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Abstract

Autoimmune diseases occur when the immune cells react against self-antigens and
subsequently lead to inflammation in the tissues. The interactions between genetics and
environmental triggers regulate the phenotypes and outcome of the diseases. Type | interferon
has been shown as one of the most crucial cytokines involving in the pathogenesis of
autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA).
SLE is a chronic systemic autoimmune disease which can result in autoantibody production and
fatal glomerulonephritis. Activation via nucleic acid sensors can induce the production of type |
interferon from dendritic cells and promote SLE severity. Stimulator of interferon genes (Sting) is
a cytoplasmic DNA sensor that signals downstream to enhance type | interferon production after
its activation. Recently, it was shown that a gain mutation in the STING gene resulting in over-
activity of the IFN pathway can cause familial inflammatory syndrome with lupus-like
manifestations in humans. However, the functional studies of Sting in different autoimmune
mouse models suggest the conflicting roles of Sting in the pathogenesis of autoimmune
diseases. In order to determine if Sting participates in lupus pathogenesis, the Fcgr2b-deficienct
mice (lupus mouse model) were bred with Sting-deficient mice to create the double-deficient
mice. In the absence of Sting, the Fcgrzb-deficient mice do not develop fatal glomerulonephritis
and autoantibodies. The original knowledsge from this study is a proof of concept for targeting

Sting as a future promising treatment in autoimmune diseases.
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Materials and Methods

Animal and animal models
Fcgr2b-/- mice on C57BL/6 background were provided by Bolland S. (NIH, Maryland, USA). Sting-/-
mice were provided by Paludan (Aarhus University, Aarhus, Denmark). Wild type mice were
purchased from the National Laboratory Animal Center, Nakornpathom, Thailand. The Fcgr2b-/-
mice were bred with Sting-/- mice to create double deficient mice and their littermate controls. The
animal protocols were approved by Faculty of Medicine, Chulalongkorn University followed the
National Institutes of Health (NIH) criteria.
Survival study

The double deficient mice will be aged and observed the survival rates compared to their
littermates. If the mice can survive up to 12 months, the mice will be euthanized to collect the
tissues (kidney, spleen, bone marrow, and sera) for further analysis.
Flow cytometry analysis
The collected spleens were harvested and incubated with collagenase D at 37 ¢ for 30 minutes to
isolate splenocyte. The splenocytes were stained with flow antibody. The flow cytometry analysis
was performed using BD LSR-II and FlowJo software. The dead cells were excluded from the

analysis.
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Autoantibody testing

The collected sera of the mice at the age of 6 months were tested for anti-nuclear antibody
(Hep-2 cells; immunofluorescence) and anti-dsDNA (ELISA). The sera were diluted into different
dilution factors.
Histopathology

The kidneys were fixed in 4%paraformaldehyde and subsequently were stained with H&E
and PAS. The pathology grading will be blinded analysis by the experience nephrologist.
Real-time PCR

The RNA from kidneys was isolated using Trizol. The DNase-treated RNA was purified using
RNeasy isolation kit. The conversion of RNA to cDNA using iScript RT Supermix (Biorad) was
performed. The gene expression profiles were tested using SsoAdvanced Universal SYBR Green
Supermix. The sequences of primers tested are followed:
Statistical analysis

Significant difference of survival rates is tested by Log-rank test. The comparison between

groups is examined by T-test.
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Result
Increase of survival rates of the Fcgr2b-deficient mice in the absence of Sting

The Fcgr2b-deficient mice start to die at the age of 6 months and the survival rates drop to 22.2%
by 12 month old while the survival rates of double deficient mice are 77.7% (p<0.001). The effect of
one allele of Sting to survival rates of Fcgr2b-deficient mice does not show significant difference

(p=0.6) (Figure 1).

Survival Curve
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Figure 1 Increase of survival rates of the Fcgr2b-deficient mice in the absence of Sting
The survival of the mice was observed until 12 month old. The absence of Sting increase survival of

Fcgr2b-/- mice (p<0.001, N=9 per group).
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Sting deficiency diminishes fatal glomerulonephritis in the Fcgr2b-deficient mice

The kidney staining of Fcgr2b-deficient mice shows inflammatory cell infiltrations, enlarged
glomeruli and crescentic glomeruli. In the absence of Sting, the Fcgr2b-deficient mice do not
develop glomerulonephritis (Figure 2).

ggar’g!
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Fegr2h™~. Sting™t/ot Fegr2b™~ Stin

Gromerular Score Interstitial Score

Fogr2b™- Fogr2b™- Feagr2b™- Fegr2b™-
Sting"Wt/9t Sting9t/at Sting"vat  stingd?ot

Figure 2 Sting deficiency diminishes fatal glomerulonephritis in the Fcgr2b-deficient mice
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Decrease autoantibody production in the double deficient mice
Antinuclear antibody (ANA) and anti-dsDNA production decreases in the Sting and Fcgr2b double
deficient mice (Figure 3A, 3B).

A Antinuclear antibody (ANA)

Antinuclear antibody (ANA)

Fluorescent intensity grading

Fegr2b”™  Fegr2b™”
Sting"/at  stingd?at

B
Anti-dsDNA
0.6-
9 —
0.2 =— B T
0.0- . ;

WT Sting-/- Fcgr2b~~ Fcgr2b-~,
Sting-/-

Figure 3 Decrease autoantibody productions in the double deficient mice
The sera of the mice were collected at the age of 6 months to test for antinuclear antibody

(Figure 3A, representative of mice (N=3/group) and anti-dsDNA (Figure 3B, N=6/group, p<0.01)
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Decrease IgG deposition and leukocyte infiltration in the kidneys of the double-deficient mice

The kidney section showed that immune complex deposition (IgG) and leukocyte (CD45)

infiltration increased in the Fcgr2b-deficient mice and reduced in double-deficient mice (Figure 4)
DAPI CD45-PE IgG-FitC Merge

chr2b'/ "
Sting9t/9t

Figure 4 Immunofluorescence staining in the kidney of chr2b'/' and double- deficient mice by
confocal microscope (DAPI in blue, CD45 in red and IgG in green). Representative of mice (N=3

mice per group, scale bar=10 um).

Decrease interferon inducible gene expression in the kidneys of the double deficient mice

In order to determine the expression of interferon-inducible genes in the kidney of these
mice, RNA was performed by microarray. The results found that the higher expression in the
cher'/' mice, especially in the ones with greater severity (mouse number 003, 004) and a
significant reduction of interferon-inducible genes in the kidneys of cher’/’.Stinggw[ mice (Figure

Vg

3). However, not all of these interferon-inducible genes decreased in the chr2b’/'.St/ngg “mice.
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Figure 5 Genes expression profiles of kidneys in the Fegr2b” and Fegr2b™. Sting®® mice. A heat
map shows that the interferon signature genes significantly changed in the cher'/' mice (N=4
mice per group). Data show in log, (sample/wild-type).

Furthermore, the significantly 167 genes of interferon-inducible genes were identified and
clustered using the online resource Database for Annotation ( DAVID, v 6. 8,
https://david.ncifcrf.gov/) in the immune system majoring that shown in Table 1.

Table 1. Annotation Cluster of interferon-inducible genes of microarray data from the kidneys of

Fcgr2b™ and Fegr2b™. Sting®® mice

Annotation Cluster Count P-Value
Immunity 38 4.20E-31
immune system process 36 5.30E-28
innate immune response 28 1.10E-19
Innate immunity 24 2.00E-19
Adaptive immunity 11 6.70E-10
adaptive immune response 12 7.40E-10

B cell activation 3 1.80E-02
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Next, to confirm the expression of interferon-inducible genes by real-time PCR in the
kidneys of the Fcgr2b-/- mice, the results show that the expressions of Isg15, Mx1, Irf3, and Irf7
were upregulated in the Fcgr2b-/- mice and downregulated in the absence of Sting (Figure 6A-

6E). Also, the expression of Irf5, the lupus susceptibility gene, that upregulated in the kidneys of the
Fcgr2b-/- mice was Sting-dependent (Figure 6D).

A B
Isg15 Mx1
0.8 * * 0.0107 *% *
< <
Z z
Z 06 —|_ Z 0008 T
(/] 4]
% o4 % 0.006
E E 0.004
021 0.0024
00 WT Fegr2b™~ cher'/ . 00007 Fear2b™- Fear2b"
; WT  Fegr2b™" Fegr2b™-
Sting"W¥9t sting9t/at g Stﬂ% ggt/gt
C D E
Inf3 Irf5 Irf7
0.084 0.10 0.008;
< x < < Ak
=z =z 2
& 0.06 T o ¥ 0.006
Q ()] Q —I_
2 004 2 2
£ 0.044 = + 0004
] © 7]
& 0ol 14 & 40021
WT  Fegr2b™ Fegr2b WT  Fegr2b-Fegr2b-/- WT  Fegr2b™ Fegr2b-/-
Sting Stingdt/gt Stingd?9t

Figure 6. Decrease interferon-inducible gene expressions in the kidneys of the double-

deficient mice. (A-E) Gene expression profiles from the kidneys of wild-type, cher’/’ and chr2b’/’.

