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KEYWORD: focal segmental glomerulosclerosis, genetic nephrology, whole-exome sequencing
Suramath Isaranuwatchai : Genetic Analysis of Focal Segmental Glomerulosclerosis in Thailand. Advisor: Prof. KEARKIAT

PRADITPORNSILPA, M.D. Co-advisor: Prof. KANYA SUPHAPEETIPORN, M.D.,Asst. Prof. ANKANEE CHANAKUL, M.D.

Background: The genetic variants spectra of focal segmental glomerulosclerosis (FSGS) vary among different populations.
Here we described the clinical and genetic characteristics of biopsy-proven FSGS patients in Thailand. We also used special staining in
renal biopsy tissue to describe protein expression related to the variants found by whole-exome sequencing (WES). Also, a functional study

in cells was studied to investigate the etiologic evidence of the variants found by WES.

Methods: Fifty-three unrelated FSGS patients without secondary causes were included in our study. Whole-exome
sequencing (WES) was subsequently performed. Immunohistochemistry (IHC) staining method was used to characterize the morphology
of renal pathology for clinical and genomic correlation. Cell-based split-luciferase-based trimer formation assay was used to investigate

whether the variances found by WES related to clinical, pathology, and genomic findings.

Results: Of 53 FSGS patients, 35 patients were adults (66.0%), and 51 patients were sporadic cases (96.2%). Clinical
diagnosis before kidney biopsy was steroid-resistant nephrotic syndrome (SRNS) in 58.5%, and proteinuric chronic kidney disease in
32.1%. Using WES, disease-associated pathogenic/likely pathogenic (P/LP) variants could be identified in six patients including the two
familial cases, making the P/LP detection rate of 11.3% (6/53). Of these six patients, two patients harbored novel variants with one in
the COL4A4 gene and one in the MAFB gene. Four other patients carried previously reported variants in
the CLCN5, LMX1B and COL4A4 genes. Protein expression study with IHC staining of Q5(1V) collagen in kidney tissues were positive in
kidney tissues of both P/LP variants and benign variants; therefore, IHC staining did not correlated with pathogenicity of variants classified.
However, cell-based split-luciferase-based trimer formation assay of 0L345(1V) collagen showed decreased in protein expression
of AL345(1V) collagen in the cells with P/LP variants; hence, predicted that these P/LP variants were the cause of FSGS in the respective

patients.

Conclusions: The overall P/LP variant detection rate by WES in biopsy-proven FSGS patients was 11.3%. The most identified
variants were in COL4A4. IHC staining of Q5(IV) collagen was not associated with pathogenicity of variants, but cell-based study can

successfully demonstrated the etiologic evidence of COL4A4 variants found by WES.
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CHAPTER |

BACKGROUND AND RATIONALE

Background

Focal segmental glomerulosclerosis (FSGS) is one of the most common

@2 Traditionally, FSGS was classified into

glomerular diseases in Thailand and worldwide
primary FSGS and secondary FSGS™. In practice, nephrologists will investigate the
secondary causes of FSGS, namely: obesity, reduced kidney mass, obstructive
nephropathy, human immunodeficiency virus (HIV) infection, or other viral infections and
medications. If no secondary causes are identified, the patients will be diagnosed with
primary FSGS. They will be treated with immunosuppressive medications with high-dose
corticosteroids as first-line treatment and calcineurin inhibitors as second-line treatment™.

In recent years, the monogenic mutation was identified as the cause of FSGS, and
genetic FSGS was established as a new entity of FSGS. Single gene mutation was
reported to cause FSGS in 10-44% of FSGS patients depending on the population
ethnicity and age group studied®”. The most common gene reported causing FSGS were
genes in podocyte slit diaphragms such as NPHST, NPHS2, WT1, ACTN4, TRPC6, INF2,
CD2AP and SCARB2®. Some recent studies reported genes in the glomerular basement

membrane (GBM), including COL4A3, COL4A4, and COL4A5, as the most common

causes of FSGS®. Due to high costs and scarcity of genetic testing, not every FSGS
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patient could be tested for genetic mutation. The selection of FSGS patients for genetic
testing is challenging, and recommendations for genetic testing in FSGS patients are
immature. Therefore, this study will be Thailand’s first genetic study of FSGS patients.
The American College of Medical Genetics and Genomics and the Association of
Molecular Pathology recommend genetic testing by next-generation sequencing (NGS)
and analysis according to joint consensus'”. This guideline will classify variants found by
NGS according to pathogenicity into five categories: pathogenic variants, likely
pathogenic variants, variants of uncertain significance (VUS), likely benign variants, and
benign variants. This classification shows the pathogenicity of a variant but does not show
that the variant is the cause of disease in a patient. Since the most common gene
mutations were in COL4A3/4/5 genes, we planned to further clarify the phenotype of our
FSGS cases by immunohistochemistry (IHC) staining of OL3(IV), Ql4(1V), and Q5(1V)
collagen in GBM of their kidney tissues. Moreover, a functional study in cells will be
conducted to confirm the etiologic evidence of the newly found mutation in COL4A3/4/5

genes.
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Research question

Primary research question

What is the genotypic spectrum and the most common genetic defect of FSGS

in the Thai population?

Secondary research question

- Can immunohistochemistry (IHC) staining of QL3(1V), 0l4(IV) and OL5(1V) collagen

in GBM of FSGS patients’ kidney tissues further clarify the phenotypes of FSGS

patients?

- Can functional analysis help elucidate the pathogenicity of the identified

variants?

Objectives

- To characterize the genetic defects associated with FSGS in Thai patients

- To elucidate the functional consequence of the identified candidate variants

associated with FSGS

Hypothesis

- There are genes responsible for FSGS in the Thai population and alterations in

these genes could have a functional impact.

- There are indications for genetic testing in FSGS patients. Some subgroups of

FSGS could benefit from genetic testing.
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- Immunohistochemistry (IHC) staining of QL3(1V), Ol4(IV) and OL5(IV) collagen in

GBM of FSGS patients’ kidney tissues might help clarify the phenotypes of FSGS

patients.

- Functional analysis will help elucidate the pathogenicity of the identified variants.

Research design

This is a single-center study of Thai FSGS patients in King Chulalongkorn

Memorial Hospital (KCMH).



Conceptual framework

FSGS
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+ In vitro split-luciferase based trimer formation assay of a345(1V) collagen: comparing
HEK293 cells transfected with wild-type plasmids and mutated plasmids
« Mutagenesis based on the identified variants compared with known pathogenic variants

Figure 1: Conceptual framework of the study
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ACMG = American College of Medical Genetics and Genomics, ciPod = conditionally immortalized podocytes, CKD

= chronic kidney disease, EM = electron microscopy, FSGS = focal segmental glomerulosclerosis, HEK = human

embryonic kidney, IF = immunofluorescent, IHC = immunohistochemistry, LM = light microscopy, NGS = next-

generation sequencing, SRNS = steroid-resistant nephrotic syndrome, SSNS = steroid sensitive nephrotic syndrome,

VUS = variants of uncertain significance, WES = whole-exome sequencing
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CHAPTER 1l
REVIEW OF LITERATURE
Focal segmental glomerulosclerosis and genetic testing

Focal segmental glomerulosclerosis (FSGS) is a glomerular disease, and a pattern
of glomerular injury, classified by the presence of segmental sclerosis of the glomerulus
in renal biopsy pathology. FSGS is an important cause of steroid-resistant nephrotic
syndrome in the pediatric population (about 7-10% of pediatric nephrotic syndrome) and
the adult population (about 20-30% of adult nephrotic syndrome)(w). FSGS is also one of
the leading causes of early-onset chronic kidney disease (CKD)(”). Moreover, FSGS is
one of the most recurrent diseases after kidney transplantation leading to kidney allograft
failure"'?. Currently, diagnosis of FSGS can be made only by kidney biopsy.

FSGS present to the renal clinic with various clinical presentations, including
asymptomatic proteinuria, nephrotic syndrome, or proteinuric CKD. After FSGS diagnosis
by kidney biopsy, FSGS will be classified into primary FSGS and secondary FSGS™. There
are many causes of secondary FSGS, namely, HIV infection, reduced kidney mass, and
medications, as shown in Table 19 If the secondary cause is identified, treatment will aim
directly at the secondary cause without giving the immunosuppressive medication.
Angiotensin-converting enzyme inhibitors (ACEi) and angiotensin receptor blockers

(ARB) might be used to alleviate proteinuria in case of heavy proteinuria from secondary



17

FSGS. Otherwise, FSGS will be classified as primary FSGS and will be treated with

. . . 4
immunosuppressive treatment as in Table 2

Table 1: Classification of FSGS

Primary (idiopathic) FSGS

Secondary FSGS

® \Virus-associated FSGS: HIV-associated nephropathy (HIVAN), parvovirus B19

® Medication-associated FSGS: heroin-nephropathy, interferon-QL, lithium,

pamidronate/alendronate, anabolic steroids

® Adaptive structural-functional responses are likely mediated by glomerular

hypertrophy or hyperfiltration

Reduced kidney mass: oligomeganephronia, unilateral kidney agenesis,

kidney dysplasia, cortical necrosis, reflux nephropathy, surgical kidney

ablation, chronic allograft nephropathy, any advanced kidney disease with the

reduction in functioning nephrons

Initially normal kidney mass: DM, hypertension, obesity, cyanotic

congenital heart diseases, sickle cell anemia

® Malignancy-associated FSGS: lymphoma
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® Nonspecific pattern of FSGS caused by kidney scarring in glomerular disease:

focal proliferative glomerulonephritis (IgA nephropathy, lupus nephritis, pauci-

immune glomerulonephritis), hereditary nephritis (Alport’s syndrome),

membranous nephropathy, Thrombotic microangiopathy

Genetic FSGS

DM = diabetes mellitus, FSGS = focal segmental glomerulosclerosis

Table 2: Treatment of primary FSGS

Treatment Medications and dosage

First-line regimen | Prednisolone 1 mg/kg/day (max 80 mg/day)

Or alternate-day prednisolone 2 mg/kg (max 120 mg)

Second-line Cyclosporine 3-5 mg/kg/day plus
regimen Low-dose prednisolone (0.15
Tacrolimus 0.1-0.2 mg/kg/day mg/kg/day) for 4-6 months, then

taper over 4-8 weeks

Third-line regimen | Combination of mycophenolate mofetil and high-dose dexamethasone

FSGS = focal segmental glomerulosclerosis

Recently, genetic mutation, previously described as familial FSGS, was also found

as one of the most common causes of sporadic FSGS® and was defined as a new
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category of genetic FSGS. Genetic FSGS was defined as FSGS caused by monogenic
mutation or single-gene mutation. Clinical characteristics of genetic FSGS vary widely due
to different genetic mutations ranging from asymptomatic proteinuria to nephrotic
syndrome to proteinuric CKD. Another noticeable clinical feature of genetic FSGS is that
it rarely respond to immunosuppressive medications, including corticosteroids. This data
led to the avoidance of immunosuppressive medication in patients with a confirmed
diagnosis of genetic FSGS. Another important clinical feature is that patients with genetic
FSGS rarely had a recurrence in allograft after kidney transplantation“s). In contrast with
primary FSGS, which commonly recurred in kidney allograftsm).

