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Abstract

The structure of 25,26,27,28-rtetra(2-ethoxyaniline)calix[4]arene of cone (cL)
and partial cone (pcL) conformations were optimized by PM3 of quantum chemical
method. It has been found that cL structure is more stable than pcL conformation. The
stabilization  energies of protonation on four aniline-nitrogen atoms of both
conformations of the ligand at 6-31G energy level, were obtained. The protonations
process on the c¢L and pecL being 7 and 24 possible pathways, respectively, were
evaluated. The basicity constants of partial cone conformation of 25,26,27,28-tetra(2-
ethoxyaniline)calix[4]arene obtained by potentiometric titration technique, expressed in
term of logalithm are log K, = 11.87, log K; =5.59, log K3 = 4.62 and log K4 =4.62. For

basicity constants of cone conformation was not successfully obained.
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CHAPTER1

INTRODUCTION

1.1 Review of supramolecular chemistry

Supramolecular chemistry has interested several groups of scientists '™''.
It is the chemistry of molecular assemblies and of the intermolecular bonds which are
non-covalent intermolecular forces such as van der Waals interaction, hydrogen
bonding, electrostatic forces, donor-acceptor interactions, etc. The structures of
molecules in supramolecular chemistry called supermolecules are defined by their
conformational,  thermodynamical, kinetical and dynamical properties.
Supermolecules are distinguished by different degree of strength and directionality of
intermolecular bonds such as metal ion coordinates, electrostatic forces, hydrogen
bondings, van der Waals interactions, donor-acceptor interactions, etc. Bondings are
classified in weak or moderate as in hydrogen bonds and strong or very strong
interactions for metal ion coordination. In fact, intermolecular forces are weaker than
covalent bonds. Due to the reson mentioned above, supermolecules are
thermodynamically less stable, kinetically more labile and dynamically more flexible
than classical molecules. Supramolecular chemistry is then concerned with soft bonds
and represents a soft chemistry. Supramolecular chemistry can be divided into two

general areas concerning:

(1) supermolecules as oligomolecules that are result of the intermolecular association
of a few components such as receptor and its substrate(s) based on the principles

of molecular recognition;



(2) supramolecular assemblies as polymolecules that result from the spontaneous
association of a large undefined number of components into a specific phase
having more or less well-defined microscopic organization and macroscopic
characteristics depending on its nature such as films, layers, membranes, vesicles,
micelles, mesomorphic phases, solid state structures, etc. It thus covers the
rational, coherent approach to molecular associations, from the smallest, the

dimer, to the largest, the organized phase, and to their designed manipulation.

1.2 Calix[4]arenes

Calix[n]arenes are oligophenols readily accessible by simple condensation

of para-substituted phenols with formaldehyde under basic catalysts, Figure 1.1.

R R
base
+ H2C=0 —_—
n
OH OH n=4-8

Figure 1.1 Preparation of calix[n]arenes.

The name “calixarene” has been given by Gutsche ' because of the resemblance of the
four-membered ring with a chalice (in Greek :-calix). The suffix “arene” indicates the

represent of aryl rings in the molecular framework.

Calix[n]arenes can be selectively prepared in different conditions. The
calix[n]arene containing an even number of phenolic units such as calix[4]arene and

calix[8]arene can be synthesized by simple techniques in satisfying yields. On the



other hand, calixarenes that contain an odd member of [n] are more difficult to
prepare. Calix[n]arene and their derivatives can be used as host molecules to form
complexes with target ions and/or neutral molecules. They can also be developed and
modified for the construction of new types of molecular devices for various industrial
applications. Calix[4]arene is surely the most significant member of the calix[n]arene
family, and its chemistry is by far most advanced. This molecule represents a well-

preorganized cavity, the shape of which is tunable by suitable substitution of hydroxy

groups.

cone partial - cone 1,2-alternate 1,3-alternate

Figure 1.2 Possible conformations of calix{4]arene.

Figure 1.2 shows four basic conformations (isomers) which can be
prepared fromi calix[4]arene; cong, partial cone, 1,2-alternate and 1,3-alternate. Each
of them has its own specific properties and characteristic utilization in host-guest
chemistry. This makes calix[4]arene a very attractive compound that can be used as a
starting platform for designing more sophisticated structures for binding ions and

neutral molecules.



1.3 Calix[4]arene complex with heavy metal ions

The complexation studies of heavy metals have attracted inorganic
chemists for an extended period of time. The reason for this growing interest is the
use of ligands as complexants for the selective extraction of metals in purification
procedures. Among the most widely used ligands are chelates and macrocycles. These
types of ligands are particularly attractive because they can be designed to have very
high stability constants for particular metal ions due to judicious choices of ligating

atoms and ring sizes.

Use of calixarenes as complexants for metal ions is a much more recent
development. Calixarenes are akin to macrocycles in that they have a lower rim of
oxygens in a cyclic arrangement that can be used to coordinate metal ions. Chemically
modified calixarenes are used where both the lower rim oxygens and the functional
groups appended as substituenis coordinate to the metals. These chemically modified
calixarenes can therefore be considered to have a combination of both a chelating and

a macrocyclic portion.

Diaza-benzo crown ether-p-fert-butylcalix[4]arene '>'* (Figure 1.3) were
synthesized and studied complexation with Zn®*, where the counter anions are CI°,
Br-, I', ClOg", NOs™ by 'H NMR spectroscopy. This study showed that this ligand
could bind Zn’* to a different extent depending on the counter anions and the cavity
size of the ligands, The stability of Zn®" complexes of this ligand varied as follow :
NO; = ClO4 > I” > Br > CI". Recently, the protonation of this ligand and its
complexation with Zn(ClOs); were studied by potentiometric and ultraviolet

spectroscopy titrations i



o OH O OH

O O O ©

l l | I

Figure 1.3 Diaza-benzo crown ether-p-feri-butylcalix[4]arene.

In 1994, Schiff base p-fert-butylcalix[4]arenes '°, (Figure 1.4) were
synthesized. Alkali and alkaline earth cations were very poorly extracted by the
ligands (I-III). However, the better extraction of Li* and Na' with ligand (III) may
be explained by greater flexibility of its bridge which was due to an additional carbon
that allows the chain to adopt a more suitable geometry for complexation. In the
transition metal series, Fe** and Cu®* were extracted more efficiently. Heavy metal
cations were extracted with ligand (iI) and (i), with higher preference for Pb*". For
lanthanide series, there was an extraction selectivity for Nd** and Eu®* with (II) and

for Eu®* with (1II).

wemyanan o inminmg
‘mnmu'un 1immide
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Figure 1.4 Schiff base p-fert-butylcalix[4 ]arenes.

The complexation work to date with calixarenes has primarily focused on
metals of Group I or II, or on other oxophilic metal centers such as UO,**. Calixarene
based ligands with funetionalities binding via their oxygen or nitrogen sites have been
widely employed as selective complexants for both Group 1 and II metal ions.
Nevertheless, little has been published on the preparation of calixarene derivatives
which coordinate to the metal center via other heteroatoms. Such compounds are
important if selective complexants for heavy metals are to be developed. Specific
ligands need to be designed for these particular metals because they form stable
complexes with “soft” rather than with *“hard” donor ligands. For example, Cu’, Ag",
Au’, Cd* and Hg®" are soft acids which can show soft-soft interactions with soft

bases such as R,5, RSH or RS,



1.4 Structure of 25,26,27,28-tefra(2-ethoxyaniline)calix|4]arene

The structural conformation of 25,26,27,28-tetra(2-ethoxyaniline)calix[4]
arene from the experiment of synthesis, the cone (cL) and partial cone (pcL)

conformations have been discovered as shown in Figure 1.5.

(eL) (peL)

Figure 1.5 Cone (cL) and partial cone (pcL) conformations found by the

process of synthesis.

The four aniline-nitrogen atoms of cone (cL) and partial cone (peL) conformations,
assigned by the four number to identify the protonated structure of of 25,26,27,28-

tetra(2-ethoxyaniline)calix[4]arene; has been labeled as shownin Figure 1.6.
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Figure 1.6  Assignment of aniline-nitrogen atoms of cone (¢L) and partial cone

(peL) conformations
1.4 Objective and Scope of the Research

To determing the structural conformation of  25,26,27,28-tetra(2-
ethoxyaniline)calix[4]arene by quantum chemical calculations using semiempirical
and ab initio methods. The stabilization energies of optimized protonated species
will be evaluated by ab initio method with extended basis set. The most possible of
protonation pathway of each conformation of 25,26,27,28-retra(2-ethoxyaniline)
calix[4]arene will be found out. The basicity constants of each conformation of the
ligand will be determined by potentiometric titration technique. Complex formation
of possible conformation to the transition metals will be investigated. The species
distribution of the ligands and their complexes with heavy metal ions over the varied
pH values will also be obtained. In addition, the knowledge of this research may lead
to application of these ligands for heavy metal ion separation from environment in the

future.



CHAPTER 1
THEORY

2.1 Potentiometry and Equilibrium

2.1.1 Equilibrium Constant

2.1.1.1 Equilibrium Concentration Constant

An equilibrium constant is a quotient involving the concentrations or activities
of reacting species in solution at equilibrium. Generally it is defined as the ratio of the
product of the activities @ of the reaction products, raised to appropriate power, to the
products of the activities of the reactants, raised to appropriate power, illustrated by
equation (2.1) where a, b, ¢ and d are the stoichiometric coefficients of the solution

species A, B, C and D respectively.
o

aA + bB | =—= ¢C + dD ‘(“":%}%& @2.1)
4 95
The determination of the activities of complex ionic species at both infinite
solution and in real solution is a complicated and time-consuming task. However
concentrations are related to activities by the expression

ar = Al (2.2)
where ay, [X] and yy are activity, concentration and activity coefficient of X
respectively. Activity coefficients of reacting species are in general tedious and
difficult to -measure. ‘They also cdepend: very significantly on the nature and
concentrations of other species present in solution so that it is not possible to build
universal tables of activity coefficients. ‘Theoretical attempts. at calculating activity
coefficients, based on the Debye-Huckel approach and its extensions, are at best of
only limited accuracy. Substituting the activities from equation (2.2) in (2.1), then the

equilibrium constant can be rewritten as follow.

K - G @ _  [a(of rérs 23
k a; aj (4] (B’ s ¥l



where[4] indicates molar concentrations. If now it is possible to ensure that the term

e o P |
'e'p ; "e'p :
remains constant then the term RO also a constant. Therefore, the
a a eq
LA "478

equilibrium constant expressed in terms of the reacting species, called equilibrium
concentration constant, K. can be written as indicated by equation (2.4).
[C]° (D)
[4]° [B)°

Equilibrium concentration constant, K. is also known as the stoichiometric

aA + bBB <— ¢C + dD K. (2.4)

equilibrium constant which determined at constant ionic strength where as K, is
indicated by equation (2.1) which is known as an equilibrium activity constant or
thermodynamic equilibrium constant.

el 4
ey
< ‘:’ in equation (2.3) may be maintained effectively constant by

The term

74"

having a large excess of an inert background electrolyte present and using only low
concentrations of the reacting ionic species so that any change in their concentrations
as a result of their reaction together has an insignificant change on the overall ionic
strength of the medium. It is generally possible to replace about 5% of the ions in the
inert background electrolyte without appreciably altering the activity coefficients of
the minor species present. However, in recording a stoichiometric equilibrium
constant it is essential to record not only the concentration of the inert background
electrolyte, but also its nature, since the activity coefficients depend on the electrolyte.
Consequently, of course, in comparing stoichiometric equilibrium constants, only data
obtained under very similar conditions should be used unless the differences between

the equilibrium constants are large.

2.1.1.2 Acidity and Basicity Constants

The acid-base equilibria of the ligands can be treated by protonation
and deprotonation constant. Protonation constant is the equilibrium constant for the
addition the »™ proton to a charged or uncharged ligand. Protonation constant is

known as basicity constant. The reciprocal of protonation constant is called



deprotonation constant and defined as the equilibrium constant for the splitting off n"
proton from a charged or uncharged ligand. Deprotonation constant is also known as

acidity constant. The following equations define these constants and show their

interrelation.