St/ngg”gt mice at the age of 6-7 months were tested by real-time PCR (N=10-17 per group). The

mRNA expressions of interferon-inducible genes shown in (A) Isg15, (B) Mx1,(C) Irf3,(D) Irf5, and
(E) Irf7. Data show as mean = SEM (*p < 0.05 and **p<0.01).
Sting signaling is essential for inflammatory phenotypes of the chr2b'/' lupus mice

The splenocytes were analyzed from the mice at the age of 6-7 months to characterize the
alteration of immune-phenotypes. The expansion of dendritic cells (CD11¢c”) and plasmacytoid
dendritic cells (CD11c” PDCA") in the Fcgr2b”™ mice diminished in the Fcgr2b”. Sting® " mice
( Figure 7A-7B) . Also, these data found that the reduction of T effector memory cells

(CD3'CD4'CD62L°CD44™), CD3'CD4'I1COS" cells, and germinal center B cells (B220'GL7") in the
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double-deficient mice (Figure 7C-7E). Besides, the mean fluorescence intensity of MHC-II (IA-b) on
B cells significantly reduced in the double-deficient mice (Figure 7F). However, the expansion of

plasma cells did not show the difference between single and double-deficient mice (Figure 7G).
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Figure 7. Decrease of dendritic cells, plasmacytoid dendritic cells, effector T cells, and germinal
center in the double-deficient mice. (A-G) Flow cytometry analysis of splenocytes isolated from
wild-type, chr2b'/', and chr2b'/'. Stingg”gt mice at the age of 6-7 months (N= 13-14 per group).
Data shown in the percentage of (A) CD11c’, (B) plasmacytoid dendritic cells (pDC), (C) T effector
memory (CD3' CD4" CD44"CD62L"), (D) CD3" CD4"ICOS" cells, (E) B220" GL7" cells and (G)

CD138" cells. Data show as mean + SEM (*p < 0.05, **p<0.01 and ***p<0.001).
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Furthermore, the sera levels of MCP-1 and TNF-A from the chr2/o'/' mice were significantly
increased compared to WT mice ( Figure 8A-8B) whereas IL—1B and IL-23 did not show the
significant changes (Figure 8C-8D). However, the levels of TNF- O, IL-1 B and IL-23 from the
chr2b’/’ mice were significantly decreased in the absence of Sting ( Figure 8) . These data
suggested that Sting participates in the inflammatory mediated pathway in the Fcgr2b-deficient

lupus mice.
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Figure 8. Sting mediated signaling decrease the production of inflammatory cytokines in double-

t/gt .
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deficient mice. (A-D) The sera cytokines of wild-type, cher'/' and chr2b'/'. Sting
age of 6-7 months were analyzed by cytometric bead array. Serum cytokines of (A) MCP-1, (B)
TNF-Q, (C) IL- 1[3 and (D) IL-23 (N=10-15 per group). Data show as mean + SEM (*p < 0.05 and

*5<0.01).

Sting activated dendritic cells induce the proliferation of naive CD4" T cells

The splenocytes of chr2b'/' mice showed an increase of effector memory T cells (T,,,) and
Ifn-Y expression (Figure 15C and 6B). The hypothesis of this study is the high proportion of T, in
the cher'/' mice might contribute to the increase of /fn-Y expression. To test if this assumption is

correct, the intercellular staining of IFN-Y from lymph nodes of the affected mice were performed.
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The results show that the numbers and percentage of IFN-Y producing CD4" T cells from the

chr2b’/’ mice were higher than wild-type and double-deficient mice (Figure 9).
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Figure 9. Sting mediated pathway induces IFN-Y producing CD4" T cells from the Fcgr2b” mice.
(A-C) Flow cytometry analysis of (A-B) intracellular staining of IFN-Y -producing CD4" T cells
isolated from lymph nodes of wild-type, Sting®?, Fcgr2b”, and Fcgr2b™. Sting®®" mice at the age of
6-7 months. (A) Data are representative of 3-4 mice per group. (B) The percentage of IFN—Y+ cb4”
T cells and (C) the number of IFN—Y+ CD4" T cells (N=3-4 per group). Data show as mean + SEM
(*p < 0.05, and **p<0.01).

To determine if the Sting-expressing DC could directly influence the T cell phenotypes, T
cells were co-cultured with activated BMDC. The short-interval (6 hours) co-cultured between
Sting-activated BMDC derived from chr2b'/’ and double-deficient mice and CD4" T cells from
lymph nodes showed comparable numbers of IFN-Y producing CD4" T cells independent of
Sting expression on BMDC (Figure 9A and 9B). However, the CD4" T cells derived from the
chr2b'/' mice expressed the intracellular staining of IFN-Y higher than the double-knockout mice

when co-cultured with Sting-sufficient BMDC (Figure 10A and 10B).
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Figure 10 Sting express on BMDC independent IFN-Y producing CD4" T cells for a short time. (A)
The percentage and (B) the number of intracellular IFN-Y producing CD4" cells after co-cultured
with DMXAA activated BMDC from chr2b’/’ and chr2b’/’. Stinggygt (67 months old) for six hours

(N=3-4). Data show as mean + SEM (*p < 0.05).

Next, to examine if Sting activated BMDC can promote T cell proliferation, purified naive T
cells from spleen were co-cultured with Sting-activated BMDC for 72 hours and assessed with
CFSE dilution assay (Figure 11A and 11B). The proliferation ability of naive T cells was independent
on Sting expression on T cells but depended on Sting-expression on BMDC (Figure 11A and 11B).
The naive T cells that primed with Sting expressing BMDC became more proliferative, and these
cells were capable of producing higher IFN-Y compared to the cells that were co-cultured with

Sting deficient BMDC (Figure 11C). These data suggest that Sting activation promoted the DC
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differentiation, which subsequently the activated DC primed the naive CD4" T cells to proliferate

and become the IFN-Y producing T cells.
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Figure 11 Sting activated dendritic cells induce the proliferation of naive CD4" T cells. (A-C)

Co-culture of naive T cells with DMXAA activated BMDC from wild-type, Sting®”®, Fcgreb”™ and
Fegr2b”. Sting® mice (labeled at x-axis) for 72 hours. (A and B) CFSE dilution of isolated naive T
cells showed in mean fluorescence intensity (MFI), and (C) the total numbers of IFN—Y+ CcD4" T

cells (N=4 per group). Data show as mean + SEM (*p < 0.05).

Sting activation increases the maturation of dendritic cells and cytokine production

In order to understand the immunological importance of Sting in lupus Fcgr2b-deficient
mice, the flow cytometry was characterize the subsets of splenocytes from affected mice and their
controls. The activated immune cells showed that the expansion of the DC in the spleen of the
cher’/’ mice was Sting-dependent, and the cGAS/Sting pathway is important for DC activation. To
investigate if the expansion of DC in the cher'/'mice is directly mediated by Sting signaling, the
bone-marrow derived dendritic cells (BMDC) were differentiated into immature DC and
subsequently stimulated with Sting ligands (DMXAA), DMSO, and LPS (as a control) to assess if
Sting played a role in DC maturation. The LPS control induced the immature DC to increase the
expression of MHC-II (IA-b) and CD80, which suggested the phenotypes of mature DC, from both
Sting-sufficient and Sting-deficient mice (Figure 12A and 12C). While the immature DC from wild-
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type and cher’/’ mice also showed the increasing percentage of IA-b” and CD80" DC cells after
DMXAA stimulation, but the Sting-deficient mice did not develop these mature phenotypes (Figure
12B and 12D).
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Figure 12 Sting activation increases the maturation of dendritic cells. Bone marrows were isolated from
wild-type, Sting® vt cher and chr2b St/ng ‘mice at the age of 6-7 months. (A-D) IL-4 and GM-CSF
differentiated bone marrow-derived dendritic cells ( BMDC) for five days then immature BMDC were
stimulated with LPS or DMXAA for 24 hours. Flow cytometry analysis shows the percentage of (A-B)
CD11c” IAb" cells and (C-D) CD11c’ CD80" cells. Data show as mean + SEM (N=3-5; *p < 0.05, **p<0.01
and ***p<0.001).
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Sting signaling promotes the differentiation of plasmacytoid dendritic cells (pDC)

To better understand the function of Sting in DC, the quantitative proteomic analysis of Sting

activated BMDC in the cher'/' mice compared to the double-deficient mice were performed using

a dimethyl labeling method. The Volcano plot showed the protein that highly expressed were

interferon-regulated proteins ( Figure 13) . This finding may result from the increase of IFN-I

production in the culture medium, which could upregulate the interferon-regulated proteins.

