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CHAPTER |

INTRODUCTION

Recently, increasing worldwide attention on the energy crisis and global

climate change has led to the further development of alternative energy as a

substitute for fossil fuel (Cook, 2021). Biofuels are environmentally friendly energy

sources to fulfill the global energy demand. Especially, butanol has attracted

attention. Butanol has been produced biologically via anaerobic acetone-butanol-

ethanol (ABE) fermentation using many solvent-producing clostridia. The advantages

of Clostridium species are producing a high level of ABE production and producing

endospore for resistance to the extreme environment. Moreover, it can utilize a large

variety of substrates from monosaccharides and polysaccharides such as cassava,

corn, and sugar cane (Kanno et al,, 2013; Lee et al,, 2012). In butanol fermentation,

the cost of feedstocks can account for up to 75% of the total cost. Therefore, food

waste, lignocellulosic biomass, and agricultural residues are non-food crops and

considered the ideal substrate for butanol production (Wayne Chew et al., 2018).

However, sugar extraction from these substrates is significantly more challenging.



Consequently, the main bottleneck with these substrate’s fermentation is the high

cost of pretreatment. To discover the sustainable feedstocks, alcoholic beverage

wastewater was considered. Due to the use of wheat, rice, corn, molasses, and

barley as a feedstock to produce alcoholic beverage. As a result, a large volume of

rich carbohydrate wastewater is produced throughout the alcoholic beverage

manufacturing process, especially Sato wastewater. Sato is a unique Thai traditional

alcoholic beverage that made from glutinous rice and look pang (Sato yeast ball)

(Dung et al,, 2007). In addition to that, this wastewater still contains relatively high

levels of carbohydrates. However, the BOD and COD in this wastewater has still a

high concentration, and it always produce bad odor from hydrogen sulfide that

severe to environment and human health (Athanasopoulos, 1987; Vijayaraghavan &

Ramanujam, 2000). To solve this problem, this wastewater will be used to produce a

value-added substance like butanol. Moreover, it has not been a previous report to

use Sato wastewater as a substrate for ABE production. This research will focus on

the screening and identification of Clostridium spp. from natural sources in Thailand.

The potential of Sato wastewater as feedstock using a solventogenic Clostridium sp.



for butanol production will be investigated. Moreover, this research will estimate

bacterial growth, ABE production, and optimization condition of solventogenic

Clostridium sp.

Objectives of this study

1. To isolate and identify a solvent producing Clostridium sp. which produce

butanol from natural sources in Thailand

2. To evaluate butanol production from the isolated Clostridium sp. using

Sato wastewater as feedstock



CHAPTER Il

LITERATURE REVIEWS

1. Biofuels - renewable energy for substitute petroleum product in the future

Fossil fuels are classified as a fuel that the world still requires and are

insatiable, which supply 80% of our global energy requirements (Nigam & Singh,

2011) Over the following decade, oil consumption is expected to climb further, with

the United States accounting for 85% of global output (Cook, 2021). Besides that,

globalization, economic expansion, and population growth affected the demand for

fossil fuels. Concerns about the security of oil supplies, along with issues regarding

global warming caused by greenhouse gas emissions, have prompted a surge in

research into alternate, renewable fuel sources. More sustainable feedstocks for fuel

generation, such as biomass, natural oils, and waste gases, are being researched.

These formerly regarded waste feedstocks can be turned into fuel using a number of

techniques such as fractionation, liquefaction, transesterification, pyrolysis, hydrolysis,

fermentation, and gasification (Demirbas, 2009). For example, hydrogen (H,), carbon



monoxide, and carbon dioxide were derived from biomass, municipal waste, and

plastic by the gasification process. However, these processes used the high

temperature and pressure, including high costs of production. Therefore, the focus

has been shifted toward the use of microbial catalysts. Due to these catalysts have

many advantages over chemical catalysts. It used milder temperature, pressure, and

low costs for operation.

The use of ammonia (NH)-, H,-, and butanol-derived energy to replace coal

and achieve zero emissions seems appealing. Although NH; has numerous benefits

over H,, including a higher volumetric energy density and a low cost, it also has the

drawbacks of sluggish burning velocity and significant nitrogen oxide (NO,) emissions.

H, is a carbon-free fuel and a clean energy source. Nonetheless, the cost of

transportation and equipment for liquid H, remains significant. As can be shown,

both NH; and H, have drawbacks that make them unsuitable for widespread

application (Chai, Chew, et al., 2021). Butanol is one of the bio-alcohols that has

attracted great interest. It can be produced by the biological process using



Clostridium sp. In addition, butanol can also be employed in industry as a chemical

precursor and solvent as well as a biofuel(Qureshi & Blaschek, 2001).

2. The genus Clostridium - the traditional species that produce acetone-

butanol-ethanol (ABE) production via ABE fermentation

There are approximately 231 species in the genus Clostridium. Clostridium sp.

is a gram-positive and obligate anaerobic bacteria. The morphology of Clostridium sp.

is rod shaped and colony can be divided into several categories such as flat, raised,

convex, pulvinate, and umbonate (Figure 1). The highlight of Clostridium sp. is

producing an endospore to help them to survive in the harsh environment. In

general, Clostridium sp. can grow from 3.3 to 80 °C depending on the species.

However, the suitable of temperature for their growth is approximately 25 to 40 °C

(Brasca et al., 2022). Clostridium sp. can produce industrially relevant products such

as solvents and toxins, among other products. The most reported Clostridium strains

to butanol production are C. acetobutylicum, C. beijerinckii, C. saccharobutylicum,

and C. saccharoperbutylacetonicum (Qureshi & Ezeji, 2008). On the other hand, C.

perfringens produces potent toxins such as enterotoxin. In addition, C. botulinum and



C. tetani produce neurotoxins (Rupnik et al., 2005). Moreover, Clostridium sp. has

potential to utilize various carbon sources including pentoses and hexoses. For

example, sugar cane, corn, cassava, agro-industrial waste, and wastewater.

Figure 1 The morphology of Clostridium sp. - rod shaped cell and endospore

forming (Buranaprasopchai et al., 2022).

The life cycle and growth of Clostridium sp. begin with the introduction of a

carbohydrate source into the celll When a carbohydrate source reaches the

clostridial cells, it begins with the vegetative cell, which is formed like a rod.

Clostridial cells produced organic acids such as acetate and butyrate during this

stage, and the cells accumulated granulose. Following that, clostridial cells began to



sporulate, and organic solvents were produced. Furthermore, the cells became fatter

and cigar-shaped. Finally, the cells sporulated (Figure 2).

Organic Acids
(Acetic Acid, Butyric Acid)

pore 7 @D V
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s @ \Ceu Division (>'0rage Material)
pores i\? JL
sugar P> ﬁ Clostridia

Spores maturing
Start of

%Sporulatlon'

Forespores Solvents
(Acetone, Butanol, Ethanol)

Figure 2 Cell cycle in each step of organic acids and solvents from C.
acetobutylicum ATCC 824 (Schuster et al., 1998).
3. Acetone-butanol-ethanol fermentation - the history of ABE production for
green energy in the future
In the early 20" century, acetone production was popular. Due to World War
l, the high demand for acetone was rising. Acetone can be used as a precursor to
produce explosive cordite (Jones & Woods, 1986; Killeffer, 1927). The first industrial

scale of ABE fermentation was discovered in 1916 by Chaim Weizmann using C.



acetobutylicum. This bacteria strain was used and developed in ABE fermentation,

which is widespread in many countries, such as the United States, England, and

Russia. After that, various fermentation processes were developed, and the demand

for butanol also increased. In 1936, Beesch (1952) stated that a more cost-effective

process was developed that used molasses or other industrial sugars as carbon

sources and reduced the fermentation temperature to 31 °C. It makes the ABE

fermentation process economically viable. However, the increasing price of carbon

sources and the rapid development of the petrochemical industry led to a decline in

research on ABE fermentation and the closing of many ABE fermentation factories in

several countries except South Africa, Russia, and China (Durre, 2007; Jiang et al,,

2015; Zverlov et al,, 2006). In addition, the ABE production process has many

problems, including the low yield of butanol, the toxicity of solvents, and the high

cost of operation (Moon et al., 2016). In the 1970s, the oil crisis happened. Therefore,

butanol has become attractive as a substitution for petrochemical fuel. After that,

the study of molecular genetics was widespread and well known, and metabolic

engineering to improve butanol production and reduce the toxicity of other solvents



from Clostridium sp. was evaluated. The timeline of ABE fermentation is shown in

Figure 3
1916 1950s 1970s 1984 1992 1994 2001 2008
First Industrial Decline of ABE Revival of ABE Metabolic Flux First Metabolic First Gene KO  Complete Global Financial
ABE Fer ion Fer tion Fer tion Analysis Engineering Homologous Genome Crisis

with Oil Crisis

Recc tion Sec

| Lo
T

Figure 3 Timeline of the ABE production history of Clostridium sp. from 1916 to 2016

(Moon et al., 2016).

3.1 ABE fermentation factors

3.1.1 Type and concentration of substrate

The majority of the raw materials used in ABE fermentation are sugar,

simple carbohydrates, and a few polymers (cassava, maize, sugarcane, and

other agricultural residues). The initial sugar concentration is an important



factor in ABE fermentation. The initial sugar concentration was high (more

than 20 g/L), which contributed to the low ABE production yield (Lee et al,,

2008). If the initial sugar concentration was greater than 60 g¢/L, it could

improve ABE production (Madihah et al., 2001). However, ABE production was

reduced because the initial sugar concentration was greater than 80 g/L. ABE

production is extremely low at an initial sugar concentration of 120 g¢/L. (Ezeji

et al,, 2003; Qadeer et al., 1980).

3.1.2 Temperature

Temperature is one of the factors that influences the fermentation of

anaerobic bacteria. It affects the components and structure of the cell

membrane, which are consistent with the stress response from the

environment and other solvents (Zhang et al, 2016). For example, C

ragsdalei was cultured at three different temperatures (32, 37, and 42 °C).

The highest solvent production and cell growth occurred at 37 °C.

Furthermore, temperatures above 37 °C had a direct impact on cell growth

and solvent production (Kundiyana et al., 2011). McNeil and Kristiahsen (1985)



investicated the effect of temperature on C. acetobutylicum solvent

production from 25 to 40 °C. The increasing temperature reduced the yield of

solvent production, particularly acetone. Interestingly, butanol was

unaffected by temperature increases. The optimal temperature for solvent

production was determined in this study to be 35 °C.

3.1.3 pH

The pH of ABE fermentation is critical to butanol production. The

optimal pH range was 5.0 to 6.5. (Jones and Woods, 1986). Al-Shorgani et al.

(2014) investigated the optimal pH of C. acetobutylicum YM1 for butanol

production. When cultured with glucose as a carbon source, the optimal

initial pH of 6.2 resulted in the highest yield of butanol. Moreover, the

increase in pH from 4.9 - 5.2 to 55 and 6.0 caused dramatic increases in

butanol production by C. bejjerinckii IB4 (Jiang et al., 2014).



4. Butanol - the ecologically friendly energy source to fulfill the global energy

demand

Recently, butanol has become interested in running out of fossil fuels,

climate change, environmental pollution, and global warming. Besides that,

awareness of environmental sustainability has made renewable energy more

popular. The utilization of butanol has been predicted to increase from 90 million

USD in 2020 to around 106 billion USD by 2025, with a compound annual growth

rate of 10.6% (Choi et al.,, 2021). At present, butanol has received more attention

than other biofuels because it can replace gasoline. Butanol refers to a four-carbon

alcohol. The properties of butanol are colorless, low boiling and melting points,

volatile, and flammable (Table 1) (Ndaba et al., 2015). For the application of butanol,

it can be used for chemical feedstock and product formulations such as paints and

lubricating oils. In addition, the properties of butanol are similar to those of gasoline.

Therefore, butanol has been a leading biofuel in transportation. Butanol has several

advantages when compared to ethanol. For example, butanol has a higher energy

density, lower vapor pressure, and higher-octane number than ethanol (Berezina et



al,, 2012; Birgen et al,, 2019; Durre, 2007; Lee et al, 2008). The comparison of

ethanol and butanol properties was shown in Table 2 (Lee et al., 2008).

Table 1 The properties of n-butanol (Ndaba et al., 2015).

Properties Butanol
Formula C4HyOH
Boiling point; °C 118
Energy density; MJ Kg™* 33.1

Air fuel ratio 11.2
Heat of vaporization; MJ Kg™ 0.43
Research octane number 96

Motor octane number 78




Table 2 The properties of ethanol and butanol (Lee et al., 2008).