[LH]

L + H = IH : K = 2.5
. . _ [LHI]

IH + H s LN/ k& [LHl [d] (2.6)
LH

LH; + Hewo—) LH:; S Koes [LH]’[H] 2.7)
2
LH

IH, + HASE=E"tH" | K\ ﬁ 2.8)
n-1

Another way of expressing the equilibria relations can be shown as follow:

[LH]

L + HFf &1, p= I (2.9)
N LH,

L + 2H <—— LH;: = 2.10
LH

f 3 == LH : = : 2.11

L 3 ﬂﬂ [L] [H]J [ :l
19 5\ A [LH,]

L \ nHl 1S 0L & n F : - (2.12)
[’ (L] (1]

The K's are called the stepwise protonation constants and the i's are called the

overall or cumulative protonation constants.



2.2 Method of Calculations
2.2.1 Linear Method, Errors and Statistics

Stability constants are not directly measurable but must be calculated from an
observed response function of a fixed, but experimentally adjustable, variable. Since
the response data are subject to random error and indeed may be subject to systematic
errors if we have not controlled the experiment well, the stability constants will be
calculated with limited precision. However, it is important to estimate the precision of
any calculated constants, as it will indicate the reliability of the value obtained and in
turn the efficiency of the experiment. In addition we need to have a mathematical
model for describing the data,

2.2.2 Model Building

Experiments attempts to find some functional form for the way quantities in
nature are related. We try to build up a mathematical model which may be an
assumed one, in which case we need to measure of how good the model is in
describing our data, or it may be derived from first principles and then tested
experimentally. The model could be an approximated one, which initially may be
acceptable and then refined or modified in the further experimental observations. The
typical experiment consists of fixing one group of known values variables called
independent variables and then making observations of another dependent variables.
In stability constant work, the independent variables might be temperature, ionic
strength, or the concentration of one or more components and dependent variables
might be e.m.f. or pH or absorbance of the solution. We then calculate or estimate the
parameters of interest from the assumed function by relating the dependent to the

independent variables.

The parameters for our model are calculated by fitting them to the
experimental data. This may be done either graphically or by a mathematical
procedure, such as least-squares. The latter calculates the values of the parameters

which sum of the squares of the residuals is defined as the difference between the
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observed and calculated data points at each fixed minimum value of the independent
variable. In addition the method of least-squares allows us to obtain the estimated
errors of the interested parameters and to estimate the ‘goodness of fit’ of the

assumed model, that is, it allows us to test alternative hypotheses.
2.2.3 Random Errors

Random or observational errors are assumed to follow a Gaussian or normal

distribution , expressed mathematically as

1 1
£(r) = g e’/ (2.13)

where ry is the residual of x or observed value - true value , a‘f is the variance of x

and o, is the standard deviation.

The probability of observing the i th residual, P; in the region ry to ry; +dry; is:

1 - iaal
P = —— % g 2.14
! ﬁﬂ; 2 { }

Now the probability for a given set of n observations, where P is the product of the

probabilities of i th measurements is

ar = [far = T [?FT_J i 2.15)

=1 20’,

Based on the statistical principle of maximum likelihood this probability becomes a

maximum when the sum of the squares residuals is a minimum.
1]
>l = minimum (2.16)
i=1

Hence the origin of the term ‘least squares * is apparent.



The discussion so far has assumed that the measurements of x have all come
from the same population distribution, that is, the variance of the residuals are equal.

If this is not so, equation (2.14) should be rewritten as :

1 :
dP = a2k gy (2.17)

e
: ﬁﬂ'xi
and the equation (2.58) becomes

i=n i=n Isira/
dP = Hdpi =[] [%] e’ f"f"} (2.18)

i=1
and the least-squares principle gives:

- 2

c%,-] £ ofnidum (2.19)
=1

A quantity inversely proportional to the wvariance is termed the weight of an

observation. Hence:
w, = — (2.20)
where o is known as the variance of an observation of unit weight. In practice o’

will often have the value of unity. The quantity now to be minimized is the sum of the

weighted squares of the residuals.

EW.. e = minimum (2.21)
=1

In practice we cannot know the true value of x , but the principle of least-

squares attempts to adjust the estimate of x according to equation (2.21). Generally



the experimental data are function of the parameter x so that ry; in equation (2.21) is
defined as:

T = [f{x;} -ﬂﬂ} (2.22)

and x is the least-squares estimator of the true value of the parameter.

2.2.4 Systematic Errors

Systematic errors are caused by the limitations of the apparatus, or
experimentalist, and introduce bias into the data resulting in inaccurate parameters.

Thus it is possible to obtain high precision with poor accuracy, as indicated

diagrammatically in Figure 2.1.

frequency of

occurrence

! |

“true” value of observation.

measurcment

Figure 2.1 Diagrammatic representation types of experimental error : (a) high
precision, high accuracy ; (b) low precision, high accuracy (due to large random

errors); (c) high precision, poor accuracy (due to systematic errors).



2.2.5 Non-Linear Parameter Estimation

2.2.5.1 Least -squares-extension case

To extend least-squares theory to the non-linear case, that is the
situation where the dependent variables are non-linear functions of the independent
variables, we take equation and express the dependent variables (observables) as a

function of the unknowns by a Taylor series expansion. Thus if the initial estimates of

the parameter values are (x{ x? ...x ) then the observables are expressed about this

point in parameter space by:

o, = f, (x¢..x) # {%l (x,—xp) +..t {gi Ju (x, —x°) (2.23)

that is

o, = f; (xp..x3)+ J)j[jf‘] Ax (2.24)

2 t j
i= Z

where terms higher than first order have been neglected. Therefore the change in the

observables Ao, on making the corrections Ax; are given by

i=m

Ao < o bxiaxt )+ 2}[%} Ax, (2.25)

2.2.5.2 Hypothesis testing

Another quantity which has been used in non-linear estimation situations is the

Halmilton R-factor. In this procedure the R-factor defined by :
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S, (o= - o) |
_ | i=1

R = - : (2.26)
S, (o)
=1
is compared with R i, calculated from :
1
= 2
S, e
R i) (2.27)

" St

where e; is the residual in the i th equation calculated from the estimated errors in all
the experimental quantities using error propagation rules, o™ and o”*are the
calculated and the observed values of the response variable respectively, w; are the

appropriate weighting factors. A satisfactory fit is assumed if R < Ryp.
2.3 Calculation of Equilibrium Constants

The acidity and basicity constants were calculated by fitting the pH data to the
SUPERQUAD program '® which has been widely used to calculate the equilibrium
constants of many ligands in solution. The formation constants are determined by
minimization- of -an-error-square sum based on measure electrode potentials. The
SUPERQUAD program also permits refinement of any reactant concentration or
standard electrode potential. The refinement is-incorporated into new procedure which
can be used for model selection. The assumptions for-computation of formation
constants by SUPERQUAD could be described as follows.

Assumptions : There are number of assumptions underlying the whole

treatment, and each needs to be considered explicitly.



1. For each chemical species A,Bp... in the solution equilibria, there is a
chemical constant, the formation constant, which i1s expressed as a concentration

quotient in equation (2.28).

[A,B,..]

(AT(BT.. @:2)

y -

A, B... are the reactants (SUPERQUAD allows up to four of them) and [A], [B] are
the concentrations of free reactant; electrical charges may be attached to any species,
but they are omitted for sake of simplicity in this discussion. Since the thermodynamic
definition of a formation censtant is as an activity quotient, it is to be assumed that the
quotient of the activity coefficients is constant, an assumption usually justified by

performing the experiments with a medium of high ionic strength .

2. Each electrode present exhibits a pseudo-Nernstian behavior, equation

(2.29), where [A] is the econcentration of the electro-active ion,
E—= E® +.8 log [A] (2.29)

E is the measured potential, and E° is the standard electrode potential. The ideal
value of the slope S is of course R7/nF, but we assume only that it is a constant for a
given electrode. The value of E°and S are usually obtained in a separate calibration

experiment. Further there is a modified Nernst equation.

E = E° % .8 log (H ] +r[H']+s[HT]' (2.30)

This equation was first suggested as means of taking into account junction potentials

in strongly acidic and strongly basic condition.

3. Systematic errors must be minimized by careful experimental work.
Sources of systematic error include electrode calibration, sample weightings and
dilutions, standardization of reagents (use of carbonate-free alkali in particular),
temperature variation and water quality. The last-named factor is more significant

today than it was in the past, as water may be contaminated by titrable species which



can pass through distillation columns by surface action. All statistical tests are based

on the assumption that systematic errors are absent from the data.

4. The independent variable is not subject to error. Errors in the dependent
variable are assumed to have a normal distribution. If these assumptions are true, use
of the principle of least squares will yield a maximum likelihood result, and computed

residuals should not show systematic trends.

5. There exits a model of the equilibrium system, which adequately accounts
for the experimental observations. The model is specified by a set of coefficients
a, b, .., one for each species formed. All least-squares refinements are performed in
terms of an assumed meodel. Examination of a sequence of models should yield a best
model which is not significantly different from the true model. Choice of the best

model is known as species selection.
2.4 Inert Background Electrolyte

To study acid-base characteristics of ligand and their complexation properties
toward metal, ionic strength is controlled by inert background electrolyte present at a
concentration far in excess that of the reacting ionic species under investigation. Inert
background electrolyte is sometime called inert background solution or supporting
electrolyte which 1s defined as electrolyte which does not react with any of reacting
species such as metal ion, ligand or metal-ligand species in the equilibrium being
studied. The main function of the inert background electrolyte is to keep the overall
ionic strength and activity coefficient constant. Properties of the chosen inert
background electrolyte must:meet the following requirements
1. a strong and non reacting (inert) electrolyte,

2. no part of electrolyte involved in equilibrium under investigation,
3. its cation must not associate with the ligand and with the complex species,
4

. its anion must not associate with the central metal ion and with the complex species,
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5. redox reaction must not occur between the constituents of the inert electrolyte and
the central ion or ligand,
6. its solubility has to be large enough,

7. its contribution to the measured physical or chemical property must be negligible.

Inert background electrolytes that are commonly used in aqueous solvent are
sodium salts such as the perchlorate or nitrate e.g. sodium perchlorate (NaClOy),
sodium nitrate (NaNOs), perchlorate is usually more suitable than any other ions.
Sodium chloride (NaCl) has been used as an inert background electrolyte, but its use
is less common than perchlorate or nitrate because chloride ions often form
complexes with metal ions under study. Potassium salts such as potassium nitrate
(KNO;) and potassium chloride (KCI) have also been used occasionally, but
potassium perchlorate (KCIQy) is unsuitable due to its low solubility in water .

