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CHAPTER I

INTRODUCTION

Mathematical epidemic models have been extensively studied in order to under-

stand the spread of epidemic diseases and disease control in human population.

One of the classical epidemic models is an SIR model, which was proposed by

Kermack and McKendrick in 1927. In this model, the total population is divided

into three classes:

• Susceptible class: individuals who are healthy but can contract the disease.

• Infectious class: individuals who have contracted the disease and can trans-

mit the disease. Infected individuals may not be infectious during entire time

of being infected.

• Recovery class: individuals who have recovered from the disease.

After a susceptible individual undergoes the disease by contacting with an

infectious individual, he or she moves into the infectious class. At the same time,

infectious individuals who recover from the disease and have immunity transfer

into the recovery class. The SIR model assumes that those recovered individuals

have permanent immunity to the disease. However, in most communicable diseases

such as cholera, pertussis, influenza and malaria, recovered individuals can return

to the susceptible class [15]. This situation can be described by the epidemic model

which is so-called “SIRS model”. In this work, we consider the following continuous



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

SIRS epidemic model with distributed delays:

Ṡ(t) = Λ−
∫ τ

0

p(ξ)g(I(t− ξ))S(t)dξ − µ1S(t) + γR(t),

İ(t) =

∫ τ

0

p(ξ)g(I(t− ξ))S(t)dξ − (µ2 + k)I(t),

Ṙ(t) = kI(t)− (µ3 + γ)R(t),

(1.1)

where Λ > 0 denotes the recruitment rate into the population. The constants

µi > 0 (i = 1, 2, 3) are the death rate of susceptible, infectious and recovered

individuals, respectively. The constant k > 0 is the recovery rate of infectious

individuals. The recovered individual loses immunity and returns to the susceptible

class with a constant rate γ ≥ 0. The function g(I)S is called the incidence rate:

the number of individuals who become infectious per unit of time (e.g. one month,

one year), and g(I) measures the infection force of a disease. In the model, the

incidence rate is used with the form
∫ τ

0
p(ξ)g(I(t − ξ))S(t)dξ, which includes the

distributed delays ξ, where ξ is the incubation time and p(ξ) is the distributed

proportion of the population taking time ξ to become infectious. The constant

τ > 0 is the maximum incubation period. The function p(ξ) is assumed to be

nonnegative and continuous on [0, τ ] and that satisfies
∫ τ

0
p(ξ)dξ = 1 [3]. The

following figure shows the flow diagram of a simple SIRS model:

Figure 1.1: Flow diagram of a simple SIRS epidemic model

In the modeling of epidemic diseases, an incidence rate plays a significant role

in describing the evolution of infectious disease. A bilinear incidence rate has been
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often used in early epidemic models. The rate is defined as

g(I)S = δIS, (1.2)

where δ is a parameter for infectivity. Because of the effect concerning the non-

linearity of incidence rate for some disease transmissions, many researchers have

suggested various kinds of nonlinear incidence rates. Capasso and Serio [5] intro-

duced a saturated incidence rate of the form

g(I)S =
δIS

1 + αI
, (1.3)

where α measures the inhibition effect from the behavioral change of the suscep-

tible individuals when the number of infectious individuals increases or from the

crowding effect of the infective individuals. Xiao and Ruan [30] have given an

assumption that the incidence rate takes the nonlinear form

g(I)S =
δIS

1 + αI2
, (1.4)

which can be interpreted as a nonmonotone incidence rate. In [31], Xiao and Zhou

studied continuous SIRS epidemic models with a complete form of the nonmono-

tone incidence rate,

g(I)S =
δIS

1 + βI + αI2
, (1.5)

where δ is the infection rate, α > 0 measures the psychological or inhibitory effect

and β is a parameter such that 1 + βI + αI2 > 0 for all I ≥ 0, which holds if

β > −2
√
α. When a serious disease emerges, the infection force increases because

people have very little knowledge about the disease. However, when I is large and

the disease becomes more serious, psychological factor leads people to adjust their

behavior and control the spread of the disease (See Figure 1.2(a)). For example, in

the outbreak of coronavirus disease 2019 (COVID-19), public heath interventions
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(a)

(b)

Figure 1.2: The graphs of nonlinear infection functions. (a) g(I) = δI
1+βI+αI2 ; (b) g(I) =