-Log10 (p-value)

Categorical Levels:
Reactome
@ |IFN-regulated protein
O Immune system
@ Signal transduction
@ Cell cycle and apoptosis
© DNA repair and replication

Ifit1

@ o "
Stat2

L3 Sp100 L4
o e )
H2Dl o ‘o o Ddxsg 1fi204

L ]
o O o EIf2ak Cdsé °

o 1fi35 ©
o 135 o p )
) 1fit2
1% i . Oasl1 ! Ifit3
o = d > P ° L4
% e 1fitm3 Il
Trexieo © ®
° - Isg15
* % L] * °
— . & Nt5c3a Oas3
- S
o %
° L ]
°
L] L]
-2.5 0.0 2.5 50 75

Log2 (Fcgr2b™/ Fegr2b™ . Sting®™™)

Figure 13 chr2b'/'increase the expression of interferon-regulated proteins. Volcano plot of protein
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mice at the age of 6-7 months (N=4 per group).
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The hypothesis of this study is Sting might promote the differentiation of pDC (the major
producer of IFN-I). To confirm this hypothesis, the in vitro culture of BMDC with DMXAA and LPS (as
a control) showed a significant increase in pDC and IFN—B production with DMXAA but not with
LPS stimulation (Figure 14A-14D). Also, the results show the morphology of these cells by the

imaging flow cytometry and found the pDC expressed CD80 and IA-b as well (Figure 14E -14F).
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Figure 14 Sting activation promotes differentiation of plasmacytoid dendritic cells (pDC). The
percentage of pDC (PDCA cells) after (A) DMXAA activation and (C) LPS activation for 24 hours (N
= 3-4 per group). (B and D) The level of IFN—B from the culture supernatant of activated BMDC with
(B) DMXAA and (C) LPS (N = 5 per group). (E and F) Imaging flow cytometry of DMXAA activated
BMDC shows (E) the representative staining of 1A-b (green ), mPDCA (yellow), CD80 (pink), and
CD11c (red) and (F) the percentage of CD11c’ mPDCA" cells (N= 3 mice per group). A

representative of 3 experiments. Data show as mean+ SEM (**p<0.01 and ***p<0.001).

Adoptive transfer of Sting expressing BMDC from Fcgr2b” mice increases autoantibodies in the
wild-type mice.

To determine if Sting contributes lupus pathogenesis in wild-type mice, the adoptive transfer
of Sting-activated BMDC from chr2b'/’ mice to wild-type mice were performed. The results show

that the anti-dsDNA significantly increased in the wild-type mice who received Sting-sufficient
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BMDC compared to the wild-type (non-recipient) controls (Figure 15). The results suggest that the
BMDC derived from the cher'/' mice induced the recipients to produce a higher level of anti-

dsDNA than normal mice.
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Figure 15 Adoptive transfer of Sting expressing BMDC increase anti-dsDNA in wild-type mice.
DMXAA activated BMDC from chr2b’/’were transferred into the recipient mice (wild-type). (A) The
level of anti-dsDNA from the sera (1:100) measured by ELISA (N=4-5 per group).

Additionally, to investigate the immune-phenotypes in wild type that received the Sting-
activated BMDC compared to the control, the flow cytometry analysis of spleens from all WT-
recipient mice were performed. The results showed that the increased percentage of T effector
memory (CD4°CD44"CD62L"), CD4'ICOS cells, plasma cells (CD138" cells) and germinal center B

cells (B220'GL7" cells) compared with the wild-type (non-recipient) controls (Figure 16).
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Figure 16 Sting-activated BMDC increase the activated immune cells in recipient wild type mice.
Flow cytometry analysis of recipient splenocytes after BMDC transferred every 2 weeks for 4 times
show the percentage of (A) effector T cells (CD4+ CD44"CD62L"), (B) CD4+ ICOS+ cells, (C)
CD138" cells and (D) B220"GL7" cells (N=4-7 per group). Data show as mean + SEM (*p < 0.05,
**0<0.01 and ***p<0.001).

Also, the immunofluorescences staining at the kidney of the wild type recipient mice were
determined. These results found that increase of IgG deposition and CD45" cell infiltration in wild

type that received Sting-sufficient BMDC while did not show in the wild type control (Figure 17).
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Figure 17 Sting-activated BMDC induce immune complex deposition in the kidney of WT-recipient
mice. (A and B) Immunofluorescence staining of the kidneys from recipient wild-type mice show in
green (lgG), red (CD45), and blue (DAPI). Data are representative of 4 mice per group (scale

bar=10 pym).
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Adoptive transfer of Sting expressing BMDC induce lupus development in the Fcgr2b™.Sting
mice

The Sting signaling pathway activated the immature BMDC to differentiate into the mature
DC and pDC which are capable of promoting T cell proliferation and producing the inflammatory
cytokines. The proposed of this study is that Sting may induce the lupus disease by initially acting
through the DC activation. To confirm this hypothesis, the adoptive transfers of Sting-activated
BMDC into the double-deficient mice were performed. The anti-dsDNA significantly increased in the
recipient mice who received Sting-sufficient BMDC compared to the non-recipient controls (Figure
18). The BMDC derived from Sting-sufficient mice (both WT and chr2b'/') induced the recipients to

produce a higher titer of anti-dsDNA than the ones from the double-deficient mice (Figure 18).
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Figure 18 Increase of anti-dsDNA in the recipient mice. DMXAA activated BMDC from chr2b'/',
WT, and Fegr2b”.Sting® were transferred into the recipient mice (Fcgr2b”. Sting™®. (A) The level
of anti-dsDNA from the sera (1:100) measured by ELISA (N=5-10 per group). Data show as mean *
SEM (*p < 0.05, **p<0.01, and ***p<0.001).

In addition, the flow cytometry analysis of spleens from all groups of recipient mice showed
the increase in the percentage of T effector memory (T_.), CD4"ICOS", and germinal center B cells
when compared with PBS injection group ( Figure 35A-35C) . However, the transfer of Sting-
activated BMDC from the chr2b’/' mice significantly induced the T effector memory (T,),
CD4"ICOS", and germinal center B cells, but did not increase CD138" cells, B220" IAb" cells
(Figure 19).
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Figure 19 Increase of activated immune cells in recipient mice. (A-E) Flow cytometry analysis of
recipient splenocytes after BMDC transferred every 2 weeks for 4 times show the percentage of (A)
effector T cells (CD4 CD44"CD62L"), (B) CD4'ICOS” cells, (C) B220'GL7" cells and (D) B220"IAb"

cells (N=5-10 per group). Data show as mean + SEM (*p < 0.05, *p<0.01, and ***p<0.001).

Next, the immunofluorescences staining at the kidney of the recipient mice were performed.
The recipient of Sting-sufficient BMDC showed the increase of IgG deposition and CD45" cell
infiltration while Sting-deficient BMDC did not (Figure 20A-D). Nevertheless, the chr2b'/' BMDC
induced more immune complex and CD45" cells in the kidneys (Figure 20B and 20C). The results
suggested that the restoration of Sting signaling pathway in dendritic cells is essential for lupus

vg

development in the cher'/'.Stingg " mice.
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Figure 20 Sting-activated BMDC induce immune complex deposition in the kidney. ( A-D)
Immunofluorescence staining of the kidney from the Fcgr2b”". Sting® ' recipient mice after the
transfer with (F) PBS control, DMXAA activated BMDC from (G) chr2b'/', (H) WT and (1) chr2b'/'.
St/nggygt. The confocal microscope shows DAPI ( blue), CD45 (red) and IgG (green). The

representative of 3 experiments (scale bar=10 um).
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The 129/B6.chr2b’/’ mice carrying Nba2 region, a locus on a spontaneous lupus mouse
model that important for SLE pathogenesis, expressed constitutively the IFN-activated gene 202
( Ifi202) . The Ifi202 is a lupus-susceptibility gene that increased the progression of
glomerulonephritis in lupus mouse models. The CD19" cells from B6.Nba2 show the increase of
Ifi202 and the decreases of Sting expression. However, the overexpression of Ifi202 can activate
Sting-dependent IFN-I response and the 129/86.chr2b’/’ mice increase the expression of IFN—B.
Here, these studies show the high expression of [fi202, Sting, IFN-B, and interferon-inducible genes
including Irf7, Ifn-Y, Mx1, and Cxcl10 from the spleen of the 129/86.chr2b’/’ mice. Although Sting
functions as a negative regulator in the Mrl/lprlupus mice, this data shows that Sting is required for
the lupus development in the 129/86.chr2b’/’ mice. It is possible that Sting will also play a crucial
role in other lupus mouse models which contained Nba2 region.

The survival of the 129/ BG.cher'/' mice depends on the autoantibody production and
glomerulonephritis and the data from the previous study indicated that 6 months old of chr2b'/'
generated in 129 background mice showed the full lupus phenotypes. Moreover, it is found that
Sting is required for the antibody production induced by cyclic-di-GMP in vitro. This study
suggested that Sting facilitated the autoantibody production, inflammatory cell infiltration, and
glomerulonephritis in the 129/ B6.chr2b’/’ mice. Therefore, in the absent of Sting, resulting in
improved the survival rate of 129/86.chr2b’/’ mice.