Properties Ethanol Butanol
Energy density (MJ/L) 19.6 29.2
Air-fuel ratio 9 11.2
Heat of vaporization (MJ/kg) 0.92 0.43
Energy content/value (BTU/gal) 84,000 110,000
Solubility Soluble Insoluble
Research octane number 129 96
Motor octane number 102 78

Butanol can be classified into 4 isomers that are comprised of n-butanol, sec-

butanol, iso-butanol, and tert-butanol (Figure 4) (Sahoo et al, 2019). When

considering butanol, it was found that butanol is a toxic metabolite that Clostridium

sp. can tolerate better than other bacteria species. However, each isomer of butanol

has different properties. Moreover, the isomers of butanol, it was found that n-

butanol has the largest share of the global butanol market, and it can be produced

by only Clostridium sp. (Russmayer et al., 2019).



_O_H

/\/\ H3C\/\
HE CHs CHsy
(a) n-Butanol (b) sec-Butanol
CH3 CH3
HL:C OH
OH .
H3C CHj

(¢) iso-Butanol (a) rert-Butanol

Figure 4 The isomers of butanol and their chemical structures (Sahoo et al., 2019).
Butanol can be produced via petrochemical and biological processes. In the
petrochemical process, butanol can be produced via either the crotonaldehyde
hydrogenation (aldol) process from acetaldehyde or the oxo process from propylene.
The first chemical process to produce butanol is crotonaldehyde hydrogenation or
the aldol process. The raw material in this process is acetaldehyde, and it consists of
aldol condensation, dehydration, and hydrogenation. This process was to start with
acetaldehyde produced from the dehydrogenation of ethanol (Figure 5). In this oxo
process, propylene undergoes hydroformylation to form aldehydes. After that,

aldehydes were further hydrogenated to n-butanol. The first step is to start with the



reaction of propylene with carbon monoxide and hydrogen using cobalt or rhodium

as a catalyst. In the second step, the mixture of n- and isobutyraldehyde is

hydrogenated to n- and isobutyl alcohols for distillation to recover butanol (Figure 5).

However, the price of propylene in this process is highly sensitive to the price of

crude oil on the market, and it regulates the cost of synthetic butanol production.

A
aldol
i dehydrati
CHsCHO —Sondensation - 1 (OH)CH.CHO ——2 % CH3CH=CHCHO + H:0
hydrogenation

CH3;CH>;CH>CH>,0OH = H

2
B

catalyst
CH3;CH=CH2 CO/HLO CH3CH2CH:2CHO —— (CH3):CHCHO

catalytic hydrogenation
H, g

CHs;CH-CH-CH>OH

Figure 5 (A) n-butanol synthesis from the crotonaldehyde hydrogenation (aldol)

process and (B) the propylene oxo process.

Because of the aforementioned issue with unpredictable global petroleum

costs, attention has switched to biological processes. In the biological process,

butanol can be produced by numerous microbes such as Clostridium sp., genetically

engineered Escherichia coli, and Saccharomyces cerevisiae via acetone-butanol-



ethanol (ABE) fermentation, of which butanol production by Clostridium sp. has

gained the most attention. This is due to the fact that these bacteria are a kind of

solventogenic bacteria that can produce endospores, which help in their survival in

harsh environments. They can also metabolize a wide range of substrates, including

sugar cane, crops, and cassava (Kanno et al., 2013; Lee et al., 2012).

The ABE fermentation is characterized by its biphasic nature. The pH of the

fermentation is reduced during the acidogenesis stage due to the quick synthesis of

acetic and butyric acids, which is followed by solventogenesis, in which acids are

reassimilated and butanol and acetone are formed (Lee et al., 2008). After that, the

growth of bacteria was in a steady state (Huang et al., 2010). Buffering of the medium

can cause the beginning of solventogenesis to be delayed, resulting in higher butanol

yields (Figure 6) (Bryant & Blaschek, 1988; Jang et al,, 2012; Yu et al,, 2015). C.

acetobutylicum and C. beijjerinckii are the most commonly reported Clostridium

strains for butanol synthesis (Qureshi & Ezeji, 2008).

However, ABE fermentation often results in poor butanol vyield and

productivity due to other by-products such as acetone and butyric acid being



created during the butanol synthesis route (Dadgar & Foutch, 1988; Gu et al., 2011).

Furthermore, production costs are an important element influencing the economic

feasibility of butanol production.
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Figure 6 The ABE fermentation in Clostridium sp.: acidogenesis and solventogenesis

phases (A) metabolic pathway to produce butanol by solvent producing Clostridium

sp. (B) Jang et al,, 2012; Yu et al.,, 2015).



When considering the enzymes involved in the butanol synthetic pathway,

there are six enzymes required to convert acetyl-CoA to butanol: thiolase (THL), B

hydroxybutyryl-CoA dehydrogenase (BHBD), 3-hydroxy-butyryl-CoA dehydratase (CRT,

also  termed crotonase), butyryl-CoA dehydrogenase (BCD), bifunctional

acetaldehyde-CoA/alcohol dehydrogenase (ADHE, also known as ALD), and butanol

dehydrogenase (BDH). ADHE and BDH play a key role in the production of butanol.

Many scientists have attempted to enhance butanol production by inserting,

knocking out, or deleting key genes that code for corresponding enzymes. C.

acetobutylicum is a well-known Clostridium species that has been studied for the

butanol production process. When the adhE2 gene in C. acetobutylicum ATCC 824

was overexpressed, butanol production increased (Yu et al.,, 2011). When the adhE1

gene was inactivated, butanol production in C. acetobutylicum ATCC 824 decreased

(Lehmann et al., 2012).



5. Typical feedstock for butanol production - the generation of biological

processes for butanol production

In the first generation of butanol production, butanol can be produced by

using a simple sugar, e.g., hexose sugar, that is derived from starchy crops such as

sugarcane, corn, rice, wheat, and cassava. Table 3 summarizes the literature on

various types of raw materials for first-generation butanol, including the

microorganisms used and their product yields. Glucose is a simple sugar that is easy

to use by bacteria. C. beijjerinckii NCIMB 8052 produced butanol production of 11.2

g/L using glucose 60 ¢/L as a substrate (Lee et al, 2008). In accordance with

Clostridium sp. strain G117, 6.45 ¢/L of butanol was produced using 30 ¢/L of glucose

as a substrate. Butanol production was increased to 13.5 ¢/L when 0.4% yeast extract

was supplemented and 60 g/L of glucose was used (Chua et al., 2013). Besides that,

C. saccharoperbutylacetonicum N1-4 produced a high yield of butanol using cassava

starch and cassava chips as substrates (21.0 and 19.4 ¢/L, respectively) when

compared to glucose (24.2 ¢/L). Furthermore, solvent production from cassava starch

was 42% to 63% higher than from corn or sago starch (Thang et al, 2010). In



addition, C. acetobutylicum GX01 can be used for various carbon sources, especially

cassava flour. The yield of butanol was 17.1 ¢/L using 100 g/L of cassava flour mixed

with 3 ¢/L of soybean meal. To improve production, GX01 was cultured in 10 and 30-

L bioreactors. The result showed that butanol production was improved to 18.3 and

18.8 ¢/L, respectively (Li et al.,, 2015). Maize stalk juice is also very interesting. Due to

the fact that the juice contained a high level of sugar, both fructose and sucrose,

solvent production from C. beijjerinckii NCIMB 8052 was also high. The initial sugar

concentration of 42.2 ¢/L can produce 11.5 ¢/L of butanol (Wang & Blaschek, 2011).

For the other raw materials, sago, corn, potato, and tapioca starch were also used in

the first generation of butanol production (Madihah et al., 2001).
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However, these crops are also food for humans, and they were grown at an

increasing cost of raw materials. As a result, many researchers attempted to produce

butanol using non-edible food crops and plants. This is the beginning of the second

generation of butanol. Lignocellulosic biomass, including agricultural waste, crop

residues, and sustainably collected wood and forest residues, was used as a raw

material to produce butanol. This second generation of butanol does not compete

with human food crops and decreases the carbon source’s price. Cotton stalk,

soybean hull, sugarcane bagasse, and corn fiber were lignocellulosic residues. To

utilize these wastes for butanol production, these substrates were treated with acid

pretreatment and enzymatic hydrolysis before being used by C. tyrobutyricum

CtAack-adhE2. The results showed that C. tyrobutyricum CtAack-adhE2 produced 15

¢/L of butanol (Li et al,, 2019). In addition, rice straw is one of the most plentiful

sources of lignocellulosic biomass. Many researchers tried to use rice straw as a

carbon source for ABE production. Gottumukkala et al. (2013) evaluated rice straws

treated with enzymes and acids using C. sporogenes BEO1. The results indicated that

C. sporogenes BEO1 produced 3.43 g/L of butanol. Furthermore, this result is



consistent with the findings of Moradi et al. (2013), who discovered that using alkali

and acid pretreatment with rice straw resulted in yields of 163.5 and 192.3 g/kg of

untreated rice straw, respectively. C. acetobutylicum NRRL B-591 produced 1.4 ¢/L

butanol from alkali-treated rice straw, while it produced 2.0 g¢/L butanol from acid-

treated rice straw. Additionally, C. acetobutylicum NRRL B-591 produced 7.1 g¢/L of

butanol when pretreated with organosolv and hydrolyzed with rice straw (Amiri et

al,, 2014). It can be seen that rice straw has the potential to use as a substrate in ABE

fermentation. Besides that, wood chips, sawdust, palm oil fiber, and corn cobs are

abundant agricultural wastes with the potential for ABE production using Clostridium

sp., as summarized in Table 4. However, the raw material in this generation has a

disadvantage because it still requires enzyme, acid, or alkali pretreatment before

being utilized. For this reason, it will have a high cost of production.
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For the third generation of butanol production, the focus was shifted to

wastewater and algae, including industrial wastewater, microalgae, and macroalgae.

Due to the properties of algae, which contain a high level of oil (more than 50%), it is

suitable for biodiesel production. After oil extraction from the algae, there is a lot of

waste. Therefore, to reduce and make the value-added from that waste. To evaluate

the potential of algae as a substrate for butanol production, Castro et al. (2015)

investigated the sugar release of microalgae treated with acid hydrolysis. With 166.1

g/ke of dry algae, the amount of sugar was high, and it can be converted into 3.74

g/L of butanol production using C. saccharoperbutylacetonicum N1-4. Moreover, C.

acetobutylicum ATCC 824 produced 3.86 ¢/L of butanol when using the sugar

release of microalgae at 60 ¢/L (Table 5) (Cheng et al., 2015). In addition, wastewater

algae are an interesting carbon source. C. saccharoperbutylacetonicum N1-4

produced butanol 2.26 ¢/L when pretreated with 10% wastewater algae with acid

and base. Besides that, acid/base pretreatment with a 1% glucose supplement

helped to improve the butanol production to 5.61 g¢/L (Ellis et al.,, 2012). Besides

that, red and brown seaweeds were also employed as a carbon source for ABE



fermentation. Clostridium sp. strain NJ4 produced 12.56 g¢/L butanol using red

seaweed hydrolysate, which contained 43.18 g¢/L of glucose after being pretreated

with acid and concentration (Jiang et al., 2022), while C. beijerinckii DSM-6422

produced 7.16 g/L using brown seaweed that was pretreated by an enzyme (Hou et

al,, 2017). In addition, other techniques were used for improved butanol production

from seaweed. The immobilized C. acetobutylicum B-1787 cells were studied on ABE

production using microalgae biomass, it produced 10.91 ¢/L of butanol (Efremenko et

al.,, 2012). Moreover, industrial wastewater is the other carbon source that has the

potential for ABE production of Clostridium sp. The suspended brewery liquid waste,

starch industrial wastewater, and apple pomace ultra-filtration sludee were

pretreated with acid before being used as a substrate for ABE production. The result

showed that C. beijjerinckii NRRL B-466, produced butanol at 1.8, 4.68, and 1.4 ¢/L,

respectively (Maiti et al.,, 2016). Furthermore, C. butyricum TISTR1032 produced 0.85

¢/L when cultured with cassava wastewater (Virunanon et al., 2013).
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6. Agro-industrial wastes and wastewater - the new carbon sources to replace

food crops and human food

In terms of wastewater, it is one of the most important environmental

problems in the world. Besides that, as the world's population grows, massive

amounts of agro-industrial waste are continuously thrown into nature, resulting in

pollution. Furthermore, the volume of these wastes tends to grow over time. The

expected increase in water demand will reach 4.35 trillion m? by 2040, leading to

increased wastewater generation (Lahlou et al, 2022). Generally, wastewater

treatment was comprised of four successive steps: (1) preliminary pretreatment, also

known as pre-treatment: the first step is removing coarse and large suspended

substances from raw sewage. (2) primary treatment: the process of reducing the

Biochemical Oxygen Demand (BOD) and Total Suspended Solids (TSS) in wastewater.