With the clinical benefit of correct diagnosis of genetic FSGS, genetic testing was
crucial for managing FSGS patients. However, only some FSGS patients could undergo
genetic testing since genetic testing was expensive and not available in every hospital.
There is no consensus on genetic testing recommendation for FSGS patients. Current
Kidney Disease: Improving Global Outcomes (KDIGO) guideline state that genetic testing
is not recommended in all FSGS patients(4). However, this guideline suggested that
genetic testing could be considered in FSGS patients with a strong family history or
syndromic features. Genetic testing might help determine the risk of FSGS recurrence
after kidney transplantation. Other studies suggested genetic testing might be

appropriate in different settings, such as in patients with steroid-resistant nephrotic
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syndrome (SRNS)“O’ " However, an acceptable recommendation for genetic diagnosis
in FSGS patients remains incomplete.

Early articles in genetic testing of FSGS usually found that the most common gene
mutations causing FSGS were genes in podocyte slit diaphragms such as NPHST,
NPHS2, WT1, ACTN4, TRPC6, INF2, CD2AP, and SCARB2"®. However, some recent
studies reported COL4A3, COL4A4, and COL4A5 as the most common causes of FSGS®.
Patients with COL4A3/4/5 gene mutation were identified as Alport syndrome (AS). AS is a
multi-system disorder involving kidneys, eyes, and hearing systems because OL3(1V),
Ql4(1V), and OL5(1V) collagen are the common component of the basement membrane in
these three organs. However, in FSGS patients with COL4A3/4/5 gene mutations, no extra-
renal manifestation was presented. The absence of extra-renal manifestation makes the
genotype-phenotype correlation challenging for geneticists to establish the correlation
between the COL4A3/4/5 gene mutations and FSGS. There was also some confusion
about the naming and classification of patients with COL4A3/4/5 gene mutations with or
without extra-renal manifestation, prompting nephrologists and geneticists to develop a

new classification system of AS.

Alport syndrome and its classifications

Alport syndrome (AS) is a disease presenting with renal failure, ocular and

auditory abnormalities caused by genetic mutation of COL4A3, COL4A4, or COL4A5
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genes. AS could be classified based on genetic mutation into two groups: X-linked AS
(XLAS), which has a genetic mutation in the COL4A5 gene on X chromosome, and
autosomal AS, which has a genetic mutation in COL4A3 and/or COL4A4 genes on
chromosome 2. However, in clinical practice, due to high cost and low availability of
genetic testing, patients with AS usually did not undergo genetic testing. Diagnosis of AS
will usually depend on clinical characteristics and pathognomonic renal biopsy tissue,
which includes basket weaving appearance of GBM in electron microscopy (EM).

The inherited disorders affecting GBM collagen include AS and thin basement
membrane nephropathy (TBMN) or familial benign hematuria. Historically, clinicians
classified these diseases based on a patient’s clinical characteristics. TBMN, as the name
represented, is diagnosed by EM showing thin GBM. Nephrologists used to believe that
TBMN was a benign disease which means it will not progress to CKD or end-stage renal
disease (ESRD). Hence, it was also known as familial benign hematuria. On the other
hand, AS is a disease that will progress to CKD and eventually ESRD. AS is characterized
by clinical syndrome involving kidneys, eyes and ears with compatible renal biopsy.
However, from a molecular basis, TBMN and AS both have the mutation in type-4 collagen
in the GBM. In adult GBM, type-4 collagen is a heterotrimeric molecule with the specific
association of QL3(1V), Ql4(1V), and QL5(IV) collagen chain in 1:1:1 ratio. These chains are
encoded by the genes COL4A3, COL4A4, or COL4A5. Since AS and TBMN result from

mutations in the same genes, the term “collagen-1V related renal disease” has been
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suggested but has not been generally adopted by nephrologists“e). The Alport Syndrome

Classification Working Group of International Society of Nephrology suggested using the

term “AS” instead of “collagen-IV related renal disease” due to the familiarity of many

clinicians

classification are shown in Table 3.

18)

. Thus, the current recommendation for AS and related disorders

Table 3: Classification system for AS and related disorders

from The Alport Syndrome Classification Working Group

Inheritance Affected gene(s) Genetic state Estimated risk of ESRD
X-linked COL4A5 Hemizygous (male) 100%
Hemizygous (female) Up to 25%
Autosomal COL4A3 or COL4A4 | Recessive (homozygous or 100%

compound heterozygous)

Dominant 20% or more among
those with risk factors for
progression, <1% in the
absence of risk factors*

Digenic COL4A3, COL4A4, COL4A3 and COL4A4 Up to 100%

and COL4A5

mutation in trans
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Inheritance Affected gene(s) Genetic state Estimated risk of ESRD

COL4A3 and COL4A4 Up to 20%

mutation in cis

Mutation in COL4A5 and Up to 100%

COL4A3 or COL4A4 (in the affected male)

AS = Alport syndrome, ESRD = end-stage renal disease, FSGS = focal segmental glomerulosclerosis,
GBM = glomerular basement membrane, SNHL = sensorineural hearing loss
*Risk factors for progression: proteinuria, FSGS, GBM thickening and lamellation, SNHL, or evidence

of progression in patient or family, genetic modifiers

As shown in Table 3, genetic testing can predict the estimated risk of ESRD.
Therefore, whenever possible, every AS case, diagnosed from clinicopathological data,
should go through a genetic study. In patients with typical AS, the mutation is detected in
almost 100% of cases' . It also should be noted that autosomal dominant AS, previously
known as TBMN, could progress to ESRD in more than 20% of cases depending on risk
factors, including proteinuria, FSGS, GBM thickening, GBM lamellation, SNHL, evidence
of progression in patient or family and other genetic modifiers. Thus, genetic testing can
also provide valuable knowledge of inheritance patterns for further genetic counselling.

As genetic testing was not readily available for most AS patients, clinicians used

other tools to diagnose AS and predict disease progression for many years. Since renal
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biopsy is a routine investigation in kidney patients, renal pathology, including
immunofluorescent study (IF), immunohistochemistry (IHC), and EM, have been the
mainstay for diagnosis and prognosis of AS. For EM, even though there are many
pathognomonic characteristics of AS in EM, many EM characteristics did not present in
early AS patients. Moreover, EM was not available in many hospitals due to high costs.
Also, paraffin block tissues or frozen tissues might produce distorted EM morphology.
Therefore, IF and IHC of QL5(IV) collagen offer a better advantage if clinicians suspect AS

after a renal biopsy.

IF and IHC staining of QL3(IV), 0l4(IV), and OL5(1V) collagen

Type-4 collagen staining is mainly studied in Q5(1V) collagen. IF and IHC staining
of AL5(IV) collagen in the patient’'s GBM were used for diagnosis as an absence of OL5(1V)
collagen means XLAS diagnosis. Negative staining of O5(IV) collagen correlated with
worse prognosis and more severe pathological changes in male XLAS patients“g).
However, patients with clinically milder XLAS were reported to have positive staining of
as5(1Vv) collagenm). A study by Becknell et al. demonstrated that a novel missense
mutation in the COL4A5 gene in non-collagenous domain strongly correlates with clinical
XLAS in a large family with 117 individuals across 7 generations, associated with positive
staining OL5(1V) Collagenm). The authors suspected that severe kidney diseases in this

family were not due to impaired deposition of OL30L40L5(IV) collagen but may reflect a
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specific functional impairment of the collagen network caused by the mutation. In short,
XLAS patients with truncating mutations usually lead to loss of GBM staining of O5(IV)
collagen. In contrast, a missense mutation or a mutation in non-collagenous domain can
be associated with loss or intact Q5(IV) collagen staining.

For autosomal AS, the absence of Q5(1V) collagen can also be used to diagnose
autosomal AS. Due to specific heterotrimerization of QL3(1V), 0l4(1V), and QL5(1V) collagens,
the absence of Q5(1V) collagen implies the absence of QL3014 0L5(1V) collagen, which can
also be used for diagnosis and prognosis of autosomal AS. There was a study
demonstrate weaker staining of O5(IV) collagen in a patient with a novel COL4A4
nonsense mutation®. Another IF study of Q5(IV) collagen in patients with autosomal
recessive AS revealed normal positive staining of OL5(1V) collagenm). This patient had
SNHL and had COL4A3 mutations in different alleles. The authors suspected that positive
collagen staining in this patient might be associated with his preserved renal function.
Normal or partial staining of OL5(IV) collagen has also been observed in patients with

29 Currently, there is no study about IF and IHC staining of

autosomal recessive AS"”
QL3(1V) and Ql4(IV) collagen in the diagnosis and prognosis of autosomal AS. Currently,
there is no study to determine whether there are any changes in 0L30L40L5(1V) collagen in

the GBM of FSGS patients with COL4A3, COL4A4, and COL4A5 mutations, which do not

have typical AS manifestation and typical AS lesions in kidney biopsy.
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Functional tests for COL4A3, COL4A4, and COL4A5 genes
Many variants in COL4A3, COL4A4, and COL4A5 genes were reported in AS and

FSGS patients. There were no hot spots for mutations in these genes, and most of the
variants reported were missense mutations. Hence, it was very challenging to classify
these variants with the American College of Medical Genetics and Genomics (ACMG)
guideline for variant interpretation because most of them will be classified as VUS.
Currently, there was a consensus for variant interpretation for COL4A3, COL4A4, and
COL4A5 genes, which helped clinicians easier to interpret variants found in these type-4

17, 26 . . . . . . . .
( ' The main difference in variant interpretation is that missense

collagen genes
mutations in the collagenous domain of COL4A3, COL4A4, and COL4A5 genes in glycine
residues will usually be classified as likely pathogenic variants. However, classification
with new recommendations leaves the same question unanswered, whether these variants
were indeed the cause of FSGS or AS in the patient. The staining of OL30L40L5(1V) collagen
only classified the patients’ phenotypes but did not identify whether or not the patients’
COL4A3/4/5 variants caused kidney diseases. This question leads to an attempt to find a
functional study of COL4A3, COL4A4, and COL4A5 genes to determine the etiologic
evidence of the variants in these three genes.