δI2

1+βI+αI2 when δ = α = 1

including borders measures, quarantine, isolation, city lockdown, mask wearing,

social distancing, etc. were proved to be very effective in decreasing the trans-

mission [2]. Note that both nonmonotone incidence functions (1.4) and (1.5) tend

to zero when I goes to infinity. In [16], the authors proposed a more general

incidence rate which has a combination of monotonicity, nonmonotonicity and

saturation properties as follows:

g(I)S =
δI2S

1 + βI + αI2
, (1.6)
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which exhibits complicated dynamical behaviors. When β ≥ 0, the infection func-

tion g(I) = δI2

1+βI+αI2
is monotonic, which always increases and tends to a saturated

level δ
α

as I goes to infinity. When −2
√
α < β < 0, g(I) is nonmonotonic, which

increases when I is small, decreases when I is large and finally tends to δ
α

as I

goes to infinity (See Figure 1.2(b)). Figure 1.2 also shows that if δ and α are fixed,

g(I) in (1.5) and (1.6) increases faster for smaller β when I is small.

Usually, there are two types of epidemic models: continuous-time models and

discrete-time models. The continuous-time epidemic models described by dif-

ferential equations have been widely investigated in many articles (for exam-

ple, [10,11,21,25,30,31] and the references therein). In recent years, there has been

an increasing interest in the study of discrete-time models (see [6,8,9,23,24,26,32]

and the references therein). Because statistical data on epidemics are reported

daily, monthly or yearly etc., it is more convenient and accurate to describe epi-

demics by employing discrete models. In order to obtain discrete-time epidemic

models, discretizing a continuous-time employing numerical schemes such as the

Euler, Huen and Rung-Kutta has been frequently used (see [8, 9, 23]). However,

one approach to avoid numerical instabilities and excessively small step sizes is

to apply a nonstandard finite difference (NSFD) scheme. This method was first

proposed by Mickens [18] and have received much attention up to now (for exam-

ple, [6, 24, 26, 32]). For solving an n-dimensional autonomous dynamical systems,

Wood and Kojouharov [29] demonstrate that applying NSFD method preserves

positivity of solutions and local stability of equilibria for any time step size, while

Heun’s method does not preserve those, especially when the time step size is large.

The authors in [8, 9] discussed the local and global stability of the disease-free

equilibrium and endemic equilibrium for some discrete SIR and SIRS epidemic

models. In [24], Sekiguchi and Ishiwata derived a discretized SIRS epidemic model

with time delay from Mickens’ NSFD scheme and obtained the global stability of

the disease-free equilibrium and the permanence of the disease.

In [26], a discrete SIRS epidemic model with distributed delays and general

nonlinear incidence rates was constructed from the discretization of the corre-
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sponding continuous epidemic model by applying Mickens’s NSFD scheme. Under

the crucial assumption about monotonicity of the incidence function, the authors

obtained the global stability of the disease-free equilibrium and the endemic equi-

librium. However, the results cannot be applied to any discrete SIRS epidemic

models with nonlinear incidence rates, especially, the model with a nonmonotone

incidence rate like (1.5) and (1.6).

Motivated by the above-mentioned works, applying Mickens’s NSFD scheme

to the continuous model (1.1), we give the following discrete SIRS epidemic model

with a nonlinear incidence rate and distributed delays:

Sn+1 = h

(
Λ−

m∑
j=0

pjg(In−j)Sn+1 − µ1Sn+1 + γRn+1

)
+ Sn,

In+1 = h

(
m∑
j=0

pjg(In−j)Sn+1 − (µ2 + k)In+1

)
+ In,

Rn+1 = h (kIn+1 − (µ3 + γ)Rn+1) +Rn, n = 0, 1, 2, . . . ,

(1.7)

where h > 0 is a time step size; Sn, In and Rn denote the numbers of susceptible,

infectious and recovered individuals at time n, respectively; µi > 0 (i = 1, 2, 3) are

the death rate of susceptible, infectious and recovered individuals, respectively; k >

0 is the recovery rate of infectious individuals; γ ≥ 0 is the rate at which recovered

individuals lose immunity and return to the susceptible class. The incidence rate

g(I)S satisfies (1.5) or (1.6), where δ > 0 is the infection rate; α > 0 measures the

psychological or inhibitory effect; β > −2
√
α such that 1 + βI + αI2 > 0 for all

I ≥ 0. The constant m ≥ 0 is the maximum incubation period and pj ≥ 0 (j =

0, 1, . . . ,m) represent the distributed proportion of the population taking time j

to become infectious, and we always assume that
∑m

j=0 pj = 1. All of parameters

of the model are also described in Table 1.1.

