p), and b′ = (b′1, . . . , b

′
q). From the con-

struction of c = a⌢b = a′⌢b′, there exists a unique pair (c∗, c∗) ∈ cX × cY such that

(c(c∗), c(c∗)) ∈ cY × cX . Since

c(ap) = b1, c(a
′
p) = b′1, c(bq) = a1, and c(b′q) = a′1,

where ap, a′p, a1, a′1 ∈ cX and b1, b
′
1, bq, b

′
q ∈ cY , ap = c∗ = a′p and bq = c∗ = b′q

Since c(ai) = ai+1 and c(a′i) = a′i+1 for all 1 ≤ i < p where c is injective, by

backward induction on i, we have a′i = ai for all 1 ≤ i ≤ p. Similarly, we have

b′j = bj for all 1 ≤ j ≤ q. We conclude that a = a′ and b = b′ as desired.

Now we are ready for the main theorem.

Theorem 4.17. For all infinite sets A, |seq1−1
n (A)| ≤ |Sn+1(A)|.
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Proof. Let A be an infinite set. By Lemma 4.12, there exists a natural number

Kn ≥ 2n+ 1 such that for all natural numbers k < n,

k!

(
n

k

)(
Kn

k

)
≤ (k + 1)!

(
Kn

k + 1

)
.

Since Kn ≥ 2n+ 1, we also have that
(
Kn

n

)
≤

(
Kn

n+1

)
.

Let X = {x1, x2, . . . , xKn} ⊆ A and for each natural number k ≤ n, we define

Ak = {(a1, . . . , an) ∈ seq1−1
n (A) | |{a1, . . . , an} ∩X| = k}.

It suffices to show that for each natural number k ≤ n, there exists an injection

fk : Ak → Sn+1(A) where f0, . . . , fn have disjoint images.

First we deal with the case k = n. From Lemma 4.14, we have that the map

[(a0, . . . , an)]∼ 7→ (a0; . . . ; an) is a well-defined injection and thus seq1−1
n+1(X)/∼⪯

Sn+1(A). Since

|An| = n!

(
Kn

n

)
≤ n!

(
Kn

n+ 1

)
=

1

n+ 1
|seq1−1

n+1(X)| = |seq1−1
n+1(X)/∼|,

there exists an injection fn : An → Sn+1(A) as desired.

Now, let k < n be a natural number. We may assume that 0, 1 /∈ A. We start

by defining functions iX , QX , and Q′
X from the same domain seq1−1

n (A) as follows:

iX(a1, . . . , an) = (ϵ1, . . . , ϵn),where ϵj = 1 if aj ∈ X and

ϵj = 0 otherwise, for each 1 ≤ j ≤ n,

QX(a1, . . . , an) = (ai1 , ..., aim) if {a1, . . . , an} ∩X = {ai1 , . . . , aim},

Q′
X(a1, . . . , an) = (aj1 , ..., ajl) if {a1, . . . , an} \X = {aj1 , . . . , ajl},

where the indices i1, . . . , im and j1, . . . , jl are increasing.

Define Bk = {iX(a) | a ∈ Ak}. We have that

|Bk × seq1−1
k (X)| =

(
n

k

)
k!

(
Kn

k

)
≤ (k + 1)!

(
Kn

k + 1

)
= |seq1−1

k+1(X)|.

Hence there exists an injection hk : Bk × seq1−1
k (X)→ seq1−1

k+1(X).

Now, we define fk : Ak → Sn+1(A) by

fk(a) = hk(iX(a), QX(a))
⌢Q′

X(a).
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Note that fk moves exactly k + 1 elements in X.

To show that fk is injective, let a, b ∈ Ak be such that fk(a) = fk(b). Then,

by Lemma 4.16, hk(iX(a), QX(a)) = hk(iX(b), QX(b)) and Q′
X(a) = Q′

X(b). Since

hk is injective, iX(a) = iX(b) and QX(a) = QX(b). Therefore we can retrieve the

sequence a from the information QX(a), Q
′
X(a), and iX(a) as follows:

Change the pth occurrence of 1 in the sequence iX(a) to QX(a)(p − 1) for each

1 ≤ p ≤ k and change the qth occurrence of 0 in the sequence iX(a) to Q′
X(a)(q− 1)

for each 1 ≤ q ≤ n−k. We can see that the resulting sequence is a. Since the values

of iX , QX , and Q′
X at a and b are equal, we can conclude that a = b. Therefore fk

is injective.