Currently, there are three main categories for functional tests of genetic mutation:

. . . . . . 27
animal models, three-dimensional organoids, and two-dimensional cell cultures””. There
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were different advantages and disadvantages of these three methods, as shown in Table

Table 4: Comparison between animal models,

three-dimensional organoids and two-dimensional cell cultures

Two-dimensional

Three-dimensional

Animal models

organogenesis

morphogenesis

cell cultures organoids
Physiologic
Limited Semiphysiologic Physiologic
representation
Vascularization and
No No Yes
immune system
High-throughput
Yes Yes No
screening
Good, but may have
Manipulability Excellent experimental Limited
variability
Yes, but only at
Biobanking Yes Yes
cellular level
Yes, but it may
require generation
Genome editing Yes Yes
of embryonic stem
cells
Yes, but often
Suitable for cell-cell
Modeling for confounded by
Poor communication,

complex tissue

environment
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Different functional tests are suitable for different circumstances, depending on
the objectives of the studies. Animal models offered physiologic representation including
vascularization and immune system; however, the complicated system and limited
manipulability made animal models difficult for studies in high-throughput screening of
many patients with variants in COL4A3, COL4A4, and COL4A5 genes. Functional studies
in kidney organoids are currently developed to understand the extracellular matrixes and
GBM of the kidneys%). Nonetheless, kidney organoids are still in early stage of
development; thus, currently premature for studying COL4A3, COL4A4, and COL4A5
genes. For two-dimensional cell cultures, there were two primary types of cells for the
functional studies of COL4A3, COL4A4, and COL4A5 genes: conditionally immortalized
podocytes (ciPod) and human embryonic kidney (HEK) cells. Functional studies of
COL4A3, COL4A4, and COL4A5 gene mutations in conditionally immortalized podocytes
(ciPod) have been done in past(zg’ ¥ However, due to the long cell-dividing time, rarity,
and vulnerability of the ciPod, functional studies in ciPod were not popular. Also, functional
studies in ciPod might not be suitable for high-throughput tests to verify the variants found
in COL4A3, COL4A4, and COL4A5 genes by genetic testing. In contrast, HEK cells are
easy to study, easy to manipulate with short cell-dividing time. With these advantages,
functional study in HEK cells can further be developed into a high-throughput screening

for many patients who underwent NGS.
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Cell-based split-luciferase-based trimer formation assay of 0l345(1V) collagen

In 2018, Omachi et al. used split-luciferase-based trimer formation assay to
determine the effects of variants in a cell model®”. The concept is that when cells express
proteins from COL4A3, COL4A4, and COL4A5 genes, three strands of type-4 collagen
will form heterotrimer of QL345(1V) collagen. The researcher will used split nanoluciferase
binary technology (NanolLuc BiT) system in which a subunit (large Bit [LgBiT], and small
BiT [SmBIT]) was fused to an Ql(IV) monomer. When the heterotrimer of O0L345(1V) collagen
was normal, LgBiT and SmBIT will fused normally, and luminescence could be measured,
as shown in Figure 2. If missense variants lead to malformation of heterotrimer, the LgBIiT

and SmBIT might not fused, and measured luminescence will be decreased.

A Transfection
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Figure 2: Cell-based Split-luciferase-based trimer formation assay of 0345(1V) collagen
A: Vectors for COL4A3-SmBIT, COL4A4 and COL4A5-LgBIT were transfected into HEK293 cells; B:

HEK293cells will express proteins from three vectors. If the structures of three protein were complete
and normal, SmBIT and LgBIT will fused properly. Luminescence can be measured and compared

between cells with wild-type vectors and cells with mutated vectors
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This cell-based technique can determine the etiologic evidence of COL4A5
variants found by NGS or Sanger sequencing. By comparing luminescence to the wild-
type, the luminescence of cells with a pathogenic variant was less than the luminescence
of wild-type cells™. This technique could also be used for high-throughput screening of
COL4A5 variants. However, with the method developed by Omachi et al., the same

method could be used for variants in COL4A3 and COL4A4 genes.
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CHAPTER Il

MATERIALS AND METHODS

Population and sample

- Target population Thai FSGS patients

- Study population Thai FSGS patients in KCMH

- Sample size

Having data in hand, and very limited knowledge about the variability in clinical

characteristics within groups and most importantly we have no single outcome variable:

formal sample size calculation is unnecessary. However, according to previous data,

about 10-40% of FSGS patients have positive genetic testing. Therefore, at least 10 FSGS

patients should be included to guarantee one positive case in our study.

Inclusion criteria

Patients must meet the inclusion criteria as follows:

1. Patients with the age of one year and above

2. Patients who underwent kidney biopsy and had segmental sclerosis in either LM

orIF
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Exclusion criteria

1. Patients who had testing positive for anti-HIV antibody, hepatitis B antigen and
anti-HCV antibody.
2. Patients with secondary causes of FSGS which include:
a. obstructive nephropathy
b. systemic lupus erythematosus (SLE)
c. obesity with the body mass index above 40 kg/m2
d. use of medication known to cause FSGS, such as heroin, interferon-QL,
lithium, pamidronate, alendronate
e. conditions with reduced kidney mass including, oligometanephronia,

unilateral kidney agenesis, kidney dysplasia, surgical kidney ablation

Operational definition

1. Pediatric patients: aged 1-18 years
2. Nephrotic syndrome
A clinical syndrome defined by generalized edema with nephrotic-range
proteinuria (Pediatric patients: urine protein creatinine ratio [UPCR] > 2.0 or >3+
dipstick. Adult patients: urine protein more than 3.5 g/day or by UPCR more than
3.5) and hypoalbuminemia (serum albumin less than 3.0 g/dL) with or without

hypercholesterolemia (serum cholesterol more than 200 mg/dL) and lipiduria
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Steroid-resistant nephrotic syndrome (SRNS)

Pediatric patients: nephrotic syndrome, lack of remission at 4 weeks of therapy

with oral corticosteroid at 2 mg/kg/day.

Adult patients: nephrotic syndrome, does not respond to steroid treatment, a

dose equivalent to prednisolone 1 mg/kg/day for 16 weeks.

Steroid-sensitive nephrotic syndrome (SSNS)

Nephrotic syndrome patients who respond well to corticosteroid

treatment and did not meet the criteria as SRNS

Asymptomatic proteinuria

Patients who presented with any amount of proteinuria, did not have

generalized edema and estimated glomerular filtration rate [eGFR] more than 60

ml/min/1.73 m°.

Chronic kidney disease (CKD)

Patients with eGFR of less than 60 ml/min/1.73 m” for more than 3

months.

Early-onset CKD

CKD inpatients with aged less than 25 years.

End-stage renal disease (ESRD)

CKD patients who undergo maintenance dialysis, either hemodialysis

(HD) or peritoneal dialysis (PD), for more than 28 days.
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Study methodology
Screening and patient recruitment

We reviewed the renal pathology reports of patients who underwent kidney biopsy

at King Chulalongkorn Memorial Hospital from January 2000 to December 2020. Patients

who met the inclusion criteria and exclusion criteria listed above were then contacted by

telephone and made an appointment for counseling and recruitment at the renal clinic. At

the renal clinic, patients were informed about genetic testing for research purpose. The

participant had freedom in deciding whether to participate in the study or not. The

participants who decided to participate in genetic testing had to give written informed

consent for this study before starting the research protocol. The Ethic Committee of

Faculty of Medicine, Chulalongkorn University, approved the protocol of this study (Med

Chula IRB no.1516/2562) in compliance with the International guidelines for human

research protection as Declaration of Helsinki and International Conference on

Harmonization in Good Clinical Practice.

Genetic Counseling

All patients will be informed about the diagnosis of FSGS and how genetic testing

might facilitate the treatment of their FSGS. They will further be interviewed about the

clinical history of their illness and their family history of any renal diseases. They will be

informed about the purpose of this research. The patients will also be informed that if the
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result of genetic study might change the treatment, the results will be discussed with the

responsible clinicians for further appropriate treatment of the patients.

Blood sampling

3 ml of whole blood in an EDTA tube (about 2 teaspoons) would be drawn from

each patient for genetic testing with WES.

Data collection

Clinical characteristics and renal pathology were retrieved and reviewed. The

patient’s clinical presentations were classified into four main categories: asymptomatic

proteinuria, SSNS, SRNS, and proteinuric CKD.

Genetic testing

Genomic DNA was extracted from peripheral blood leukocytes. The DNA sample

was prepared as an lllumina sequencing library. The sequencing libraries were enriched

by TruSeg® Exome Kit (lllumina Inc., lllumina, San Diego, CA) and were sequenced onto

NextSeq 500 System (lllumina, San Diego, CA). Sequence reads were mapped against

UCSC hg19 using Burrows-Wheeler Alignment (BWA) software. Variant calling was

performed using GATK with HaplotypeCaller.
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Golden Helix Genome Browser (Nagoya, Aichi-pref., Japan) and BaseSpace

Variant Interpreter (lllumina, San Diego, CA) were used for genetic data analysis. We used

the gene list to screen variants identified by WES. The gene list was shown in Table 5.

Eighty-seven genes were previously reported as causative genes or genes associated

with FSGS. Phenocopy disease genes, responsible for diseases that resembled FSGS

shown by renal histopathology such as AS or Fabry’s disease, were included in this gene

list.
Table 5: Gene list

No Gene Location | Inh. Protein
1 |ACSL4 Xg23 XL [ acyl-CoA synthetase long-chain family member 4
2 |ACTN4 19g13.2 AD [Alpha actinin 4
3 |ADCK4 19013.2 AR [Aarf domain containing kinase 4 (Coenzyme Q8B)
4 [AGXT 2937.3 AR | Alanine-glyoxylate aminotransferase
5 [ALGT 16p13.3 AR |Asparagine-linked glycosylation 1
6 |ALGT3 Xg23 XL [UDP-N-acetylglucosaminyltranstease subunit
7 |ALMST 2p13.1 AR | Centrosome and basal body associated protein ALMS1
8 |ANLN 7p14.2 AD [Anillin actin-binding protein
9 |APOE 19013.32 AR |[apolipoprotein E
10 [APOLT 22912.3 AR | Apolipoprotein L-1
11 |ARHGAP2414921.23 AD |Rho-GTPase activating protein
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No Gene Location | Inh. Protein

12 |ARHGDIA [17925.3 AR [Rho GDP-dissociation inhibitor alpha

13 |AVIL 12q14.1 AR |Advillin

14 | CD2AP 6p12.3 AD |[CD2-associated protein

15 |CD151 11p15.5 AR [CD151 antigen

16 |CFH 1931.3 AR [Complement factor H

17 |CLCNS Xp11.23 XL [ Chloride voltage-gated channel 5

18 | COL4A1 13034 AD [Collagen type 4 alpha 1

19 |COL4A3 2036.3 AD | Collagen type 4 alpha 3

20 |COL4A4 2036.3 AD | Collagen type 4 alpha 4

21 | COL4A5 Xqg22.3 XL |Collagen type 4 alpha 5

22 |COQ2 4g21.22 AR [ Cerevisiae homolog of Q2 (Coenzyme Q10)

23 |COQ6 14024.3 AR [Cerevisiae homolog of Q6 (Coenzyme Q6)

24 | COQ8B 19g13.2 AR | Coenzyme Q8B

25 |CRB2 9334 AR | Crumbs Drosophila homolog of 2, cell polarity complex
component

26 |CTNS 17p13.2 AR | Cystinosin, lysosomal cysteine transporter

27 |CUBN 10p13 AR | Cubilin

28 | DAAM?Z 6p21.2 AR |dishevelled associated activator of morphogenesis 2

29 |DGKE 17922 AR | Diacylglycerol kinase epsilon 64-KD

30 |E2F3 6p22.3 AD |E2F transcription factor 3

31 |EMP2 16p13.13 AR | Epithelial membrane protein 2

32 |EYA1 8913.3 AD |EYA transcriptional coactivator and phosphatase 1
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No Gene Location | Inh. Protein