This work focuses on the dynamical behaviors of solutions to the discrete SIRS

epidemic model (1.7) with nonlinear incidence rates (1.5) and (1.6). The global

stability of the disease-free equilibrium of (1.7) is investigated. Furthermore, we

establish the sufficient conditions for permanence, which is an important property
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Table 1.1: Model parameters and their descriptions.

Parameter Description
Λ Recruitment rate
µ1 Death rate of susceptible individuals
µ2 Death rate of infectious individuals
µ3 Death rate of recovered individuals
k Recovery rate
γ The loss of immunity rate of recovered individuals
δ Transmission rate
α The parameter measuring the psychological or inhibitory effect
β A parameter satisfying β > −2

√
α

m Maximum incubation period
pj The distributed proportion of the population taking time j

to become infectious

in epidemic model because it implies that the disease continues to exist, regardless

of initial conditions.

The organization of this work is as follows. In Chapter II, we give some basic

definitions and results to be used in this work. The basic assumptions of model

(1.7) are introduced in Chapter III. Also, the basic properties about the positivity

and the ultimate boundedness of solutions for model (1.7) are stated and proved.

In Chapter IV, we concentrate on the discrete SIRS model (1.7) with incidence

rate (1.6). The existence of the disease-free equilibrium and endemic equilibrium

and results on the global stability of the disease-free equilibrium are established.

Moreover, we discuss the permanence of the disease for the model. In Chapter

V, the dynamical properties of the discrete SIRS model (1.7) with incidence rate

(1.6) including the existence of equilibria and the global stability of the disease-

free equilibrium are shown. In addition, we give some examples and simulations

to illustrate the dynamical behaviors of the model by using MATLAB. Finally, we

present some ideas for further research in Chapter VI.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

PRELIMINARIES

In this chapter, we give an introduction to the nonstandard finite difference method.

Some basic knowledges for studying the behaviors of solutions to the system of

difference equations are recalled. We also present some basic results that will be

useful.

2.1 Nonstandard Finite Difference Method

Consider a system of ordinary differential equation

dx

dt
= f(x); x(t0) = x0, (2.1)

where x := (x(1), x(2), . . . , x(m)) : [t0,∞) → Rm and f := (f (1), f (2), . . . , f (m)) :

Rm → Rm is differentiable and x0 ∈ Rm. A finite difference method to approximate

the system (2.1) can be written as

Dh(xk) = Fh(f ;xk), (2.2)

where Dh(xk) ≈ dx
dt

∣∣∣
t=tk

, xk ≈ x(tk), Fh(f ;xk) approximates f(x(tk)) in system

(2.1) and tk = t0 + kh, where h > 0. The finite difference method employed in

this work is nonstandard finite difference (NSFD) method [18–20, 22, 28].

In general, any finite difference method, which is not standard can be considered

as nonstandard. The construction of NSFD schemes is not always straightforward

and there are no general criteria for them. However, several important rules for

constructing NSFD schemes were discovered by Mickens as follows:

Rule 1. The orders of the discrete derivatives should be equal to the orders of the
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corresponding derivatives of the differential equations.

Rule 2. Denominator functions for the discrete derivative must, in general, be

expressed in terms of more complicated functions of the step-sizes than those

conventionally used. For example, the first-order derivative is replaced by a

discrete representation of the form

dx(tk)

dt
→ xk+1 − xk

ϕ(h)
,

where the denominator function ϕ(h) has the property that

ϕ(h) = h+O(h2) as h → 0

such as eh − 1, 1− e−h, sin(h), etc. These functions may also depend on the

various parameters that appear in the differential equations. Note that the

conventional discrete representation for the first derivative takes ϕ(h) = h.

Rule 3. Nonlinear terms should, in general, be replaced by nonlocal discrete rep-

resentations using more than one mesh point. For example, the nonlinear

term x2 can be replaced by a nonlocal representation evaluated at two mesh

points such as xk+1xk and 2x2
k − xk+1xk. This is in contrast to standard

methods which use a local representation applying only one mesh point, that

is x2
k.

Rule 4. Special conditions that hold for the solutions of the differential equa-

tions should also hold for the solutions of the finite difference scheme. An

important example is the condition of positivity that must be satisfied by

many systems in the real-world problems. If the discrete equations allow

their solutions to become negative, then numerical instabilities will occur.