Finally, since for each natural number m ≤ n and each a ∈ Am, fm(a) moves ex-

actly m+1 elements in X, f0, . . . , fn have disjoint images. Thus
n∪

i=0

fi : seq1−1
n (A)→

Sn+1(A) is an injection.

Note that the above proof requires the choice of elements x1, x2, . . . ,

xKn from A. Thus, in the absence of AC, we cannot make such choices for in-

finitely many n. Therefore, from the above theorem, we cannot conclude that

|seq1−1(A)| ≤ |A|! for any infinite set A. It has been shown in [11, Theorem 3.1]

that this statement is not provable in ZF as well.

It is still questionable whether we can obtain a stronger result by replacing

seq1−1
n (A) in Theorem 4.17 by seqn(A). Shen and Yuan showed in [9, Corollary 2.23]

that for any set A, |seq(A)| = |seq1−1(A)| if and only if A = ∅ or A is Dedekind

infinite. For the set of sequences with length n, we also have the following result.

Theorem 4.18. For any Dedekind infinite set A,

|seqn(A)| = |seq1−1
n (A)|.

Proof. Let A be a Dedekind infinite set. Without loss of generality, suppose that

A ∩ (n× n) = ∅. Since there is a canonical bijection from A ∪ (n× n) onto A, it is

enough to construct an injection from seqn(A) into seq1−1
n (A ∪ (n× n)).

For each a = (a0, . . . , an−1) ∈ seqn(A) and k < n, let Ba,k = {l < k | al = ak}
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and define f : seqn(A)→ seq1−1
n (A ∪ (n× n)) by

f(a)(k) =

ak if Ba,k = ∅,

(minBa,k, |Ba,k|) otherwise.

To show that f is injective, let s, t ∈ seqn(A) be distinct sequences. Therefore

there exists a least l < n such that s(l) ̸= t(l). It is clear that f(s) ̸= f(t) if one

of f(s)(l), f(t)(l) is in n × n while the other is not. We are left to deal with two

following cases:

Case 1 f(s)(l), f(t)(l) ∈ A.

We have f(s)(l) = s(l) ̸= t(l) = f(t)(l). Hence f(s) ̸= f(t).

Case 2 f(s)(l), f(t)(l) ∈ n× n.

The minimality of l implies that s(k) = t(k) for all k < l. However, since

s(l) ̸= t(l), Bs,l∩Bt,l = ∅ and both sets are not empty because f(s)(l), f(t)(l) ∈ n×n.

Therefore minBs,l and minBt,l, which are the first coordinates of f(s)(l) and f(t)(l)

respectively, are not equal.

We conclude that f(s) ̸= f(t). Then f is injective, so

|seqn(A)| ≤ |seq1−1
n (A ∪ (n× n))| = |seq1−1

n (A)|.

However, since seq1−1
n (A) ⊆ seqn(A), we must have that |seq1−1

n (A)| = |seqn(A)| as

desired.

Thus the following corollary follows immediately from Theorems 4.17 and 4.18.

Corollary 4.19. For all Dedekind infinite sets A, |seqn(A)| ≤ |Sn+1(A)|.
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CHAPTER V
Consistency Results

For relative consistency results, we shall work in permutation models.

First, we use the basic Fraenkel model VF0 . We have shown in Theorem 4.17

that “|seq1−1
n (X)| ≤ |Sn+1(X)| for any infinite set X” is provable in ZF. Now, we

show that the subscript n+ 1 cannot be reduced to n. Let A be the set of atoms of

VF0 .

Theorem 5.1. VF0 |= |seq1−1
n (A)| ≰ |Sn(A)|.

Proof. Assume there is an injection f : seq1−1
n (A) → Sn(A) with a support E. Let

M ⊆ A\E be such that |M | = n and let u ∈ seq1−1
n (M). So ran(u) =M .