Investigations by several studies conclude that the expression of interferon-inducible genes
associated with SLE disease activity. This study detected the very high expression of a hundred of
IFN inducible genes in the kidneys of 129/B6.chr2b’/' mice by microarray that showed more severe
pathology. The absence of Sting signaling in the chr2b'/' mice partly decreased the expression of
interferon-inducible genes in the kidney. This data suggested that other nucleic acid sensors may
promote the type | interferon production or signaling leads to destructive of kidneys in the chr2b'/'
mice as well. The Sting-dependent lupus phenotypes do not mediate only through type-I interferon

pathway.
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Sting expresses and functions differentially depended on the cell types. The previous study
reported that STING was a low expression in B cell from SLE patients and MRL/lpr mice. These
finding may contribute to the pathogenesis of SLE by increasing the activation of the JAK1-STAT1
signaling indirectly by STING. Whereas, Sting signals coordinately with B cell receptor ( BCR)
signaling to promote antibody response. The results showed that the spontaneous germinal center
B cells and MHC-II expression in the chr2b’/’ mice were Sting-dependent. However, plasma cell
expansion was Sting-independent. This data suggested Sting may contribute to the autoantibody
production through memory B cells.

Sting also activates T cells by treatment with Sting ligand (DMXAA) induced not only Sting-
dependent expression of ISGs and type | IFN production but also mediated cell stress and death.
Nevertheless, this study found that the increase of T effector memory (T,,) in the cher’/’ mice was
Sting-dependent. The expansion of T may directly mediate through the interaction with antigen
presenting cells, not directly via Sting signaling in T cells.

Sting agonist (DMXAA) treated mice show the increased expression of CD80, CD86, and
MHC-II on DC and IFN—B production suggesting promotes the mature phenotypes of DC as the
antigen-presenting cells (APC) which increase the expansion of T cells. This observation found the
reduction of DC expansion in the chr2b’/’ mice, which depended on Sting signaling.

To confirm if Sting was required for DC maturation and cytokine production, co-culture of
activated DC with T cells were performed. These DC became professional APC and could promote
T cell differentiation. The IFN-Y producing CD4" cells in the spleen and lymph nodes of the
cher'/' mice were reduced in the absence of Sting. The Sting-expressing DC derived from WT
and chr2b’/’ mice stimulated naive T cells to proliferate, but the ability of T cell to differentiate and
produce IFN-Y did not depend on intrinsic Sting expression on T cells. Interestingly, only DC from
the chr2b’/’ mice can increase the IFN-Y production in CD4+ T cells. Furthermore, the previous
data found that Sting-deficient mice fail to prime CD8" T cell leading to nonproductive T cell
activation in vivo. Thus, this data suggested the DC from the chr2b'/' mice have the intrinsic
property that promotes the generation of Tem or autoreactive T cells.

The cGAS-STING signaling can activate human pDCs to produce IFN-I and knockdown of

Sting using siRNA in CAL-1 cells can cause the reduction of IFN response. The proteomic data
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showed the upregulation of interferon-regulated protein after Sting-activation with DMXAA, which
implied that the culture environment should enrich with type-I IFN. Sting activation with DMXAA led
to phosphorylation of Ser357 of mouse Sting (homolog Ser358 in human Sting), and this site is
phosphorylated by TBK1 which subsequently promoting type | IFN production. The identification of
pDC, a major producer of type-l IFN, after Sting activation, uncovered the role of Sting in the
differentiation of pDC. These data revealed that Sting was essential for the generation of pDCs.
Besides, this study identified several Sting-interacting proteins by mass spectrometry. Lyn kinase
has been shown the role in the differentiation of pDC.

The recruitment of Lyn kinase to Sting after DMXAA stimulation suggested Sting mediated
signaling through Lyn kinase. Also, the proteomics data of Sting-activated BMDC showed a
significant increase of phosphoinositide 3-kinase adapter protein 1 ( Pik3ap1) and receptor of
activated protein C kinase 1 (Rack1). Pik3ap1 is an adaptor that signals to the phosphoinositide 3-
kinase ( PI3K). Lyn and RACK1 are co-immunoprecipitated in membrane complexes. RACK1
silencing effected on the phosphorylation of AKT. This data suggest that the downstream of Sting-
Lyn signaling may mediate through the PI3K-AKT pathway. The inhibition of LYN kinase during
Sting activation abolished DC maturation and pDC differentiation. The data suggested Sting
mediated differentiation of BMDC through the LYN signaling pathway.

Depletion of pDC ameliorates the autoimmune phenotypes in BXSB lupus-prone mice and
B6.Nba2 mice. These data strongly suggested Sting involving in DC function both DC maturation
and pDC differentiation. The adoptive transfer of Sting sufficient BMDC can induce autoantibody
production regardless of Fcgr2b status. However, the absence of Fcg2b in the BMDC can
accelerate the autoimmune phenotypes, including the immune complex deposition and
infammatory cell infiltration in the double-deficient recipient mice. Additionally, the adoptive
transfers of Sting sufficient BMDC derived from Fcg2-/- mice increase the antibody production and
activated immune cells but did not change the kidney pathology in wild type recipients.

Nevertheless, wild type recipient mice do not develop glomerulonephritis. The data implied
that these wild type mice require lupus-susceptibility gene to progress of the disease. In summary,
these data elaborated the vital function of Sting in the autoimmune chr2b'/' lupus mouse model.

The inhibition of STING signaling is a promising therapeutic target for SLE patients.
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129/B6.Fcgr2b”” mice present the strong lupus phenotype.

First, the results show the increase of /fi202 and Sting expression in the 129/B6.chr2b’/’
mice. Moreover, it is found that the interferon-inducible genes, including Ifn—B, Irf3, Irf5, Ifn-Y,
Cxcl10, and Mx17, were also increased in the spleen of 129/B6.chr2/o'/' mice.

The Fcgr2b-deficient mice start to die at the age of 6 months, and the survival rates drop to
22.2 % by 12 months old, while the survival rates of double-deficient mice are 77.7 %. The effect of
one allele of Sting to survival rates of Fcgr2b-deficient mice does not show a significant difference.
This finding concludes that Sting increases survival rates and improves the lupus phenotypes in

129/86.chr2b'/' lupus mice model.

The activation of Sting pathway involved in the pathogenesis of SLE in lupus mice

In the absence of Sting, the lupus phenotypes of 129/ B6. Fcgr2b-deficient mice were
improved, including:

1. The kidney staining of Fcgr2b-deficient mice shows inflammatory cell infiltrations,
enlarged glomeruli, and crescentic glomeruli, but double-deficient mice do not develop
glomerulonephritis.

2. Antinuclear antibody (ANA) and anti-dsDNA production in the serum were decreases in
the double-deficient mice. The results suggest that the high levels of autoantibodies are from the
Sting-dependent.

3. Sting-mediated signaling induces type | interferon production and leads to the increase
of interferon-inducible gene expression while the interferon signature genes in the kidneys were
diminished in the double-deficient mice.

4. In order to understand the immunological importance of Sting in lupus Fcgr2b-deficient
mice, the flow cytometry were characterized by the subsets of splenocytes from affected mice and
their controls. The activated immune cells decrease in the percentage and numbers in the double-
deficient mice, especially CD11c¢" cells, plasmacytoid dendritic cells, and effector T cells. Also, B

cells in the germinal center reduced in the double-deficient mice but not plasma cells.
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The Sting-mediated pathway promotes maturation of dendritic cells and plasmacytoid dendritic
cells differentiation via Lyn kinase pathway.

1. The in vitro culture of bone-marrow derived dendritic cells with Sting ligands were
performed and tested for the differentiation, activation stage, and cytokine production. Sting
activation using DMXAA promoted the differentiation of immature DC to become pDC in the wild
type and chr2b’/’ mice. In the absence of Sting, the immature DC cannot differentiate into pDC or
get activated to express MHC class Il (IAb") and become professional antigen-presenting.

2. The proteomic analysis of activated BMDCs was performed and found the interferon-
regulated proteins increase in Sting-sufficient BMDC.

3. To discover the new unbiased Sting-signaling pathway by immunoprecipitation assay,
After Sting activation, Sting was phosphorylated, and Lyn was recruited to interact with Sting.

4. Regarding the observation of PI3K adaptor proteins associate with Sting after agonist
treatment. The association of Sting and Lyn-PI3K-Akt pathway suggested Sting mediated

maturation and differentiation of BMDC through the Lyn signaling pathway

The Sting-mediated pathway contribute to SLE via DNA sensor-mediated signaling in antigen
presenting cells

The adoptive transfer of Sting-activated bone marrow-derived dendritic cells (BMDC) into
the Sting-deficiency 129/86.chr2b’/' mice restored the lupus phenotypes. These data suggested
that Sting signaling expressed in the dendritic cells induced the autoimmune development in the

129/B6.Fcgreb” mice.
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This study concludes that the signaling through stimulator of interferon genes (Sting) leads
to type | interferon production and lupus pathogenesis. These findings provide the proof of concept
that inhibition of STING signaling is a promising therapeutic target for SLE patients. Sting is a new
molecule which promising therapeutic target for lupus disease.
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Abstract

Repeated bacterial infection in patients with Systemic Lupus Erythematosus ( SLE) is
common and sepsis is the leading causes of death. Despite proper responses to a single bacterial
infection, the repeated infection might lead to immune exhaustion and severe sepsis. Then the
bacterial susceptibility was tested with cecal ligation and puncture (CLP) after immune exhaustion
induced by the 2-separated-doses of endotoxin (LPS) in FcGRIlb-/- mice and wild type (WT)
control.