In this step, the materials in the wastewater were settled by gravity. Then, removing

floatable objects and reducing the pollution will make secondary treatment easier.

(3) secondary treatment: the biological treatment takes place in this step, which is

known as activated sludge. When the water reaches the secondary treatment



process, microorganisms are added to it. Microorganisms consumed some pollutants

in the water, such as ammonia, nitrogen, nitrate, and phosphate. Therefore, the BOD

was decreased. (4) tertiary or final treatment: this step removes contaminants that

secondary treatment could not remove. This step frequently employs a combination

of physical and chemical processes to remove potentially harmful microbiological

contaminants from wastewater (Crini & Lichtfouse, 2019). Following that, the treated

wastewater was either reused or discharged into the environment. The wastewater

treatment processes were shown in Figure 7. It can be seen that the treatment of

industrial wastewater is a crucial step. However, the cost of the treatment system is

quite high, so the majority of wastewater is discharged into natural water sources

without being treated (Dutta et al., 2021).



Preliminary pretreatment

* Screening Primary treatment Secondary treatment
*  Grit removal m—> + Secdimentation and =)« Biological treatment
» Sedimentation flotation + Activated sludge
* Filtration

Tertiary treatment

e Chemical and
physical treatment

* Biological nutrient
removal

 Filtration

Figure 7 Wastewater treatment processes (Akbar et al., 2023; FAYSSAL et al.).

To address the issue of high wastewater treatment system costs, biological

methods of treatment will be considered. The majority of wastewater is comprised

of organic matter (OM), raw material residue, NHs, and phosphate. When considering

the wastewater treatment process, several treatment processes are being studied to

remove the OM and nutrients, and this has been the focus of current research. Chai,

Tan, et al. (2021) presented that microalgae can be used as a biotreatment to

remove NHs; from water. Since NH; is essential for the growth of microalgae, they are

among the identified biological methods for removing NH; from wastewater.

In addition, microalgae can eliminate many of the pesticides that pollute

wastewater. As a result, the biological and chemical demand (BOD and COD) in the



water also decreased (Chai, Chew, et al,, 2021). Furthermore, microalgae are versatile

and can be used as a sustainable source for a variety of applications around the

world, including biomass feedstock, conversion into green biofuels, and integration

into the human food chain (Ong et al,, 2019). Moreover, modified techniques and

materials are used to increase the efficiency of treatment processes and produce

value-added substances. For example, Rambabu et al. (2021) used nanomaterials to

disperse pollutants and produce biohydrogen from rice mill wastewater. To improve

value-added substances from wastewater, alternative methods have been

considered. Lin et al. (2021) investicated methane production from traditional pig

manure wastewater, but the methane production was low. As a result, two-stage

anaerobic systems were used to enhance methane production. However, there is still

a scarcity of research on the use of Sato wastewater (STW).

7. Thai traditional beverage (Sato) wastewater

Thailand is mostly an agricultural country, with rice being the most important

crop. Rice is produced and exported in massive amounts all over the world each

year. Jasmine rice (Oryza sativa L.) accounts for the majority of rice exported for



distribution and has a unique aroma (Watchararuji et al., 2008; Zhou et al., 2020).

However, there are many types of traditional Thai rice, such as glutinous rice and rice

berry, that are still cultivated for human use. Each type of rice has its distinct aroma;

other species have a similar aroma to jasmine rice, but farmers are less popular with

jasmine rice, so those rice types are at risk of extinction. Therefore, increasing the

value of these native rice varieties will help preserve them by processing them into

brown rice or alcoholic beverages like Sato.

Sato is a distinct Thai traditional alcoholic beverage that was extensively

made in the past based on the wisdom of previous generations. Glutinous rice and

look pang (a sato yeast ball) are the essential elements in the Sato-making process.

Sato yeast balls are made up of fungus and yeast that work together as an inoculum

to accomplish the fermentation process, which involves breaking down starch and

turning sugar into alcohol (Dung et al, 2007). The majority of the wastewater

generated by the Sato manufacturing process comes from two sources: slop from

alcohol distillation and cleaning fermenters and bottles. The wastewater from both

sources is treated in aeration ponds before being utilized for agriculture and farming.



The activated sludge technique, a biological treatment, is used for the majority of

wastewater treatment in the alcoholic beverage industry. However, this treatment

procedure has several drawbacks and may not be suited for all applications. The

complex structure of the substrate, in particular, takes a long time to remove. As a

result, residual slop wastewater frequently turns from cloudy white to black due to

sulfate-reducing bacteria producing hydrogen sulfide, which is difficult to remove,

causes a bad odor, and can lead to serious environmental and health problems, as

presented in Figure 8 (Athanasopoulos, 1987; Vijayaraghavan & Ramanujam, 2000). To

address this issue, wastewater might be utilized as a fermentation substrate, which

should help reduce production costs, maximize waste recovery, and finally eliminate

waste.
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Figure 8 The Sato manufacturing process and its byproducts, including wastewater
effluent; STW.

In general, the substrates of the (Sato) factory (e.g., white glutinous rice) are

converted to Sato, and the rest is discharged as Sato wastewater (STW). The STWs

still contain relatively high levels of carbohydrates, such as starch, slucose, mannose,

xylose, and arabinose. Consequently, using STW as a substrate in the ABE



fermentation process is an interesting new alternative way to produce butanol.

However, although the STW is quite acidic and contains high BOD and COD levels

(Kida et al,, 1995; Satyawali & Balakrishnan, 2008), it has sufficient nutrients and

minerals to support the growth of microorganisms. Starch and sugar are the main

components in the STW because they are the major carbohydrates in Sato at

approximately 42-49% by dry weight (Phantuwong, 2017). This is an interesting point

to consider because carbohydrates can be used as a precursor to produce butanol

by Clostridium sp.



CHAPTER Il

MATERIALS AND METHODS

1. Materials

1.1 Alcoholic beverage wastewater (Sato wastewater)

The Sato wastewater was collected from a Sato factory in Nakhon

Ratchasima province, Thailand.

1.2 Chemical and reagents

All the chemicals and reagents used in this study were analytical and

HPLC grades manufactured by various companies, as listed below.

- Acetone (Qrec, New Zealand)

- Ammonia (Panreac, Spain)

- Ammonium acetate (CH;COONH,) (Univar, USA)

- Arabinose (Sigma-Aldrich, USA)

- Biotin (Sigma-Aldrich, USA)

- Butanol (Qrec, New Zealand)



- Butyric acid (Sigma-Aldrich, USA)

- Carboxymethyl cellulose (CMC) (Sigma-Aldrich, USA)

- Casein hydrolysate (Glentham, United Kingdom)

- Crystal violet (Lobachemie, India)

- 3,5-Dinitrosalicylic acid (DNS) (Sigma-Aldrich, USA)

- Di-potassium hydrogen phosphate (K,HPO,) (Univar, USA)

- Di-sodium hydrogen orthophosphate heptahydrate (Na,HPO,-7H,0)

(Univar,USA)

- Di-potassium hydrogen phosphate (K,HPO,) (Univar, USA)

- Ethanol (Qrec, New Zealand)

- Fructose (Univar, USA)

- Galactose (Univar, USA)

- Glacial acetic acid (CH,COOH) (RCI Labscan, Thailand)



- Glucose (Kemaus, Australia)

- Glycerol (Kemaus, Australia)

- Hydrochloric acid (HCl) (Lobachemie, India)

- lodine crystal (Lobachemie, India)

- Iron (II) sulfate heptahydrate (FeSO4-7H,0) (Univar, USA)

- Magnesium sulfate heptahydrate (MgSOy-7H,0) (Univar, USA)

- Malachite green (Sigma-Aldrich, USA)

- Manganese (Il) sulfate monohydrate (MnSQOg4-H,0) (Univar, USA)

- Mannose (Himedia, India)

- p-aminobenzoic acid (PABA) (Fluka, India)

- Potassium dihydrogen phosphate (KH,PO,) (Univar, USA)

- Potassium iodide (KI) (Univar, USA)



- Potassium sodium tartrate tetrahydrate (KNaCqH4,Og4-4H,0) (Kemaus,

Australia)

- Safranin O dye (Sigma-Aldrich, USA)

- Sodium dihydrogen phosphate monohydrate (NaH,PO4-H,0) (Univar,

USA)

- Sodium hydroxide (NaOH) (Lobachemie, India)

- Soluble starch (Univar, USA)

- Sucrose (Kemaus, Australia)

- Thiamine HCl (Fluka, Germany)

- Tryptone (Himedia, India)

- Xylose (Himedia, India)

- Yeast extract (Himedia, India)

1.3 Equipment, consumables, and supplies

- Gas chromatography; GC-2010A (Shimadzu, Japan)



- Shaking incubator (Wiggens, Germany)

- Incubator (Shel Lab, USA)

- Vortex mixer; KMC-1300V (Vision Scientific, Korea)

- Analytical Balance 2 digits; BJ 1000C (Precisa, Switzerland)

- Analytical Balance 4 digit; PX224 Pioneer (Ohaus, USA)

- pH meter (Eutech instruments, USA)

- Microplate reader (BioTek, USA)

- Microscope; CH30RF200 (Olympus, Japan)

- Laminar flow cabinet (Biobase, USA)

- Fume hood (Biobase, USA)

- Autoclave (Daihan Scientific, Korea)

- Water bath (Memmert, Germany)

- Centrifuge; Combi 514R (Hanil science industrial, Korea)



- Anaerobic chamber; Bactron (Shel Lab, USA)

- Microtubes (Axygen, USA)

- 96-well plates (Thermo Scientific, USA)

- 10 pL loops (Thermo Scientific, USA)

- Plastic petri dishes (Thermo Scientific, USA)

- Pipette tips (Axygen, USA)

2. Method

2.1 Part | Isolation and identification of solventogenic Clostridium sp.

from environmental sources in Thailand

2.1.1 Sample collection of Clostridium sp.

The samples were included the soil, sediment, sludee, and wastewater

from two different sources: a biodiesel production plant and a Sato factory in

Prachinburi and Nakhon Ratchasima, respectively, were collected. The samples used



in this study were listed in Table 6. These samples were collected in 50 mL sterile

tubes and stored in an ice box before being transported to the laboratory.

Table 6 The list of samples from two different sources that were used in this study.

Samples Habitat Coordinated
- Sail, Energy Absolute Public 14.073951466714558,
- Sludge (under the Company Limited, 101.82477325415034
aeration pond) Prachinburi province,

Thailand

- Sail, Sumrit Mankong Limited 14.494278, 101.641389
- Rice waste residues Partnership, Nakhon
- Wastewater Ratchasima province

2.1.2 Isolation of solventogenic Clostridium sp.

To isolate solventogenic Clostridium sp., the Clostridium Basal Medium

(CBM) was used as an enrichment medium. The CBM medium contained (1L): 200 mg

MgSQOq4:-7H,0, 7.58 mg MnSO4-H,0O, 1 mg p-aminobenzoic acid, 0.002 mg biotin, 1 mg

thiamine HCl, and 4 g casein hydrolysate, and the pH was adjusted to 7.0. Then, 15



g/L of filter sterilized K,HPO, and KH,PO, were added after autoclaving. One milliliter

of the sample was diluted in 9 mL of CBM medium. Then, 3 mL of the dilution was

inoculated into 27 mL of modified CBM medium containing 5 ¢/L of butanol. The

serum bottles were heat-shocked at 80 °C for 10 min to eliminate non-spore forming

bacteria and incubated at 37 °C for 5 days. Solvent-producing bacteria were isolated

by plating on CBM agar containing 5 ¢/L of butanol and incubated the plates at 37 °C

for 5 days. Bacterial colonies with different morphologies were selected and streaked

on fresh modified CBM agar containing 5 ¢/L butanol. To obtain pure colonies, all

colonies growing on these plates were re-streaked three times on modified CBM agar

containing 5 ¢/L butanol.

2.1.3 Identification of solventogenic Clostridium sp.

2.1.3.1 Morphology based identification

The isolated solventogenic Clostridium sp. was identified by using

morphological and 16S rDNA gene sequencing. The cell morphology of isolated

strains was examined under a light microscope after Gram-staining.