Rule 5. The finite difference scheme should not introduce extraneous or spuri-

ous solutions that do not correspond to any solution of the corresponding

differential equations.
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According to Anguelove and Luboma [1], the following definition of NSFD

method was also proposed:

Definition 2.1. The finite difference scheme (2.2) for solving system (2.1) is an

NSFD method if at least one of the following conditions is satisfied:

• In the first-order derivative Dh(xk), the traditional denominator h is replaced

by a nonnegative function ϕ(h) such that ϕ(h) = h+O(h2) as h → ∞.

• Nonlinear term in f(x) are approximated in a nonlocal way, i.e., by a suitable

function of several points of the mesh. For example, x2(tk) ≈ xkxk+1 and

x3(tk) ≈ 2x2
k+1x

2
k/(xk+1 + xk).

In this work, when we refer to NFSD method, it means those, which at least

one of the above Mickens’s rules is satisfied.

2.2 System of Difference Equations

Given a map T : Rm → Rm, the following system:

xn+1 = T (xn) for all n ≥ 0, (2.3)

is referred to as a system of m-dimensional first-order difference equations. A

sequence {xn}∞n=0 is the solution of (2.3) together with an initial condition x0 ∈

Rm if xn = T n(x0) for all n ≥ 0. Similarly, for any positive number k, a map

g : Rm × · · · × Rm︸ ︷︷ ︸
k

→ Rm defines a system of m-dimensional kth-order difference

equations of the form:

xn+1 = g(xn, xn−1, . . . , xn−k+1). (2.4)

Proposition 2.2 ( [17]). Any one-dimensional mth-order difference equation xn+1 =

g(xn, xn−1, . . . , xn−m+1) is equivalent to a system of m-dimensional first-order dif-

ference equations.
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2.2.1 Stability and permanence

We first present the definition of equilibria and the concepts of stability for (2.3).

From now on, ∥ · ∥ denote the Euclidean norm.

Definition 2.3. An equilibrium point of (2.3) is a point x̄ ∈ Rm such that

x̄ = T (x̄).

Definition 2.4. Let x̄ be an equilibrium point of (2.3).

(i) x̄ is called locally stable if for every ϵ > 0, there exists δ > 0 such that

∥x0 − x̄∥ < δ implying

∥xn − x̄∥ < ϵ for all n ≥ 0.

(ii) x̄ is called locally asymptotically stable if it is locally stable and there

exists γ > 0 such that ∥x0 − x̄∥ < γ implying

lim
n→∞

∥xn − x̄∥ = 0.

(iii) x̄ is called a global attractor if for every {xn}∞n=0 satisfying (2.3), we have

lim
n→∞

∥xn − x̄∥ = 0.

(iv) x̄ is called unstable if it is not locally stable.

Suppose that the function T is a continuously differentiable in some open neigh-

borhood of an equilibrium point x̄. Then, the linearized equation of (2.3) about

the equilibrium point x̄ is the equation of the form

yn+1 = JT (x̄)yn, (2.5)

where JT (x̄) is the Jacobian matrix of T at the equilibrium point x̄ and the char-
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acteristic equation of (2.5) about x̄ is

det(JT (x̄)− λIm) = 0. (2.6)

The following theorems will be useful for studying the local stability character

of an equilibrium point x̄ of (2.3).

Theorem 2.5 ([13]). Let x̄ be an equilibrium point of (2.3) and assume that T is

a continuously differentiable in Rm. Then, the following statements are true:

(i) If all eigenvalues of the Jacobian matrix JT (x̄) lie in the open unit disk

|λ| < 1, then the equilibrium point x̄ of (2.3) is locally asymptotically stable.

(ii) If at least one eigenvalue of JT (x̄) has absolute value greater than one, then

the equilibrium point x̄ of (2.3) is unstable.

Definition 2.6. The equation (2.3) is said to be permanent provided there ex-

ist constants mi > 0, Mi > 0 (i = 1, 2, . . . ,m) such that any solution {xn =

(x
(1)
n , x

(2)
n , . . . , x

(m)
n )} satisfies

mi ≤ lim inf
n→∞

x(i)
n ≤ lim sup

n→∞
x(i)
n ≤ Mi for all i = 1, 2, . . . ,m.

2.2.2 Lyapunov functions and LaSalle invariance principle

Definition 2.7. Given a map T : Rm → Rm and a set H ⊂ Rm, define the set

T (H) = {y ∈ Rm| y = T (x) for some x ∈ H}. The set H is called invariant

under T if T (H) = H.