33 |FAT1 4935.2 AR | Fat tumor suppressor Drosophila, homolog of 1

34 |[FNT 2935 AD |Fibronectin 1

35 |FRAST 4921.21 AR | Fraser extracellular matrix complex subunit 1

36 |[GLA Xg22 .1 XL | Galactosidase alpha

37 |GPC5 13931.3 AR | Glypican 5

38 [INF2 14932.33 AD [Inverted formin 2

39 [I/TGA3 17921.33 AR |Integrin alpha-3

40 |ITGB4 170251 AR | Integrin beta-4

41 | KANK1 9p24.3 AR | KN motif and Ankyrin repeat domain containing protein 1

42 |KANK2 19p13.2 AR [KN motif and Ankyrin repeat domain containing protein 2

43 |KANK4 1p31.3 AR | KN motif and Ankyrin repeat domain containing protein 4

44 |LAGE3 Xq28 XL |L antigen family member 3

45 |LAMAS 20013.33 | AR? | Laminin subunit alpha 5

46 |LAMB2 3p21.31 AR [Laminin beta-2

47 |LAMBS3 1932.2 AR | Laminin beta-3

48 | LMNA 1922 AD [Lamin A, Lamin C

49 |LMX1B 9033.3 AD [LIM hoemobox transcription factor 1 beta

50 |MAFB 20912 AD | MAF bZIP transcription factor B

51 |MAGI2 7921.11 AR | Membrane-associated Guanylate kinase, WW and PDZ
domains-containing 2

52 |MTTL1 M M | Transfer RNA. Mitochondrial, leucine 1
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No Gene Location | Inh. Protein

53 [MTTLZ2 M M | Transfer RNA. Mitochondrial, leucine 2
54 [MUCT 1922 AD |[Mucin 1, cell surface associated

55 |MYH9 22912.3 AD |Myosin heavy chain 9

56 |MYOTE 15022.2 AR [non-muscle Myosin 1E

57 |NEIL1 15q24.2 AR | Nei like DNA glycosylase 1

58 | NPHS1 19913.12 | AR |Nephrin

59 [NPHS2 1925.2 AR [Podocin

60 |NUPS3 16013 AR | Nucleoporin 93-KD

61 |NUP107 12915 AR | Nucleoporin 107-KD

62 |NUP160 11p11.2 AR [Nucleoporin 160-KD

63 |NUP205 7933 AR |Nucleoporin 205-KD

64 | NXF5 Xq22.1 XL |Nuclear RNA export factor 5

65 |OCRL Xg26.1 XL | Phosphatidylinositol bisphophate-5-phosphatase
66 |OSGEP 14g11.2 AR | O-sialoglycoprotein endopeptidase

67 |PAX2 10924.31 AD [Paired box 2

68 |PDSS? 6921 AR | Prenyl diphosphate synthase, subunit 2
69 |PLCE1 10p23.33 AR | Phospholipase C epsilon-1

70 [PMM2 16p13.2 AR |Phosphomannomutase 2

71 | PODXL 7932.3 AD | Podocalyxin like protein 1

72 |PTPRO 12p12.3 AR | Protein-tyrosine phosphate receptor-type O

(GLEPP1)
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No Gene Location | Inh. Protein

73 |RCANT1 21922.12 AD [regulator of calcineurin 1

74 | SCARB2 49211 AR [Lysosomal integral membrane protein 2

75 |SGPL1 10022.1 AR | Sphingosine-1-phosphate lyase 1

76 |SMARCAL1|2g35 AR | SWI/SNF-related matrix-associated actin-dependent
regulator of chromatin, subfamily A like protein 1

77 | SYNPO 5033.1 AD | Synaptopodin

78 |[TP53RK 20013.12 AR | TP53-regulating kinase

79 |TPRKB 2p13.1 AR | TP53RK- binding protein

80 |TRPC6 11922.1 AD | Transient receptor potential cation channel subfamily C
member 6

81 |TTC21B 2024.3 AR | Tetratricopeptide repeat domain-containing protein 21B

82 |UMOD 16p12.3 AD [Uromodulin

83 [WDR19 41p14 AR [WD (tryptophan-aspartic acid) repeat domain 19

84 |WDR73 15p25.2 AR |WD (tryptophan-aspartic acid) repeat domain 73

85 |WT1 11p13 AD |Wilms tumor 1

86 |XPO5 6p21.1 AR | Exportin 5

87 |ZEB1 10p11.2 AR | Zinc finger E-box binding homeobox 1

88 |ZMPSTE24 |1p34.2 AR | Zinc metalloprotease STE 24

AD = autosomal dominant, AR = autosomal recessive, Inh. = inheritance, M = mitochondrial, XL = X-

linked
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The algorithm used for variant interpretation was as follows. Five criteria (I-V) were
first applied, including (I.) coding consequences, (l1.) read depth more than 20, (IIl.) within
the gene list of 87 genes associated with FSGS, (IV.) with allele frequency of less than
1:1,000 in genes with autosomal recessive (AR) inheritance and less than 1:10,000 in
genes with autosomal dominant (AD) or X-linked (XL) inheritance, and (V.) one variant in
genes with AD or XL inheritance but two variants in genes with AR inheritance. All
candidate variants were evaluated by clinical geneticists and nephrologists and were then
classified according to joint consensus recommendations by the American College of
Medical Genetics and Genomics and the Association of Molecular Pathology(g). For
COL4A3, COL4A4, and COL4A5 genes, we used recommendations for variant

interpretation as previously suggested by expert consensus'**®

Immunohistochemistry (IHC) protocol

We used anti-collagen IV O3 (antibody produced in rabbit, product number
SAB4500376, Lot number 3112197, Sigma-Aldrich, Saint Louis, MO), anti-collagen IV Q4
(antibody produced in rabbit, product number SAB4500380, Lot number 3112198, Sigma-
Aldrich, Saint Louis, MO) and anti-collagen IV Q5 (antibody produced in rabbit, product
number SAB4500381, Lot number 3112199, Sigma-Aldrich, Saint Louis, MO) as primary
antibodies. At first, used normal renal tissue from nephrectomy cases and normal

surveillance kidney allograft. We calibrated our protocol until we got the most distinct
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protocol. Negative control was then applied for confirmation of negative IHC staining.

Negative control was selected from patients with clinical, pathological, and genetic

confirmation of male AS. For patients with variants in COL4A3/4/5, their renal pathology

tissues will undergo IHC protocol. The protocol was as follows:

1. Paraffin-embedded kidney biopsy samples sectioned to make 2 ym paraffin

section

2. Deparaffinization as following

a. Xylene: dip slide rack in xylene for 10 minutes

b. 95% alcohol: 10 dips in 95% alcohol for 3 times

c. Running tap water for 1 minute

3. Protease-induced epitope retrieval with proteinase K at room temperature then

wash with buffer, the timing for antigen retrieval with proteinase K is varied as in

Table 6

4. Block endogenous peroxidase activity by EnVision FLEX peroxidase-blocking

reagent for 10 minutes, then wash with buffer

5. Block non-specific background by EnVision FLEX Antibody diluent for 10

minutes, then wash with buffer

6. Primary antibody staining with anti-collagen IV O3, anti-collagen IV Ol4 or anti-

collagen IV QL5 overnight (> 16 hours), then wash with buffer

7. EnVision FLEX+ Rabbit Linker for 15 minutes, then wash with buffer



8. Secondary antibody for 20 minutes, then wash with buffer

9. DAB (diaminobenzidine) for 10 minutes, then wash with running tap water

10. Hematoxylin 5 dips, then wash with running tap water

11. Dehydration and mounting

43

The timing and concentration of primary antibodies differ for each collagen protein,

as shown in Table 6.

Table 6: Comparison between IHC staining protocol for

0L3(IV) collagen, Ol4(1V) collagen and OL5(1V) collagen

QL3(1V) collagen

Ql4(1V) collagen

QL5(1V) collagen

Antigen retrieval

Proteinase K

Proteinase K

Proteinase K

5 minutes 10 minutes 10 minutes

Primary antibody Conc. 1:50 Conc. 1:50 Conc. 1:50
Overnight > 16 Overnight > 16 Overnight > 16
hours hours hours

Linker 15 minutes 15 minutes 15 minutes
Secondary

20 minutes 20 minutes 20 minutes
antibody
DAB 10 minutes 10 minutes 10 minutes

Conc. = concentration, DAB = diaminobenzidine, IHC = immunohistochemistry
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After IHC staining was done, two certified renal pathologists will separately and

blindly examine the IHC staining of OL3(IV) collagen, Ql4(IV) collagen, and OL5(IV) collagen

of these patients without knowing the details of the cases. Due to the lack of previous

classification, we classified IHC staining of QL3(IV) collagen, Ql4(IV) collagen, and OL5(1V)

collagen as positive, equivocal, and negative. The positive result was defined as the same

staining intensity as the positive control, and the negative result as the same staining

intensity as the negative control and if the case was stained somewhere between, we

classified it as equivocal staining. If there was any incongruence in the results between

two renal pathologists, they would re-examine the IHC together to find agreeable results

without prior knowledge of previous results. The renal pathology results from the renal

pathologists were then correlated with patients’ genetic data.

Cell-based Split-luciferase-based trimer formation assay of 0l345(IV) collagen

Part 1: Normal COL4A3, COL4A4, and COL4A5 plasmids
The cell-based study was done in a human embryonal kidney (HEK)293 cells. We

used Collagen IV (COL4A3) (NM_000091) Human Tagged ORF Clone (Code:

ORGRC223010), Collagen IV (COL4A4) (NM_000092) Human Tagged ORF Clone (Code:

ORGRC211841), Collagen IV (COL4A5) (NM_000495) Human Tagged ORF Clone (Code:

ORGRC217680) as plasmids for producing COL4A3, COL4A4, and COL4A5 genes,

respectively. We also used NanoBiT® Protein:Protein Interaction (PPI) System for
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providing LgBIiT and SmBIT for protein fusion. Collagen plasmids and vectors are shown

in figure X. In our study, COL4A3 plasmid must be cloned to fused with pBiT2.1-C

[TK/SmBIT] Vector and COL4A4 plasmid with pBiT1.1-C [TK/LgBIT] Vector. We designed

a primer for PCR ampilification of COL4A3-SmBIT and COL4A4-LgBiT, as shown in Table

7.
Table 7: Primers for PCR amplification of COL4A3-SmBiT and COL4A4-LgBiT

Primer for Primer sequence GC(%) | Tm

Forward
GCTCAGGGGAATTCGCCACCATGAGCGCCCGGACC 66.7 | 72.7

COL4A3- primer

SmBIT Reverse
CACCACCGCTCGAGGTGTCTTTTCTTCAT 57.1 69.2

primer

Forward
GCTCAGGGGAATTCGCCACCATGTGGTCTCTGCAC 60.6 | 68.8

COL4A4- primer

LgBiT Reverse
CACCACCGCTCGAGGCTATACTTCACGCA 60.6 | 67.9

primer

After PCR cloning, we checked the sequence of COL4A3-SmBIT and COL4A4-

LgBIT by using primers as in Table 8.