In the comparison with wild type group, the prominent serum cytokine after 1% LPS injection
followed by the apparently lower cytokines after 2" LPS administration, cytokine exhaustion, was
demonstrated in FCGRIIb-/- mice. Subsequently, CLP was conducted after double doses of LPS
preconditioning to test the immune suppression. Indeed, a higher mortality rate and a more severe
sepsis ( bacterial burdens, serum cytokines and organs injury) at 18h of CLP demonstrated in
FcGRIlb-/- mice. Because macrophages are the major immune cells responsible for sepsis immune
responses, we tested in vitro. Interestingly, the stimulation with separated 2 doses of LPS in bone
marrow-derived macrophage from FcGRIIb-/- mice showed the higher cytokines responses after
the 1% LPS stimulation in comparison with WT cells but the cytokines level were lower than WT cells
after the 2" LPS stimulation, supplementary to the in vivo results.

In conclusion, macrophage exhaustion was easier inducible in FcGRIIb-/- cells in parallel to
the immune paralysis, highly susceptible to CLP, in FcGRIIb-/- mice compare with wild type group.
These implied the importance of the repeated infections in patients with SLE, especially with

FcGRIIb polymorphisms.

6. AasuNadtynIanEnllazAtia 14 lun1s348 ( List of Abbreviations)
SLE, Systemic lupus Erythematosus; FcGRIIb, Fc gamma receptor llb; LPS, endotoxin; CLP,
cecalligation and puncture model; UPCI, urine protein creatinine index; LDH, lactate

dehydrogenase
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Systemic Lupus Erythematosus ( SLE) , the autoimmune disease with multi-factorial
pathogenesis (1, 2) leads to multi-organs injury, showed a higher prevalence in Asia in comparison
with other regions of the world (3-5). The defect of Fc gamma receptor llb (FcGRIlb), the only
inhibitory signaling receptors in the FCGR family, is one of the genetic susceptibility to SLE (2, 6).
Interestingly, FCGRIIb polymorphisms also demonstrated the high prevalence in Asia which might
due to the protective effect of the gene for malarial infection (7). Coincidentally, the association with
FcGRIIb polymorphisms in patients with SLE in Asia Pacific region is also common (3-5, 8). Perhaps
FcGRIIb polymorphisms could protect malaria in this region but, on other side of the coin, people
with this immunological defect might easier develop SLE. In any case, sepsis, the systemic immune
responses to the severe infection, is one of the important causes of death in patients with SLE (9).
Indeed, the high susceptibility to bacterial sepsis in patients with SLE is well-known ( 9-13) .
However, there are debates whether the susceptibility to infection in patients with SLE is due to the
de novo defects of immune response or immunosuppressive drugs. Unfortunately, the data on
untreated symptomatic patients with SLE is very limited (14). Hence, the studies of infection in
FcGRIlb-/- mice, one of the established SLE mouse model (6), could be resemble to untreated
patients with SLE, especially with FCGRIIb polymorphisms.

FcGRs binds with Fc portion of immunoglobulin mediate antigen uptake and cellular
responses (15). In the mouse, FcGRs are classified into three activation receptors (FcGRI, FcGRIII,
FcGRIV) and only one inhibitory receptor (FCGRIIb) (16). The deficiency of all classes of FCGR in
mice (FcGR -/-) protected from sepsis (17) and FcGRIlb-/- mice response well to the gram positive
bacterial infection due to the effective bacterial killing (18). Nevertheless, a more severe sepsis with
the cytokines storm demonstrated in FcGRIIb-/- mice with the bacterial antigen preconditioning
before bacterial administration. This data supported the overshoot cytokines responses after the
repeated antigen exposures due to the lack of inhibitory signaling in these mice (18). On the other

hand, FcGRIlb-/- mice are protected from Plasmodium and Mycobacterium infection (7, 19), the
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inhibitory signaling defect seems to enhance the activating signaling and show a benefit in these
infections. However, the susceptibility of FCGRIIb-/- mice to polymicrobial sepsis is never tested.

Interestingly, sepsis-induced immune exhaustion or immunoparalysis, the high susceptibility
to secondary infection after sepsis, has been recognized as an important sepsis complication (20,
21) and was demonstrated by several mouse and human models (22-26) . In contrast, the
preconditioning of LPS, a single or multiple doses, for 24h before CLP ameliorates sepsis severity in
wild type mice has been showed in previous publications (27, 28). Despite the demonstrated
protective effect to sepsis after 1 day of LPS preconditioning, we hypothesized that the immune
exhaustion after LPS administration might existed in the earlier period and the repeated endotoxin
exposure might mimic the repeated infection in patients. Subsequently, we selected the
preconditioning with double doses of LPS with 5 days separation followed by CLP at 12h after the
2" dose of LPS to demonstrate the immune exhaustion in our models. Of note, half-life of the
important LPS-induced cytokines (TNF-O, IL-6 and IL-10) is approximately 0.5-1.5h (29), then at
12h, approximately 8 times of the half-life, should be adequate for avoiding the effect of these
cytokines to the subsequent CLP surgery.

On the other hand, the lower macrophage immune responses, especially cytokines
production, after repeated LPS activation is demonstrated, and was known by several terms such
as “macrophage paralysis” or “macrophage exhaustion” or “macrophage tolerance” or “endotoxin
tolerance” ( 30-32) . Although, the association between immunoparalysis and macrophage
exhaustion is not clearly demonstrated (31), it is possible that macrophage exhaustion might cause
ineffective organisms clearance and increase infection susceptibility compatible with the definition
of “immunoparalysis”.

Indeed, macrophage contains both activating and inhibitory FCcGRs which competing for
immune complex ligands and the direction of this balance determines the direction of the cell
responses (16, 33). We hypothesize that the defect in the inhibitory signaling of FcGRIlb-/- mice
might result in a prominent response but is easier exhausted after repeated stimulation. Then we

test immunoparalysis of FCGRIIb-/- mice in vivo and macrophage exhaustion in vitro, respectively.
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2. \iaiieq (Main Body) Fananieneasiaunfga T UARsITun1IAYe (Materials & Method)
NAN13Iae (Results) “a

Materials and Methods
Animal and animal models

FcGRIlb-/- mice on C57BL/6 background were provided by Bolland S. (NIH, Maryland,
USA) . Other mice were purchased from the National Laboratory Animal Center, Nakornpathom,
Thailand. Female, 8- and 24-week-old C57BL/6 mice were used in the experiments. The animal
protocols were approved by Faculty of Medicine, Chulalongkorn University followed the National
Institutes of Health (NIH) criteria.

Cecal ligation and puncture model

Polymicrobial sepsis was induced by Cecal ligation and puncture model ( CLP) slightly
modified from the previous publication (29). Briefly, cecum were ligated at 10 mm from cecal tip
with silk 2-0, punctured twice with a 21-gauge needle then gently squeezed to expel a small
amount of fecal materials through an abdominal incision under isoflurane anesthesia. The incisions
were closed with 2 layers by nylon 4-0 and normal saline (NSS) at 2 ml/kg was administered
subcutaneously for the fluid replacement.

Cecal ligation and puncture with endotoxin pre-conditioning model

Because LPS induced-immuno-suppression is demonstrated (34, 35) and used as a sepsis-
induced immunoparalysis model (26), we follow the principle in our experiments. In our model, the
immunoparalysis, a condition susceptible to an infection, was tested by the severity of polymicrobial
infection from CLP surgery. Endotoxin (LPS) of Escherichia coli 026:B6 (Sigma-Aldrich, St. Louis,
USA) was administered intraperitoneally at 5 days (-120h) and 12h (-12h) before CLP surgery at the
dose of 0.8 g/kg (approximately 20 g per 25 g mouse) and 4 g/kg (approximately 100 Mg per 25
g mouse), respectively. Subsequently, CLP was performed as previously mentioned.

To measure inflammatory cytokines after LPS injection, 50 MI of blood was collected
through tail vein nicking at Oh (2h before LPS administration) and at 1, 3 and 6h after. In addition, in
separated experiments, blood from tail vein nicking was also collected before CLP (0Oh) and at 3h

and 6h to measure time-courses of bacterial burdens and serum cytokines after CLP surgery.
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Otherwise, blood was collected through cardiac puncture at sacrifice time under isoflurane

anesthesia at 18h or 96h after CLP for sepsis injury analysis or survival test, respectively.

Blood chemistry, supernatant media analysis and urine protein

For the natural history of FcGRIIb-/- mice, serum from tail vein nicking and spot urine was
collected once a month from 2 to 12-month-old. Serum and urine creatinine were measured by
(QuantiChrom Creatinine Assay, DICT-500, BioAssay, CA, USA). Spot urine protein was measured
by Bradford protein assay. Urine protein creatinine index (UPCI), a representative of 24h urine
protein, were measured from spot urine by equation; urine protein/urine creatinine.