Definition 2.8. For any point x ∈ Rm and set S ⊂ R. The distance between x

and S is defined by dist(x, S) = inf
y∈S

∥x− y∥. We say that T n(x) converges to S if

lim
n→∞

dist(T n(x), S) = 0.

Definition 2.9. Let G be any set in Rm. A Lyapunov function of (2.3) on G

is a continuous function V : Rm → R satisfying

∆V (x) := V (T (x))− V (x) ≤ 0 for all x ∈ G.
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The following theorems will be useful for studying the global stability character

of equilibria in Chapters IV and V.

Theorem 2.10 (LaSalle invariance principle [14]). Let G be any set in Rm and

V : Rm → R be a Lyapunov function of (2.3) on G. Suppose {xn}∞n=0 is a bounded

solution of (2.3) in G. Then there exists c ∈ R such that

xn → M ∩ V −1(c) as n → ∞,

i.e. dist(xn,M ∩ V −1(c)) → 0, where V −1(c) = {x ∈ Rm |V (x) = c} and M is the

largest invariant set in E = {x ∈ G |∆V (x) = 0}.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

POSITIVITY AND BOUNDEDNESS OF SOLUTIONS

The equation (1.7) is supplied with the following initial conditions:

Sj ≥ 0, Ij ≥ 0, Rj ≥ 0 (−m ≤ j ≤ 0) and S0 > 0, I0 > 0. (3.1)

In this work, we assume that g(I) = f(I)I; in addition, the following notations

are defined:

• S0 =
Λ

µ1

.

• Gn = Gn(I) =
m∑
j=0

pjg(In−j).

• Π1 = 1 + hµ1, Π2 = 1 + h(µ2 + k) and Π3 = 1 + h(µ3 + γ).

• fM = max
I≥0

f(I).

For the positivity of solutions of model (1.7) with initial condition (3.1), we

have the following result.

Proposition 3.1. Any solution of the model (1.7) with initial condition (3.1) is

positive, that is Sn > 0, In > 0, Rn > 0 for all n > 0.

Proof. The first equation of (1.7) yields

Sn+1 =
hΛ + Sn + hγRn+1

Π1 + hGn

. (3.2)

By the second and third equations, we obtain

In+1 =
hGnSn+1 + In

Π2

and Rn+1 =
hkIn+1 +Rn

Π3

. (3.3)
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This implies that

Π3Rn+1 = hk
hGnSn+1 + In

Π2

+Rn

=
hk(hGnSn+1 + In) +Π2Rn

Π2

=
h2kGnSn+1 + hkIn +Π2Rn

Π2

(3.4)

By equations (3.2) and (3.4), we obtain

Π2Π3(Π1 + hGn)Sn+1 = Π2Π3(hΛ + Sn) + hγΠ2Π3Rn+1

= Π2Π3(hΛ + Sn) + hγ(h2kGnSn+1 + hkIn +Π2Rn)

= Π2Π3(hΛ + Sn) + h3γkGnSn+1 + h2γkIn + hγΠ2Rn.

Thus,

Sn+1 =
Π2Π3(hΛ+ Sn) + hγΠ2Rn + h2γkIn

Π1Π2Π3 + (Π2Π3 − h2γk)hGn

.

Notice that Πi > 0 for i = 1, 2, 3 and Π2Π3−h2γk > 0. From the initial condition

(3.1), it follows easily that G0 ≥ 0 so S1 > 0. Using (3.3), we also have I1 > 0 and

R1 > 0. Applying the same argument, we obtain Gn−1 > 0 and so Sn, In, Rn > 0

for all n. This completes the proof.

From now on we make the following assumption:

µ1 ≤ min{µ2, µ3}. (H1)

This can be interpreted as that the death rate of the infected and recovered indi-

viduals may increase because of the disease. The following result shows that the

solutions of (1.7) with initial condition (3.1) are bounded above.

Proposition 3.2. Suppose (H1). For any solution (Sn, In, Rn) of (1.7), the total
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population Nn := Sn + In +Rn satisfies

lim sup
n→∞

Nn ≤ S0 =
Λ

µ1

.

Proof. Adding the equations in (1.7), we obtain

Nn+1 = Nn + h (Λ− µ1Sn+1 − µ2In+1 − µ3Rn+1) , n = 0, 1, 2, . . . .

Applying the hypothesis (H1) and Proposition (3.1), we get

Nn+1 ≤ Nn + h[Λ− µ1(Sn+1 + In+1 +Rn+1)]

= Nn + h(Λ− µ1Nn+1).