2.1.3.2 16S rDNA gene sequencing

The chromosomal DNA of the 11 isolated Clostridium sp. were

extracted using a bacterial DNA kit (OMEGA Bio-Tek, USA). 16S rDNA gene was

amplified by  PCR  technique  wusing  universal  primer, 27F  (5'-

AGAGTTTGATCCTGGCTCAG-3’) and 1492R (5’-GGTTACCTTGTTACGACTT-3’). After that,

the PCR was carried out in a DNA thermal cycler and the PCR procedure is as follows:

initial denaturation 94 °C for 2 min, 30 amplification cycles of denaturation at 94 °C

for 20 s, annealing at 54 °C for 20 s, extension at 72 °C for 1 min, and final extension

at 72 °C for 5 min. The PCR products was purified and sequenced by Pacific Science

Co., Ltd (Bangkok, Thailand). The identity of the 11 isolated Clostridium sp. were

characterized by sequencing of their 16S subunit ribosomal RNA genes. The BLASTN

web program was used to compare each bacterial strain’s 16S rDNA sequence to

other 16S rDNA sequences in GenBank. The phylogenetic tree of CUEA02 nucleotide

sequences was built on the RaxML platform using Randomized Axelerated Maximum

(RaxML) with fast bootstrapping.



2.1.4 The ability of starch hydrolysis

The experiment was carried out following the methodology of Su et al.

(2015). Amylase activity: the isolated solventogenic Clostridium sp. was cultured on

TYA agar medium including (¢/L): 15 soluble starch, 0.01 trypan blue, 1 L-cysteine, 15

agar, and the pH was adjusted to 6.5. The 11 isolated Clostridium sp. were incubated

at 37 °C for 24 h. The clear zone appearance is indicating amylase activity.

2.2 Part Il Determination of ABE production of isolated solventogenic

Clostridium sp.

Tryptone-yeast extract-ammonium acetate (TYA) medium was used as a

growth medium for butanol production enhancement (Al-Shorgani et al., 2018). The

TYA medium contained (g/L): 50 glucose, 6 tryptone, 2 yeast extract, 3 ammonium

acetate, 0.001 FeSO47H,0, and 0.3 MgSO4-7H,O. The pH was adjusted to 6.5 with

acetic acid and flushed with N, (99.99%) to create an anaerobic condition. The

isolated solventogenic Clostridium sp. was cultured on TYA medium for 144 h, and

controlled temperature at 37 °C. The samples were collected at the appropriate



times, centrifuged at 6000 x ¢ for 10 min and then analyzed by GC (GC-2010A

Shimazu, Kyoto, Japan) equipped with a flame ionization detector and a 30 m DB-

wax capillary column of 0.25 uM film thickness (inner diameter 0.530 mm) (Agilent,

Santa Clara, CA, USA) to measure the concentration of ABE, acetic acid, and butyric

acid. The temperature of the injector and detector were adjusted to 240 °C, while

the column temperature was initially set to 45 °C and then gradually increased

from 45 to 240 °C. The residual reducing sugar concentration was analyzed by the

modified dinitrosalicylic acid method.

2.3 Part Il Whole genome sequencing (WGS)

The whole genome of C. beijjerinckii CUEA02 was sequenced using the Illumina

MiSeq sequencer at the Omics Sciences and Bioinformatics Center (Chulalongkorn

University, Bangkok, Thailand). Genomic DNA was extracted from strain CUEA02 using

a bacterial DNA kit (OMEGA Bio-Tek, USA), verified by 0.8% (w/v) agarose gel

electrophoresis, and identified with visible UV light. A 100-ng portion of the genomic

DNA was subjected to DNA sequencing library preparation using the QIAGEN FX kit



(Qiagen, USA), while the FASTQC software was used to evaluate the raw read quality

(Andrews, 2010). The assembled genome was annotated using RASTtk (Brettin et al,,

2015), and the average nucleotide identity (ANI) was also calculated and compared

using JSpeciesWs, a web server tool (Richter et al., 2016). To perform the functional

annotation, the OmicsBox program was employed (Gotz et al., 2008). Gene ontology

(GO) annotation was used to analyze the main sources of functional analysis, which

were comprised of cell components, molecular functions, and biological processes

(Conesa et al.,, 2005). This Whole Genome Shotgun project has been deposited at

DDBJ/ENA/GenBank under accession number JAJSOLO00000000.

2.4 Part IV Enzymatic activity measurement

2.4.1 Enzyme assay

Cell pellets were washed and resuspended in 0.1M Tris/HCl pH 7.2 with 2

mM of reducing agent dithiothreitol (DTT). Then, break cells by using sonication (for

30 sec, 4 cycles), the cell lysate was centrifuged at 11,000 x ¢ for 10 min. Cell pellet

was discarded and the supernatant was collected to measure the butanol



dehydrogenase (BDH) activity. To measure the BDH activity, 44 mM butyraldehyde

was used as a substrate and 2 mM NADH/NADPH in Tris buffer (0.1M, pH 8) was used

as a cofactor. Each reaction mixture is 1 mL, and it contains cell lysate or enzyme

solution except blank control. The BDH enzyme activity was measured at absorbance

340 nm by using a UV-Vis spectrophotometer. One unit (U) of activity is equivalent

amount of enzyme required for oxidation of 1 umol of NAD(P)H/min. The specific

activity was determined by the amount of total protein that was measured by the

Bradford assay. The specific activity can be calculated from AOD as follows:

Specific activity (U/mg) = (AOD/min)/(6.22 x cell extract(mL)) x amount of protein

* 6.22 is an extinction coefficient of NAD(P)H.

2.4.2 Protein assay

The Bradford protein assay was used to determine the amount of

protein. The total volume of reaction is 1 mL, containing 0.8 mL of cell extract and

0.2 mL of Bradford reagent. The mixture was mixed and sat for 10 min at room

temperature. The protein was measured at an absorbance of 595 nm.



2.5 Part V Optimization condition and biochemical characterization of

newly isolated C. beijerinckii CUEAO2 for butanol production

According to the initial pH, temperature, inoculum size, and substrate

concentration are important factors in the fermentation of solvents in Clostridium

species (Khamaiseh et al.,, 2012). The inoculum was cultured in a 60-mL serum bottle

containing 27 mL of TYA medium at 37 °C for 48 h, and then the inoculum was

transferred to fresh TYA medium 10% (v/v) and incubated at 37 °C in a shaking

incubator at a rotation speed of 130 rpm.

2.5.1 Effect of initial pH

The newly isolated C. beijjerinckii CUEA02 was cultured in TYA medium

at 37 °C with different initial pH values (4.5, 5.5, 6.5, 7.5, and 8.5) and the OD600

measurements were taken after 24 h. The sample was analyzed by GC-FID.

2.5.2 Effect of temperature

To investigate the optimum fermentation temperature of C. beijjerinckii

CUEA02, the temperature was tested at 30, 35, and 37 °C for 24 h with an initial



ferment pH from the previous step. Then, OD600 measurements were taken after 24

h. The sample was analyzed by GC-FID.

2.5.3 Effect of inoculum size

To determine the effect of inoculum size of C. beijjerinckii CUEAO2 on

its butanol production, the inoculum size was tested at 5%, 10%, 20%, 30%, and

40% under the optimal initial pH and temperature. After that, OD600 measurements

were taken after 24 h. and the sample was analyzed by GC-FID.

2.5.4 Effect of substrate concentration

The initial substrate concentration was evaluated by varying the

glucose concentration in the TYA medium at 40, 50, and 60 ¢/L at optimum an initial

pH, temperature, and inoculum size for 24 h. The OD600 was measured and

analyzed ABE production by GC-FID after 24 h.



2.5.5 Physiological and biochemical characterization

2.5.5.1 Carbon source utilization

To evaluate the capability of C. bejjerinckii CUEAO2 to utilize

various carbon sources, xylose, arabinose, glucose, galactose, fructose, mannose,

sucrose, starch, carboxymethyl cellulose (CMC), and glycerol were used as sole

carbon source at 2% (w/v) medium supplements in the TYA to investigate the

capability of butanol production. The temperature and rotation speed were

controlled at 37 °C and 130 rpm, respectively, and samples were taken every 24 h

and analyzed for ABE production by GC-FID.

2.5.5.2 Butanol and ethanol tolerance

To examine the butanol and ethanol tolerance, the butanol

and ethanol were varied at different levels ranging from 1 to 2.5 % (v/v). The OD600

measurement was taken after 24 h.



2.6 Part VI Determination of Sato wastewater for butanol production

2.6.1 Characteristic of the Sato wastewater

The Sato wastewater used in this study was collected from a Sato

factory in Nakhon Ratchasima province, Thailand. The sample was stored at -20 °C

until used. The pH, BOD (mg/L), COD (mg/L), total solids (TS; mg/L), total suspended

solids (TSS; mg/L), total Kjeldahl nitrogen (TKN; mg/L), and volatile solids (VS; mg/L)

of the sample was measured by the Environmental Research Institute, Chulalongkorn

University, Thailand. Moreover, the Sato wastewater was investigated the levels of

Invert sugar (AOAC 968.28 procedures) and starch (South African sugar factory

laboratory handbook method) by Oversea Merchandise Inspection Co., Ltd., Thailand.

2.6.2 Preparation of the Sato wastewater

The STW was diluted 1:10, 1:20, 1:30, and 1:40 and then aliquoted at

45 mL per 160-mL serum bottle. The bottles were then flushed with N, (99.999%) for

15 min, sealed with a Neoprene stopper, and sterilized in an autoclave (121 °C, 1.5

mPa for 15 min).



2.6.3 Measurement of butanol production from Sato wastewater

Cell density was analyzed by UV-vis spectrophotometer at 600 nm. C.
beijerinckii CUEA02 was cultured in TYA medium at 35 °C for 144 h under anaerobic
condition and taken sample every 24 h. Then, the mixture was centrifuged to
separate supernatant. Acetone, butanol, ethanol, acetic acid, and butyric acid

production were measured by GC-FID (Shimadzu, Japan).
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CHAPTER IV

RESULTS AND DISCUSSION

1. Part I: Isolation and identification of solventogenic Clostridium sp. from

environmental sources in Thailand

1.1 Isolation, identification, and production of solventogenic Clostridium

sp.

Clostridial bacteria are naturally butanol producers. The model of ABE research

has been C. acetobutylicum, C. beijerinckii C. saccharolyticum, and C

saccharoperbutylacetonicum (Tirado-Acevedo et al., 2010). The isolated Clostridium

sp. was identified and evaluated the ABE production in this study. A total of ten

environmental samples were collected from two separate locations: a biodiesel

plant in Prachinburi and a Sato factory in Nakhon Ratchasima, respectively. Soil,

sludge, and wastewater were among the samples collected. All samples were

cultured in a CBM medium containing 5 ¢/L butanol before being heat-shocked at 80

°C for 10 min. Following that, 36 isolated were streaked three times on CBM agar

containing 5 ¢/L of butanol. Within 24 hours of incubation after the third re-streak,



approximately 30% of the samples treated had formed colonies. All isolates were

rod shaped, gram positive, and endospore-forming bacteria. The 11 isolated strains

were identified by sequencing their 16S subunit ribosomal RNA genes (Kolbert &

Persing, 1999). Genomic DNA was extracted and 16S rRNA amplified by PCR using the

primers 27F and 1492R. Each bacterial strain's 16S rDNA sequence was compared to

other 16S rDNA sequences in GenBank using the BLASTN web program (Wang &

Zhang, 2000). Table 7 shows the organism with the highest similarity score for each

sequence. Moreover, the isolated strains were gram stained and observed under the

microscope for sporulation, as shown in Figure 10.
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CUEA02

Figure 10 Clostridium’s cell stained with safranin o and malachite green of the 11

isolated strains from various sources located in Thailand.

Identification of the isolated Clostridium sp. were performed by sequencing of

partial the 16S rDNA gene. The 11 isolates were identified as 2 different strains,

including Clostridium sp. (isolates GW-2, GW-3, FGR-1), C. beijjerinckii (isolates GW-1,

GW-4, AW-1, CUEAO2, FGR-2, FGR-3, FGR-4, FGR-5). To evaluate the potential of ABE



and volatile fatty acids (VFAs) production from 11 isolated strains, all isolated strains

were cultured in TYA medium for 144 h.

Batch fermentation was performed in a 60 mL serum bottle containing

glucose as a carbon source. Bacteria were divided into two groups after ABE

production was determined by GC analysis. Isolated bacteria, which were isolated

from biodiesel plant, produced both VFAs and solvents (isolates GW-1, GW-2, GW-3,

GW-4, AW-1, and CUEA02). On the other hand, isolated bacteria from the Sato factory

produced only VFAs (isolates FGR-1, FGR-2, FGR-3, FGR-4, and FGR-5). Figure 11

presents the amount of ABE production by all 11 isolated Clostridium strains after 72

h. It can be seen that C. beijjerinckii CUEAO2 produced the highest level of butanol

production. Therefore, this strain was selected for further study in Sato wastewater

utilization.