Serum cytokines after LPS were measured by Luminex-based multiplex technology multi-
analysis panels 8-plex cytokines assay (Bioplex, Bio-RAD, CA, USA) to explore the panel of pro and
anti -inflammatory cytokines (TNF-O, IL-6, IL-1B, IFN-Y and IL-2, IL-4, IL-5, IL-10, respectively)
according to the manufacturer’s protocol. Then the selected important cytokines (TNF-Q, IL-6, IL-
10) were measured by ELISA assay (ReproTech, NJ, USA) in supernatant media and in mouse
serum after CLP surgery. Organs injury was determined by blood urea nitrogen (QuantiChrom Urea
Assay, DIUR-500, BioAssay), serum creatinine (Scr) (QuantiChrom Creatinine Assay, DICT-500,
BiaAssay), alanine transaminase (ALT) (EnzyChrom ALT assay, EALT-100, BioAssay) and lactate
dehydrogenase (LDH) (EnzyChrom LDH assay, EDLC-100, BioAssay). Blood bacterial burdens
were determined by plating a serial volume of blood into blood agar (Oxoid, Hampshire, UK) at

37°C then counted bacterial colonies after 24h of incubation. For blood polymorphonuclear cell

(PMN) and mononuclear cell count, 5 LI of blood mixed in 85 LI of 3% acetic acid for the hemolytic
reaction and total leukocytes was counted by a hemocytometer. In parallel, blood smeared on a
glass slide was stained by Wright stain and counted with x100 magnification in 100 fields to
determine the percentage of PMN and mononuclear cells. The total number of cells was calculated
by total leukocyte count from hemocytometer multiplied by the percentage of cells from the Wright
stain glass slide.
Anti-dsDNA antibodies

Anti-dsDNA antibodies were measured by coating ELISA plates with salmon sperm DNA as

published previously (36). In short, salmon sperm DNA (Life Technologies, InvitrogenTM, MA, USA)
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passage through a 45-mm filter (Minisart, Sartorius, Germany) for selecting double stranded DNA
then coated into ELISA plate with the dose at 100 Mg/plate. The plates were dry, blocked and
incubated with serial dilutions of serum for 1 hour at 37°C then peroxidase conjugated Fab’2 goat
anti-mouse IgG 1/2,000 in 1% bovine serum albumin (BSA) in phosphate buffer solution (PBS)
followed by TMB peroxidase substrate (Biolegend, California, USA). The plate was developed in the
dark room for 10 min then added TMB stop solution and read with microplate photometers with a
wavelength at 410 nm.
Bone Marrow Derived Macrophages

Macrophages were derived from bone marrows (BM) follow the established procedure (37).
In short, BM cells from FcGRIlb-/- and wild type mice obtained from femurs were centrifuged at
1,000 rpm in 4 °C for 10 min. Then cell were incubated in high glucose DMEM supplement with
10% fetal bovine serum (FBS), 1% penicillin/streptomycin, HEPES with sodium pyruvate and 20%
L929-conditioned media in a humidified 5% CO, incubator at 37 °C for 7 days. The cells were
harvested at the end of the culture period using very cold PBS and confirmed macrophage
phenotype with anti-F4/80 and anti-CD11c antibodies (BioLegend, CA, USA).
Macrophage endotoxin tolerance protocol

Macrophage endotoxin tolerance protocol followed the protocols from the previous
publications (38, 39). Briefly, endotoxin (LPS) Escherichia coli 026:B6 (Sigma) at 10 or 100 ng/ml
was used to activate macrophage 1x10° cells/well in 96 well polystyrene tissue culture plate. To see
the difference between single or double LPS stimulations, 2 groups of experiments were performed.
For the single LPS stimulation (N/LPS), there was no endotoxin at the 1% 24h of the incubation then
the plate was washed with phosphate buffer solution (PBS), refilled fresh media and treated with
LPS at 10 ng/ml (N/LPS10) or 100 ng/ml (N/LPS100). For the double LPS stimulation (LPS/LPS), LPS
at 10 or 100 ng/ml was treated for the 1% 24h and treated with the 2" dose of LPS at 10 ng/ml or
100ng/ml as indicated. The culture supernatant was collected at 1, 2, 4, 6 and 24h after the 2" LPS
incubation in all groups and stored at -80 °C until cytokine determination by ELISA assays
(ReproTech). After the incubation, cell viability was measured by MTS assay (One Solution Cell
Proliferation Assay, Promega Corporation, WI, USA) according to the manufacturer’s instruction

(40). In short, 20 MI of MTS was added to the culture plates for 2h at 37°C in 5% CO2 incubator
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then read with microplate photometers with a wavelength at 450 nm. All in vitro experiments

demonstrated cell viability more than 95% (data not showed).

Macrophage intracellular killing activity and phagocytosis protocol

The protocol followed the previous publication (41). BM derived macrophage at 1x10° cells
in 200 ul of DMEM per well were dispensed into the flat bottom 96-well plate and incubated at 37 °C
in a humidified 5% (v/v) CO,incubator for 24 h, before gently washing with culture media to remove
non-adherent cells. Subsequently, the cells with endotoxin (LPS) Escherichia coli 026:B6 (Sigma) at
10 or 1,000 ng/ml, LPS10 or LPS1000, respectively, and incubated with 1x 10'CFU of E. Coli per
well.

Then after 15 min of incubation, supernatants were aspirated and cells were washed gently
with DMEM to remove un-ingested microorganisms. The supernatant and well washing fluids,
containing the non-phagocytized E. Coli, were combined, plated in serial dilutions on Tryptic soy
agar plates and counted for bacterial colonies for the representative of the non-phagocytic bacteria
which reversed correlated with the phagocytic activity. On the other hand, the cellular part,
phagocytosed macrophage, was further incubated with 200 ul of DMEM for 2h to determine
intracellular bacterial killing activity. The wells were gently scraped and washed with 200 ml distilled
H,O to induce cell lysis and the serial dilution of the lysate were plated on Tryptic soy agar,
incubated at 37 °C for 16 h and determine the bacterial colony count. The number of bacteria from
the cell lysate represented the intracellular killing activity.

Statistical analysis

Data are shown as the mean + SE and differences between groups were examined for
statistical significance using the unpaired Student t-test or one-way analysis of variance (ANOVA)
with Tukey’s comparison test for the analysis of experiments with 2 and 3 groups, respectively.
Survival analyses were evaluated using the log-rank test by observation and recorded every 6-24h
then all mice were sacrifice at 96h after CLP. P values < 0.05 were considered statistically

significant. SPSS 11.5 software (SPSS Inc., Chicago, IL, USA) was used for all statistical analysis.

Result
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Fc gamma receptor Ilb deficient mice susceptible to cecal ligation and puncture sepsis in
symptomatic SLE mice and asymptomatic SLE group preconditioned with LPS

At 24-weeks-old, FcGRIIb-/- mice showed increased anti-dsDNA with proteinuria but normal
kidney function as evaluated by serum creatinine (Scr) (Fig 1). This natural history allows the
experiments in 2 groups of mice in correspondence with patients with SLE; asymptomatic genetic
prone group ( 8-weeks-old) and symptomatic proteinuria group (24-weeks-old). To see the
susceptibility to bacterial sepsis without LPS preconditioning in these 2 groups, CLP surgery was
performed in comparison with age-matched wild type control. In the absence of LPS, only
symptomatic, but not asymptomatic, FcGRIIb-/- mice showed higher sepsis mortality rate compare
with wild type (Fig 2A, B) supports the correlation between SLE disease activity and infection

susceptibility (9).
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Figure 1. The natural history of FcGRIIb-/- and wild type (FcGRIIb+/+) mice as determined by

serum creatinine (Scr), urine protein creatinine index (UPCI) and anti-dsDNA (n=4-5/groups).
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Then we test the effect of LPS preconditioning in asymptomatic mice and determine the

severity of immunoparalysis by the mortality rate of CLP surgery (20, 21).
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Figure 2. Survival analysis of cecal ligation and puncture (CLP) sepsis surgery in asymptomatic
FcGRIIb-/- mice (8-wk-old) (A) and symptomatic, proteinuria positive but normal serum creatinine,
FcGRIIb-/- mice (24-wk-old) (B) in comparison with age-matched wild type mice (FCGRIIb+/+).
Although the high CLP mortality rate found in both wild type and FcGRIIb-/- mice after LPS-
preconditioning, FCGRIIb-/- showed the higher mortality rate. Whereas all wild type and FcGRIIb-/-
mice die within 72h and 36h, respectively, in CLP with LPS, the survival rate at 30% and 22% found
in wild type and FcGRIIb-/- mice, respectively, in CLP alone (Fig 3A, B). These results supported
the immunoparalysis occur in both wild type and FcGRIIb-/- mice after LPS preconditioning but