Table 8: Primers for sequence checking of COL4A3-SmBiT and COL4A4-LgBiT
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Primer for Primer sequence GC(%) | Tm
COL4A3-SmBIT part 1 (A3Sm1) | TGTCCCCGGAAGAAATATATTT 364 | 51.5
COL4A3-SmBIT part 2 (A3Sm2) | TTCTCCTGGACTTCCAGGCACC 59.1 61.1
COL4A3-SmBIT part 3 (A3Sm3) | GGAAGTGAGGGAGTCAAGGGCA 59.1 61.1
COL4A3-SmBIT part 4 (A3Sm4) | GGTCCCCAGGAAATACAGGTCT 545 | 58.3
COL4A3-SmBIT part 5 (A3Sm5) | ACTGGGTTGTCCTGGAAAAATG 455 | 55.6
COL4A3-SmBIT part 6 (A3Sm6) | GGCCAGAGAGGAACCCCAGGAG 68.2 | 63.6
COL4A3-SmBIT part 7 (A3Sm7) | TGGGCCCTCCAGGAATCAGAGG 63.6 | 63.0
COL4A3-SmBIT part 8 (A3Sm8) | AATTGGGCCAAAAGGACCACCT 50.0 | 59.6
COL4A3-SmBIT part 9 (A3Sm9) | CTTGAGCCTTATATAAGCAGAT 36.4 | 49.7

COL4A4-LgBiT part 1 (A4Lg1) TGTCCCCGGAAGAAATATATTT 36.4 51.5
COL4A4-LgBiT part 2 (A4Lg2) AGGGGACAAAGGAGATAAGGGT 50.0 57.5
COL4A4-LgBiT part 3 (A4Lg3) CCTCGGGGGGATCCTGGTTCCT 68.2 | 65.0
COL4A4-LgBiT part 4 (A4Lg4) AGGGAGACTTGGGGCTCCCTGG 68.2 | 65.3
COL4A4-LgBiT part 5 (A4Lg5) TCCACCTGGTTTTCGTGGTGAC 54.5 59.6
COL4A4-LgBiT part 6 (A4Lg6) GCAGAGGGATGTCCTGGCGCAA 63.6 64.3
COL4A4-LgBiT part 7 (A4Lg7) GGTGCCCAGGTGATCACGGGAT 63.6 | 63.8
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Primer for Primer sequence GC(%) | Tm
COL4A4-LgBiT part 8 (A4Lg8) ACATGGATTTCCTGGGCCACCT 545 | 61.2
COL4A4-LgBiT part 9 (A4Lg9) | TACTGGCTGGCCAGCGCTGCGC 72.7 | 69.4

COL4A4-LgBiT part 10 (A4Lg10) | CCTTAAAAGAAAGCCAGGCCCA 50.0 | 57.9

Transfection and luminescence measurement

These two proteins (PRKACA and PRKAR2A) will combine after being expressed

by HEK293 cells forming a functional enzyme with a bright luminescence signal, which

can be detected. We used SmBIiT-PRKACA Control Vector and LgBiT-PRKAR2A Vector

as positive controls. For negative control, HEK293 cells without transfection were used.

Transfection was done via Amaxa™ 4D-nucleofector™ transfection protocol for

HEK293 [ATCC®] as follows:

1. Prepared HEK293 cells in T75 flask, for using 1 million HEK293 cells per

transfection

2. Prepared SF 4D-Nucleofector X solution with Nucleofector™ solution 82 uL and

supplement 18 ulL per transfection

3. Mixed 4D-Nucleofector™ solution with plasmids (plasmid concentration 1.0-1.5

mcg/plasmid)
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4. Mixed 1 million cells of HEK293 cells with solution from number 3 then pipette

into Nucleocuvette ™ Vessels

5. Put Nucleocuvette™ Vessels into Nucleofector™ X-unit machine using CM-130

program

6. Rinse the Nucleocuvette™ Vessels with cultured medium using an amaxa

certified pipette. Then transfer the cells into 6-well plate

After transfection, incubate 6-well plate in incubator for 24 hours, then change media

3-4 hours before sub-cultured into 96-well plate for the experiment. Cultured for another

24 hours, then measured luminescence at 48 hours after transfection. Luminescence

measurement was done using NanoBiT® Protein:Protein Interaction (PPI) System as

following protocol.

1. Replace medium in 96-well plate with Optimem 100 uL

2. Incubate 96-well plate for 20 minutes

3. Prepared Nano-Glo live cell reagent by mixing Nano-Glo live cell substrate and

Nano-Glo LCS dilution buffer in 1:19 ratio (20X dilution)

4. Add 25 uL of Nano-Glo live cell reagent to each well in 96-well plate

5. Incubate 96-well plate for another 20 minutes

6. Measure luminescence by Microplate machine

Results of luminescence should be reported as relative light unit (RLU).
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For the mutagenesis part, we designed primers for mutagenesis in COL4A4-LgBiT

plasmid, as in Table 9. We also select two known pathogenic mutations in COL4A4 gene,

as negative controls. Unfortunately, no pathogenic mutation in COL4A4 gene underwent

confirmed functional test for etiologic evidence of the mutation. Therefore, we select the

pathogenic mutations reported in multiple patients by multiple institutes. We selected

€.2906C>G, p.Ser969Ter as a nonsense mutation control and ¢.1396G>A, p.Gly466Arg

as missense mutation control.

Table 9: Primers for mutagenesis in COL4A4-LgBiT plasmid

Primer for Primer sequence GC(%) | Tm
Forward
TATTCCTGGATTTCCAGG 44.0 | 58.0
primer
905delG
Reverse
CTTTTTCTCCTTTTGCCC 44.0 | 58.0
primer
Forward
GGACCTCCAGaGGATCATGAAG 55.0 | 61.0
primer
1805G>A
Reverse
TGGATCCCCTTTTTCTCC 50.0 | 61.0
primer
Forward
AGGTTTTCCCaGAGAAAGAGGAAAGCCTG 48.0 | 68.0
primer
2752G>A
Reverse
GGGAAACCAGGCAGCCCC 720 | 72.0
primer
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Primer for Primer sequence GC(%) | Tm
Forward

Non-sense GCTATCATTTgACAAAAGGGAAC 39.0 | 58.0
primer

mutation
Reverse

control CATTTCTCCTTCATCTCC 44.0 | 56.0
primer
Forward

Missense TGGGAACCCCaGACCACAAGG 62.0 | 66.0
primer

mutation
Reverse

control ACACTACAGTATATCACACTTGATC 36.0 | 62.0
primer

After mutagenesis was done, we selected five clones from each mutagenesis for

sequencing. Then we pick the correct sequence for the experiment as in part 1. Results

of luminescence should be reported as relative light unit (RLU).
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CHAPTER IV

RESULTS

Patients’ characteristics

53 patients met the inclusion and exclusion criteria. The clinical, laboratory and

pathological characteristics of FSGS patients are shown in Table 10. 52.8% of patients

(28/53) were male. The most common age group at the time of kidney biopsy was 19-45

years (19/53 = 35.9%), followed by 45-50 years (13/53 = 24.5%), 6-18 years (12/53 =

22.6%), 1-5 years (6/53 = 11.3%) and age more than 60 years (3/53 = 5.7%). Two patients

had a family history of kidney diseases (2/53 = 3.8%). Only one patient had extra-renal

manifestation compatible with Noonan syndrome. Two-thirds (35/53 = 66.0%) were adult

patients older than 18. The most common clinical diagnosis/syndrome was SRNS (31/53

= 58.5%), followed by proteinuric CKD (12/53 = 22.6%), SSNS (5/53 = 9.4%) and

asymptomatic proteinuria  (5/63 = 9.4%). Most of our patients received

immunosuppressive medications at some point during treatment. All FSGS patients who

received immunosuppressive medications received prednisolone as the first line of

treatment (40/53 = 75.5%). Calcineurin inhibitors, both cyclosporin and tacrolimus, were

the most common second line treatment, followed by cyclophosphamide and

mycophenolate mofetil. Some patients received many immunosuppressive medications

because they failed to respond to second line treatment. The mean follow-up time in our
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study was 9.5 years. Currently, most of our patients were identified as asymptomatic

proteinuria (20/53 = 37.7%) and proteinuria CKD (16/53 = 30.2%). 22.7% of our patients

(12/53) progressed to ESRD with a median time from FSGS diagnosis of 8 years.

Table 10: Clinical, laboratory and pathological characteristics of FSGS patients in our

study

Categories

Number of Patients (%)

Clinical characteristics

Sex

Male

28/53 (52.8%)

Age at kidney biopsy

Age 1-5 years
Age 6-18 years
Age 19-45 years
Age 45-60 years

Age > 60 years

6/53 (11.3%)
12/53 (22.6%)
19/53 (35.9%)
13/53 (24.5%)
3/53 (5.7%)

Family history of kidney diseases

Positive

2/53 (3.8%)

Extra-renal syndromic manifestation

Positive

1/53 (1.9%)

Clinical diagnosis/syndrome

Asymptomatic proteinuria
SSNS
SRNS

Proteinuric CKD

5/53 (9.4%)
5/53 (9.4%)
31/53 (58.5%)
12/53 (22.7%)

Immunosuppressive medications received

40/53 (75.5%)
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Categories

Number of Patients (%)

Prednisolone
Cyclosporin
Tacrolimus
Cyclophosphamide
Mycophenolate mofetil

Others

40/53 (75.5%)
17/53 (32.1%)
6/53 (11.3%)
8/53 (15.1%)
4/53 (7.5%)
2/53 (3.8%)

Mean time of follow-up

9.5 years

Current status

No proteinuria and normal creatinine
Asymptomatic proteinuria
Proteinuric CKD

ESRD

Dead

4/53 (7.5%)
20/53 (37.7%)
16/53 (30.2%)
12/53 (22.7%)

1/53 (1.9%)

Median time from FSGS diagnosis to ESRD

8 years

Pathological characteristics by light microscopy (N = 53)

Columbia classification of FSGS

Tip lesion
Hilar/Perihilar lesion
Cellular variant
Collapsing variant

Not otherwise specified (NOS)

11/53 (20.7%)
4/53 (7.5%)
2/53 (3.8%)
2/53 (3.8%)

34/53 (64.2%)

Pathological characteristics by immunofluorescent study (N = 42)

Negative or non-specific IF staining

Only segmental IgM and/or C3 staining

Mesangial IgM and/or C3 staining

Others*

17/42 (40.5%)

11/42 (26.2%)

13/42 (30.9%)
1/42 (2.4%)

Pathological characteristics by electron microscopy (N = 18)
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Categories Number of Patients (%)

Podocyte foot process effacement

® No 0/18 (0%)
® [ocal 12/18 (66.7%)
® Diffused 6/18 (33.3%)

Microvillous transformation

® No 2/18 (11.1%)

® [ocal 11/18 (61.1 %)

® Diffused 5/18 (27.8%)
Irregular GBM 10/18 (55.6%)
Multilayering of GBM 0/18 (0%)

CKD = chronic kidney disease, ESRD = end-stage renal disease, FSGS = focal segmental
glomerulosclerosis, GBM = glomerular basement membrane, IF = immunofluorescent study, IgM =
immunoglobulin M, SRNS = steroid-resistant nephrotic syndrome, SSNS = steroid-sensitive nephrotic
syndrome

*One other case had trace coarse granular staining of IgM, kappa, and lambda along the capillary

loop with focal linear C3 staining along Bowman'’s capsule

The most common FSGS subtype according to Columbia classification was not-

otherwise specified (FSGS, NOS) (34/53 = 64.2%), followed by tip lesion (11/53 = 20.7%),

hilar or perihilar lesion (4/53 = 7.5%), cellular variant (2/53 = 3.8%) and collapsing variant

(2/53 = 3.8%). IF was obtained in 42 patients. The majority had negative IF staining (17/42

=40.5%). Mesangial IF staining and segmental IF staining of IgM and/or C3 were present

in 12 cases (12/42 = 28.5%) and 11 cases (11/42 = 26.2%), respectively. EM was

obtained in 18 patients. All patients with EM had podocyte foot process effacement (FPE).