According to the result from the 16S rDNA gene, the result showed that the

majority (8/11) of the isolated bacteria were C. beijjerinckii. It is well known that C.

beijjerinckii is a solvent-producing bacteria. It is frequently employed in the



manufacture of ABE as well as C. acetobutylicum. Surprisingly, none of the C

beijerinckii isolates from the Sato factory produced ABE solvents. Due to the initial

hypothesis, it may be because the natural source where bacteria grow was extremely

acidic (pH 3.5). As a result, they must adapt to surviving in acidic conditions and/or

be chosen to use acids for growth. This is consistent with the findings of Kuhner et al.

(2000), who observed that C. akagii DSM 12554 and C. acidisoli DSM 12555 produced

acetate, butyrate, lactate, H,, and CO, when isolated from acidic beech litter and

peat-bog soil (pH 3). It is clear that bacteria isolated from acidic environments tended

to produce exclusively VFAs.
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Figure 11 The level of ABE fermentation (72 h) by isolated solvent-producing

Clostridium sp. in a 60 mL serum bottle at 37 °C using 2% (w/v) glucose as a carbon

source in TYA medium. The data are presented as the mean from triplicate trials

(Buranaprasopchai et al., 2022).

In addition, when considering the pH of the culture medium, it was found

that the pH was a substantial component and has an influence on the formation of

VFAs and solvents. However, the research related to solvent producing Clostridium

sp. and the impact of pH on VFAs production has seldom been studied. However, it



has recently been reported that C. beijjerinckii NRRL B-598 can be used to produce

butyric acid, with the highest butyric acid concentration obtained being 9.69 and 11.5

g/L when cultured at pH 6.5 and 7.0, respectively. These studies discovered that a

neutral pH improves acid production whereas a mildly acidic pH stimulates solvent

production (Drahokoupil & Patdkova, 2020). Furthermore, Katagiri et al. (1961)

supported the study on the influence of pH on VFAs production. When C

acetobutylicum was cultivated at pH 7.0 or higher, it produced more lactic acid. As a

result, the initial ferment pH is essential in determining acids and solvents formation,

with an alkaline pH being optimal for acidogenic fermentation. In this study, all

isolated strains were cultured in a TYA medium which adjusted the initial pH to 6.5.

Therefore, this may be one reason that C. beijerinckii isolates from the Sato factory

may only be capable of producing acids.

1.2 Selection of solventogenic Clostridium sp.

In this study, a potentially isolated Clostridium strain belonging to C

beijjerinckii CUEA02 was selected to optimize and determine the ABE production



including VFAs. Strain CUEA02 was cultured in TYA medium for 144 h and controlled

temperature at 37 °C. The amounts of solvents produced by the CUEA02 strain with

the highest ABE and butanol production at 72 h (8.86 + 0.12 ¢/L and 5.65 + 0.09 ¢/L,

respectively) were determined by GC analysis. The ABE and VFAs’ production profile

of CUEAQ2 is shown in Figure 12.
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Figure 12 CUEA02 production profile in a 60 mL serum bottle at 37 °C with 50 ¢/L

glucose as a carbon source in TYA medium. The data are provided as the mean of

triplicate trials.



The cell morphology of CUEA02 was rod-shaped and spore-forming cells

(Figure 13A), whereas the colonies were cream, irregular, convex, and with an

undulate margin (Figure 13B). The phylogenetic trees of 16S rRNA sequences were

constructed for distinct species of Clostridium (Figure 14) and closely related

solventogenic species. According to these trees, it is apparent that isolated CUEAQ2 is

100% identical to C. beijjerinckii NCIMB 8052. In addition, the ANI of the whole

genome was used to establish the species identification of the CUEA02 strain based

on genomic information. The result indicated that the genome of the CUEAO02 strain

is consistent with C. beijjerinckii BGS1 with 95.14% ANI. As previously stated, the

phylogenetic tree and ANI findings differed because the 16S rRNA gene phylogenetic

tree can only identify microorganisms up to the genus level (Figueras et al., 2014).



Figure 13 Representative images of C. beijerinckii CUEA02 morphology cultured in

TYA at 37 °C. (A) Rod-shaped and spore-forming cells; (B) cream, uneven, convex, and

undulate colonies (Buranaprasopchai et al., 2022).
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Figure 14 C beijjerinckii CUEA02 evolutionary analysis using the Randomized

Axelerated Maximum Likelihood method. The accession codes for GenBank are

displayed after the name. The bar represents evolutionary distance

(Buranaprasopchai et al., 2022).

1.3 The ability of starch hydrolysis from 11 isolated Clostridium sp.

According to the 11 isolates of Clostridium sp., isolated from biodiesel plant,

it has the ability to produce both solvents and acids production. Conversely, isolated

from the Sato factory, it solely produced acids production. Due to the isolated

Clostridium sp. being selected and applied to starchy wastewater, it would be good if



that isolated could produce an amylase enzyme to hydrolyze starch in that

wastewater. To investigate the amylase enzyme, all isolated Clostridium sp. were

cultured on TYA medium agar, which contains trypan blue to observe the clear zone,

and controlled at 37 °C for 24 h. Figure 15 demonstrates the clear zone from all

isolated Clostridium sp.

CUEA02

Figure 15 the clear zone from all isolated Clostridium sp. after 24 h.



2. Part Il: Whole genome sequencing of C. beijerinckii CUEA02

2.1 The whole genome profile of C. beijerinckii CUEA02

The C. beijjerinckii CUEA02’s genome is a single circular genome of 5,768,209 bp

with an average GC content of 29.54%. This assembled genome had 134 large contigs

ranging in length from 16 to 125,868 bases. No plasmids could be identified. The

taxonomy of this genome is cellular organisms > Bacteria > Terrabacteria group >

Firmicutes > Clostridia > Clostridiales > Clostridiaceae > Clostridium. The draft

genome and functional annotation of C. beijerinckii CUEAO2 are demonstrated in

Figure 16. The genome of CUEA02 has 5371 protein coding sequences (CDS), 83

transfer RNA (tRNA) genes, and six ribosomal RNA (rRNA) genes, as revealed by using

the RAST tool kit (RASTtk) to annotate and evaluate the sequence data. The

annotation revealed 1,450 hypothetical proteins and 3,921 functional proteins. The

proteins with functional assignments comprised 3,036 with Enzyme Commission (EC)

numbers (Schomburg et al., 2004), 4110 with GO assignments (Ashburner et al., 2000),

and 772 with KEGG pathway mapping (Kanehisa et al.,, 2016), as shown in Table 8.



The DDBJ/ENA/GenBank accession number for this Whole Genome Shotgun project is

JAJSOLO00000000.
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Figure 16 A circular graphical representation of the C. beijerinckii CUEAO2 genome,
including contigs, CDS on the forward strand, CDS on the reverse strand, RNA genes,
CDS with homology to known antimicrobial resistance genes, CDS with homology to

known virulence factors, and the GC content and GC skew, from outer to inner rings

(Buranaprasopchai et al., 2022).



Table 8 Summary statistics for C. beijjerinckii CUEAQ2 transcriptome assembly

(Buranaprasopchai et al., 2022).

Statistics CUEAOZ Transcriptome
Genome length 5,768,209 bp
GC content 29.54
Contigs 134

Contig L50 16

Contig N50 125,868
Chromosome 0

Plasmids 0

CDS 5,371

tRNA 83

rRNA a2

No. of hypothetical proteins 1,450

No. of functional proteins 3,921

No. of transcripts with GO annotations 4,110
No. of transcripts with EC annotations 3,036

No. of transcripts with KEGG annotations 772

The functional study of C. beijjerinckii CUEAO2 genes was performed using

several functional databases. The annotated gene functions were integrated into the



transcriptome  with GO terms using the OmicsBox program. The CUEA02

transcriptome had a total of 12,651 annotations, with a mean GO level of 2.982

(Figure 17A). A total of 4110 genes were discovered and assigned to the three

functional GO terms of biological processes (18 sub-categories), molecular function

(12 sub-categories), and cellular component (two sub-categories) in the GO

distribution of functional annotations (Figure 17B). The primary roles of biological

processes were the cellular process (32.4%) and metabolic process (31.8%), whereas

catalytic activity (62.1%) was the most common molecular function, and cellular

anatomical entity (99.2%) was the largest cellular component. All 3036 proteins with

EC numbers were divided into seven enzyme groups, as shown in Figure 17C, with

the predicted enzyme code distribution. The most abundant EC class in CUEAO2 was

transferases (32.11%) and hydrolases (29.15%), with roughly 13.97% as

oxidoreductases and 10.44% as translocases. Lyases, isomerases, and ligases

comprised the remaining three enzyme classes, accounting for 14.33% of the

reported enzyme assignments.
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Figure 17 (A) GO annotation distribution in C. bejjerinckii CUEA02. There was a total

of 12,615 annotations with a 2.982 median GO level (P: biological process, F:

molecular function, and C: cellular component). (B) Distribution of C. bejjerinckii

CUEAOQ2 Level 2 GO terms. The three types of GO terms are biological process (BP),

molecular function (MF), and cellular component (CC). (C) Distributions of enzyme

code (EC) classes in C. bejjerinckii CUEAQ2 (Buranaprasopchai et al., 2022).



2.2 The comparison of whole genome sequencing of C. beijerinckii CUEA02

with the other Clostridium sp.

From the data of the gene annotation, it was found that the CUEA02 strain

contained three types of butanol dehydrogenase (BDH) genes, including NADH-

dependent butanol dehydrogenase A; BDH | (EC 1.1.1-), NADH-dependent butanol

dehydrogenase, and NADPH-dependent butanol dehydrogenase, and one type of

bifunctional alcohol and aldehyde dehydrogenase (ADHE) gene. Butanol

dehydrogenases and bifunctional alcohol and aldehyde dehydrogenase are essential

enzymes that catalyze the final step in the production of butanol. Normally, these

enzymes are found in solventogenic Clostridium sp. To investigate the differences

between the genes involved in butanol production in CUEAO2 and the top 5 %ANI,

the IGV software was performed. The top 5 %ANI was presented in Table 9. This

study focused on ADHE and BDH gene of C. beijjerinckii BGS1, C. beijjerinckii NCIMB

14988, C. beijjerinckii DSM 791, and C. beijerinckii NCIMB 8052 compared with CUEA02

strain.



Table 9 the top 5 %ANI with the CUEA02 strain.

Genome ANI (%)
C. beijerinckii BGS1 95.14
C. beijerinckii NCIMB 14988 95.11
C. beijerinckii DSM 791 94.95

C. beijerinckii ATCC 35702 SA-1 94.93

C. beijerinckii NCIMB 8052 94.93

The CUEAOQ2 strain contains one copy of the ADHE gene and four copies of

the BDH gene. When considering the nucleotide sequences of the ADHE and BDH

genes of CUEA02 and other strains, a large number of mutations were observed. In

particular, more than 100 mutation points were observed in the ADHE gene and less

than 30 mutation points in the BDH gene. However, when examining mutations in

protein sequences, it was shown that DSM 791 had the largest mutations at 18

positions in the ADHE gene, followed by 12 positions of NCIMB 8052, 10 positions of

NCIMB 14988, and seven positions of BGS1. The BDH gene has fewer mutations than

the ADHE gene, both at the nucleotide and protein sequences. The most protein

sequence mutation points in the BDH A gene were found in seven positions of NCIMB



14988, followed by DSM 791 and BGS1 at six positions, and the least positions were

detected in four positions of NCIMB 8052. Tables 10 and 11 present an overview of

point mutation data in nucleotide and protein sequences.

Table 10 comparison of point mutations in nucleotide sequences between CUEA02

and the other strains in the top 5% ANI.

Strain %ANI BLASTN (point mutations)

ADHE BDH BDH BDH A BDH

(2,583 bp) (1,167 bp) (1,164 bp) (1,179 bp) (1,167 bp)

1. BGS1 95.14 9t 8 22 25 13
2. NCIMB 95.11 106 6 24 19 11
14988

3.DSM 791 94.95 128 11 20 21 7
4. NCIMB 94.93 148 30 21 16 15

8052




Table 11 comparison of point mutations in protein sequences between CUEA02 and

the other strains in the top 5% ANI.