This implies that

Nn+1 ≤
hΛ

Π1

+
1

Π1

Nn, n = 0, 1, 2, . . . .

Using iteration method, we have

Nn+1 ≤
hΛ

Π1

+
1

Π1

(
hΛ

Π1

+
1

Π1

Nn−1

)
≤ hΛ

Π1

+
hΛ

Π2
1

+
1

Π2
1

(
hΛ

Π1

+
1

Π1

Nn−2

)
≤ hΛ

Π1

+
hΛ

Π2
1

+ · · ·+ hΛ

Πn+1
1

+
1

Πn+1
1

N0

=
hΛ

Π1

(
1 +

1

Π1

+ · · ·+ 1

Πn
1

)
+

1

Πn+1
1

N0

=
hΛ

Π1

(
1− 1

Πn+1
1

1− 1
Π1

)
+

1

Πn+1
1

N0

=
hΛ

Π1

(
Π1

hµ1

)(
1− 1

Πn+1
1

)
+

1

Πn+1
1

N0

= S0

(
1− 1

Πn+1
1

)
+

1

Πn+1
1

N0 → S0.

Thus, lim sup
n→∞

Nn ≤ S0.
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Remark 3.3. In the case µ1 = µ2 = µ3, we have Nn = S0
(
1− 1

Πn+1
1

)
+ 1

Πn+1
1

N0

and so lim
n→∞

Nn = S0.

Remark 3.4. Proposition 3.1 and (3.2) may be summarized by saying that

lim sup
n→∞

Sn ≤ S0, lim sup
n→∞

In ≤ S0 and lim sup
n→∞

Rn ≤ S0.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

STABILITY AND PERMANENCE OF A DISCRETE

SIRS EPIDEMIC MODEL WITH INCIDENCE RATE

(δIS)/(1 + βI + αI2)

In this chapter, we concentrate on the discrete SIRS epidemic model (1.7) with

nonlinear incidence rate

g1(I)S =
δIS

1 + βI + αI2
.

Then (1.7) may be written as follows:
Sn+1 = h (Λ−GnSn+1 − µ1Sn+1 + γRn+1) + Sn,

In+1 = h (GnSn+1 − (µ2 + k)In+1) + In,

Rn+1 = h (kIn+1 − (µ3 + γ)Rn+1) +Rn, n = 0, 1, 2, . . . ,

(4.1)

and it can be rearranged to get the explicit form

Sn+1 =
hΛ + Sn + hγRn+1

Π1 + hGn

,

In+1 =
hGnSn+1 + In

Π2

,

Rn+1 =
hkIn+1 +Rn

Π3

,

(4.2)

where Gn = Gn(I) =
m∑
j=0

pjg1(In−j). Here, we write

g1(I) = f1(I)I, where f1(I) =
δ

1 + βI + αI2
.
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Setting Sn+1 = Sn, In+1 = In = 0, Rn+1 = Rn yields Sn = S0 and Rn = 0; hence,

(4.1) admits a unique disease-free equilibrium E0 = (S0, 0, 0). To find the endemic

equilibria E∗ = (S∗, I∗, R∗), we consider the equations
Λ− g1(I

∗)S∗ − µ1S
∗ + γR∗ = 0,

g1(I
∗)S∗ − (µ2 + k)I∗ = 0,

kI∗ − (µ3 + γ)R∗ = 0.

(4.3)

Solving the last equation for R∗ and adding the first two equations, we obtain

R∗ =
kI∗

µ3 + γ
, S∗ = S0 − µ2(µ3 + γ) + kµ3

µ1(µ3 + γ)
I∗. (4.4)

By plugging S∗ into the second equation of (4.3), I∗ > 0 satisfies

1 + βI∗ + α(I∗)2 − δ

µ2 + k

(
S0 − µ2(µ3 + γ) + kµ3

µ1(µ3 + γ)
I∗
)

= 0.

Then I∗ satisfies the equation

αI2 + (A+ β)I + (1−B) = 0, (4.5)

where

A =
δ

µ2 + k

µ2(µ3 + γ) + kµ3

µ1(µ3 + γ)
, B =

δ

µ2 + k
S0.

It can be seen that A > 0 and B > 0. The existence of the endemic equilibria E∗

determined the roots of (4.5), which are

I+ =
−(A+ β) +

√
D

2α
, and I− =

−(A+ β)−
√
D

2α
,

where D = (A+ β)2 − 4α(1−B).
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Then we have

I+I− =
1−B

α
and I+ + I− =

−(A+ β)

α
.