There were 12 patients (12/18 = 66.7%) with focal FPE and six patients (6/18 = 33.3%)
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with diffused FPE. Microvillous transformation was identified in 13 patients (13/18 =

72.2%). Irregular GBM was found in ten patients (10/18 = 55.6%). None of the patients in

our study had multilayering of GBM.

Genetic results

Of the 53 unrelated cases, 52 and one family underwent WES using only one

member (the proband; singleton), and three members (the proband and parents; trio),

respectively. Overall, six of 53 patients had pathogenic/likely pathogenic (P/LP) variants

(6/53 = 11.3%) as defined by ACMG criteria. Of the six variants identified, two were novel.

These variants included three missense, two nonsense, and one frameshift. Of these six

P/LP variants, three were found in the COL4A4 gene, one in the CLCN5 gene, one in the

LMX1B gene, and one in the MAFB gene. Detailed information on the clinical and

pathological of patients with P/LP variants is shown in Table 11. Of the six patients with

P/LP variants, two were pediatric patients, and four were adult patients. Four received

immunosuppressive medications during the course of their treatment; however, none of

them response to immunosuppressive medications. This data confirmed that patients with

genetic FSGS did not respond to immunosuppressive medications. Hence, genetic

testing is crucial for the management of non-secondary FSGS. Two had family history of

renal diseases. Three had nephrotic-range proteinuria and three had sub nephrotic-range

proteinuria. This data also confirmed that proteinuria in patients with genetic FSGS can
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be varied from sub nephrotic-range to nephrotic-range proteinuria. Three patients

progressed to ESRD and two patients progressed to proteinuric CKD. Columbia

classification of FSGS was hilar type in three patients (50%) and not-otherwise specified

(NOS) in three patients (50%). All of them had negative or segmental IF staining. EM

revealed focal podocyte FPE. Sequence alignment and conservation of the novel variants

are shown in Figure 3. Sequence alignment of both patients showed high read depth,

which confirmed the variants in all patients. Both amino acids; glycine in position 302 in

the COL4A4 gene for patient E and and cysteine in position 46 in the MAFB gene for

patient F; showed genetic conservation across many animal species including humans.

Genetic conservation across many animal species in these amino acids is supporting data

that an alteration of these amino acids might cause structural or functional changes in the

protein. Fifteen patients harbored variants of uncertain significance (VUS), as shown in

Table 12. Ten of patients with VUS presented with SRNS. Three patients progressed to

ESRD and four patients progressed to proteinuric CKD. VUS were found in many genes

including ACSL4, ALMST, ANLN, ARHGAP24, DAAMZ2, INF2, FN1, LMNA, LMX1B, MYH9,

PAX2, SYNPO and TRPC6. Further evaluation with genetic testing in patients’ families or

functional tests might be required to identify whether these VUS truly cause FSGS in these

patients or not.
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In subgroup analysis, the mutation detection rate in adult patients was 11.4%
(4/35). The mutation detection rate in pediatric patients was 11.1% (2/18). All patients with
a family history of renal diseases (2/2 = 100%) had P/LP variants, one with a novel variant,
c.905delG (p.Gly302ValfsTer23) in COL4A4, and the other with a known variant,
c.737G>A (p.Arg246GIn) in LMX1B. In 51 sporadic cases, the mutation detection rate
was 3.9% (2/51). Among patients presenting with SRNS, the mutation detection rate was
6.5% (2/31). Among patients presenting with SSNS, no disease-associated variants were
identified. There were some characteristic features in renal pathology associated with
genetic FSFS. All patients with genetic FSGS had hilar or NOS lesions in LM. None of them
had tip lesion or cellular or collapsing variant. All three genetic FSGS patients with EM
results had focal FPE with microvillous transformation.

The median age of disease onset and end stage renal disease (ESRD) of these
53 cases was 33 and 47 years, respectively. Among FSGS patients with disease-
associated variants, the median age of onset and ESRD was 42.5 and 48 years,
respectively.

The clinical and pathological characteristics of patients with P/LP variants are
shown in Table 11. Patient A presented with a febrile urinary tract infection at the age of
one year and a history of passing stones at four years of age. Investigations revealed
nephrotic-range proteinuria, hypercalciuria, and nephrocalcinosis. The urinary

concentration of low-molecular-weight proteins and urinary BZMG were not measured.
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Given the male gender, laboratory data and the absence of signs of other diseases, Dent
disease was primarily considered. He was briefly treated with high-dose prednisolone
with an absence of response. He underwent a renal biopsy and was diagnosed with
FSGS, NOS with focal FPE in EM. To establish a definitive molecular diagnosis, exome
sequencing was performed and a known hemizygous nonsense variant (c.2119C>T,
p.Arg707Ter) in the CLCN5 gene was identified, resulting in a diagnosis of Dent disease
type 169, Currently, he had good renal function and his proteinuria was controlled by an
angiotensin converting enzyme inhibitor (ACEI).

Patient B presented with SRNS and did not respond to prednisolone, cyclosporin,
and tacrolimus. His renal biopsy showed FSGS, NOS with negative IF staining. His renal
function rapidly declined until he reached ESRD six years after his initial presentation. His
father also had kidney transplantation (KT) at the age of 37. The pedigree is shown in
Figure 4A. Both were found to have a known missense variant (c.737G>A, p.Arg246Gin)
in the LMX18B gene™. Currently, patient B underwent peritoneal dialysis and is awaiting
KT.

Patient C presented with proteinuric CKD. Her urinalysis showed microscopic
hematuria without history of gross hematuria. She received no immunosuppressive
medication but was treated with an angiotensin receptor blocker (ARB). Her kidney biopsy

showed hilar FSGS with segmental IgM staining in IF. WES revealed a known missense
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variant in COL4A4 (c.1805G>A, p.Gly602GIu)™ *®. After 17 years of follow-up, she was
still at CKD stage 3b.

Patient D had SRNS, which did not respond to prednisolone. She did not have a
history of episodic macroscopic hematuria, but her urinalysis showed microscopic
hematuria. Her kidney biopsy showed hilar FSGS, negative IF staining and focal FPE in
EM. WES revealed a known missense variant in COL4A4 (c.2752G>A, p.GIy918Arg)(37‘ ),
After eight years of follow-up, she was at CKD stage 4 and treated with ARB.

Patient E presented with SRNS and did not respond to prednisolone. Her urinalysis
showed microscopic hematuria without history of gross hematuria. Her renal function
gradually declined until she reached ESRD in ten years. She also had a family history of
kidney disease, with her pedigree shown in Figure 4B. Her younger brother had a history
of dialysis, but he died before patient E was offered genetic testing. WES revealed a novel
deletion in COL4A4, leading to frameshift and premature stop codon (c.905delG,
p.Gly302ValfsTer32). Now she underwent hemodialysis, waiting for KT. Genetic mutation
in this family cannot be proven familial or de novo.

Patient F presented to our clinic with CKD and proteinuria of 5.04 g/day. He did
not receive any immunosuppressive medication. His renal biopsy showed FSGS, NOS
with focal FPE in EM. He was found to have a novel nonsense variant (c.138C>A,

p.Cys46Ter) in the MAFB gene. His renal function gradually declined until he reached

ESRD in 13 years. Currently, he underwent peritoneal dialysis, also waiting for KT.
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Figure 4: Pedigrees of two FSGS patients with positive family history

Patient B’s pedigree is shown in figure 4A. Patient E’s pedigree is shown in figure 4B.

Mutation analysis was performed in patients with green bar.

Genetic testing in a family of FSGS patients with positive family history

Patient B had a strong family history of renal diseases. Patient B himself presented

with SRNS, but his father presented with advanced stage CKD. At first, we did not know

that both patients, a father, and a son, had the same mutation because their clinical

presentation was very different. In 1999, patient 11-2 (Figure 4A), a 33-year-old man who

presented to our renal clinic with dyspnea and orthopnea was diagnosed with CKD stage

5 and pulmonary edema. He received treatment to delay CKD progression without kidney

biopsy as imaging showed bilateral small kidney size. Eventually, 8 months after being

presented to the clinic, he received the initiation of hemodialysis and continued for three

years before undergoing a deceased donor kidney transplantation. Six months post-
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transplant, he developed nephrotic-range proteinuria. The allograft biopsy revealed

thickening of glomerular capillary loops compatible with membranous nephropathy. He

had been put on angiotensin converting enzyme inhibitors (ACEls). Currently, he is 54

years of age and has a stable renal function with proteinuria of 0.6 gram per day. His latest

serum creatinine level was 1.7 mg/dL and 24-hour urine creatinine clearance was 55

ml/min.

In 2007, a son of patient II-2 (in Figure 4A), patient B, an 8-year-old boy, was

diagnosed with nephrotic syndrome. He had been treated with high-dose corticosteroid

for 3 months but did not respond. The kidney biopsy revealed FSGS pattern without

cellular proliferation (Figure 5). Immunofluorescence staining was negative for IgG, IgM,

and IgA. Electron microscopy (EM) showed extensive effacement of the podocyte foot

process without electron-dense deposition. He was diagnosed with steroid-resistant

primary FSGS and was switched to cyclosporine for two years. The proteinuria remained

in nephrotic range and a repeated kidney biopsy showed the progression of FSGS. His

renal function gradually declined and peritoneal dialysis was initiated when he was 15.

Currently, he is 21 years of age and on the waiting list for cadaveric kidney transplantation.
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pattern. Columbia classific |oy(o'f F8GS is NOS A scale bar in figure 1B equals 20 ym.

Figure 4A. Patient 1-2 dlegi ai_the_ageJJLBDA/eacSJNLtH unidentified kidney disease as

i ]}]\———"/(l

comorbidity. Patient lI-1 had the end-stage renal disease (ESRD) at the age of 49 years

and subsequently received a kidney transplant. However, he died from severe infection

seven months after the transplantation.
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GAGGTCTCGTCCAAGCCTTGCCAAAAGGTGAGG
c.726G>C c.737G>A Father
p.Ser242Ser p.Arg246Gilu -2

Lottt o

GAGGTCTCGTCGAAGCCTTGCCAAAAGGTGAGG

Patient B
c.737G>A (Son)
p.-Arg246Glu -2
GAGGTCTCGTCGAAGCCTTGCCGAAAGGTGAGG
Wild type mgthe'

Figure 6: PCR-Sanger sequencing of patient B’s family

PCR-Sanger sequencing revealed a missense mutation in the LMX7B gene [NM_002316.3,
C.737G>A, p.Arg246Glu] in family members 1I-2 (proband, father), and IlI-2 (son). There was a
synonymous variant in 1I-2 (father) [c.726G>C, p.Ser242Ser] which did not pass to his son and was

absent in II-3 (mother).