Suppose that there is v ∈ M \ (f(u)). We select w ∈ A\(E ∪ (f(u))) which is

distinct from v and let τ = (v;w). Since τ ∈ fixG(E ∪ (f(u))),

f(u) = τf(u) = (τf)(τu) = f(τu)

but, since v ∈ ran(u), τu ̸= u whereas f is injective, a contradiction.

Thus M ⊆ (f(u)). Since |M | = n = |(f(u))|, M = (f(u)). Thus f(s) ↾ M ∈

Sn(M) for all s ∈ seq1−1
n (M). Since f is an injection, |seq1−1

n (M)| ≤ |Sn(M)| but

|seq1−1
n (M)| = n! > |Sn(M)|, a contradiction.

Intuitively, among the sets of permutations of a set with finitely many non-fixed

points, it seems the size of the set with smaller number of non-fixed points is less

than or equal to those with greater numbers. However, in this model, we show that

such relation does not generally hold.

Theorem 5.2. VF0 |= |Sn(A)| ≰ |Sn+1(A)|.
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Proof. Suppose there is an injection f : Sn(A) → Sn+1(A) with a support E such

that |E| ≥ n + 1. Let L = |Sn+1(E)| + 1, M1, . . . ,ML be distinct subsets of A\E

with cardinality n, and π1, . . . , πL be permutations of A such that (πi) =Mi for all

1 ≤ i ≤ L.

Let 1 ≤ t ≤ L. To show that (f(πt)) ⊆ E ∪Mt, suppose to the contrary that

there is y ∈ (f(πt)) such that y ̸∈ E ∪Mt. Then y = f(πt)(x) for some x ∈ A such

that x ̸= y.

Case 1 x ∈Mt.

Let z ∈ A\(E ∪Mt ∪ {y}) and σ = (y; z). Then σ fixes E ∪Mt pointwise and so

z = σ(y) = σ(f(πt)(x)) = (σf(σπt))(σx) = f(πt)(x) = y

but y ̸= z.

Case 2 x ∈ A \Mt.

Since |Mt| = n, |(f(πt))| = n + 1, and x, y ∈ (f(πt)) \Mt, there exists r ∈ Mt

such that f(πt) fixes r. Let s ∈ A\(E ∪Mt ∪ (f(πt))) and τ = (r; s). Then τ fixes

E and f(πt) fixes {r, s} pointwise. Hence

f(πt) = τf(πt) = (τf)(τπt) = f(τπt)

but τπt ̸= πt whereas f is an injection.

Therefore, (f(πt)) ⊆ E ∪Mt. Since |{f(πi) | i ∈ {1, . . . , L}}| = L > |Sn+1(E)|,

there exists s ∈ {1, . . . , L} such that f(πs) ↾E /∈ Sn+1(E). Hence, since |Ms| = n <

n + 1 = |(f(πs))|, there exists w ∈ Ms such that f(πs)(w) ∈ E. Since πs fixes E

pointwise and ππ = π for all π ∈ fixG(E), we have

f(πs)(w) = πs(f(πs)(w)) = (πsf)(πsπs)(πsw) = f(πs)(πsw)

but πs(w) ̸= w whereas f(πs) is injective, a contradiction.

It follows from Theorems 4.3 and 4.17 that AC≤n implies |Sn(X)| ≤ |Sn+1(X)|

for any infinite set X. The above theorem tells us that, in the absence of AC≤n,

“|Sn(X)| ≤ |Sn+1(X)| for any infinite set X” may fail. Since this statement is not

provable in ZF, this condition in Theorem 4.3 cannot be removed as well. However,
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we shall give a model in which |Sn(X)| ≰ |seqn(X)| for some infinite set X by

modifying the second Fraenkel model as follows:

Let the set of atoms A =
∪
{Pm|m ∈ ω} where |Pm| = n for all m ∈ ω and all

Pm’s are mutually disjoint. Let G be the group of all permutation of A which fix

each Pm setwise, i.e, π[Pm] = Pm for all m ∈ ω. Let VFn be the permutation model

induced by the normal ideal fin(A).

Theorem 5.3. VFn |= |Sn(A)| ≰ |seqn(A)|.