Strain %ANI BLASTP (point mutations)

ADHE BDH BDH BDH A BDH

(860 aa) (388 aa) (387 aa) (392 aa) (388 aa)

1. BGS1 95.14 7 1 3 6 4
2. NCIMB 95.11 10 0 3 7 3
14988

3. DSM 791 94.95 18 1 3 6 0
4. NCIMB 8052 94.93 12 4 2 4 3

In addition, the CUEAO2 genome was examined to determine its potential

capacity for utilizing carbon sources. Several copies of genes involved in carbon

sources being utilized were found, including alpha-xylosidase, L-arabinose isomerase,

6-phospho-beta-glucosidase, galactokinase, fructokinase, alpha-amylase, and others.

Remarkably CUEAO2 also had a high copy number of enzymes involved in the

glycolytic pathway, that include glycerol dehydrogenase (EC 1.1.1.6; three copies)



and dihydroxyacetone kinase (EC 2.7.1.29; one copy). The CUEAO2 enzyme involved

in carbon utilization is summarized in Table 12. Glycerol dehydrogenases are widely

identified in C. pasteurianum, an effective hyper-glycerol-utilizing bacteria (Malaviya

et al, 2012). For example, C. pasteurianum ATCC 6013 contains glycerol

dehydrogenase (dhaD1) and dihydroxyacetone kinase (dhaK), which is another gene

in the glycolytic pathway. Furthermore, this strain was shown to possess three

additional glycerol dehydrogenase paralogs (gldAl, ¢ldA2, and dhaD2) in its genome

(Sandoval et al., 2015).

In comparison with other Clostridium strains, C. beijerinckii NCIMB 8052

possesses just one glycerol dehydrogenase gene. Both CUEA02 and NCIMB 8052 have

a single copy of the dihydroxyacetone kinase (dhaK) gene (Agu et al,, 2019). When

compared to C. pasteurianum ATCC 6013, CUEA02 possesses three copies of glycerol

dehydrogenase and a single copy of dihydroxyacetone kinase. As a result, CUEA02

may be an effective glycerol utilizer.



Table 12 Enzymes involved the carbon utilization of C. beijerinckii CUEA02

(Buranaprasopchai et al., 2022).

EC code Enzymes Number encoded
in genome
EC53.1.5 Xylose isomerase 3
EC 3.2.1.177  alpha-xylosidase 2
EC53.1.4 L-arabinose isomerase 1
EC 3.2.1.86  6-phospho-beta-glucosidase 13
EC 2.7.1.199  PTS system, glucose-specific IIA component 5
EC 2.7.1.- Sugar kinase and transcription regulator 3
EC2.7.1.6 Galactokinase 1
EC 2.7.7.10  Galactose-1-phosphate uridylyltransferase 2
EC5.4.22 Phosphoglucomutase 2
EC27.14 Fructokinase 2
EC 2.7.1.56  1-phosphofructokinase 1
EC 2.7.1.11  6-phosphofructokinase 2
EC 3.2.1.26  beta-fructofuranosidase 1
EC5.3.1.8 Mannose-6-phosphate isomerase 3
EC 3.2.1.24  alpha-mannosidase 1
EC 2.7.1.211  PTS system, sucrose-specific IIB component 2
EC 3.2.1.26  Sucrose-6-phosphate hydrolase 3
EC 3.2.1.20  alpha-glucosidase 3
EC 3.2.1.21 beta-glucosidase 3
EC3.2.1.1 alpha-amylase 1
EC 2.4.1.25  d-alpha-glucanotransferase (amylomaltase) 2
EC 3.2.1.135 Neopullulanase 2
EC 3.2.1.41 Pullulanase 1
EC 3.2.1.73 Endo-beta-1,3-1,4 glucanase (licheninase) 1



Glucan 1,4-beta-glucosidase 2
EC 3.2.1.21 beta-glucosidase 3
EC 1.1.1.6 Glycerol dehydrogenase 3
EC 2.7.1.30  Glycerol kinase 1
EC 2.7.1.107  Diacylglycerol kinase 1
EC 2.7.1.29  Dihydroxyacetone kinase 1
EC1.1.53 Glycerol-3-phosphate dehydrogenase 2
EC 1.1.1.94  Glycerol-3-phosphate dehydrogenase 2

[NAD(P)+]

3. Part lll: The activities of key solventogenic enzymes during growth on glucose

According to whole genome sequencing data of CUEAQ2, it was revealed that

CUEAO2 contains four copies of BDH genes, including two copies of NADPH-

dependent butanol dehydrogenase, one copy of NADH-dependent butanol

dehydrogenase, and one copy of NADH-dependent butanol dehydrogenase A. These

enzymes are an essential key enzyme in butanol synthesis. To examine the BDH

activity, CUEA02 was cultured under anaerobic conditions for 120 h. The cells were

extracted by sonicate and 2 mL of supernatant was used to measure the BDH

activity. The result showed that CUEAO2 has 0.0005 and 0.012 U/mg of NADH-BDH

and NADPH-BDH specific activity, respectively. It seems that the NADH-BDH and



NADPH-BDH activity of CUEA02 was not quite high. When considering the other

reports, it was revealed that the time for collecting cells affected BDH activity.

Normally, the appropriate time to collect cells for BDH enzyme measurement ranges

from 12 to 36 hours, depending on the strain. For instance, C. beijerinckii NCIMB 8052

had the highest BDH activity at 24 h, whereas C. beijjerinckii IB4 had the greatest BDH

activity at 16 h (Kong et al., 2016). Additionally, Clostridium sp. BOH3 had the largest

BDH activity at 24 h (Rajagopalan et al., 2013). Therefore, the BDH activity of CUEA02

was reconsidered at 24 h. The BDH activity of CUEA02 at 24 h was increased to 0.005

and 0.041 U/mg in BDH-NADH and BDH-NADPH, respectively. In comparison, both

NADH and NADPH-BDH activity at 24 and 120 h, was shown that the BDH activity at

24 was considerably greater than BDH activity at 120h. Consequently, this result is

consistent with the findings of Jiang et al. (2014), who revealed that BDH activity was

higher at the beginning of the solventogenesis phase. Additionally, the results were

consistent with Rajagopalan et al. (2013), who observed that BDH activity reached a

high level when the cells began the early phase of solventogenesis.



4. Part IV: Optimization condition and biochemical characterization of newly

isolated C. beijerinckii CUEAO2 for butanol production

4.1 Effect of initial pH

The crucial factors of butanol synthesis in Clostridium species are initial pH,

temperature, inoculum size, and substrate concentration (Khamaiseh et al.,, 2012; Xin

et al,, 2017). The ideal pH range for butanol synthesis is typically between 5.0 and

6.5 (Jones & Woods, 1986; Maiti et al.,, 2016). To determine the initial pH that is

suitable for the CUEAQ2 strain, the initial pH was varied in different values (4.5, 5.5,

6.5, 7.5, and 8.5) in the TYA medium and controlled temperature at 37 °C. The ODgy,

measurement was taken every 24 h for their growth. The result indicated that

CUEAO2 did not grow at pH 4.5 but performed well at pH 55 - 8.5, with the

maximum ODgq, at pH 6.5 (data not shown). CUEA02 produced butanol at 0.57 + 0.01

and 0.87 + 0.02 ¢/L after 24 hours at initial pH of 5.5 and 6.5, respectively (Figure

18A). However, raising the initial pH to 7.5 and 8.5 reduced butanol production to

0.75 £ 0.03 and 0.57 + 0.03 ¢/L, respectively. According to these data, the initial pH

had a substantial influence on butanol production. As a result, the optimal initial pH



of CUEAO2 was determined to be 6.5, and this pH was employed to evaluate other

CUEAO02 culture conditions. The result of this study was consistent with the findings

of Hijosa-Valsero et al. (2018), who discovered that the optimal pH range for solvent

formation by C. acetobutylicum P262 was 5.0 - 6.5. Furthermore, when the initial pH

was 6.5, C. beijjerinckii ATCC 10132 produced higher butanol (Isar & Rangaswamy,

2012).

4.2 Effect of temperature

The temperature of the fermentation is also an essential component in

butanol production. Clostridium species can grow at temperatures ranging from 25 to

40 °C (Brasca et al,, 2022; da Silva et al,, 2022; Ranjan et al., 2013); however, the

optimal temperature for Clostridium species is between 30 and 37 °C (Cheng et al,,

2019; Johnravindar et al., 2021). Nevertheless, the ideal pH and temperature for a

given organism might vary depending on the strain and medium composition

(Khamaiseh et al., 2013). CUEAO2 was evaluated at 30, 35, and 37 °C for 24 h with an

initial ferment pH of 6.5 to determine the most optimal fermentation temperature in



terms of butanol production. The result showed that CUEAO2 produced the

maximum butanol and ABE levels at 0.55 + 0.09 and 1.39 + 0.15 ¢/L, respectively,

when cultivated at 35 °C (Figure 18B). On the other hand, other research has

indicated a lower temperature. Yao et al. (2017) reported that C. acetobutylicum

NRRL B527 produced the highest butanol level using glucose as a substrate at 30 °C,

while C. saccharoperbutylacetonicum N1-4 produced 15.1 ¢/L butanol when

cultured with 80 g/L glucose at 30 “C. Moreover, Shukor et al. (2014) also found that

C. saccharoperbutylacetonicum N1-4 produced the greatest butanol production

when the temperature was controlled at 28 °C. However, some reports revealed that

the higher temperature can improve butanol production. C. acetobutylicum CICC

8008 produced the maximum butanol level at 35 °C (Lin et al,, 2011), but some

publications claimed that butanol production decreased with increasing temperature

(Nakayama et al,, 2011). It can be seen that the temperature might be different in

each Clostridium sp.



4.3 Effect of inoculum size

Microbial concentration is an important element in every biological system.

The appropriate concentration is crucial for initiating a production process (Montville

& Schaffner, 2003). C. bejjerinckii CUEAQ2 inoculum size was examined at 5%, 10%,

20%, 30%, and 40% under ideal initial pH and temperature to investigate the

influence on butanol production. Figure 18C demonstrates the results of butanol

production using various inoculum sizes in a TYA medium. Increasing the inoculum

size from 5% to 10% resulted in enhanced butanol production up to 3.01 + 0.12 ¢/L,

which was 75% greater at a 10% (v/v) inoculum size than a 5% (v/v) inoculum size.

This result was consistent with the findings of Nasrah et al. (2017), who discovered

that increasing the inoculum size by 10% raised the butanol yield to 0.3054 g¢/s.

Moreover, the inoculum size that was suitable for C. acetobutylicum using an oil

palm decanter cake hydrolysate for ABE fermentation was 16.2% (Razak et al., 2013),

while a 15% inoculum size was optimal for C. saccharoperbutylacetonicum N1-4 in

butanol production (Al-Shorgani et al., 2015). In contrast, a 5% inoculum size was

ideal for butanol production by C. acetobutylicum MTCC 481 from rice straw



hydrolysate (Ranjan et al,, 2013). It is clear that the appropriate inoculum size

depended on the microorganism and substrate.

Regarding the inoculum size had an effect on butanol synthesis. Increased

inoculum size enhances butanol production due to increased cell concentration, and

the lag phase of microbial development is shortened. Conversely, in this study, the

inoculum size of more than 10% did not improve butanol production. This finding

was supported by Ranjan et al. (2013), who found that the inoculum size level had

no significant influence on the lag phase of microbial growth and cell activity, which

resulted in butanol production.

4.4 Effect of substrate concentration

The last factor to be determined in this study is substrate concentration. To

improve ABE solvent production, the initial glucose concentration in the TYA medium

was varied at 40, 50, and 60 ¢/L (at 35 °C, 10% inoculum size, and an initial pH of 6.5

for 24 h). The OD600 was taken to measure their growth, and it was found that there

was no significant difference (Data not shown). Therefore, ABE production was



considered to find the optimal substrate concentration. The result indicated that

increasing the glucose concentration from 40 to 50 ¢/L enhanced the production of

butanol from 6.32 + 0.51 ¢/L to 8.32 + 0.08 ¢/L. When the glucose concentration

increased to 60 g/, it decreased the butanol production to 5.59 + 0.30 ¢/L (Figure

18D). Based on this finding, it is consistent with Al-Shorgani et al. (2018), who

reported that butanol production at 50 ¢/L glucose was higher than butanol

production at 20 ¢/L slucose. However, other reports have stated that Clostridium sp.

could produce significant amounts of butanol in the presence of 40 - 60 ¢/L slucose

in the medium (Chua et al., 2013; Formanek et al., 1997; Monot et al., 1982).
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Figure 18 The effect of (A) initial pH (at 37 °C and 50 g/L glucose), (B) temperature

(at pH 6.5 and 50 ¢/L glucose), (C) inoculum size (at pH 6.5, 35 °C, and 50 ¢/L

glucose) and (D) glucose concentration (at pH 6.5, 35 °C, and 10% (v/v) inoculum

size) on the ABE solvent production by C. bejjerinckii CUEA02 in TYA medium after 24

h (Buranaprasopchai et al., 2022).