We further investigated the possibility of the same genetic defect in this family by

WES of the father (11-2) and his wife (lI-3). The analysis revealed that the father (II-2) had

a heterozygous for a previously reported pathogenic missense mutation, c.737G>A



72

(p.Arg246GIn) in the LMX1B gene (NM_002316.3), same as patient B. PCR-Sanger

sequencing confirmed the presence of this mutation in both patient B and his father as

shown in Figure 6. Notably, patient lI-2 also harbored a synonymous variant, c.726G>C,

resulting in the same amino acid (serine), but he did not pass it to his son. Re-evaluation

for extra-renal manifestations of both patients (patient B and his father) revealed normal

nails and normal elbows, knees, and pelvis by X-rays.

Renal pathology results

For positive control, the IHC staining of QL3(IV) collagen, Ol4(IV) collagen, and

Ql5(1V) collagen were inarguably positive, as shown in Figure 7. A five-year-old male

patient with clinical AS was a negative control. He had intermittent gross hematuria and

proteinuria with normal renal function. He also had mild right sensorineural hearing loss.

His eye examination was normal. He also had a family history of AS. Light microscopy

(LM) finding was normal and immunofluorescent study (IF) finding was non-specific.

Electron microscopy (EM) showed irregularly thin GBM with focal podocyte foot process

effacement. No GBM splitting or multi-layering was observed in EM. WES of this patient

revealed a novel pathogenic nonsense mutation (c.4599C>A, p.Cys1533Ter), which

confirmed the diagnosis of X-linked AS. IHC staining of QL3(IV) collagen, Ql4(IV) collagen

and QL5(1V) collagen of this patient is negative, as shown in Figure 7. This patient is 11

years old with normal renal function and minimal proteinuria.
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Figure 7:IHC staining of 0L 3(IV) collagen, Ol4(1V) collagen and O5(IV) collagen

Upper row: From left to right, IHC staining of QL3(1V) collagen, 0l4(1V) collagen and O5(1V) collagen of
positive control. Positive staining can be seen as brown line along glomerular basement membrane.
Lower row showed significantly weaker IHC staining of QL3(IV) collagen, 0l4(1V) collagen and QL5(1V)

collagen in negative control compared with positive control in upper row.

From WES results, we had three patients with P/LP variants in the COL4A4 genes,

which are patient C (c.1805G>A, p.Gly602Glu), patient D (c.2752G>A, p.Gly918Arg), and

patient E (c.905delG, p.Gly302ValfsTer32). Patient C’s renal tissue was discarded from

the pathology department because the biopsy was done more than 15 years ago.
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Therefore, we did IHC staining of OL3(IV) collagen, Ql4(1V) collagen and OL5(IV) collagen

in patient D, patient E, and the available renal tissues of the other FSGS patients in our

study. The staining of OL3(IV) collagen and Ql4(1V) collagen varied significantly among

patients. Therefore, we used only OL5(IV) collagen for interpretation. For FSGS patients

with pathogenic and likely pathogenic variants in COL4A4, both of them had positive

staining of OL5(1V) collagen, which means both patients express 0L345(1V) trimer in their

glomerular basement membrane (GBM) as in normal kidney of positive control. The IHC

staining of OL5(1V) collagen in positive control, negative control, patient with pathogenic

variant (patient E), and patient with likely pathogenic variant (patient D) are shown in

Figure 8.
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. | . . Likely pathogenic
Positive control Negative contro Pathogenic variant variant

(Alport syndrome) (c.905delG, p.Gly302ValfsTer23) (c.2752G>A, p.Gly918Arg)

Figure 8: Immunohistochemistry staining of Q5(IV) collagen

From left to right: IHC staining of OL5(IV) collagen in the positive control, negative control (a male
Alport syndrome with confirmed clinical and genetic diagnosis), a patient with pathogenic variant in
COL4A4 (patient E, ¢.905delG, p.Gly302ValfsTer23) and a patient with likely pathogenic variant in
COL4A4 (patient D, ¢.2752G>A, p.Gly918Arg). The IHC staining showed that IHC staining of QL5(1V)

collagen of patient D and E was positive despite having P/LP variant in the COL4A4 gene.

Cell study results

PCR amplifications for COL4A3-SmBIT vector and COL4A4-LgBiT vector were

done. The sequence of COL4A3-SmBIT vector was checked by nine primers (A3Sm1-

A3Sm9). The sequence of COL4A4-LgBIiT vector was checked by ten primers (A4Lg1-

A4Lg10). The sequencings were correct in both COL4A3-SmBIiT and COL4A4-LgBIT.

Figure 9 showed both vectors and their primers. Primers are shown with small colored

segments under both vectors, labelled A3Sm1 to A3Sm9 and A4Lg1 to A4Lg10. Primers

were designed to cover both targeted genes and nanoluciferases (SmBIT and LgBiT). The

sequencings of each primers were overlapped as shown in Figure 9.
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Figure 9: Sequence alignment of COL4A3-SmBiT and COL4A4-LgBiT Vectors

COL4A3-SmBIT and COL4A4-LgBiT vectors are showed with primer below the vectors. Primers were

designed to cover COL4A3 and COL4A4 genes and SmBIT and LgBIT.

We measured the concentration of plasmid DNAs for transfection as in Table 13.

Because we needed 1.50 ng of plasmid DNA for transfection, we calculated the plasmid

amount used for transfection as shown in Table 13. Then, we did the transfection

according to our protocol.
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Table 13: Plasmid DNA concentration

Amount used for
Plasmid DNA concentration
transfection
COL4A3-SmBIT 983.5 ng/uL 1.52 uL
COL4A4-LgBIT 997.9 ng/uL 1.50 uL
COL4A5 1,044.0 ng/uL 1.44 uL

After transfection, we measured the luminescence results for negative control (no

transfection) and wide type (COL4A3-SmBIT, COL4A4-LgBiT and COL4A5). The

luminescence of wild type will be used as a reference which will be referred as 100% and

can be used as positive control for split-luciferase-based trimer formation assay in

HEK293 cells. The luminescence of negative control was at 17.45% of RLU from cells

expressing wide type as shown in Figure 10. This result implied that untransfected

HEK293 cells did not have the same luminescence as the wild type.
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% of wild-type RLU  120%

100%
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Negative control Wide-type

Figure 10: Results from the luminometric measurement of wide-type and negative
control

The luminescence of negative control was at 17.45% of RLU from cells expressing wide type

(positive control).

After we successfully demonstrated that the system for cell-based split-luciferase-
based trimer formation assay in HEK293 cells can distinguished between wild-type and
negative control, we proceeded to mutagenesis with P/LP variants we found in our
patients. We selected the P/LP variants in patient C, who had a known missense variant
in COL4A4 (c.1805G>A, p.Gly602Glu), and patient D who had a known missense variant
in COL4A4 (c.2752G>A, p.Gly918Arg), and patient E who had a novel deletion in
COL4A4, leading to frameshift and premature stop codon (c.905delG,
p.Gly302ValfsTer32). We also used a known nonsense mutation (c.2906C>G,

p.Ser969Ter) and a known missense mutation (c.2906C>G, p.Gly466Arg) as controls. We
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did the mutagenesis and re-sequencing to confirm the mutation in plasmids, as shown in

Figure 11. The pink arrows showed the site of desired mutations. The above row showed

the sequences of wild-type plasmid. The below row showed the sequences of mutated

plasmids, from left to right, ¢.905delG, c.1805G>A, c.2752G>A, ¢.2906C>G, and

€.2906C>G. All five mutagenesis had the correct mutations as we desired.
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Wild-type Wild-type Wild-type Wild-type Wild-type
AAAAAGGTATT TCCAGGGGATCA TTCCCGGAGAA CATTTCACAAAA ACCCCGGACCA
A A A

Nonsense Missense
905delG 1805G>A 2752G>A Control Control
AAAAAGTATT TCCAGAGGATCA TTCCCAGAGAA CATTTGACAAA ACCCCAGACCA

Figure 11: PCR-Sanger sequencing of COL4A4-LgBiT plasmid after mutagenesis

compared with wild-type plasmid

The above row showed chromatograms of wild-type plasmid. The below row showed chromatograms
of mutated plasmids, from left to right, ¢.905delG, ¢.1805G>A, ¢.2752G>A, ¢.2906C>G, and

€.2906C>G.

After sequencing, we proceeded to transfection processes. We measured

plasmid DNA concentration as shown in Table 14. Because we needed 1.50 ng of plasmid

DNA for transfection, we calculated the plasmid amount used for transfection as shown in

Table 14. We did the transfection again with the same protocol.
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Table 14: Plasmid DNA concentration of COL4A4-LgBiT in mutagenesis

Amount used for
Plasmid DNA concentration
transfection
COL4A4-LgBiT: 905delG (patient 5) 895.9 ng/uL 1.67 uL
COL4A4-LgBiT: 1805G>A (patient 3) 1,028.3 ng/uL 1.46 uL
COL4A4-LgBiT: 2752G>A (patient 4) 950.0 ng/uL 1.58 uL
COL4A4-LgBIiT: nonsense control 992.1 ng/uL 1.51 uL
COL4A4-LgBIiT: missense control 1,028.6 ng/ulL 1.46 uL

After transfection, we measured luminescence results of the mutagenesis. The

luminescence in HEK293 cells that transfected with wild-type plasmids will be calculated

as 100% (Left in Figure 12). The results for mutagenesis are as follows (from left to right):

905delG (patient 5) was at 33.68% of RLU from cells expressing wide type, 1805G>A

(patient 3) was at 30.94% of RLU from cells expressing wide type, 2752G>A (patient 4)

was at 19.74% of RLU from cells expressing wide type, nonsense control was at 22.50%

of RLU from cells expressing wide type, and missense control was at 23.58% of RLU from

cells expressing wide type as shown in Figure 12. The luminescence of all five

experiments were significantly lower than the wild-type which implied that the

heterotrimers of OL345 collagen was not created or not formed correctly. Thus, SmBIT and
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LgBIT cannot fused properly and luminescence was measured significantly lower than the

positive control (wild-type).

% of wild-type RLU
120%

100% 100%
(+]
80%
60%
o 33.68%
40% ° 30.94%
0,
- h I h I -
| I I l
0%
Wide-type nonsense 905delG missense 1805G>A 2752G>A
control control

Figure 12: Results from the luminometric measurement of wide-type, three cases from
out cohort nonsense control and missense control

The luminescence of nonsense control and missense control were at 22.50% and 23.58% of RLU
from cells expressing wide type (positive control), respectively. The luminescences of cells
expressing mutated plasmid were at 33.68%, 30.94% and 19.74% of RLU from cells expressing wide

type (positive control) for ¢.905delG, ¢.1805G>A and c.2752G>A, respectively.
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CHAPTER V

DISCUSSION

In this study, we analyzed the clinical and genetic data of 53 biopsy-proven FSGS
patients. Using whole exome sequencing, P/LP variants were identified in six patients
(11.3%). All patients with a family history of renal diseases (2/2 = 100%) had P/LP variants.
In 51 sporadic cases, the mutation detection rate was 7.8% (4/51). The prevalence of
genetic FSGS in our study appeared to be lower than the previous study, which had a
mutation detection rate of around 11-26%, as shown in Table 15. This variation in the
prevalence of mutation detection rate might be due to different population races, age,
family history of renal diseases, and percent of consanguinity in the cohort.