Obviously, D ≥ 0 is equivalent to B ≥ 4α−(A+β)2

4α
. We denote

B0 =
4α− (A+ β)2

4α
.

It follows easily that if B < B0 or, in other words, D < 0, then (4.1) has no

endemic equilibrium. Assume that B ≥ B0.

• If B < 1 then I+I−>0, so (4.1) has no endemic equilibria or else it has two

endemic equilibria. The first circumstance occurs if and only if A ≥ −β

while the second one occurs precisely when A < −β.

• If B = 1 then I+I− = 0. So (4.1) has no endemic equilibria if and only if

A ≥ −β and it has one endemic equilibrium if and only if A < −β.

• If B > 1 then I+I− < 0. It follows immediately that (4.1) has exactly one

endemic equilibrium.

This is precisely the assertion of the theorem.

Theorem 4.1. (4.1) has a unique disease-free equilibrium E0 = (S0, 0, 0). Re-

garding the endemic equilibria E∗ = (S∗, I∗, R∗) of (4.1), the following results

hold.

(a) there is no endemic equilibria provided one of the following conditions holds:

(i) B < B0;

(ii) B0 ≤ B ≤ 1 and A ≥ −β;

(b) there is exactly one endemic equilibrium provided one of the following condi-

tions holds:

(i) B = 1 and A < −β;
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(ii) B > 1;

(c) there are two endemic equilibria if and only if B0 ≤ B < 1 and A < −β.

For simplicity to study the local stability of the equilibrium (4.1), we consider

a special case with m = 0 and γ = 0, that is, model (4.1) degenerates into the

following discrete SIR epidemic model without delayed time:

Sn+1 =
hΛ + Sn

Π1 + hg1(In)
,

In+1 =
hg1(In)Sn+1 + In

Π2

,

Rn+1 =
hkIn+1 +Rn

Π3

.

(4.6)

We notice that the first two equations in (4.6) do not depend on the third equation.

Hence, to obtain the local stability of the equilibrium of (4.6), we can omit the

third equation and define the following function:

F (S, I) =
hΛ + S

Π1 + hg1(I)
,

G(S, I) =
hg1(I)F (S, I) + I

Π2

.

(4.7)

Then the Jacobian matrix of (4.7) is given by

J((S, I)) =


∂F (S, I)

∂S

∂F (S, I)

∂I

∂G(S, I)

∂S

∂G(S, I)

∂I

 , (4.8)

where

∂F (S, I)

∂S
=

1

Π1 + hg1(I)
,

∂F (S, I)

∂I
= −hg′1(I)(hΛ + S)

(Π1 + hg1(I))2
,

∂G(S, I)

∂S
=

hg1(I)

Π2(Π1 + hg1(I))
,
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∂G(S, I)

∂I
=

1

Π2

(
1 + hg1(I)

∂F (S, I)

∂I
+ hF (S, I)g′1(I)

)
,

and

g1(I) =
δI

1 + βI + αI2
, g′1(I) =

δ(1− αI2)

(1 + βI + αI2)2
.

Then, we give the following theorem about the local stability of the disease-free

equilibrium of (4.6). From now on, we denote

R0 =
δS0

µ2 + k
.

Theorem 4.2. If R0 < 1, then the disease-free equilibrium E0 of (4.6) is locally

asymptotically stable. Otherwise, it is unstable if R0 > 1.

Proof. Substituting the disease-free equilibrium E0 = (S0, 0) into the jacobian

matrix (4.8), we obtain

J(E0) =


1

1 + hµ1

− hδS0

1 + hµ1

0
1 + hδS0

1 + h(µ2 + k)

 .

It follows easily that the eigenvalues of J(E0) are

λ1 =
1

1 + hµ1

and λ2 =
1 + hδS0

1 + h(µ2 + k)
.

Obviously, |λ1| < 1. By the hypothesis, R0 < 1, we get 1 + hδS0 < 1 + h(µ2 + k).

This implies that |λ2| < 1. Therefore, the disease-free equilibrium E0 is locally

asymptotically stable.
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4.1 Global Attractivity of the Disease-Free Equilibrium

In this section, we obtain a sufficient condition for global attractivity of the disease-

free equilibrium E0 of (4.1) by constructing a Lyapunov function inspired by [23].

Theorem 4.3. The disease-free equilibrium E0 of (4.1) is globally attractive if

R0,1 :=
fM
1 S0

µ2 + k
< 1,

where fM
1 = max

I≥0
f1(I). In the case β ≥ 0, if R0 < 1, then the disease-free

equilibrium is globally attractive.