From aforementioned data, the optimal conditions on ABE production of

CUEAO02 are adjusted initial pH to 6.5, controlled temperature at 35 °C, 10% (v/v)

inoculum size, and 50 ¢/L glucose as a substrate. To evaluate the ABE production



under optimal conditions, CUEAO2 was cultured in a TYA medium for 144 h. The

sample was taken every 24 h for analyzed ABE production. The result indicated that

CUEA02 produced 13.48 + 0.25 ¢/L and 832 + 0.08 g¢/L of ABE and butanol

production, respectively, as presented in Figure 19.
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Figure 19 The levels of ABE production of C. bejjerinckii CUEA02 cultured in TYA

medium under optimal conditions (initial pH of 6.5, 35 °C, 10% (v/v) inoculum size,

50 ¢/L of glucose). The data are provided as the mean of triplicate trials.



4.5 Physiological and biochemical characterization

4.5.1 Carbon source utilization

The carbon utilization of C. beijjerinckii CUEA02 was investigated by using

various carbon sources, including pentoses, hexoses, disaccharides, and

polysaccharides. The batch culture was employed using 2% (w/v) concentrations of

xylose, arabinose, glucose, galactose, fructose, mannose, sucrose, starch, CMC, and

glycerol in a TYA medium. The CUEA02 strain was cultured in a 60 mL serum bottle

that contained 30 mL of TYA medium at pH 6.5 and 37 °C using 10% (v/v) inoculum.

The growth was measured at OD600 every 24 h, and ABE production was measured

at 72 h. In this study, it was found that C. beijjerinckii CUEA02 grew in all of the

carbon sources indicated above and produced ABE solvents as well as two VFAs:

acetic and butyric acids, as presented in Figure 20.
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Figure 20 C. beijerinckii CUEA02 produced ABE solvents and volatile fatty acids at 2%

(w/v) in TYA medium after 72 h at 37 °C. The data are presented as the mean of

triplicate trials (Buranaprasopchai et al., 2022).

Considering each carbon source, C. beijjerinckii CUEA02 produced a high

level of butanol when cultured with starch, CMC, glucose, and glycerol (6.11 + 0.10,

3.92 + 0.05, 2.10 + 0.08, and 2.05 + 0.04 g/L, respectively). On the other hand, this

strain produced butanol at a low level when cultured with xylose and arabinose

(0.98 + 0.02 and 0.70 + 0.01 ¢/L, respectively). This is consistent with its growth,



which is lower than that of other carbon sources. These findings correspond with a

previous study that found solvent-producing Clostridium sp. can completely

consume some carbohydrates, including slucose, fructose, sucrose, mannose, and

starch, while xylose, arabinose, raffinose, galactose, inulin, and mannitol were only

partially utilized (Al-Shorgani et al., 2011; Jones & Woods, 1986).

Regarding the total acid production of the CUEA02 strain, it seems that

CUEA02 produced large amounts of total acids from a variety of carbon sources.

However, the acid production was at the lowest level when cultured CUEA02 with

glucose (1.91 + 0.03 ¢/L). Based on the aforementioned experimental data, it is

possible to deduce that C. beijerinckii CUEA02 might be a good butanol producer

from various carbon sources utilization, particularly starch, CMC, glucose, and

glycerol, it is potentially appropriate for application in the fermentation of

agricultural waste, industrial waste, and wastewater substrates. Therefore, this would

assist in minimizing the cost of ABE production and waste recycling.



4.5.2 Butanol and ethanol tolerance

The Clostridium genus is known for producing solvents. However, the

high concentration of solvents can affect the growth of Clostridium species. Basically,

butanol is a toxic solvent that has an effect on cells and limits the production of ABE

fermentation (Vasylkivska & Patakova, 2020). It has microorganisms that can tolerate

butanol, such as Clostridium sp., Pseudomonas sp., Zymomonas sp., Bacillus sp.,

Lactobacillus sp., and Enterococcus sp. However, only a few butanol-tolerant

bacterial species can survive in more than 2.0% (v/v) butanol (Kanno et al., 2013; Li

et al,, 2010). To evaluate the solvent tolerance of the CUEAO2 strain, butanol was

added to the TYA medium at different values (1.0%, 1.5%, 2.0%, and 2,5% v/v). The

OD600 measurement was taken every 24 h for 3 days. The result showed that

CUEAO2 grew when cultured in TYA medium supplemented with butanol at 1.0%

and 1.5% (v/v), as presented in Figure 21. When considering the growth rate, it was

found that the CUEAQ02 growth decreased by approximately 50% and 70% at 1.0%

and 1.5% (v/v), respectively. Although CUEAO2 tolerated butanol concentrations up

to 1.5% (v/v), this strain was tolerated better than C. acetobutylicum ATCC 824



(pGROE1), which overexpressed the groESL operon, which helps to improve butanol

production and tolerance, at 0.75% (v/v) (Tomas et al, 2004). In addition, C

tyrobutyricum mutants can tolerate butanol up to 1.5% (v/v) with a 30% to 50%

growth decrease (Yu et al., 2011), and C. acetobutylicum NT642 mutants can tolerate

butanol at 3.0% (v/v) (Liu et al,, 2012). Although CUEAQ2 is tolerant to butanol at

1.5% (v/v), it is still a wild-type strain. Therefore, this strain tends to be more tolerant

to butanol than 1.5% (v/v) when improved by using genetic modification, as

mentioned in the previous publication.
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Figure 21 CUEAOQ2 culture growth profile for butanol tolerance. Solid circle, control;

open circle, 1.0% (v/v); solid triangle, 1.5% (v/v); open triangle, 2.0% (v/v); and solid

square, 2.5% (v/v).

In addition, one of the remaining barriers to the industry is this

microorganism's low ethanol tolerance. The ethanol toxicity causes denaturation of

these macromolecules (proteins, DNA, RNA, and lipids), enhanced membrane

fluidization, and altered nutrition transport. It has an effect on ATP production,

resulting in cellular stress and probable cell death (Casey & Ingledew, 1986; Cray et



al,, 2015). Normally, C. thermocellum is a thermophilic bacterium that can utilize

biomass and produce high levels of ethanol. This means that this strain has a strong

ethanol tolerance and can survive up to 20 g¢/L of butanol. To examine the ethanol

tolerance in the CUEAQ2 strain, the ethanol was varied at 1.0%, 1.5%, 2.0%, 2.5%,

3.0%, 3.5%, 4.0%, 4.5%, and 5.0% (v/v). After 72 h, it was found that CUEAO2 grew

when the ethanol concentration reached 4.0% (v/v), as presented in Figure 22. The

ethanol concentration of 4.0% (v/v) decreased CUEA02 growth by approximately 65%

as compared to the control. In comparison to C. thermocellum, an ethanol-tolerant

strain, CUEAO2 was shown to tolerate ethanol up to 31 ¢/L, which was greater than

that strain. There is much research that has tried to enhance the ethanol tolerance

of C. thermocellum. For example, a C. thermocellum mutant strain that can survive

and grow at 40 g/L of ethanol production (Kuil et al., 2022) and C. thermocellum

ATCC 27405, which is an ethanol-adapted strain, can tolerate ethanol at 50 ¢/L.

However, it can be shown that CUEA02 has a relatively high level of ethanol

resistance, making it appropriate for use in wastewater from alcoholic factories, which

is likely to include ethanol.
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Figure 22 CUEA02 ethanol tolerance culture growth profile. Solid circle, control;

open circle, 1.0% (v/v); solid hexagon, 1.5% (v/v); open hexagon, 2.0% (v/v); solid

square, 2.5% (v/v); open square, 3.0% (v/v); solid diamond, 3.5% (v/v); open

diamond, 4.0% (v/v); solid triangle, 4.5% (v/v); and open triangle, 5.0% (v/v).

5. Part V: Determination of Sato wastewater for butanol production

5.1 Characteristic of the Sato wastewater

The physiological and chemical properties of the STW were examined in order

to determine its potential as a substrate for ABE fermentation. Table 13 shows the



results of an analysis of the pH, BOD, COD, TSS, TS, VS, TKN, reducing sugar, and

starch levels. The STW had a milky white color with a pH of 3.5 (at 25 °C), which is

highly acidic. The BOD and COD levels were excessive in comparison to the typical

water pollution and limits enforced by Thailand's Pollution Control Department. The

STW contained OMs and sugars, the most important of which were starch and

reducing sugar. STW has the potential to be used as a carbon source by

microorganisms as well as a substrate for solvent synthesis via ABE fermentation due

to its starch and reducing sugar concentrations. Considering the starch and reducing

sugar concentrations, STW has the potential to be used as a carbon source by

microorganisms as well as a substrate for solvent production via ABE fermentation.



Table 13 Physical and chemical properties of Thai traditional beverage (Sato) factory

effluent; STW (Buranaprasopchai et al., 2022).

Parameters® Unit Sato wastewater; STW
pH 3.5

BODs me/L 68,400

COD me/L 142,714

TSS me/L 573

TS me/L 10,192

VS me/L 8,852

TKN me/L 399

Starch content mg/100g 26.58

Reducing sugar mg/100g 60

¢ BOD: Biochemical oxygen demand, COD: Chemical oxygen demand, TSS: Total

suspended solids, TS: Total solids, VS: Volatile solids, TKN: Total Kjeldahl nitrogen.

5.2 ABE production from C. beijerinckii CUEA02 by using Sato wastewater.

To reduce the price of the ABE fermentation process, the use of wastewater

as a substrate is one possible method because this waste is plentiful and

inexpensive. As a result, STW was chosen as a typical wastewater substrate for



butanol production in this study. In general, starch, reducing sugar, TKN, and other

components are present in STW, making it potentially viable as a substrate for ABE

production. However, among the other remaining components in STW was a large

(inhibitory) level of ethanol (55 g/L). Therefore, the potential of STW as a substrate

for ABE fermentation was examined using various dilutions (1:10, 1:20, 1:30, and 1:40).

The ABE production was then measured by GC analysis.

The amount of ABE solvents and acids produced by C. beijerinckii CUEAQ2

from various dilutions of STW is shown in Figure 23. It can be seen that every STW

dilution can be used as a substrate to produce butanol, with yields of 0.59 + 0.03,

0.46 + 0.03, 0.47 + 0.05, and 0.43 + 0.02 ¢/L for the 1:10, 1:20, 1:30, and 1:40

dilutions, respectively. While the neat STW, C. beijerinckii CUEAO2 cannot grow and

produce ABE production. Due to the composition of STW containing high levels of

ethanol (55 g¢/L), CUEAO2 can tolerate ethanol up to 31 g/L. This is a reason why

CUEAO02 cannot grow in neat STW. According to the data, the optimal concentration



for C. beijjerinckii CUEAO2 to produce butanol was 1:10 STW dilution, with total ABE

and butanol production of 6.40 + 0.66 and 0.59 + 0.03 g/L, respectively.
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Figure 23 the level of ABE solvents and acids produced by C. beijerinckii CUEA02

from various dilutions of STW at 72 h, controlled temperature at 35 °C.

Although the fact that 1:10 STW dilution is the optimum concentration suited

for use as a substrate for ABE fermentation, the production of butanol remained at a

low level. From the mentioned above, there are many factors that can help to

improve the levels of ABE production. The pH is a key factor that has a huge effect



on production. Therefore, to enhance butanol production, the initial pH of STW was

considered. Due to the initial pH of the 1:10 diluted STW being 4.75, which is quite

acidic. Whereas the optimal initial pH for CUEA02 in this study is 6.5. The 1:10 diluted

STW was adjusted to the initial pH of 6.5 and used for the next experiment.

Considering the growth of CUEA02, the OD600 was 0.67 when cultured in the 1:10

STW at pH 4.75, but it increased 1.7-fold when the initial pH was adjusted to 6.5. In

addition, the production of the solvent increases in accordance with cell growth,

with butanol production 2.67-fold greater at pH 6.5 than at pH 4.75 (Figure 24).

Besides that, the levels of reducing sugar in 1:10 diluted STW with an initial pH of 6.5

was completely consumed in 48 h as opposed to 144 h at an initial pH of 4.75,

leading to a 2.13-fold increase in butanol yield to 0.49 ¢/¢. As a result, it is clear that

the initial pH influences cell growth, sugar consumption, and butanol production in

this Clostridium species. This finding was supported by Al-Shorgani et al. (2014), who

reported that the initial pH has an important influence on butanol production.