In non-aqueous electrolyte such a methanolic and ethanolic solvents,

1819 of perchlorate , chloride, nitrate or trifate such as

quaternary ammonium salts
tetracthylammonium perchlorate (EtN4ClO4), tetramethylammonium chloride
(MeN4Cl) and tetrabuthylammonium trifluoromethanesulfonate (BuN4CF3803) are
usually supplied. It is found that MeN4Cl is not suitable for investigation of complex
formation in the methanolic solution, because chloride can easily form complex(es)
with many metal ions. The background electrolytes for basicity study of the ligands
and their complexation in the ethanolic solution is the tetramethylammonium nitrate
(MeN4NO»).. For many equilibrium studies of the ligands and their complexes with
metal ions in acetonitrile solution, the MeN4ClO4 and BuN4ClO4 are suitable
background electrolytes. The BuN4CF3SO; was recently used in methanolic solution
and introduced by ' reference 19. ‘The BuN4CF3;SO; " was used by the reason of

avoiding the explosive substance such as perchlorate salts.
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2.5 Quantum Chemical Theory
2.5.1 Exact solutions to the Schrodinger equation

The Schrodinger equation can be solved exactly for only a few
problems, such as a particle in a box, the harmonic oscillator, the particle on a ring,
the particle on a sphere and the hydrogen atom, all of which are dealt with in
introductory textbooks. A common feature of these problems is that it is necessary to
impose certain requirements (often called boundary conditions) on possible solutions
to the equation. Thus, for a particle in a box with infinitely high walls, the
wavefunction is required to go to zero at the boundaries. For a particle on a ring the
wavefunction must have a periodicity of 2 because it must repeat every traversal of
the ring. An additional requirement on solutions to the Schrodinger equation is that
the wavefunction at a point r when multiplied by its complex conjugate is the
probability of finding the particle at the point (this is the Born interpretation of the
wavefunction). The square of an electronic wavefunction thus gives the electron
density at any given point. If we integrate the probability of finding the particle over
all space, then the result must be one as the particle must be somewhere:

¥ wdr=1 (2.31)

Indicates that the integration is over all space. Wavefunctions which
satisfy this condition are said to be normalised. It is usual to require the solutions to
the Schrodinger equation to be orthogonal:

W Wadt=0(m #n) (2.32)

A’ convenient way to -express bath the orthogonality of different
wavefunctions and the normalisation conditions uses the Kronecker delta:
J¥n" Wadt= 8 (2.33)

When used in this context, the Kronecker delta can be taken to have a
value of one if m equals n and zero otherwise. Wavefunctions that are both orthogonal

and normalised are said to be orthonormal.

womysnon @i ineuing
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2.5.2 The Born-Oppenheimer approximation

It was stated above that the Schrédinger equation can not be solved
exactly for any molecular systems. However, it is possible to solve the equation
exactly for the simplest molecular species, H," (and isotopically equivalent species
such as HD"), when the motion of the electrons is decoupled from the motion of the
nuclei in accordance with the Born-Oppenheimer approximation. The masses of the
nuclei are much greater than the masses of the electrons (the resting mass of the
lightest nucleus, the proton, is 1836 times heavier than the resting mass of the
electron). This means that the electrons can adjust almost instantaneously to any
changes in the positions of the nuclei. The electronic wavefunction thus depends only
on the positions of the nuclei and not on their momenta. Under the Born-Oppenheimer
approximation the total wavefunction for the molecule can be written in the following

form:
Wa(nuclei,electrons) = P(electrons) ‘¥(nuclei) (2.34)

The total energy equals the sum of the nuclear energy (the electrostatic
repulsion between the positively charged nuclei) and the electronic energy. The
electronic energy comprises the kinetic and potential energy of the electrons moving
in the electrostatic field of the nuclei, together with electron-electron repulsion: Eiy =
E(electrons) + E(nuclei).

When the Born-Oppenheimer approximation is used we concentrate on
the electroni¢ motions; the nuclei are considered to be fixed. For each arrangement of
the nuclei the Schrédinger equation is solved for the electrons alone in the field of the
nuclei. If it is desired to change the nuclear positions then it is necessary to add the
nuclear repulsion to the electronic energy in order to calculate the total energy of the

configuration.

2.5.3 The Hartree-Fock equations

In our hydrogen molecule calculation the molecular orbitals were

provided as input, but in most electronic structure calculations we are usually trying to
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calculate the molecular orbitals. How do we go about this? We must remember that
for many-body problems there is no “correct” solution; we therefore require some
means to decide whether one proposed wavefunction is “better” than another.
Fortunately, the variation theorem provides us with a mechanism for answering this
question. The theorem states that the energy calculated from an approximation to the
true wavefunction will always be greater than the true energy. Consequently, the better
the wavefunction, the lower the energy. The “best” wayefunction is obtained when the
energy is a minimum. At a minimum, the first derivative of the energy, 8E will be
zero. The Hartree-Fock equations are obtained by imposing this condition on the
expression for the energy, subject to the constraint that the molecular orbitals remain
orthonormal. The orthenormality corfdition written in terms of the overlap integral,
Sij, between two orbitals i and ). Thus

S, = !z,zjdf =4, (Eu is the Kronecker delta) (2.35)

This type of constrained minimisation problem can be tackled using the
method of Lagrange multipliers. In this approach (see section a brief introduction to
Lagrange multipliers) the derivative of the function to be minimised is added to the
derivatives of the constraint(s) multiplied by a constant called a Lagrange multiplier.
The sum is then set equal to zero. If the Lagrange multiplier for each of the

orthonormality conditions is written Ajj, then:

SE+6) Y A8, =0 (2.36)

In the Hartree-Fock equations the Lagrange multipliers are actually written -2gj; to
reflect the fact that they are related to the molecular orbital energies. The equation to

be solved is thus:

SE-26%%¢,5,=0 (2.37)
roy

We will not describe in detail how this equation is solved, as it is rather complicated.
However, a qualitative picture is possible. The major difference between

polyelectronic systems and systems with single electrons is the presence of
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interactions between the electrons, which as we have seen are expressed as Coulomb
and exchange integrals. Suppose we are given the task of finding the “best” (i.e.
lowest energy) wavefunction for a polyelectronic system. We wish to retain the orbital
picture of the system, in which single electrons are assigned to individual spin
orbitals. The problem is to find a solution which simultaneously enables all the
electronic motions to be taken into account, as a change in the spin orbital for one
electron will influence the behavior  of an electron in another spin orbital due to the
coupling of the electronic motions. We coneentrate on a single electron in a spin
orbital ¥; in the field of the nuclei and the other electrons in their (fixed) spin orbitals
¥j- The Hamiltonian operator for the electron in y; contains three terms appropriate to
the three different contributions to the energy that were identified above (core,
Coulomb, exchange). The result can be written as an integro-differential equation for

yi that has the following form;

ot 84T e3] fieun 0,011 |0 -

A=1 T1a Jul

B Z[I‘f’le; {I)Z,(E)é]l, (]}: ZE"’X’ (]]

f=l
This expression can be tidied up by introducing three operators that represent the
contributions to the energy of the spin orbital Xi in the “frozen” system:
The core Hamiltonian operator, H***()

care 1 2 < Z‘A
H° (1):-5'@3 <y =4 (2.39)

FELY

In the absence of any interelectronic interactions this would be. the only operator
present, corresponding to the motion of a single electron moving in the field of the
bare nuclei.

The Coulomb operator, Ji({)

7,0)= fdr.2@)--7,0) (2.40)
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This operator corresponds to the average potential due to an electron in y;. The

exchange operator H(l)
H, (l)r,(l}=[fdfzx,(2}}x, (2)}1,(1} (2.41)

The form of this operator is rather unusual, insofar as it must be defined in terms of its

effect when acting on the spin orbital ;. Equation (2.38) can thus be written:

H W @)+ Y 7,07, 0=-5#,02,0)= S, 2,0) @42

Jwi Sl g

Making use of the fact that {J@)-H*"(1)}yi(1) = 0 leads to the following form:

[Hmahiim)-ﬂ,u)} 2.00= 32,2, 0) @.43)

J=l 4=

Or, more simply:

NI W (2.44)
J
/i is called the Fock operator:

)= H““(t)+i{.fj{1)—ﬁj(1)} (2.45)

#=1

For a closed-shell system, the Fock operator has the following form:

F)=H()+ f{z@ 0)-H,0) (2.46)

Jal

The Fock operator is an effective one-electron Hamiltonian for the electron in the
polyelectronic system. However, written in this form of equation (2.44), the Hartree-
Fock equations do not seem to be particularly useful: on the left-hand side we have the
Fock operator acting on the molecular orbital %;, but this returns not the molecular
orbital multiplied by a constant as in a normal eigenvalue equation, but rather a series
of orbitals ;" multiplied by some unknown constants &;;. This is because the solutions
to the Hartree-Fock equations are not unique. We have already seen that the value of a

determinant is unaffected when the multiple of any column is added to another
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column. If such a transformation is performed on the Slater determinant, then a
different set of constants ;" would be obtained with the spin orbitals y; being linear
combinations of the first set. Certain trans-formations give rise to localised orbitals
which are particularly useful for understanding the chemical nature of the system.
These localised orbitals are no more “correct” than a delocalised set. Fortunately, it is
possible to manipulate the equations (2.44) mathematically so that the Lagrangian
multipliers are zero unless the indices i and j are the same. The Hartree-Fock

equations then take on the standard eigenvalue form:

Jix =& (2.47)

Recall that insetting up these equations, each electron has been assumed to move in a
“fixed” field comprising the nuclei and the other electrons. This has important
implications for the way in which we attempt to find a solution, for any solution that
we might find by solving the equation for one electron will naturally affect the
solutions for the other electrons in the system. The general strategy is called a self-
consistent field (SCF) approach. One way to solve these equations is as follows. First,
a set of trial solutions ¥; to the Hartree-Fock eigenvalue equations are obtained. These
are used to calculate the Coulomb and exchange operators. The Hartree-Fock
equations are solved, giving a second set of solutions 7, which are used in the next
iteration. The SCF method thus gradually refines the individual electronic solutions
that correspond to lower and lower total energies until the point is reached at which

the results for all the electrons are unchanged, when they are said to be self-consistent.

2.5.3.1 Hartree-Fock calculations for atoms and Slater’s rules

The Hartree-Fock equations are usually solved in different ways for atoms and for
molecules. For atoms, the equations can be solved numerically if it is assumed that the
electron distribution is spherically symmetrical. However, these numerical solutions
are not particularly useful. Fortunately, analytical approximations to these solutions,
which are very similar to those obtained for the hydrogen atom, can be used with

considerable success. These approximate analytical functions thus have the form:
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w=R,(r)Y,(6.¢) (2.48)

Y is a spherical harmonic (as for the hydrogen atom) and R is a radial function. The
radial functions obtained for the hydrogen atom cannot be used directly for
polyelectronic atoms due to the screening of the nuclear charge by the inner shell
electrons, but the hydrogen atom functions are acceptable if the orbital exponent is
adjusted to account for the screening effect. Even so, the hydrogen atom functions are
not particularly convenient to use in molecular orbital calculations due to their
complicated functional form. Slater [1930] suggested a simpler analytical form for the
radial functions:

R, ()= Qe [2n)] %2 rmte s (2.49)

These functions are universally known as Slater-type orbitals (STOs) and are just the
leading term in the appropriate Lagrange’s polynomials. The first three Slater

functions are as follows:

R,(r)=2¢7e%" (2.50)
]
Ry, (r)=R,,(r)= {4{?’) re (2.51)
1\
Ry, (r)=R,,(r)= Ry, (r)= [%) rle’ (2.52)

To obtain the whole orbital we must multiply R(r) by the appropriate angular part. For

example; we would use the following expressions for the I s, 2s and 2p, orbitals:

8,,(r)=(¢’ [n)exp(-¢7) (2.53)

¢,.(r)= I 3 expl-¢7) (2.54)

b, (r)=(¢* /7 )exp(= ¢ r)cos6 (2.55)
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Slater provided a series of empirical rules for choosing the orbital
exponents £, which are given by:
Z-o

¢ =" (2.56)
n

Z is the atomic number and a is a shielding constant, determined as
below. n* is an effective principal quantum number which takes the same value as the
true principal quantum number for n = 1, 2 or 3, but for n =4, 5, 6 has the values 3.7,
4.0, 4.2 respectively. The shielding constant is obtained as follows:

First divide the orbitals into the following groups:
(15);(2s, 2p); (3s, 3p); (3d); (4s, 4p); (4d); (4D); (5s, 5p); (5)

For a given orbital, a is obtained by adding together the following
contributions:

(a) zero from an orbital further from the nucleus than those in the group;

(b) 0.35 from each other electron in the same group, but if the other orbital is the
15 then the contribution is 0.3;

() 1.0 for each electron in a group with a principal quantum number 2 or more
fewer than the current orbital;

(d) for each electron with a principal quantum number 1 fewer than the current
orbital: 1.0 if the current orbital is d or f; 0.85 if the current orbital is s or p.

The shielding constant for the valence electrons of silicon is obtained
" using Slater’s rules as follows. The electronic configuration of Si is (1s*)(2S* 2P%)
(3S? 3p%). We therefore count 3x 0.35 under rule (b), 2.0 under rule (c), and 8 x 0.85
under rule (d), giving a total of 9.85. When subtracted from the atomic number (14)
this gives 4.15 for the value of Z -g.