Genetic testing is very important for management decisions, as 40 patients in our
cohort (75.5%) received immunosuppressive medications to treat presumed primary
FSGS. Only five patients (9.4%) responded to the treatment, and none of them were found
to harbor causative variants. These findings also supported previous recommendations

not to do genetic testing in SSNS patientsm)

because genetic testing in patients
presenting with SSNS yields a very low or negative results. 31 of them (58.5%) met the
criteria of SRNS. However, causative variants were identified in only two (6.5%). Half of

these patients with genetic FSGS (3/6 = 50%) did not receive any immunosuppressive

medication. This could occur because nephrologists decided not to prescribe
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immunosuppressive medications in 24.5% of our cohort, even though the patients had
FSGS with no apparent secondary causes. The reasons for not treating FSGS patients
with immunosuppressive drugs might include advanced glomerulosclerosis and IFTA in
kidney biopsy or clinical presentation not compatible with nephrotic syndrome. The
practice in KCMH was in line with the new 2021 KDIGO guideline for glomerular
diseases"”. Nephrologists in KCMH usually applied clinicopathological parameters to
select only some patients to be treated with corticosteroids, including the clinical
presentation of nephrotic syndrome and diffused podocyte foot process effacement in
EM.

The COL4 genes (COL4A3, COL4A4, and COL4A5), encode collagen type 4, are
essential for normal GBM. Mutations in these genes have been implicated as the cause
of Alport syndrome. Three of our patients (3/6 = 50.0%) had a disease-associated variant
in the COL4A4 gene, which was in line with previous studies *. In addition, several
studies have demonstrated that COL4A3-5 mutations are associated with FSGS
pathology. We identified three disease-associated variants in the COL4A4 gene in
unrelated patients. All were found at the conserved glycine residue (Table 2). Glycine
residues in inter-collagenous domains were highly conserved from H sapiens (humans)
to X tropicalis (frogs) and critical for collagens to be folded and function as normal
GBM®“. The missense mutations at the glycine residue are increasingly reported to be

likely pathogenic without a functional study. However, some of these missense mutations
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were re-classified as benign after functional studies were performed to evaluate the
molecular effect®. Therefore, further studies are required to confirm the disease-variant
association and elucidate the underlying mechanism.

Our study also emphasized the importance of intrafamilial variability in genetic
kidney diseases, as shown in patient B’'s family. The patient B family who had a LMX78
causative variant suggested an interesting intrafamilial and interfamilial variability of the
same mutation. We further reviewed the previous reports of patients with a known

missense variant (c.737G>A, p.Arg246GIn) in the LMX1B gene, as shown in Table 16.
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To date, there have been 31 cases of LMX7B-associated nephropathy with the

p.Arg246GIn in 20 different families, including ours (Table 16). Most of them (24/31 =

77.4%) are familial cases. The patients were reported across all ethnicities, including

White, Hispanic, and Asian, with the majority female (22/31 = 71.0%). Remarkably, they

had varied clinicopathological features, as shown in Table 16. Renal manifestations range

from non-nephrotic proteinuria with normal renal function to CKD presenting with

generalized edema and dyspnea. Among 17 cases with clinical information available, 7

patients (7/17 = 41.2%) were asymptomatic and 10 patients (10/17 = 58.8%) were

symptomatic. Clinical diagnosis was reported in 26 patients. Fourteen patients (14/26 =

53.8%) were diagnosed as non-nephrotic proteinuria with normal renal function. Ten

patients (10/26 = 38.5%) were diagnosed as steroid-resistant nephrotic syndrome. Two

patients (2/26 = 7.7%) were diagnosed with CKD with unknown etiology. All cases were

not correctly diagnosed the first time. Interestingly, none of the LMX7B-associated

nephropathy cases with the p.Arg246GIn had typical extrarenal manifestations of nail-

patella syndrome (NPS).

Patient B presented with steroid-resistant nephrotic syndrome at the age of 8 and

progressed to ESRD at 15 years, while his father presented with advanced CKD at 33.

Different severity of the same mutation could be caused by several factors, including

modifier genes and environmental factors. It has been demonstrated that renal
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manifestations in NPS could be very different in the same family. A study in one pair of
identical twins revealed rapidly progressive renal diseases to ESRD in one twin and non-
nephrotic proteinuria in the other®™. Modifier genes may play some roles in the difference
in the severity of LMX7B-associated nephropathy<57). There were reports that CLIM2,
COL4A3, COL4A4, COL4AS5, LDB1, and PAX2 were the modifier genes of LMX1B

mutation®®”. However, we did not find any pathogenic mutation in these genes.
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Figure 13: Algorithm for genetic testing and management of FSGS patients
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Our findings, combined with reviewed data from previous studies (Table 15),

emphasized the role of genetic testing in managing FSGS patients, as shown in Figure

13. The main indications for genetic testing include extrarenal syndromic manifestations,

a history of consanguinity, and a family history of renal diseases. The positive rate among

these patients is very high. Clinicians should note that a family history of dialysis or CKD

could be a clue for genetic testing, as discussed in patients B and E in our study. It should

be noted that clinical manifestations can be diverse and intrafamilial, and interfamilial

variations have been described in families with genetic FSGS, as discussed in LMX1B

gene and NPS. Our data also suggested that clinical syndrome and renal pathology

should be used to guide treatment. Patients who did not have nephrotic syndrome or

diffused podocyte FPE in EM should be evaluated for secondary causes. If secondary

causes were found, treatment should be directed at the secondary causes. If the causes

were unknown, these patients should be treated with renin-angiotensin-aldosterone

system (RAAS) blockade. It has been demonstrated that proteinuria reduction with RAAS

blockade was associated with slower CKD progression. For patients with nephrotic

syndrome and diffused podocyte FPE who were likely to be diagnosed with primary FSGS,

genetic testing would be recommended if they did not respond to corticosteroids before

changing the medication to calcineurin inhibitors or cyclophosphamide. Giving

immunosuppressive medications to these patients without genetic testing might lead to

infection and other adverse events without any clinical benefits.
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After FSGS patients progress to CKD, genetic testing may be of benefit when the
patients undergo KT. Recurrence of FSGS in the transplanted kidney is a troublesome
condition that requires intense treatment with plasmapheresis and immunosuppression.
Genetic FSGS is known to have a very low recurrence rate, reaching 0% in some studies;
however, recurrence can be as high as 50% in primary FsGs" . Knowing the genetic
causes before KT will be beneficial in managing after KT since recurrent FSGS can be
presented as early as the first day after KT. In many countries, including Thailand, to
prevent organ trafficking, living-donor KT is restricted only to family members. This might
create a significant problem if the family had a genetic disorder without knowing the exact
genetic defect. Taking one kidney from a donor with the variant causing FSGS could make
a donor turn into CKD oneself.

The genetic test of choice in FSGS patients is currently WES. It has been
demonstrated that most mutations causing genetic FSGS could be detected by WES.
Compared with a comprehensive gene panel, a re-analysis of the WES data could be
done. As new disease-associated genes have been increasingly identified, WES is better
than gene panels in evaluating patients with FSGS.

This study is also the first to demonstrate IHC staining of Q5(1V) collagen in FSGS
patients with COL4A3/4/5 variants and the first to correlate IHC staining with WES. The
IHC protocol could distinguish between positive IHC staining in normal renal allograft

tissue and negative IHC staining in the AS case. We hypothesized that FSGS patients with
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pathogenic and likely pathogenic variants would have negative IHC staining. However,

both FSGS patients with pathogenic and likely pathogenic variants had positive IHC

staining which mean IHC staining of Q5(1V) collagen does not predict the expression of

COL4A3/4/5 in the genomic variant of FSGS. IHC has been demonstrated to correlate with

phenotypic severity in patients with X-linked AS who have mutation in the COL4A5 gene.

The expression of COL4A3/4/5 in GBM of FSGS patients who had a pathogenic variant in

the COL4A3/4/5, which we hypothesized that there should be no expression, might be

due to other reasons. First, all previous studies that reported the correlation between IHC

and clinical severity of AS were exclusively studied in male X-linked AS with mutations in

the COL4A5 gene. A study with hemizygous female patients with mutations in the COL4A5

gene was lacking. The study in COL4A3 and COL4A4 genes was also lacking, even in

patients with clinical AS. Our patients are both female and had a heterozygous variant in

the COL4A4 gene; hence, IHC staining might not correlate with collagen protein

expression because another normal allele might be able to express enough protein in

GBM. Another possibility is that the IHC is not sensitive enough to detect the decrease in

protein expression of COL4A3/4/5 in GBM. Therefore, other functional studies might be

required for correlation between genomic variants and phenotype in FSGS patients with

COL4A3/4/5, such as advanced renal pathology study by super-resolution imaging and

airyscan laser scanning confocal microscope or cell-based study by split luciferase-

based trimer formation assay.
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This study is also the first study to use cell-based split-luciferase-based trimer

formation assay of QL345(1V) collagen for the study of COL4A3/4/5 gene variants in FSGS

patients. Our study was the first to use this method in evaluating the COL4A4 gene, which

successfully demonstrated decreased luminescence in all three P/LP variants in COL4A4.

The decreased luminescence in all three P/LP variants in COL4A4 was also correlated

with the negative controls, which were the known nonsense and missense mutations.

Therefore, we predicted these three variants in the COL4A4 gene, which were

C.1805G>A, p.Gly602Glu, C.2752G>A, p.Gly918Arg, and €.905delG,

p.Gly302ValfsTer32, caused FSGS in patient C, patient D and patient E, respectively.

However, as we only transfected the mutated COL4A4 plasmids into HEK cells, this

experiment might not reflect the situation in the real patients that had heterozygous

mutation of COL4A4 gene. The cell study might also be further improved by adding the

controls with positive control, which might use the known benign variant. If the cells

expressing known benign variant have the same luminescence as the cells expressing

wild-type, this might further confirm that this cell-based split-luciferase-based trimer

formation assay of QL345(1V) collagen can be further used for the screening of COL4A3/4/5

variants found in FSGS and AS patients.
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Conclusion

A monogenic cause was identified in 11.3% of FSGS patients. Most of the

causative variants were found in the COL4A4 genes. This is the first study to evaluate the

genetic etiology of patients with FSGS in the Thai population. The expression of

COL4A3/4/5 by IHC staining was not correlated with the type of the COL4A3/4/5 gene

variants classified by ACMG criteria. However, cell-based split-luciferase-based trimer

formation assay of Ql345(lV) collagen can be used as a functional study to evaluate the

effect of COL4A3/4/5 variants in FSGS.

Our study also emphasized the importance of WES in FSGS patients. FSGS who

had the extra-renal syndromic manifestations, a family history of renal disease or

consanguinity should undergo genetic testing regardless of other clinical data. After

excluded three conditions above, clinicians should use clinicopathological data to classify

FSGS patients into presumed primary FSGS group which should be treated with

corticosteroids. Secondary causes should be sought in another group and treatment

should be given without immunosuppressive medications. SSNS patients should not

under go genetic testing; however, SRNS patients might benefit from genetic testing.

Genetic testing should also be done in FSGS patients who will undergo KT as a part of

pretransplant evaluation.
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