FcGRIIb-/- mice showed the more severe immunoparalysis (Fig 3C).
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Figure 3. Survival analysis of cecal ligation and puncture (CLP) sepsis surgery preconditioning
with 2 separated doses of LPS at 120h and 12h prior to CLP, CLP in endotoxin preconditioning
model, in comparison with normal saline ( NSS) placebo injection within wild type mice
(FcGRIIb+/+) (A) and FcGRIIb-/- group (B) were showed. Survival analysis of CLP in endotoxin
induced immunoparalysis model between wild type (FcGRIIb+/+) and FcGRIIb-/- mice (C) was
also demonstrated.
The cytokine responses after LPS injections and after superimposed by cecal ligation and puncture
The luminex-based multiplex system was used to explore the difference in the cytokines

responses after LPS administration between asymptomatic FcGRIlb-/- mice versus wild type.
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Among the pro-inflammatory cytokines (TNF-Q, IL-6, IL-1 B and IFN-Y), we found that most of the
pro-inflammatory cytokines, except for TNF-Q, were significantly higher in FcGRIlb-/- mice at 1h
after the 1% dose of LPS administration (Fig 4A-C). TNF-Q, IL-6, IL—1B and IFN-Y at 1h after LPS
administration in FcGRIIb-/- mice and wild type were 21,851+£3,200, 3,525+117, 350438, 21+2
pg/ml and 12,453+3,925, 2,301+157, 5411, 3+1 pg/ml, respectively. In parallel, for the anti-
inflammatory cytokines (IL-2, IL-4, IL-5 and IL-10), all of these cytokines, except for IL-5, were
higher in FcGRIIb-/- mice at the 1* h after the 1% dose of LPS (Fig 4D-F). In detall, IL-2, IL-4, IL-5
and IL-10 at 1h after LPS administration in FcGRIlb-/- mice and wild type were 26.2+3.4, 10.8+1.1,
34.543.5, 958+106 pg/ml and 12.6+3.3, 3+0.4, 27.1+3.6, 575+104 pg/ml, respectively. These
results supported the prominent cytokines responses in FcGRIIb-/- mice reported previously (18).
Interestingly, at 1h and/or 2h of the 2" LPS administration with the 5 times higher dose of LPS, all of
these cytokines, except for IL-1B and IL-5, were significantly lower than the 1* administration in
FcGRIlb-/- mice (Fig 4). In contrast, in wild type mice, only IFN-Y, IL-2, IL-4 and IL-10 were lower
and IL—1B was higher in some time-point of 2" LPS administration compared with the matched
time-point of the 1% LPS injection ( Fig 4). The endotoxin tolerance, determined by the lower
cytokines responses after 2" dose of LPS, was easier demonstrated in FCGRIIb-/- mice compare
with wild type. Moreover, the severity of endotoxin tolerance, determined by the cytokine level
difference after matched time-point of 1* and 2" LPS administration, was higher in FcGRIIb-/- mice

(Fig 4 inset graph).
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Figure 4. Serum cytokines in wild type (FcGRIIb+/+) or FcGRIIb-/- mice after at 1, 3 and 6h after

1 LPS injection (0.8 g/kg) and 2" LPS injection (4 g/kg) as measured by TNF-Q (A), IL-6 (B), IL-
1,3 (C), IFN-Y (D), IL-2 (E), IL-4 (F), IL-5 (G) and IL-10 (H) was demonstrated. To emphasize the

difference of serum cytokines after 1 *and 2" doses of LPS, the delta change of serum cytokine

response at the matched-time=points after both LPS injection was showed as inset graph. (n= 5-7

per group)

It is interesting to note that, even with the 5 times higher LPS dose of 2" LPS administration,

most cytokines level was lower than the 1% dose implied endotoxin tolerance status in both

FcGRIlb-/- and wild type mice. Subsequently, we tested the severity of polymicrobial infection in
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these mice with CLP surgery and selected to explore only frequently mentioned sepsis cytokines

(TNF-A, IL-6 and IL-10) in vivo.
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Figure 5. The time-course of bacterial burdens after cecal ligation and puncture (CLP) in blood
bacterial burdens (A), mononuclear cell (B), PMN (C), TNF-Q (D), IL-6 (E), IL-10 (F) and the
severity of organs injury after 18h of wild type (FcGRIIb+/+) and FcGRIIb-/- as demonstrated by
serum creatinine (Scr) (G) and alanine transaminase (ALT) (H) was showed. (n= 5-7/ time-point

and group)
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Interestingly, bacterial burdens in FcGRIIb-/- mice were higher than wild type in all selected
time-points (3, 6 and 18h) after CLP (Fig 5A). Blood bacterial count (x10° CFU/mI) in FcGRIIb-/-
mice and wild type at 3, 6 and 18h were 3.1+0.3, 7.6+£1.1, 964+137 and 0.6+0.2, 3.3+0.6, 518+73,
respectively.

Moreover, pro-inflammatory cytokines (TNF-Q and IL-6) and anti-inflammatory cytokine (IL-
10) were higher in wild type mice at 3 and 6h and only 3h after CLP, respectively (fig 5B-D). Serum
TNF-A, IL-6 and IL-10 at 3h and 6h in FcGRIlb-/- versus wild type were 48+9, and 80+7.1, 69+9
and 145%18, 716 and 10444 pg/ml versus 120+24 and 211449, 124424 and 235+33, 102+7 and
170+£36 pg/ml, respectively. In contrast, at 18h after CLP, all of these cytokines and most of the
organs injury biomarkers (Scr for kidney injury and ALT for liver injury) were higher in FcGRIlb-/-
mice (Fig 5B-H). Despite the prominent responses to LPS in FcGRIlb-/- mice mentioned earlier,
cytokines responses at the early phase of CLP after LPS preconditioning were stun in comparison
with wild type implied the more severe immunoparalysis.

Perhaps, severe immunoparalysis at the early phase of sepsis might associate with the
higher bacterial burdens leading to the higher sepsis severity (Fig 5) and mortality rate (Fig 3C) in
FcGRIIb-/- mice.

Bone marrow derived macrophage of FcGRIIb-/- mice showed higher cytokine responses in the
single incubation of LPS but lower responses in the double incubation of LPS

The previous results demonstrated that FcGRIIb-/- mice, an inhibitory signaling deficiency,
showed a very high initial response, but subsequently follow with a more apparent exhaustion after
LPS stimulation. Because macrophage might be responsible for the exhaustion in vivo then we
tested FcGRIIb-/- macrophages response to endotoxin incubations in vitro in comparison with wild

type cell.
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Figure 6. The cytokine responses in supernatant media from macrophages of FcGRIIb-/- or wild
type (FcGRIIb+/+) after activated with only once low dose LPS (N/LPS10) as measured by TNF-Q
(A), IL-6 (B), IL-10 (C) and after activated with twice low dose LPS (LPS10/10) as measured by
TNF-Q (D), IL-6 (E), IL-10 (F) was showed. (Separated experiments were done in triplicate)

In parallel with the in vivo results, higher cytokines, at least in some time-points (3-24h),
found in the supernatant of FcGRIlb-/- macrophages with the single low dose LPS (non LPS at the
1*' 24h of the incubation followed by LPS dose at 10 Mga/ml; N/LPS10) (Fig 6A-C). Then TNF-a and
IL-10, but not IL-6, was lower in the double low dose of LPS stimulation (LPS 10 [dg/ml for 24h then
washed and add the same 2™ dose; LPS10/10) (Fig 6D-F). Then, a higher dose of LPS was used.
Once again, FcGRIIb-/- macrophages showed the higher responses than wild type in the single

high dose of LPS (N/LPS100) (Fig 7A-C). But the cytokines responses of macrophages primed with
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the high dose of LPS seems to depend on doses of the 2" LPS. In high LPS followed by low dose
LPS (LPS100/10), all cytokines were detected at the low level (Fig 7D-F) and the difference between
wild type and FcGRIlb-/- cells were subtle. But the apparent lower TNF-Ql and IL-10 in FcGRIIb-/-
cells appeared again with the higher 2" dose of LPS (LPS100/100) (Fig 7G-l). To clarify the
macrophage exhaustion, the lower cytokines level after double LPS exposure compare with single
LPS exposure, the cytokines level after single and double LPS exposure at 6 and 24h was
demonstrated (Fig 8). With the double low dose of LPS (LPS10/10), macrophage exhaustion could
be demonstrated with only the lower TNF-a in wild type cell but lower both TNF-a and IL-10 in
FcGRIIb-/- macrophages (Fig 8A-C).