2.5.3.2 Linear combination of atomic orbitals (LCAO) in Hartree-
Fock theory

Direct solution of the Hartree-Fock equations is not a practical proposition for
molecules and so it is necessary to adopt an alternative approach. The most popular

strategy is to write each spin orbital as a linear combination of single electron orbitals;
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w,=.c.8, (2.57)

v=l

The one-electron orbitals ¢, are commonly called basis functions and often correspond
to the atomic orbitals. We will label the basis functions with the Greek letters , v, A
and o. In the case of equation (2.57) there are K basis functions and we should
therefore expect to derive a total of K molecular orbitals (although not all of these will
necessary be occupied by electrons). The smallest number of basis functions for a
molecular system will be that which can just accommodate all the electrons in the
molecule. More sophisticated calculations use more basis functions than a minimal
set. At the Hartree-Fock limit the energy of the system can be reduced no further by
the addition of any more basis functions; however, it may be possible to lower the
energy below the Hartree-Fock limit by using a functional form of the wavefunction
that is more extensive than the single Slater determinant.

In accordance with the variation theorem we require the set of coefficients c,; that
gives the lowest energy wavefunction, and some scheme for changing the coefficients
to derive that wavefunction. For a given basis set and a given
functional form of the wavefunction (i.e. a Slater determinant) the best set of

coefficients is that for which the energy is a minimum, at which point

oE
de,, =0

i

for all coefficients c,;. The objective is thus to determine the set of coefficients that

gives the lowest energy for the system.

2.5.3.3 Closed-shell systems and the Roothaan-Hall equations

We shall initially consider a closed-shell system with N electrons in N/2 orbitals. The
derivation of the Hartree-Fock equations for such a system was first proposed by
Roothaan [1951] and (independently) by Hall [1951]. The resulting equations are
known as the Roothaan equations or the Roothaan- Hall equations. Unlike the integro-
differential form of the Hartree-Fock equations, equation (2.38), Roothaan and Hall

recast the equations in matrix form which can be solved using standard techniques and
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can be applied to systems of any geometry. We shall identify the major steps in the
Roothaan approach, starting with the expression for the Hartree-Fock energy for our

closed-shell system, equation (2.58):

NI2 NIINIZ

E=2YH+Y Y (2J,-K,) (2.58)

i=l i=l j=]

The corresponding Fock operator is (equation 2.46):

ﬂ(1}=H”“(1J+fIEJJ ()= H,0)} (2.59)

J=

We now intreduce the atomic orbital expansion for the orbitals y; and

substitute for the corresponding spin orbital ¥, into the Hartree-Fock equation, { )

v=]

70336.4,0) =5 c,.6,0) (2.60)

Premultiplying each side by ¢,.(1) (where ¢, is also a basis function)

and integrating gives the following matrix equation:

Sc. favg (00 0=e3c. fave,00)  @on

=]

jd"’:% (1), (1) “is the overlap integral between the basis functions p and v, written

Suv. Unlike the molecular orbitals which will be required to be orthonormal, the
overlap between two basis functions is not necessarily zero (for example, they may be
located on different atoms).

The elements of the Fock matrix are given by
F,, = [dvig, ) (1. 0) (2.62)

The Fock matrix elements for a closed-shell system can be expanded as follows by

substituting the expression for the Fock operator:
F,, = [dvig,(0)H" (1), (1)
NI
+ 3 Jdvig, s, 0)-H,0))e.0)

i=l

(2.63)
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The elements of the Fock matrix can thus be written as the sum of core,

Coulomb and exchange contributions. The core contribution is:
[avig, @)E" (1), (1)
= favig, () -5V* -2 ¢,()=H"

A=1 |1 _RAI

(2.64)

The core contributions thus require the calculation of integrals that
involve basis functions on up to two centers (depending upon whether ¢, and ¢, are
centerd on the same nucleus or not). Each element /4, can in turn be obtained as
the sum of a kinetic energy integral and a potential energy integral corresponding to

the two terms in the one-electron Hamiltonian.
The Coulomb and exchange contributions to the Fock matrix element

F,v are together given by:
N2
> [dvig, 027, 0)- 1,0}, () (2.65)

Recall that the Coulomb operator Ji(7) due to interaction with a spin

orbital y; is given by
J(1)= J'dr, xj{z}r— z,(2) (2.66)
12

We need to write each of the two occurrences of the spin orbital y; in this integral in

terms of the appropriate linear combination of basis functions:

J,(1)= jdrzic,,m (2)-- ic”m{z) (2.67)

o=l r] Aml

We have used the indices o and A for the basis functions here.

Similarly, the exchange contribution can be written:

H,(1)z,(1)= [ jdr;icwm (z}fx.(zl}gc“m (2) (2.68)

a=|
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When the Coulomb and exchange operators are expressed in terms of
the basis functions and the orbital expansion is substituted for %; then their

contributions to the Fock matrix element F,, take the following form:

NI2

> [av, ¢, 07,0~ H,m]6. 1)

i=

12

F

]
M:-,

x 2 [dviavig, (08, ()—9,2)s, 2)
ZC L A Tz

FEFE - Idvla“vléﬂ{l}ﬁv(l}ém (2).(2)| (2.69
igf’ua,hww)— (udjvo)]

We have used the shorthand notation for the integrals in the final expression. Note
that the two-electron integrals may involve up to four different basis functions (u, v,
A, o), which may in turn be located at four different centers. This has important
consequences for the way in which we try to solve the equations.

It is helpful to simplify equation (2.69) by introducing the charge
density matrix, P, whose elements are defined as:

B, = Zuz”cmc,, and P, =25i2‘c“cm (2.70)
i=] =l
Note that the summations are over the N/2 occupied orbitals. Other

properties can be calculated from: the density matrix; for example, the electronic

energy is:
'I K
E=2 DI Phbtsid ¥) @.71)

The electron density at a point r can also be expressed in terms of the

density matrix:

plr)= 33 Pl ) @72)

=l v=l
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The expression for each element F, of the Fock matrix elements for a

closed- shell system of N electrons then becomes:

Fuv=H" 4 ii m,[(;wua)— %(pa;m)} (2.73)

A=l a=|

This is the standard form for the expression for the Fock matrix in the

Roothaan-Hall equations.

2.5.3.4 Solving the Roothaan-Hall equations

The Fock matrix is a K x K square matrix that is symmetric if real basis functions are
used. The Roothaan-Hall equations (2.59) can be conveniently written as a matrix

equation:
FC =SCE (2.74)

The elemenis of the K x K matrix C are the coefficients c,;:

Cp o €y Cryp
c c e
w6 2K

=] - : - (2.75)
Cry Cpa '~ Cpy

E is a diagonal matrix whose elements are the orbital energies:

Ea 0 o O
A9
0 0 ..%g (2.76)

Let us consider how we might solve the Roothaan-Hall equations and
thereby obtain the molecular orbitals. The first point we must note is that the elements
of the Fock matrix, which appear on the left hand side of equation (2.74), depend on
the molecular orbital coefficients c.;, which also appear on the right-hand side of the

equation. Thus an iterative procedure is required to find a solution.
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The one-electron contributions Huﬂm due to the electrons moving in the field of the
bare nuclei do not depend on the basis set coefficients and remain unchanged
throughout the calculation. However, the Coulomb and exchange contributions do
depend on the coefficients and we would expect these to vary throughout the
calculation. The individual two-electron integrals (uv|Aoc) are, however, constant
throughout the calculation. An obvious strategy is thus to calculate and store these
integrals for later use.

Having written the Roothaan-Hall equations in matrix form we would
obviously like to solve them using standard matrix eigenvalue. However, standard
eigenvalue methods would require an equation of the form FC = CE. The Roothaan-
Hall equations only adopt such a form if the overlap matrix, S, is equal to the unit
matrix, I (in which all diagonal elements are equal to 1 and all off-diagonal elements
are zero). The functions ¢ are usually normalised but they are not necessarily
orthogonal (for example, because they are located on different atoms) and so there
will invariably be non- zere off-diagonal elements of the overlap matrix. To solve the
Roothaan-Hall equations using standard methods they must be transformed. This
corresponds to transforming the basis functions so that they form an orthonorinal set.
We seek a matrix X, such that X'SX = . X' is the transpose of X, obtained by
interchanging rows and columns. There are various ways in which X can be
calculated; in symmetric orthogonalisation, the overlap matrix is diagonalised.

Diagonalisation involves finding the matrix U such that
U'SU = D=diag(,...2,) (2.77)

D is the diagonal matrix containing the eigenvalues A; of 5, and U
contains the eigenvectors of S. U" is the transpose of the matrix U, (This expression is
often written U™ SU = D since for real basis functions U™ = U".) Then the matrix X is
given by X = UD2U" where, D' is formed from the inverse square roots of D. We
shall write X as S"'?, as it can be considered to be the inverse square root of the
overlap matrix: $28812 =1,

The Roothaan-Hall equations can now be manipulated as follows. Both

sides of equation (2.74) are pre-multiplied by the matrix R
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S FC=8" = SCE = S"*CE (2.78)
Inserting the unit matrix, in the form S'?S'? into the left-hand side
gives:
S F(s7?5" ) = §"*CE (2.79)
ar
S Fs2(s"C)=(s"c)E (2.80)

Equation (2.80) can be written FC'=C’E, where F'=$"2FS? and C’ = §'2C.

The matrix equation FC'=C’E can be solved using standard methods; a
solution only exists if the determinant |F* - El| equals zero. In simple cases this can be
done by multiplying out the determinant to give a polynomial (the secular equation)
whose roots are the eigenvalues g;, but for large matrices a much more practical
approach involves the diagonalisation of F'. The matrix of coefficients, C’, are the
eigenvectors of F. The basis function coefficients C can then be obtained from C’
using C=S"C’. A common scheme for solving the Roothaan-Hall equations is thus
as follows:

1. Calculate the integrals to form the Fock matrix, F.
2. Calculate the overlap matrix, S.
3. Diagonalise S.
4. Form 87,
5. Guess,-or otherwise calculate an-initial density matrix; P.
6. Fomi the Fock matrix using the integrals and the density matrix P.
7-FormF'= §7'?FS 2,
8. Solve the secular equation |F* — EI|'= 0 to give the eigenvalues E and the
eigenvectors C’ by diagonalising F’.
9. Calculate the molecular orbital coefficients, C from C= Sl el
10. Calculate a new density matrix, P, from the matrix C.
11. Cheek for convergence. If the calculation has converged, stop. Otherwise repeat

from step 6 using the new density matrix P.
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This procedure requires an initial guess of the density matrix, P. The
simplest approach is to use the null matrix, which corresponds to ignoring all the
electron- electron terms so that the electrons just experience the bare nuclei. This can
sometimes lead to convergence problems which may be prevented if a lower level of
theory (such as semi-empirical or extended Hiickel) is used to provide the initial
guess. Moreover, a better guess may enable the calculation to be performed more
quickly. A variety of criteria can be used to establish whether the calculation has
converged or not. For example, the density matrix can be compared with that from the
previous iteration, and/or the change in energy can be monitored together with the
basis set coefficients.

The result of a Hartree-Fock calculation is a set of K molecular orbitals
where K is the number of basis functions in the calculation. The N electrons are then
fed into these orbitals in accordance with the Aufbau principle, two electrons per
orbital, starting with the lowest energy orbitals. The remaining orbitals do not contain
any electrons; these are known as the virtual orbitals. Alternative electronic
configurations can be generated by exciting electrons from the occupied orbitals to the
virtual orbitals.

A Hartree-Fock calculation provides a set of orbital energies, Fi. What
is the significance of these? The energy of an eleciron in a spin orbital is calculated by
adding the core interaction H,,*** to the Coulomb and exchange interactions with the

other electrons in the system:

N2
g =H"+Y 1,k (2.81)

J=1
The total electronic energy of the ground state is given by equation
(2.82):
NI2 NI2NI2

E=2%H™+> Y (27, -K,) (2.82)

i=l iwl j=l

The total energy is therefore not equal to the sum of the individual

orbital energies, but is related as follows:



37

NI2NI2

E=Ye-33501,;-K,) (2.83)

=l Fml J'-!