Proof. Assume there is an injection f : Sn(A) → seqn(A) with a support E =∪
{Pm | m ≤ k}. Let ψ be a permutation of A such that (ψ) = Pl for some

l > k. Suppose f(ψ)(i) ̸∈ E for some i < n. Then f(ψ)(i) ∈ Pt for some t > k. Let

πt be a permutation of A such that (πt) = Pt and if t = l, let πt = ψ. Then πtψ = ψ

and πt ∈ fixG(E). Hence

πt(f(ψ)(i)) = (πtf)(πtψ)(i) = f(ψ)(i)

but πt moves all elements of Pt, a contradiction.

Therefore each entry of f(ψ) must be in E. This leads to a contradiction since

seqn(E) is finite but {f(χ) | χ ∈ Sn(A) and (χ) = Pr for some r > k} is infinite

whereas f is injective.

Actually, the statement in the above theorem also hold in VF0 as shown below.

Theorem 5.4. VF0 |= |Sn(A)| ≰ |seqn(A)|.

Proof. Assume there is an injection f : Sn(A) → seqn(A) with a support E. Let

π ∈ Sn(A\E). Suppose to the contrary that there is x ∈ (π) \ ran(f(π)). We select

y ∈ A\(E ∪ (π) ∪ ran(f(π))) which is distinct from x and let τ = (x; y). Since

τ ∈ fixG(E ∪ ran(f(π))), f(π) = τf(π) = (τf)(τπ) = f(τπ) but τπ ̸= π whereas f

is injective, a contradiction. Thus (π) ⊆ ran(f(π)). Since |(π)| = n ≥ |ran(f(π))|,

(π) = ran(f(π)). Thus f(π) ∈ seq1−1
n ((π)). Since π ∈ fixG(E) and ππ = π for all

π ∈ fixG(E), π(f(π)) = (πf)(ππ) = f(π) but π(f(π)) ̸= f(π) because the first entry

of f(π) must be moved by π, a contradiction.
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The result from all theorems in this section can be transferred to ZF by using

the Jech-Sochor First Embedding Theorem (cf. [8, Theorem 6.1]). For example,

from Theorem 5.3, we have that “∃X(|Sn(X)| ≰ |seqn(X)|)” holds in VFn . Let

ϕ(X) be a formula which represent “|Sn(X)| ≰ |seqn(X)|”, i.e. “∀f(f : Sn(X) →

seqn(X) is not injective)”. We can see that V |= ϕ(X) ↔ ϕPn+5(X)(X). Hence

ϕ(X) is boundable, and so is the statement “∃X(|Sn(X)| ≰ |seqn(X)|)”. Therefore

this statement is consistent with ZF. The results from Theorem 5.1 and 5.2 can be

transferred to ZF in a similar way.

It is known that ACn fails in VF0 (cf. [7, page 177]). Obviously, ACn fails in

VFn as well since the set of atoms of this models is Dedekind finite in the model.

Since AC≤n implies ACn, AC≤n fails in these models too. This fact also follows from

Theorem 4.3 and 5.3.
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CHAPTER VI
Conclusion

In conclusion, our main results in ZF together with related consistency results are

listed below.

1. AC≤n implies that |Sn(A)| ≤ |seq1−1
n (A)| for every infinite set A and the

assumption can be weakened to ACn for n ≤ 3 but VF0 |= ∃A(|Sn(A)| ≰

|seqn(A)|) (Theorems 4.3 and 5.4 and Corollary 4.4).

2. For all infinite ordinals α, Sn(α) ≈ Sn+1(α) but VF0 |= ∃A(|Sn(A)| ≰ |Sn+1(A)|)

(Theorems 4.10 and 5.2).

3. For all infinite sets A, |seq1−1
n (A)| ≤ |Sn+1(A)| but VF0 |= ∃A(|seq1−1

n (A)| ≰

|Sn(A)|) (Theorems 4.17 and 5.1).

However, there are some problems left unsolved. For example,

1. Can AC≤n in the statement of Theorem 4.3 be replaced by some other weak

forms of AC, in particular, some weaker one?

2. Can the condition “A is Dedekind-infinite” in Theorem 4.19 be weaken?

3. Can Theorem 5.2 be generalized to “VF0 |= ∀m > n(|Sn(A)| ≰ |Sm(A)|)”?

These problems are left open for further research.
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