Interestingly, macrophage exhaustion, lower cytokine in double LPS exposure compare with
single LPS, could be demonstrated only by TNF-a and IL-10 in FcGRIIb-/- cells but with TNF-a alone
for wild type cell with the double low dose of LPS (LPS10/10) (Fig 8A-C). On the other hand, with the
higher dose of LPS stimulation, the exhaustion could be demonstrated in all cytokines in FcGRIIb-/-

cells but only in some condition in wild type cell (Fig 8D-F).
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Figure 7. The cytokine responses in supernatant media from macrophages of FCGRIIb-/- or wild
type (FcGRIIb+/+) after activated with only once high dose LPS (N/LPS100) as measured by TNF-
Q, IL-6, IL-10 (A-C) and double LPS doses, low and high dose LPS (LPS100/10 and LPS100/100,

respectively), (D-F) were demonstrated. (Separated experiments were done in triplicate)
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Figure 8. The macrophage endotoxin tolerance emphasized by the difference in cytokine
responses (TNF-Q, IL-6, IL-10) in supernatant media from macrophages of FcGRIIb-/- or wild type
(FCGRIIb+/+) after activated with only once low dose (N/LPS10) versus twice low dose of LPS
(LPS10/10) (A-C) and the difference among only once high dose (N/LPS100) versus twice high
and then low dose of LPS (LPS100/10) versus twice high dose of LPS (LPS100/100) (D-F) were

demonstrated. (Separated experiments were done in triplicate)
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Macrophage exhaustion could not be demonstrated by IL-6 responses both in wild type and
FcGRIlb-/- cells with double low dose LPS stimulation. In parallel, with the comparison among
single high dose LPS (N/LPS100) with double LPS dose with low and high 2" LPS dose (LPS100/10
and LPS100/100, respectively), macrophage exhaustion could be shown by all cytokines despite a
less prominent in IL-6 response of the wild type cell ( Fig 8D-F) . It seems the macrophage
exhaustion occur in both knock-out and wild type cells but more prominent in FCGRIIb-/- cells.

In contrast, the phagocytosis and killing activity of FcGRIIb -/- macrophages were better
than wild type cells and there was a non-significant exhaustion in phagocytosis and killing activity
after LPS stimulation (Fig 9). Although, the killing activity of FcGRIIb -/- macrophage should be able
to control sepsis severity, perhaps the more severe bacterial sepsis severity in FCGRIIb -/- mice
might due to the lower number of mononuclear cell after sepsis (Fig 5).

3. aAtane / 3an90] (Discussion) HANNTNARES / HANATARETL v (%QﬁLﬂuLLﬂvaﬂ\i wlulal

mmuuﬁgmﬁf;ﬁ%

FcGRIlb deficiency is one of the genetic defects of SLE and FcGRIIb polymorphism with a
lower gene activity commonly reported in patients with SLE in Asia (3-5, 8). Additionally, sepsis is
the leading cause of death in patients with SLE (9). We showed a high susceptibility to CLP in
symptomatic SLE mice but not in asymptomatic group in comparison with age-match wild type
control. In asymptomatic genetic prone mice, the high susceptibility to CLP was showed only after
with repeated endotoxin induced immunoparalysis. The more severe macrophage paralysis in
FcGRIIb-/- macrophages might responsible for the more immunoparalysis in mice leading to higher
sepsis severity after CLP surgery.

The susceptibility to bacterial infection in patients with SLE is associated with several
factors; immunosuppressive drugs, activity of disease, organs involvement, etc (9). Studies on
FcGRIIb-/ - mice allow for exploring SLE without several confounding factors, especially
immunosuppressive drugs. As expected, the higher mortality rate of sepsis was showed in 24-wk-
old FcGRIIb-/- mice, positive proteinuria but normal Scr classified into symptomatic SLE group, in
comparison with age-matched wild type mice. These results supported the association between
SLE disease activity and bacterial infection susceptibility reported previously (9). Interestingly, the

mortality rate of sepsis without LPS preconditioning in asymptomatic 8-wk-old FcGRIIb-/- mice,
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positive anti-dsDNA without proteinuria, did not different to wild type mice supported the effective
immune responses to bacterial infection previously published (18).

More prominent endotoxin-induced immunoparalysis in FcGRIIb-/- mice demonstrated by
the high mortality rate of CLP sepsis

The immunoparalysis was induced by the double separate LPS administration and the
severity of immunoparalysis, the condition with a more susceptible to infection, was determined by
the severity of CLP sepsis (20). With this model, there was a higher mortality rate of CLP after LPS
preconditioning compare with NSS placebo control within either 8-wk-old FcGRIIb-/- or wild type
mice demonstrated immunoparalysis occur in both groups. Nevertheless, FcGRIlb-/- mice showed
a higher mortality rate than wild type implied a more severe immunoparalysis.

Despite immunoparalysis could be demonstrated by several biomarkers (42), cytokines
responses are frequently used. Then we tested cytokines responses in panels of pro- and anti-
inflammatiory cytokines, TNF-Q, IL-6, IL—1B, IFN-Y and IL-2, IL-4, IL-5, IL-10, respectively, with
luminex-based measurement in mice with double doses of LPS administration. Most of the
cytokines selected to measure were mainly produced by macrophage except for IFN-Y and IL-5
which produced prominently by NK cell or T cell and mast cell, respectively. With double dose of
LPS administration by the 2" dose of the 5 times higher than the 1* dose, all of these cytokines
response after the 2" LPS stimulation were not higher than the responses after the 1*' LPS dose.
These results suggested immunoparalysis in both FCGRIIb-/- and wild type mice. Interestingly, in
comparison with wild type mice, most of the pro- and anti-inflammatory cytokins, except for IL-5,
were higher in FCGRIlIb-/ - mice after the 1*' LPS stimulation, implied the vigorous cytokines
responses in FcGRIIb-/- mice. Then after 2" LPS administration, all cytokine except for IL-1 B and
IL-5 were lower than the 1* responses in both wild type and but with a more prominent difference,
demonstrated by the cytokine difference between 1**and 2" LPS administration, in FCGRIIb-/- mice.
These results demonstrated a more severe immunoparalysis in FCGRIIb-/- group. Of note, most of
these cytokines produced from macrophages except for IL-5 and IFN-Y which produced mainly
from mast cell and NK cell, respectively. Although functional FCGRIIb expression on mast cell (43)

and murine NK cell (44) were reported, IFN-Y, but not IL-5, response differently between FcGRIlb-/-
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and wild type mice. These implied the difference of FCGRIIb function between these cells. More
experiments needed but out of the scope of this article.

Nevertheless, the double LPS preconditioning seems to affect CLP severity. At the initial
time-point of CLP surgery, 12h after 2" dose of LPS, there was non-difference in TNF-Q, IL-6 and
IL-10 between LPS preconditioning and NSS control (data not showed) supported by the base-line
value before CLP surgery (Figure 5). Interestingly, blood bacterial burdens were higher with the
lower of these cytokines in FCGRIIb-/- mice compare with wild type at 3h and 6h after CLP surgery.
However, at 18h after CLP the sepsis severity was more severe in FCGRIIb-/- mice as demonstrated
by bacterial burdens, cytokines and organs injury. Perhaps, the initial cytokine responses were
needed for the initial innate immune responses to control the infection and the loss of the initial
control in FcGRIIb-/- mice due to LPS preconditioning induced a more severe sepsis. These results
support the importance of the initial bacterial control, especially in patients with SLE and /or

FcGRIlb polymorphism.

More prominent immunoparalysis in FcGRIlb-/- macrophage demonstrated by cytokine
responses after LPS stimulation

The LPS induction in vitro alters macrophage characteristics from classical pro-
inflammatory macrophage responses into a less pro-inflammatory stage of the macrophage (38)
implied the importance of macrophage in immunoparalysis. With the double low doses of LPS
(LPS10/10), macrophage exhaustion could be demonstrated in both FcGRIIb-/- and wild type but
cytokines production after 2" dose of LPS was lower in FCGRIlb-/- macrophages. Moreover, the
exhaustion seems to be more apparent with the higher 1* dose of LPS which needed the higher 2"
dose of LPS to re-stimulate. With the initial high dose of LPS followed by a low dose (LPS100/10),
only subtle cytokines responses were demonstrated. But with the larger 2" LPS dose (LPS100/100),
the difference between FcGRIlb-/ - and wild type appeared again. However, FcGRIlb-/ -
macrophages produced less cytokines levels after 2" dose of LPS either with high or low LPS
doses. Then LPS could induce a more apparent macrophage paralysis in FCGRIIb-/- cells resulted

in immunoparalysis state in mice which demonstrated by the higher CLP sepsis severity.
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In conclusion, we demonstrated the impact of the repeated infection in patients with SLE
through the CLP preconditioning with LPS in FcGRIIb-/- mice. Despite a good response to the only
once bacterial infection in FcGRIIb-/- mice, the responses to the repeated exposure might be
impaired lead to a more severe bacterial burdens and infection. The repeated infection in patients
with SLE could be more severe due not only to hyperimmunoglobulin induced hyper-
immuneresponse and sepsis (18), but also from immunoparalysis with the higher bacterial burdens
as currently demonstrated. In the translational aspect, we suggested that the repeated infection in
patients with SLE should be vigorously concemed and the FcGRIIb polymorphism screening in

Asian patients with SLE might be a useful clinical practice.
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The next final part of the project is the experiments to see if macrophage of FCGRIlb knock-out
which demonstrated exhaustion but intact killing activity show shorter half-life in comparison with wild
type cell. If the last experiment results go along with the hypothesis then FCGRIlb knock-out mice will be
susceptible to sepsis due to macrophage exhaustion and shorten half life of macrophage which will be
stronger support our in vivo results.

Regarding to the translation, the exploration of FCGR polymorphisms in patients with SLE might
be beneficial for the prediction of sepsis and might require a more aggressive antibacterial drug at the

beginning of the simple infectious diseases. More studies will be needed.
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