The reason for the discrepancy is that the individual orbital energies
include contributions from the interaction between that electron and all the nuclei and
all other electrons in the system. The Coulomb and exchange interactions between
pairs of electrons are therefore counted twice when summing the individual orbital

energies.

2.5.3.5 A simple illustration of the Roothaan-Hall approach

We will illustrate the stages involved in the Roothaan-Hall approach using the helium
hydrogen molecular ion, HeH" as an example. This is a two-electron system. Our
objective here is to show how the Roothaan-Hall method can be used to derive the
wavefunction, for a fixed internuclear distance of 1 A°.We use HeH" rather than H; as
our system as the lack of symmetry in HeH makes the procedure more informative.
There are two basis functions, ISA (centerd on the helium atom) and 1 sg (on the
hydrogen). The numerical values of the integrals that we shall use in our calculation
were obtained using a Gaussian series approximation to the Slater. This detail need
not concern us here. Each wavefunction is expressed as a linear combination of the

two | s atomic orbitals centerd on the nuclei A and B:

w,=c,ls, +o5ls, (2.84)
W, =cyls, +egls,

First, it is necessary to calculate the various one- and two-electron

integrals and to formulate the Fock and overlap matrices, each of which will be a 2 x 2

symmetric matrix (as there are two orbitals in the basis set). The diagonal elements of

the overlap matrix, 8, are equal to 1.0 as each basis function is normalised; the off-

diagonal elements have smaller, but non-zero values that are equal to the overlap

between 15, and 1sg for the internuclear distance chosen. The matrix S is:

0 0392
o 10 03 (2.85)
0392 1.0
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The core contributions wae can be calculated as the sum of three 2 x 2 matrices
comprising the kinetic energy (T) and nuclear attraction terms for the two nuclei A
and B (Va and Vg). The elements of these three matrices are obtained by evaluating

the following integrals:
1 oo
T,I.I'l:l = Jﬂ"r"1¢# {l {_ 5 ? Jﬁv (1)

Viw = [dvi8, (1{—51]¢,(1) (2.86)
e

Vo = Jdvid, ({—ff—]m{l)

The matrices are:

(1.412 U.ﬂﬂl) (- 3.344 -{J.TSEJ

0.081 0.760 4120758 -1.026
_ (2.87)
(-0.525 ~0.308
5 =0308 21227
H*' is the sum of these three:
~2.457 -0.985)
Her = (2.88)
~00985 —1.493

As far as the two-electron integrals are concerned, with two basis
functions there are a total of 16 possible two-electron integrals. There are however

only six unique two-electron integrals as the indices can be permuted as follows:

(i) (1SA154]154184) = 1.056

(i) (18418 4| 1Sa185) = (1SA1Sal1 S5 184) = (1518514 1SA)
= (1SpISA|ISAISA) = 0.303

(iii) (1S41S5|1S4188) = (1SA1Sg|1S1S4) = (1Sa1S4/1SAISp)
= (1S1SA/1S51SA) = 0.1 12

(iv) (184154/1S81Sp) = (1Sp1Ss/1SA1S4) = 0.496

(v) (1SA1S8]1S51Ss) = (1S51SA|1S51S5) = (1S51S5|1SA1Ss)
= (1S51Ss|1Sa1S4) = 0.244

(vi) (1Sp1Sp|1Sp1Sp) = 0.775
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To reiterate, these integrals are calculated as follows:
1
(uvfio)= [favidv.g (1)p.(0)—9, (). (2) (2.89)
12

Having calculated the integrals, we are now ready to start the SCF calculation. To
formulate the Fock matrix it is necessary to have an initial guess of the density matrix,
P. The simplest approach is to use the null matrix in which all elements are zero. In
this initial step the Fock matrix F is therefore equal to H*",

The Fock matrix must next be transformed to F’ by pre- and post-
multiplying by ™"

Gin (<1065 1 0217 50}
120217 1.065 '

F* for this first iteration is thus:

—2.401 —0.249
= (2.91)
-0249 -1.353
Diagonalisation of F" gives its eigenvalues and eigenvectors which are:

-2458 0.0 0.975 -0.220

B= C'= (2.91)

0.0 =1.292 0.220° 0.975
The coefficients C are obtained from C=8"“C" and are thus:
0991 -0.446
= 2.93
Q [B.HU 1.087 ] )

To formulate the density matrix P-we need to identify the occupied
orbital(s). With a two-electron, system both electrons occupy the orbital with the
lowest energy (i.e. the orbital with the lowest eigenvalue). At this stage the lowest

energy orbital is:

w=0991 1s, +0.022 1s, (2.94)

The orbital is composed largely of the s orbital on the helium nucleus;

in the absence of any electron-electron repulsion the electrons tend to congregate near
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the nucleus with the larger charge. The density matrix corresponding to this initial

wavefunction is:

(1.964 0.044
“10.044 0.001

(2.95)

The new Fock matrix is formed using P and the two-electron integrals

together with H*", For example, the element F, is given by:

Fll ='lll'lﬂtm"‘Pu

+F,

4 Py

5,

The complete Fock matrix is:

_(=1.406 -
| -0.690 =

(rs,,1;,]134isd]—%(lsdts,,]lsdlsd)

(lsjIs‘|lsﬂls,)—%(l.sﬂlsjhsdls,)

(Is" ls, Ilsjl ls,)—é(lsAIs,]IsA 1.53)

(15,15 J1s 515, ) - % (1,15, 15,15, )

0.690
0.618

(2.96)

(2.97)

The energy that corresponds to this Fock matrix calculated using equation (2.74) is

-3.870 Hartrees. In the next iteration, the various matrices are as follows:

o [1:305 —ﬂ.34?) o (1427 00 )
(—0.347 ~=0.448 . 0.0 -0.325
C,:f'ﬂ.‘}ﬁ -{:1334] C=’u.931 ~ﬂ.560]
(0334 0.943 (0.150  1.076
P=f1.?35 n.zsn} F=f—1+435 -0.733J
(0.280 0.045 (—0.738 -0.644
Energy =-3.909 Hartrees (2.98)

The calculation proceeds as illustrated in Table 2.1, which shows the variation in

the coefficients of the atomic orbitals in the lowest energy wayefunction and the
energy for the first four SCF iterations. The energy is converged to six decimal places

after six iterations and the charge density matrix after nine iterations.
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Table 2.1 Variation in basis set coefficients and electronic energy for the HeH"

molecule.
Iteration C(1S4) C(1Sg) Energy
1 0.991 0.022 -3.870
2 0.931 0.150 -3.909
3 0.915 0.181 -3.911
4 0.912 0.187 -3.911

The final wavefunction still contains a large proportion of the Is orbital
on the helium atom, but less than was obtained without the two-electron integrals.

2.5.3.6 Application of the Hartree-Fock equations to molecular

systems

We are now in a position to consider how the Hartree-Fock theory we have developed
can be used to perform practical quantum mechanical calculations on molecular
systems. This is an appropriate place in our discussion to distinguish the two major
categories of quantum mechanical molecular orbital calculations: the ab-initio and the
semi-empirical methods. Ab-initio strictly means “from the beginning”, or “from first
principles”, which would imply that a calculation using such an approach would
require as input only physical constants such as the speed of light, Planck’s constant,
the masses of elementary particles and so on. Ab-initio in fact usually refers to a
calculation which ‘uses the @ full -Hadree-Fock/Roothaan-Hall equations, without
ignoring or approximating any of the integrals or any of the terms in the Hamiltonian.
The ab-initio- methods do rely upon calibration calculations and this has led some
quantum chemists, notably Dewar (who has played a large part in the development of
semi-empirical methods), to claim that any real difference between the ab-initio and
the semi-empirical methods is entirely pedagogical. By contrast, semi-empirical
methods simplify the calculations, using parameters for some of the integrals and/or
ignoring some of the terms in the Hamiltonian. First we shall consider ab-initio

methods.
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2.5.4 Basis Set Effects

A basis set is the mathematical description of the orbitals within a system (which in
turn combine to approximate the total electronic wavefunction) used to perform the
theoretical calculation. Larger basis sets more accurately approximate the orbitals by
imposing fewer restrictions on the locations of the electrons in space. In the true
quantum mechanical picture, electrons have a finite probability of existing anywhere
in space; this limit corresponds to the infinite basis set expansion in the chart we
looked at previously. Standard basis sets for electronic structure calculations use
linear combinations of gaussian functions to form the orbitals. Gaussain (program)
offers a wide range of per-defined basis sets, which may be classified by the number
and types of basis functions that they contain. Basis sets assign a group of basis
functions to each atom within a molecule to approximate its orbitals. These basis
functions themselves are composed of a linear combination of gaussian functions;
such basis functions are referred to as contracted functions, and the component
gaussian functions are referred to as primitives. A basis function consisting of a single

gaussian function is termed uncontracted.

2.5.5 Minimal Basis Sets

Minimal basis sets contain the minimum number of basis functions needed for each

atom, as in these examples:

H:ls

Cl: 18, 2s. 2ps) 2py.2p2

Minimal basis sets use fixed-size atomic-type-orbitals; The STO-3G basis set *’ is a
minimal basis set (although it is not the smallest possible basis set). It uses three
gaussian primitives per basis function, which accounts for the “3G” in its name.
“STO” stands for “Slater-type orbitals,” and the STO-3 basis set approximates Slater

orbitals with gaussian functions.
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2.5.6 Split Valence Basis Sets
The first way that a basis set can be made larger is to increase the number of basis
functions per atom. Split valence basis sets, such as 3-21G 2126 and 6-31G 2?'3" have
two (or more) sizes of basis function for each valence orbital. For example, hydrogen

and carbon are represented as:

H:1s, 15’
C: 1s, 25,25, 2py, 2px 4 2Py, 2Py ,2P22P;

Where the primed and umprimed orbtals differ in size.
The double zeta basis sets, such as the Dunning-Huzinage basis set*> (D95), form all
molecular orbitals from linear combinations of two sizes of functions for each atomic

G 3340

orbital. Similarly, triple split valence basis sets, like 6-311 , use three sizes of

contracted functions for each orbital-type.

2.5.7 Polarized Basis Sets
Split valence basis sets allow orbitals to change size, but not of change shape.
Polarized basis sets remove this limitation by adding orbitals with angular momentum
beyond what is required for the ground state to the description of each atom. For
example, polarized basis sets add d functions to carbon atoms and f functions to
transition metals, and some of them add p functions to hydrogen atoms. So far, the
only polarized basis set we’ve used is 6-31G(d). Its name indicates that it is the 6-31G
basis set with d functions added to heavy atoms. This basis set is becoming very
common for calculations involving up to-medium-sized systems. This basis set is also
known as 6-31G*. Another popular polarized basis set is 6-31G(d.p), also known as
6-31G**, which adds p functions to hydrogen atoms in addition to the d functions on

heavy atoms.

2.5.8 Diffuse Functions

Diffuse functions are large-size versions of s- and p-type functions (as oppose to the
standard valence-size functions). They allow orbitals to occupy a larger region of

space. Basis sets with diffuse functions are important for systems where electrons are



relatively far from the nucleus: molecules with lone pairs, anions and other systems
with significant negative charge, systems in their excited states, systems with low
ionization potentials, descriptions of absolute acidities, and so on.

The 6-31+G(d) basis set is the 6-31G(d) basis set with diffuse functions added to
heavy atoms. The double plus version, 6-31++G(d), adds diffuse functions to the
hydrogen atoms as well. Diffuse functions on hydrogen atoms seldom make

significant difference in accuracy.