Furthermore, C. acetobutylicum NCIMB 13357 was observed to enhance ABE

production when the pH was initially 5.5 - 5.8, but this reduced when the pH was



initially 6.0 (Kalil et al., 2003). This conclusion is also similar to the findings of

Ouephanit et al. (2011), who discovered that increasing the initial pH from 4.5 to 5.5

improved the butanol production from C. butyricum and C. acetobutylicum, but

reducing it to an initial pH of 6.5. As a result, the ideal pH for butanol production is

determined by the Clostridium species.
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Figure 24 butanol production and cell growth characteristics of C. beijerinckii CUEA02

cultured in a 1:10 STW dilution (with and without modified initial pH to 6.5) at 35 °C.



5.3 The effect of nitrogen content supplementation in Sato wastewater

on ABE production in C. beijerinckii CUEA02

The change in medium composition throughout the fermentation process

influences not only the growth of microbes but also the synthesis of metabolites. It

has been reported to improve metabolite production by adding some components

to the medium, such as nitrogen sources, vitamins, and trace elements (Im et al,

2021; Papizadeh et al.,, 2020). To examine the effect of nitrogen sources on ABE

production, yeast extract was supplemented in 1:10 diluted STW at different

concentrations (2, 4, 6, and 8 g/L) with an initial pH of 6.5. The result indicated that

butanol production in 1:10 diluted STW was enhanced to 1.96 + 0.04, 1.86 + 0.01,

1.83 + 0.01, and 1.82 + 0.04 for the 2, 4, 6, and 8 ¢/L of yeast extract, respectively.

The production of butanol when supplemented with yeast extract in 1:10 dilute STW

is shown in Figure 25. From Figure 25, butanol production was slightly different at

each yeast extract concentration. In this study, yeast extract 2 g/L improved butanol

production from 1.52 to 1.96 ¢/L, increasing by more than 29%. Earlier research

found that adding yeast extract to the medium containing cassava as a substrate



improves at the beginning of the solventogenesis phase in C. acetobutylicum. When

compared to employing cassava as a sole substrate, the butanol concentration

increased by 15% (Li et al., 2012). Furthermore, yeast extract was determined to be

outstanding for enhancing the butanol production level from starch wastewater

among various nitrogen sources (Luo et al,, 2018). In addition, Mao et al. (2019)

confirmed these findings by evaluating the butanol production of C. acetobutylicum

CGMCC1.0134 using fern root as a substrate. When yeast extract was added to the

medium, the butanol production increased from 3.74 to 11.8 ¢/L. It is obvious that

yeast extract can enhance butanol production when used at the appropriate

concentration.
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Figure 25 the level of butanol and total solvents of C. beijjerinckii CUEA02 in 1:10

diluted STW with an initial pH of 6.5 and yeast extract supplementation

(Buranaprasopchai et al., 2022).



CHAPTER V

CONCLUSION

This is the first study of the production of ABE in Clostridium sp. using Sato

wastewater as a substrate. CUEA02, a new solventogenic C. beijjerinckii isolated from

a biodiesel plant, was discovered. This strain is highly capable of producing ABE and

can consume a wide range of carbohydrates, particularly starch, to effectively

generate butanol. The starch hydrolyzes confirmed this strain can consume starch by

clear zone around the colony which indicated to amylase enzyme. The CUEA02

strain produced 13.48 + 0.25 ¢/l and 8.32 + 0.08 ¢/L of ABE and butanol production,

respectively, when culture under optimal conditions with initial pH of 6.5, a

temperature of 35 °C, 10% (v/v) of inoculum, and 50 g/L of glucose. This strain also

produces NADH-BDH and NADPH-BDH activity at 24 h (0.005 U/mg and 0.041 U/mg,

respectively) but it is not quite high. When considering the comparison of WGS with

other Clostridium sp., it was found that the CUEAO2 strain has a large number of

point mutations in nucleotide sequences of ADHE and BDH genes. This study

intended to evaluate the potential of CUEAO2 on ABE production from consolidated
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bioprocess using Sato wastewater. Because of the CUEA02’s ability to consume

starch, which is a main component in STW. CUEA02 could produce butanol from 1:10

diluted STW (0.23 g/g) at pH 4.75 but increasing the initial pH to 6.5 increased the

production of butanol to 0.49 g¢/g, which is 2.13-fold compared to the not adjusted

initial pH. Furthermore, the supplement of yeast extract to 1:10 diluted STW also

enhanced butanol production by 29%. It can be concluded that CUEAO2 has an

effective potential to utilize STW as a low-cost substrate for butanol synthesis. In

addition, it can also help to solve the wastewater, which frequently unpleasant

smell and is damaging to the environment and humans. Furthermore, it is one

possible way that contributes to the increased value-added chemical substances

from wastewater.
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APPENDIX

Appendix A: Calibration curves
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Appendix B: Standard of ABE production profile using GC-FID

Analysis Date & Time

: 10/03/2565 15:46:45

User Mame : Admin
Vial# H
Sample Name . STD
Sample ID :
Sample Type : Unknown
Injection Volume 2 1.00
ISTD Amount :
Data Name : DXKeng'STD Old Column 26.02.64'STD.ged
Method Name : D:\Keng'STD new method 16.06.2023.gem
Intensity
750000
500000~
250000
0
e B L L Lk L L L L B L L L L L ]
0 1 2 3 1 5 6 7 8 10 11 12
Peak#  Ret.Time Area Height Conc.  Unit Mark ID# Cmpd Name
1 2.189 1904559 1104002 9.528 gL SV 1 acetone
2 2.410 3364188 498702 15.188 gL SV 2 ethanol
3 3.540 3108397 323896 9544 gL 3 1-butanol
4 6.690 677958 149906 7.079 gL S 4 acetic acid
5 8.729 1722205 516022 13.678 gL 7 butyric acid
6 9.369 13627 1830 0.000 T
7 14.427 15106 1988 0.000 AY
8 14.504 77975 10509 0.000 v
Q 15.281 69374 22161 0.000 v

Total

10953380 2620016
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Figure B.1 GC-FID chromatogram of standard acetone, ethanol, butanol, acetic acid,

and butyric acid.
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Analysis Date & Time  : 30/06/2564 13:27:38

User Name : Admin
Vial# 1
Sample Name : YTASO Air2 72h 2
Sample ID :
Sample Type : Unknown
Injection Volume : LoD
ISTD Amount :
Data Name : DKeng\YTASOmL Air2 30.06.64\YTAS0 Air2 72h 2.ged
Method Name : DY\Keng'STD new method 16.06.2023.gem
Intensity
250000+ 1 %
200000
150000
i : |
] g
] i
100000~ 2
4 . s
1 i
] ; ¢
50000~ i g
] 3 ' ..
1 “le g 3
ol d 2
T il el | T e T il ke | T ' . e | b | Ll | by | Ll bl e | ekt il bk | T
0 1 2 3 4 5 6 7 8 9 0 1 12 13 14 15 16
Peak#  Ret.Time Area Height Conc.  Unit Mark [D# Cmpd Name
1 2144 36625 19047 0.493 gL 1 acetone
2 2.410 1029444 251818 4672 sV 2 ethanol
3 2.709 15903 5684 0.000 T
4 3484 2733016 249479 8417 gL S 3 1-butanol
5 6.647 162166 30073 2177 gL 8§ 4 acetic acid
6 8.658 256667 §2293 3.756 gL 8 7 butyric acid
7 14.636 10759 1337 0.000
8 15.272 13182 4400 0.000
Total 4257762 644131

Figure B.2 GC-FID chromatogram of ABE production from C. beijjerinckii CUEA02

cultured under optimal conditions and using glucose as a carbon source.
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Analysis Date & Time  : 25/04/2564 19:07:27

User Name : Admin
Vial# 128
Sample Name : Satol10x 72h 2
Sample ID :
Sample Type : Unknown
Injection Volume 1 1.00
ISTD Amount :
Data Name : Di\Keng\Eth20x Sam3 Eth30x Sam2 3 Satol0x Sam2 3 25.04.64\Sato10x 72h 2.ged
Method Name : D*\Keng'STD new method 16.06.2023.gcm
Intensity
40000-] 3 E
30000
20000
| i
. %
10000 3 :
1 E
N = a
. ‘g -
0 3
B e I L Lo b L e e B L L L L ey LAy sy Ll Ll L L L) MAA LSS L L

min

Peak# Ret. Time Area Height Conc.  Unit Mark ID# Cmpd Name

1 2157 446 313 0318 gL 1 acetone

2 2369 1110618 199179 5184 gL S 2 ethanol

3 3511 118057 10483 0.569 gL 3 1-butanol

4 6.689 31927 4461 0.939 gL 4 acetic acid

5 8 688 137472 36817 2.949 oL 7 butyric acid
Total 1398520 251253

Figure B.3 GC-FID chromatogram of ABE production from C. beijerinckii CUEAQ2

cultured on 1:10 STW without adjusted initial pH.
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Analysis Date & Time : 02/07/2564 15:00:19
User Name : Admin
Vial# 214
Sample Name : Sato10x pH6.5 96h 2
Sample ID :
Sample Type : Unknown
Injection Volume 2 1.00
ISTD Amount :
Data Name » D\Keng\Sato30x pH6.5 120-144h Sato10x pH6.5 Sam 2 3 02.07.64\Satol 0x pH6.5 96h 2. ged
Method Name : D\Keng'STD new method 16.06.2023.gem
Intensity
E E
40000 % 2
30000+
20000~ E
i 5 g
10000+ 5
0_
L A L L e L A Al L A L Mada L S

0 1 2 3 4 5 6 7 10 11 12 13 15
min
Peaks# Ret. Time Area Height Conc.  Unit Mark 1D# Cmpd Name
1 2.143 19802 9777 0412 gLV 1 acetone
2 2.347 1274728 229436 5913 gL SV 2 ethanol
3 3475 479771 42179 1654 gL S8V 3 1-butanol
4 6.656 16130 3545 0.789 gL 4 acetic acid
5 8.659 48472 14309 2346 gL 8V 7 butyric acid
Total 1838903 200246

Figure B.4 GC-FID chromatogram of ABE production from C. beijjerinckii CUEAO02

cultured on 1:10 STW and adjusted initial pH to 6.5.
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Appendix C: The diameter of clear zone from 11 isolated Clostridium sp.

Table C.1 Clear zone area of 11 isolated Clostridium sp. in the TYA agar containing

starch after 24 h

Strain Clear zone (cm?)
GW-1 1.3
GW-2 1.6
GW-3 1.7
GW-4 1.1
AW-1 =9
CUEA02 2.7
FGR-1 0
FGR-2 0
FGR-3 0
FGR-4 0
FGR-5 0




Appendix D: Calculation of butanol dehydrogenase activity

Table D.1 The AOD/min of NADH-BDH with cell extract of CUEAQ2

NADH-BDH Cell extract (pL) AOD/min
100 0.0040888

0.011949

200 0.002627

0.017261

Cell extract: 100 yL  AOD/min

(AOD/min)/cell extract (mL)

Cell extract: 200 yL. -~ AOD/min

(AOD/min)/cell extract (mL)

Average of AOD/min

Specific activity

0.011949 - 0.0040888

0.0078602

0.0078602/0.1

0.0786

0.017261 - 0.002627

0.00732

0.00732/0.1

0.0732

(0.0786 + 0.0732)/2

0.0759

152

(AOD/min)/6.22/protein concentration

0.0759/6.22

0.0122/2.435

0.0122

0.005 U/mg



153

Table D.2 The AOD/min of NADPH-BDH with cell extract of CUEAQ2

NADPH-BDH Cell extract (uL) AOD/min
100 0.001246
0.063233

Cell extract: 100 uyL  AOD/min

0.063233 - 0.001246

= 0.061987
(AOD/min)/cell extract (mL) = 0. 061987/0.1
= 0.61987

Specific activity (AOD/min)/6.22/protein concentration

- 0.61987/6.22

0.0997

= 0.0997/2.435 0.041 U/mg
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Appendix E: Calculation of protein concentration for calculated BDH activity

Table E.1 The protein concentration is measured using the Bradford protein assay

(595 nm).

Dilution of protein  A595 nm Protein (mg/mL) Protein*dilution
sample factor

10x 1.907 0.03436 0.3436

100x 1.126 0.01991 1.9912

200x 0.688 0.01180 2.3616

500x 0.321 0.00501 2.5089

1000x 0.171 0.00224 2.2425

The appropriate protein concentration values based on the BSA standard are 200x

and 500x.

The protein concentration (2.3616 + 2.5089)/2

2.435 mg/mL
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