2.5.9 Practical considerations when performing ab inito calculation

Ab inito calculations can be exiremely time-consuming, especially when using the
higher levels of theory or when the nuclei are free to move, as in a minimisation
calculation. Various “tricks” have been developed which can significantly reduce the
computational effort involved. Many of these options are routinely available in the
major software packages and are invoked by the specification of simple keywords.
One common tactic is to combine different levels of theory for the various stages of a
calculation. For example, a lower level of theory can be used to provide the initial
guess for the density matrix prior to the first SCF iteration. Lower levels of theory can
also be used in other ways. Suppose we wish to determine some of the electronic
properties of a molecule in a minimum energy structure. Energy minimisation requires
that the nuclei move, and is typically performed in a series of steps, at each of which
the energy (and frequently the gradient of the energy) must be calculated.
Minimisation is therefore a computationally expensive procedure, particularly when
performed at the high level of theory. To reduce this computational burden a lower
level of theory can be employed for the geometry optimisation. A “single point”
calculation using a high level of theory is then performed at the geometry so obtained
to give a wavefunction from which the properties are determined. The assumption
here of course is that the geometry does not change much between the two levels of
theory. Such calculations are denoted by slashes (/). For example, a calculation that is
described as “6-31G*/STO-3G" indicates that the geometry was determined using the
STO-3G basis set and the wavefunction was obtained using the 6-31G* basis set. Two

slashes are used when each calculation is itself described using a slash, such as when
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electron correlation methods are used. For example, “MP2/6-31G*//HF/6-31G*"
indicates a geometry optimisation using a Hartree-Fock calculation with a 6-31G*
basis set followed by a single-point calculation using the MP2 method for

incorporating electron correlation, again using a 6-31G* basis set.

2.5.10 Convergence of self-consistent field calculations

In an SCF calculation the wavefunction is gradually refined until self-consistency is
achieved. For closed-shell ground-state molecules this is usually quite straight-
forward and the energy converges afier a few cycles. However, in some cases
convergence is a problem, and the energy may oscillate from one iteration to the next
or even diverge rapidly. Various methods have been proposed to deal with such
situation. A simple strategy is to use an average set of orbital coefficients rather than
the set obtained from the immediately preceding iteration. The coefficients in this
average set can be weighted according to the energies of zeach iteration. This tends to
weed out those coefficients that give rise to higher energies.

The initial guess of the density matrix may influence the convergence
of the SCF calculation; a null matrix is the simplest approach, but better results may
be obtain by using a density matrix from a calculation performed at a lower level of
theory. For example, the density matrix from a semi-empirical calculation may be
used as the starting point for an ab initio calculation. Conversely, such an approach
may itself lead to problems if there is significant difference between the density
matrices for the lower and the higher levels of theory.

A more sophisticated method that has often been very successful is
Pulay’s direct inversion of the iterative subspace (DIIS) *' [1980]. Here, the energy is
assumed to vary as a quadratic function of the basis set coefficients. In DIIS the
coefficients for the next iteration are calculated from their values in the previous steps.
In essence, one is predicting where the minimum in the energy will lie form a
knowledge of the points that have been visited and by assuming that the energy

surface adopts a parabolic shape.
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2.5.11 The direct SCF method

An ab inito calculation can be logically considered to involve two separate stages.
First, the various one- and two-electron integrals are calculated. This is a
computationally intensive task and considerable effort has been expended finding
ways to make the calculation of the integrals as efficient as possible. In the second
stage, the wavefunction is determined using the variation theorem. In a “traditional”
SCF calculation all of the integrals are first calculated and stored on disk, to be
retrieved later during the SCF calculation as required. The number of integrals to be
stored may run into millions and this inevitably leads to delays in accessing the data,
particularly as the retrieval of information from a disk requires physical movement of
the read head and so is slow. Modern computers (both workstations and
supercomputers) have much faster (and cheaper) processing units, and many of these
machines also have a substantial amount of internal memory that can be accessed in a
fraction of the time it takes to read data from the disk. In a direct SCF calculation, the
integrals are not stored on the disk but are kept in memory or recalculated when
required by Almlaf et al. ** [1982].

A much-quoted *“fact™ is that ab initio calculations scale as the fourth
power of the number of basis functions for ground-state, closed-shell systems. This
scaling factor arises because each two-electron integral (uv|io) involves four basis
functions, so the number of two-electron integrals would be expected to increase in
proportion to the fourth power of the number of basis functions. In fact, the number of
such integrals is not exactly equal to the fourth power of the number of basis functions
because many of the integrals are related by symmetry. We can calculate exactly the
number of two-electron integrals that are required in a Hartree-Fock ab initio

calculation as follows. There are seven different types of two-electron integrals:

1. (abled) = (abldc) = (balcd) = (ba|dc) = (cd|ab) = (cd|ba) = (dclab) = (dc|ba)
2. (aalbc) = (aalcb) = (bc|aa) = (cblaa)

3. (abjac) = (abjca) = (bajac) = (ba|ca) = (aclab) = (ac|ba) = (calab) = (ca|ba)
4. (aalbb) = (bblaa)

5. (ablab) = (ab|ba) = (balab) = (balba)
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6. (aalab) = (aa|ba) = (ablaa) = (balaa)
7. (aalaa)

For a basis set with K basis functions, they are K(K — 1)(K - 2)}(K - 3)
integrals of type(ablcd), but due to symmetry only one-eighth of these are unique as
shown. Similarly, there are 2K(K — 1)(K — 2) of type (2); 4K(K —1)(K -2) of type (3);
K(K — 1) of type (4); 2K(K — 1) of type (5); 4K(K — 1) of type (6) and K’ of type 7.
Thus, a basis set with 2000functions has a total of 202 015 050 unique two-electron
integrals. For all but the smallest of basis sets most integrals are of type (1) which is
why an ab initio problem is often considered to scale as K*/8 (200%8 = 200 000 000).
Including electron correlation adds significantly to the computational cost; for
example, MP2 calculations scale as the fifth power of the number of basis functions.
Electron correlation methods may also require significantly more memory and disk
than the comparable SCF calculation.

In practice, ab initio caleulations often scale as a significantly smaller
power than four. It is found that in favourable cases the computational cast of a direct
SCF calculation on a large molecule scales as approximately the square of the number
of basis functions used. This significant reduction (from four to two) is due to several
factors. We have already noted some of the ways in which a carefully chosen basis set
can reduce the computational effort, for example by making many of the integrals
(particularly the two-electron integrals) identical by using the same Gaussian
exponents for s and p orbitals in the same shell. Symmetry in the molecule may also
be exploited, sometimes to great effect. - The most ‘effective way to reduce the
computational effort is to identify integrals which are so small that ignoring them (i.e.
setting them to zero) will not affect the results. The number of *‘important” integrals is
believed to scale as K In K. The negligible integrals are determined by calculating an
upper limit for each integral. This can be done rapidly and so those integrals that are
guaranteed to be negligible can be identified and so ignored. The cutoff value which
determines whether an integral is explicitly calculated or is set to zero can vary from
one program to another, so it is always useful to check its value if different programs

give different results for a given calculation.
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2.5.12 Setting up the calculation and the choice of coordinates

The traditional way to provide the nuclear coordinates to a quantum mechanical
program is via a Z-matrix, in which the positions of the nuclei are defined in terms of
a set of internal. Some programs also accept coordinates in Cartesian format, which
can be more convenient for large systems. It can sometimes be important to choose an
appropriate set of internal coordinates, especially when locating minima or transition

points or when following reaction pathways.

2.5.13 Calculating derivatives of the energy

Considerable effort has been spent devising efficient ways of calculating the first and
second derivatives of the energy with respect to the nuclear coordinates. Derivatives
are primarily used during minimisation procedures for finding equilibrium structures
and are also used by methods which locate transition structures and determine reaction
pathways. To calculate derivatives of the energy it is necessary to calculate the
derivatives of the various electron integrals. For Gaussian basis sets the derivatives
can be obtained analytically, and it is relatively straightforward to obtain first
derivatives for many levels of theory. The time taken to calculate the derivatives is
comparable to thai required for the calculation of the total energy. Second derivatives

are more difficult and expensive to calculate, even at the lower levels of theory.

2.5.14 Basis set superposition error

Suppose we wish to calculate the energy of formation of a bimolecular complex, such
as the energy of formation of a hydrogen-bonded water dimer. Such complexes are
sometimes referred to as “supermolecules”. One might expect that this energy value
could be obtained by first calculating the energy of a single water molecule, then
calculating the energy of the dimer, and finally subtracting the energy of the two
isolated water molecules (the “reactants”) from that of the dimer (the “product”™).
However, the energy difference obtained by such an approach will invariably be an
overestimate of the true value. The discrepancy arises from a phenomenon known as

basis set superposition error (BSSE). As the two water molecules approach, the energy
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of the system falls not only because of the favourable intermolecular interactions but
also because the basis functions on each molecule provide a better description of the
electronic structure around the other molecule. It is clear that the BSSE would be
expected to be particularly significant when small, inadequate basis sets are used (e.g.
the minimal basis STO-nG basis sets) which do not provide for an adequate
representation of the electron distribution far from the nuclei, particularly in the region
where non-covalent interactions are strongest. One way to estimate the basis set
superposition error is via the counterpoise correction method of Boys and Berardi **
in which the entire basis set is included in all calculations [1970]. Thus, in the general

case:
A+B=AB

AE =E(AB) - [E(A) +E(B)]

The calculation of the energy of the individual species A is performed
in the presence of “ghost” orbitals of B; that is, without the nuclei or electrons of B. A
similar calculation is performed for B using ghost orbitals on A. An alternative
approach is to use a basis set in which the orbital exponents and contraction
coefficients have been optimised for molecular calculations rather than for atoms. The
relevance of the basis set superposition error and its dependence upon the basis set
and the level of theory employed.



CHAPTER III

EXPERIMENTAL

3.1 Chemicals and Equipment

3.1.1 Chemicals

* Tetrabutylammonium Electrochemical grade, Fluka,
trifluoromethanesulionate Switzerland

= Tetrabutylammonium hydroxide 1.0 M Analar grade, Fluka, Switzerland

= Zine(Il) trifluoromethanesulfonate Analar grade, Aldrich, U.S.A.

= Perchloric acid 70-72 % Analar grade, Merck, Germany

» Potassium hydrogen phthalate Analar grade, Carlo Erba, Italy

= Methanol Gradient grade, Merck, Germany

= 25,26,27,28-tetra(2-ethoxyaniline)calix Synthetic ligand
[4]arene, cone conformation (cL)
= 25,26,27,28-tetra(2-ethoxyaniline)calix Synthetic ligand
[4)arene, partial cone conformation (peL)
= Argon gas Ultra high purity grade, TGI,
Thailand

3.1.2 Equipment

Automatic titrator, Mettler, Model DL 25, Switzerland
Thermostat bath, Model DT-2, Denmark

Combined pH electrode, Mettler, Model DG 113-SC, Switzerland
Personal Computer IBM 300GL, PII/350, RAM 128 MB
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3.2 Potentiometry
3.2.1 Preparation of solution

Inert background electrolyte, used in the research, was 0.01 M BuyNCF;50;
in methanol which obtained by dissolution of a weighed quantity of dried
BusNCF;50;, Electrochemical grade, Fluka, in Methanol. Methanol with very low
water content was used without further purification. Stock solutions of the ligands of
25,26,27,28-tetra(2-ethoxyaniline)calix[4]arene, cone (c¢L) and partial cone (pcL)
conformations used in the titrations were 0.001 M in methanolic solution of 0.01 M
BuyNCF3S0;. Tetrabutylammeonium hydroxide (BusNOH) of which concentration
about 1.0 x 10° M made by dilution of the commercial solution of 1.0 M
BuyNCF;580; in methanol which ionic strength of 0.01 M BuyNCF;S0; was used as
the titrant base. The primary standard solution of potassium hydrogen phthalate
(KHP) was prepared by dilution of a weighed quantity of dried KHP in water. The
stock solution of perchloric acid (HCIO4) was made by dilution of the commercial
concentrated solution (70-72 %) in methanol. The pH standard solutions of pH = 2.0
and pH = 3.0 in the methanolic solution of constant ionic strength of 0.01 M CF3S03
were prepared by dilution of the stock solution of perchloric acid.  The stock
solution of perchloric acid was used for preparation of standard solution of 0.05 M
HCIQ4 in the methanolic solution of 0.01 M BuNCF;80;, standardized using
BuyNOH titrant.

The methanolic solution of 0.01 M BuyNCF;50; of the 0.05 M Zn(CF3;503);
was used in the titration for the complex formation study - of the ligands of

25,26,27,28-terra(2-ethoxyaniline)calix[4]arene cone and partial cone conformations.
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3.2.2 The Calibration of Electrode

An automatic titrator, Mettler DL25 including combined pH electrode of
Mettler DG113-SC was used in the titration. The pH electrode was calibrated by
standard pH solutions of pH 2.00 and 3.00 as mentioned in the preparation of
solution, at 25 + 0.1 °C. The standard pH 2.00 and 3.00 were prepared in methanol
and in 0.009 M BusNCF;S0; /MeOH, respectively. Accuracy of the pH measurement

was indicated by parametersa and b of the pH correction equation as follows :

PHcorrected PHmﬂsumd Tt h[H+] (3*1)

Parameters a and b obtianed by solving twe different pH-values’ set (pH 2.00 and
3.00) of equation (3.1). The measured pH according to the standard pH 2.00 was
kept as 2.00 to form the first equation by adjusted its Nernstian slope, defined as the
ratio of pH to potential in millivolt based on the isopotential point of pH 8.30 = 0.0
millivolt. The measured pH value obtained from the measurement of standard pH
3.00 formed the second equation. The a and b were solved from those two different
equations.

The titration were performed under ultrapure argon gas satulated by 0.01 M
BusNCF3S0; vapour, through the fitration beaker. The titration beaker was kept
constantly at 25 °C with deviation of # 0.1 °C by the external circulation control of
thermostat bath. Each titration, at least 50 titrating data were recorded and at least 3

titrations were performed.

3.2.3 Potentiometric Titration

Each titrations, 0.001 M of the ligands of 25,26,27,28-retra(2-ethoxyaniline)
calix[4]arene in methanol of 10 cm® was used. The titrant base, 0.05 M BuyNOH in
0.01 M BusNCF;SO; was standardized against the primary standard solution of
potassium hydrogen phthalate For standard solution of 0.05 M HCIO4 in the
methanolic solution of 0.01 M BuyNCF;S0; was standardized against the titrant
base. The standard solution of HClOs was used to adjust the pH of the working

solution.
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The titrations were performed under ultrapure argon gas, saturated by 0.1 M
potassium nitrate vapour, through the titration beaker. The titration beaker was kept
constantly at 25 °C with deviation of + 0.1 °C by the external circulation control of
thermostat bath. Each titration, at least 50 titrating data were recorded and at least 3

titrations were performed for each ligand .

3.2.4 Experimental Data

The titrating data for determination of basicity constants of 25,26,27,28-tetra
(2-ethoxyaniline)calix[4]arene, partial cone was evaluated by the computer refinement
program. The calculations were performed on the Personal computer IBM 300GL
PII/350. The titrating data obtained from the measurements were used in the
evaluation and the optimization process by the SUPERQUAD program *, The range
of titrating data for the titration of 25,26,27,28-refra(2-ethoxyaniline)calix[4]arene,
partial cone is shown in Table 3.1..

Table 3.1 Titration data range of 25,26,27,28-tefra(2-ethoxyaniline)calix[4]arene
(L), partial cone coenformation in 0.01 M BusNCF;SOs in methanol at 25 °C.

Titration Initial Concentration (mM) pH range Data point
L HCIO,4
1 0.907 7.745 7 2.35-1246 53
2 0.872 7.745 2.34 -11.27 52
| 3 0.109 4,900 2.27-12.66 64
4 0.105 1.278 427- 11.49 50
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3.3 Quantum Chemical Calculations
3.3.1 Structure Optimization

The optimized structure of 25,26,27,28-retra(2-ethoxyaniline)calix[4] were
determined by semiempirical PM3 method. The structure of 25,26,27,28-tetra(2-
ethoxyaniline)calix[4]arene ligand obtained from MM method using standard
geometrical parameters, were employed in above process of structure optimization.
The structures of protonated species of conme (c¢L) and partial cone (pcL)
configurations of the ligands, modified from the neutral structures, were optimized
using PM3 method.

3.3.2 Ab initio Calculations

The SCF energies of the optimized structures were obtained by the ab initio
calculations with STO-3G and 6-32G basis set. The possible protonated speices of
cL and pcL were optimized and computed of theire energies at the STO-3G and
6-31G levels.

All calculations were performed on the Pentium II/350 IBM-PC300GI of
RAM 128 MB. The program Gaussian 94W ** were used for all quantum-chemical

computations. Countetpoise correction method was not included in all calculations.



CHAPTER IV

RESULTS AND DISCUSSION

4.1 Basicity Constant of 25,26,27,28-tefra(2-ethoxyaniline)calix[4]arene

The chemical equilibria of = 2526,27 28-tetra(2-ethoxyaniline)calix[4]
(symbolized as L) in methanolic solution of 0.01 M BusNCF3;SO; are written as

following equations
Ki : L T =———="LH (4.1)
K: : T[H A\ (4.2)
K WA S H T ="\ (4.3)
Ke : LH® # fHI = " (4.4)

Ki, K3, K3, and K4 are first, second, third and fourth protonation constants ,
so called basicity constants. The basicity constants of 25,26,2728-tefra(2-
ethoxyaniline)calix[4], partial cone conformation, expressed in terms of logarithm

are shown in Table 4.1.

Table 4.1 Logarithm of the basicity constant of 25,26,27,28-rtetra(2-
ethoxyaniline)calix[4] (L), partial cone conformation, in methanolic solution
of 0.01 M BuyNCF;S0; at 25°C.

Protonation log K
K, + L + H == LH 11.87 + 0.06
K, : LH + H* s LH" 559+ 0.12
Ky : LH>» + H == LH" 462 + 0.13

Ki : LH" + H' = EH™ 4.62 + 0.13
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The titration curves of 25,26,27,28-tetra(2-ethoxyaniline)calix[4] (L) partial cone
conformation in methanolic solution of 0.01 M BusNCF3;80; at 25 °C are shown in

Figure 4.1.

12 F

10

pH

10 - ) -4 2 ]
Equivalent

Figure 4.1 Potentiometric titration curves of 25,26,27,28-tetra(2-ethoxyaniline)
calix[4] (L), partial cone conformation, in methanolic solution of 0.01 M
BuyNCF;80; at 25 °C, based on the initial concentration ratio of the ligand to proton
of 1.92mM : 7.62 mM; equivalent is defined as the ratio of (n on. - N acid) 1O N jigand.

w
T

(73
T
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Figure 4.2 Plot between p and log[H'] for 25,26,27,28-teira(2-ethoxyaniline)
calix[4] (L), partial cone conformation, in methanolic solution of 0.01 M
BusNCF3SO; at 25 °C, based on the initial concentration ratio of the ligand to
proton of 1.92 mM : 7.62 mM.
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The plot between p and log[H"] for 25,26,27,28-fetra(2-ethoxyaniline) calix[4] (L),
partial cone conformation, in methanolic solution of 0.01 M BuyNCF3;S0; at 25 °C,
based on the initial concentration ratio of the ligand to proton of 1.92 mM : 7.62 mM,
is shown inFigure 4.2. The species distribution curves of 25,26,27 28-tetra(2-
ethoxyaniline)calix[4] (L), partial cone conformation, in methanolic solution of 0.01
M BuyNCF3S80; at 25 °C are shown in Figure 4.3,

100

Figure 4.3 Species distribution curves of 25,26,27,28-iefra(2-ethoxyaniline)calix[4]
(L), partial cone conformation, in methanolic solution of 0.01 M BuyNCF;SO; at
25 °C, with initial concentration of 9.07 x 10™* M.,

All protonated species of partial cone (pcL) present in the pH below 9.0, except LH’
exists in the pH range of 4.5 to 12.0. Higher than 50 % of the complete-protonated
species , LH4"" is located at pH below 4.0. Over 50 % of LHs** and LH,*" exist in the
narrow range of pH 3.5 to 5.0. All protonated species coexist in the pH range of 4.2
to 5.2 At basic pH range (pH < 8.3), almost 100% of LH" exists in methanolic
solution.  Free ligand, L species, is liberated at pH above 10.0 and becomes
dominant species at pH above 12. At pH 12, populations of LH" and L species are

almost the same number (50%).
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4.2 Quantum chemical calculations of the 25,26,27,28-tefra(2-ethoxyaniline)calix

[4]arene
4.2.1 Structure optimization of 25,26,27,28-fetra(2-ethoxyaniline)calix[4]arene

The optimized structures of 25,26,27,28-tetra(2-ethoxyaniline)calix[4]arene, are
cone and partial cone conformations. The optimization method for determination of
the structural conformations of the 25,26,27,28-tetra(2-ethoxyaniline)calix[4]arene
has been employed using the PM3 method of quantum chemical calculations. Cone

and partial cone conformations obtained from the structure optimization are shown in

Figure 4.4.

cL. peL

Figure 4.4 Cone, cL.and partial cone, pcL conformations obtained from the structure

optimization by PM3 method of quantum-chemical calculations
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4.2.2 Structure optimization of protonated species of cone and partial cone

conformations of 25,26,27,28-tefra(2-ethoxyaniline)calix|4]arene

The protonated species of the cone and partial cone conformations of
25,26,27,28-tetra(2-ethoxyaniline)calix[4 ]arene, were optimized using PM3 method.
The structure of cone and partial cone conformations obtained from the structure
optimization are shown in Figure 4.5 and 4.6, respectively. The SCF energies of the
optimized structures of all possible protonated speices of cL and pcL were
obtained by ab initio calculations with STO-3G and 6-31G basis set as shown in
Table 4.2 and 4.3, respectively.

4.2.3 The stabilization energies of protonations and protonation pathways
of 25,26,27,28-tetra(2-ethoxyaniline)calix[4]arene

The protonation process of 7 pathways of the el and 24 pathways of the pcL
are shown in Table 44 and 4.5, respectively. The stabilization energies of
protonations of cone and partial cone conformations of 25,26,27,28-rerra(2-
ethoxyaniline)calix[4]arene, computed by ab initio method with STO-3G and 6-31G
basis set are tabulated in Table 4.6 and 4.7, respectively.



cL cLH'
cLH* cLH'H"
(CLHHY)
cLH'H’ / cLH'H'
cLHH' = CLH'HH -
(cLH' HY ~ {(cLH'HHY
cLH'HH* I I ¢cLH'H'H’H®
(cLH'HHY

Figure 4.5 The 252627 28-fefra(2-ethoxyaniline)calix[4]arene cone conformation,
cL obtained from the structure optimization by PM3 method of quantum-
chemical calculations (see Appendix A).
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peL pcLH'
pcLH® peLH®
J« i
peLH’ ; _ pcLH'H®
pcLH'H?
pcLH'H*

Figure 4.6 The 25,26,27 28-tefra(2-ethoxyaniline)calix[4]arene partial cone
conformation, pcL obtained from the structure optimization by PM3 method of
quantum-chemical calculations (see Appendix B).



62

pcLHH?
pcLH'H'
pcLH°H'
pcLH'H'H’
pcLH'H'H'
pcLH® H*H'
peLH'H'H’H’

Figure 4.6 (continued)
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Table 4.2 The SCF energies of protonated species of cone conformation of
25,26,27 28-tetra(2-ethoxyaniline)calix[4]arene computed by LCAO-MO-SCF with
STO-3G and 6-31G basis set.

SCF energy (hartree)
Species
STO-3G 6-31 G

cL -3084.835132 -3122.301177
cLH' -3085.266633 -3122.684859
cLH’ -3085.264951 -3122.681046
cLH'H*  (cLH'HY -3085.644124 -3122.999970
cLH'H’ -3085.662431 -3123.021298
cLH’H'  (cLH'HY -3085.671069 -3123.009764
cLH*H* -3085.656638 -3123.027889
cLH'H’H® (cLH'H’HY) -3086.006783 -3123.287449
cLH'H’H' (cLH'H’HY) -3085.994525 -3123.301316
cLH'H'H'H* -3086.288631 -3123.521363

cLH" is the protonated species of the protonation at the n™ nitrogen atom on the ligand cL.




Table 4.3 The SCF energies of protonated species of partial cone conformation of
25,26,27,28-tetra(2-ethoxyaniline)calix[4]arene computed by LCAO-MO-SCF with
STO-3G and 6-31G basis set.

SCF energy (hariree)

Species
STO-3G 6-31G

pel. -3084.840315 -3122.312896
pcLH' -3085.265539 -3122.681978
pcLH® -3085.279438 -3122.700790
pcLH’ -3085.264924 -3122.677342
pcLH* -3085.274135 -3122.688569
pcLH'H? -3085.634498 -3122.988723
pcLH'H’ -3085.648468 -3123.001338
pcLH'H* -3085.666590 -3123.022247
pcLH’H’ -3085.644583 -3123.001806
pcLH'H* -3085.661025 -3123.014023
pcLH'H* -3085.674449 -3123.033716
pcLH'H’H’ -3085.674449 -3123.272873
pcLH'H’H* -3085.993382 -3123.286796
pcLH'H'H* -3086.007795 -3123.299952
pcLH’H’H* -3086.026914 -3123.317325
pcLH'H*H’H* -3086.302327 -3123.532681

cLH" is the protonated species of the protonation at the n™ nitrogen atom on the ligand cL.
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Table 4.4 The protonation process of possible pathways of the cone conformation
of 25,26,27,28-tetra(2-ethoxyaniline)calix[4]arene, cL.
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Table 4.5 The protonation process of possible pathways of the partial cone

conformation of 25,26,27,28-retra(2-ethoxyaniline)calix[4]arene, peL.
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pelH'H* peLH'HH? peLH'HIHH!
ﬂE:‘m. = E!i“'.'l ﬁE]ﬂ’I - EE}'“ &E‘ﬂﬁﬂ = EE‘“:
peLH'H* pel.H'H'H! peLH'H'H'H*
AEY ﬁE:‘“" - E]uu A = E‘{JJ
PeLH'H pelH'HH! pelH'HH'H
'&E}ﬁ‘?l oIl E;IH] .IiE:I:HI - E!illl .ﬁE.]tnl - E'IWI
peL i peLH'H'H pel it
ﬂ}izﬂ.‘l] M":;"” - E]{“J ﬁE.‘”' = AE,M

peLH'H'H! pelH'HHHY
ﬁE.l‘}“ - E‘t I
pel.H*H'H! pelH'HHH
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Table 4.6 The stabilization energies of protonation of the cone conformation of
25,26,27,28-tetra(2-ethoxyaniline)calix[4]arene, cL, calculated by ab initio method
with STO-3G and 6-31G basis set.

AE (Kcal/mole)

Protonation

STO-3G 6-31G
AE M= AE, = AE,® - —  clH 2708 -240.8
A" = AE® IR —F cHH -236.9 -197.7
AE = AR, : clH'H? —F  cLH'HH' 2276 -180.4
AEM = AE M = AR, : eLH'HH? —F I H'HHH 1769 -146.8
AE,® = AE;® ¢ eLH'H! —  cLH'HH 2199 -189.1
AEM = AEM = AR : cLH'H'H'  —»  cLH'HH'H' <1846 -138.1
AE™ : 4 S — clH'H’ 2484 2111
AEs™ : . LH'H —>  cLH'HH 2161 -168.0
AE“ = AE" = AE® = 5@ gl —p oLy -269.7 -238.4
AE, ¥ = AE,™ & Jeln? —» cH'H -2379 -200.1
AE,® : 0 el —» an'w -254.8 -206.3
AE® el —+ cLH'HH -210.7 -174.3
AE,™ ;oW —p cLH'H -245.8 2177
AE,D™ : i — cLH'HH 2120 1716

AE, is the stabilization energy of the n® protonation of pathway p™ protonation.
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Table 4.7 The stabilization energies of protonation of the partial cone conformation

of 25,26,27,28-tetra(2-ethoxyaniline)calix[4]arene, peL, calculated by ab initio
method with STO-3G and 6-31G basis set.

AE (Kcal/mole)

Protonation

8TO-3G 6-31G
AEI = AR, B a AR ) wp R ) w AR ) wpp, 8 pel. — pelH' L2668 2316
AEM =AE,D peLH!' —# pcLH'H? 2315 -192.5
AE, M =AE,™ pelH'H?  —P peLH'HH] -218.1 -178.3
AEL =AEM =AEM =AE,"™ =AY =AEMY pelH'HHY —P peLH'HHH! -201.0 -163.0
AE;® waAE,M peLH'HY g pelH'HH! <2252 -187.0
AE M =AR P =pAE, M =pE 11 =g g i = 11 pelH'H'H'  —— peLH'H™H'H* -193.9 -1543
AE;™ =AE," peLH' —p pcLH'H’ -240.3 -200.4
AE,® =aE,{"Y pelH'H'  ——p pclH'HH’ -209.3 -170.4
AE =AE pelH'H'  —p pelH'H'H 2255 1874
AEM =AEM mAE M =pAE M =AF, 0% sAE S peLH'H'H' —9 pcLH'HH'H' -184.8 -146.0
AE# =AF, peLH' —p pelH'H' -251.7 2135
AE mAE! peLH'H'  —— pcLH'HH? -205.1 -166.0
AE,®) =AE, 0 pelH'H'  ——p peLH'H'H -214.1 -174.3
AE,™ =AE,® mAE,® wAE, 19 wAE, 11 <AE, (D peL. —§ pelH? 2756 2434
AE, ™ = AR, peLH? — pcLH'H? 2228 -180.7
AE™ =aE1 pelt - —P pelH'H 229.1 1889
AEs™ =AE,#'¥ pelHH  — palH'HH 2118 -170.1
AE;" mpE (18 pebH'H'  —P pclLHHH -239.9 -198.0
AEMD=AE D =AE 18 =pF 10 wpE ) mp B4 peLH'H'H'  — peLH'HH’H* -172.8 -135.1
AES AR peLH? P peLHH' 2479 -208.9
AE{N =pE, 2 peLH'H*  — peLH'HH -200.1 1588
AE11 =5, peLHH* — peLH*H'H' 1212 -178.0
AE" =AE,") =AE MV =AE, 1 =4 =B P pel. b peltf’ -266.4 287
AE" mpE A peLH? ——p pcLH'H -240.7 2033
AE1 =pEy®) pelH’ — polH’H’ 2382 2036
AES"™ =A™ pel.i’ — pelHH 2486 2113
AEM =AE,@ peLH'H'  — pclH'H'H 22176 -179.4
AE{ =pE, 20 peLH'HY — peLHHH 2296 -190.3
AE " =AE, 2 =AE 21 =AE,#0 =AE, ™ =AE Y pel. — pelH* 2122 2357
AES =g, R0 pelH* —— pcLH'H! -246.3 -209.4
AEA =AY pel.H' —— pelHH! 2512 2166
AE =pE 20 peLH* — pclH'H* -2428 -204.2

AE,™ is the stabilization energy of the n® protonation of pathway p* protonation.
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CONCLUSION

This research work can be concluded as listed below :

25,26,27,28-tetra(2-ethoxyaniline)calix[4]arene exists at least two conformations,

namely cone and partial cone.

= The partial cone is more stable than cone conformation.

= The partial cone conformation can be protonated at four aniline-nitrogen atoms of
the ligand, and their protonation constants correspond to their stabilization energies
of protonation.

= protonation constant of cone conformation has been not obtained but their
protonations can be confirmed by the optimization and calculation model.

* The most possible protonation pathways of cone (cL) and partial cone (pcL)

conformations, indicated by their stabilization energies of STO-3G and 6-31G

levels, are the 3 “and 12 ™ pathways, respectively.

AE,™ AEM AE;™Y AR
3" pathway : el —F cLH! —» cH'H? —F cLH'HH TP cLH'HHH
E]il!’l ﬂE:{m AE;"” ﬂE.."”

12™ pathway : pl. —»  pel?  —P pelHH' — plHH'H' —P pelH'HH'H

= The stabilization energy of protonations of cone conformation is in the sequence
of AE® <AE,® < AE;® < AE® as -240.8 (-270.8) <-211.1(-248.4) <-168.0
(-216.1) < -146.8*(-176.9)",'in Kcal/mole (where * and® indicate the 6-31G and
STO-3G energy levels; respectively).

» The stabilization energy of protonations of partial cone conformation is in the
sequence of AEM? < ﬁEzml < AE;"? < AEM? as -243.4 (-275.6) < -208.9
(-247.9) < -178.0.0 (-221.2) < -135.1* (-172.8)", in Kcal/mole. The sequence
of these stabilization energies corresponds to their protonation constants
logK; > log K; >log Ki>log Ky as 11.87>5.59>4.62> 4.62.
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Suggestion For the Future Work

The calculations of the stabilization energies of higher energy level than
6-31G and including the polarization functions such as 6-31G(p), 6-31G(p,d) should

be continued for correcting the interaction of nitrogen donating group. The

experiment for determination of protonation constants of cone conformation of the -

25,26,27,28-tetra(2-ethoxyaniline)calix[4 Jarene may be repeated by different
techniques. Stability constants of their complexes with heavy metal ions in different

solution, should be examed by uv spectroscopic method.
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Appendix A

Figure A.1 25,26,27,28-tetra(2-ethoxyaniline)calix[4]arene cone conformation, cL
obtained from the structure optimization by PM3 method of quantum-chemical
calculations.

Figure A.2 cLH' configuration obtained from the structure optimization by PM3
method of quantum-chemical calculations.
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Figure A.3 cLH? configuration obtained from the structure optimization by PM3
method of quantum-chemical calculations.

Figure A.4 cLH'H? configuration obtained from the structure optimization by PM3
method of quantum-chemical calculations.
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Figure A.5 cLH"H’ configuration obtained from the structure optimization by PM3
method of quantum-chemical calculations.

Figure A.6 cLH*H’ configuration obtained from the structure optimization by PM3
method of quantum-chemical calculations.
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Figure A.7 cLH*H* configuration obtained from the structure optimization by PM3
method of quantum-chemical calculations.

Figure A.8 cLH'H*H? configuration obtained from the structure optimization by
PM3 method of quantum-chemical calculations.



Figure A.9 cLH'H*H* configuration obtained from the structure optimization by
PM3 method of quantum-chemical calculations.

Figure A.10 cL H'H*H’H* configuration obtained from the structure optimization
by PM3 method of quantum-chemical calculations.

a8
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Appendix B

Figure B.1 25,26,27,28-fetra(2-ethoxyaniline)calix[4]arene partial cone
conformation, pcL obtained from the structure optimization by PM3 method of
quantum-chemical calculations.

Figure B.2 pcLH' configuration obtained from the structure optimization by PM3
method of quantum-chemical calculations.
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Figure B.3 pcLH? configuration obtained from the structure optimization by PM3
method of quantum-chemical calculations.

Figure B.4 pcLH? configuration obtained from the structure optimization by PM3
method of quantum-chemical calculations.
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Figure B.5 pcLH* configuration obtained from the structure optimization by PM3
method of quantum-chemical calculations.

Figure B.6 pcLH'H® configuration obtained from the structure optimization by
PM3 method of quantum-chemical calculations.
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Figure B.7 pcLH'H’ configuration obtained from the structure optimization by
PM3 method of quantum-chemical calculations.

Figure B.8 pcLH'H* configuration obtained from the structure optimization by
PM3 method of quantum-chemical calculations.
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Figure B.9 pcLH’H® configuration obtained from the structure optimization by
PM3 method of quantum-chemical calculations.

Figure B.10 pcLH’H* configuration obtained from the structure optimization by
PM3 method of quantum-chemical calculations.
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Figure B.11 pcLH"H* configuration obtained from the structure optimization by
PM3 method of quantum-chemical calculations.

Figure B.12 pcLH'H’H’ configuration obtained from the structure optimization by
PM3 method of quantum-chemical calculations.
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Figure B.13 chH'HIH‘ configuration obtained from the structure optimization by
PM3 method of quantum-chemical calculations.

Figure B.14 pcLH'H’H* configuration obtained from the structure optimization by
PM3 method of quantum-chemical calculations.



BG

Figure B.15 pcLH’H’H* configuration obtained from the structure optimization by
PM3 method of quantum-chemical calculations.

Figure B.16 pcLH'H*H’H* configuration obtained from the structure optimization
by PM3 method of quantum-chemical calculations.
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