Proof. Let (Sn, In, Rn) be any positive solution of model (4.1) with initial condition

(3.1). We introduce the following candidate for a Lyapunov function:

Un =
1

h
In +

ρ1
h
Rn + ρ2

m∑
j=0

pj

n∑
l=n−j

g1(Il) +
ρ3
2h

(
Sn − S0

)2
,

where ρ1, ρ2, and ρ3 are positive constants which will be offered later. Then ∆nU =

Un+1 − Un is given by

∆nU =
1

h
(In+1 − In) +

ρ1
h
(Rn+1 −Rn) + ρ2

m∑
j=0

pj (g1(In+1)− g1(In−j))

+
ρ3
2h

(Sn+1 − Sn)(Sn+1 + Sn − 2S0)

=
1

h
(In+1 − In) +

ρ1
h
(Rn+1 −Rn) + ρ2 (g1(In+1)−Gn)

+
ρ3
2h

(Sn+1 − Sn)(Sn+1 + Sn − 2S0).

Using (1.7) and that (Sn+1 −Sn)(Sn+1 +Sn − 2S0) ≤ 2(Sn+1 −Sn)(Sn+1 −S0), we

get

∆nU ≤ GnSn+1 − (µ2 + k)In+1 + ρ1kIn+1 − ρ1(µ3 + γ)Rn+1 + ρ2g1(In+1)

− ρ2Gn + ρ3(Sn+1 − S0)
(
µ1S

0 −GnSn+1 − µ1Sn+1 + γRn+1

)
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= −ρ1(µ3 + γ)Rn+1 + ρ3γ(Sn+1 − S0)Rn+1 + ρ1kIn+1 + ρ2g1(In+1)− ρ2Gn

− (µ2 + k)In+1 +GnSn+1 − ρ3µ1(Sn+1 − S0)2 − ρ3(Sn+1 − S0)GnSn+1

= −ρ3µ1(Sn+1 − S0)2 − (ρ1(µ3 + γ)− ρ3γ(Sn+1 − S0))Rn+1

+ (Sn+1 − ρ2 − ρ3Sn+1(Sn+1 − S0))Gn + (ρ1k + ρ2f1(In+1)− (µ2 + k))In+1.

Since f1(In) ≤ fM
1 for all n ≥ 0,

∆nU ≤ −ρ3µ1(Sn+1 − S0)2 − (ρ1(µ3 + γ)− ρ3γ(Sn+1 − S0))Rn+1

+ (Sn+1 − ρ2 − ρ3Sn+1(Sn+1 − S0))Gn + (ρ1k + ρ2f
M
1 − (µ2 + k))In+1.

Now we select ρ1, ρ2, ρ3 > 0 to satisfy

ρ1(µ3 + γ)− ρ3γ(Sn+1 − S0) > 0, (4.9)

ρ1k + ρ2f
M
1 < µ2 + k, (4.10)

Sn+1 − ρ2 − ρ3Sn+1(Sn+1 − S0) < 0. (4.11)

By the hypothesis S0fM
1 < µ2 + k, there are θ1 > 0 and θ2 > 0 such that

θ1k + (S0 + θ2)f
M
1 < µ2 + k.

By Remark (3.4), lim supn→∞ Sn ≤ S0, so we can choose N = N(θ2) sufficiently

large so that Sn+1 − S0 < θ2/2 for all n ≥ N . Now we consider n ≥ N . Then

(4.9) holds provided

ρ3 <
2(µ3 + γ)

γθ2
ρ1.

We choose ρ1 = θ1 and ρ2 = S0 + θ2. Then (4.10) immediately follows. For (4.11),

note that Sn+1 − ρ2 = Sn+1 − (S0 + θ2) < −θ2/2 and there is a constant c > 0
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such that |Sn+1(Sn+1 − S0)| ≤ c for all n ≥ N . Take ρ3 > 0 to satisfying

ρ3 < min{2(µ3 + γ)θ1
γθ2

,
θ2
2c

}

then (4.9) follows and we get

Sn+1 − ρ2 − ρ3Sn+1(Sn+1 − S0) < 0,

that is, (4.11) holds. Finally, we obtain ∆nU ≤ 0. Moreover, ∆nU = 0 implies

that (Sn, In, Rn) = (S0, 0, 0). Applying the LaSalle invariance principle, we finally

obtain that E0 of (4.1) is a global attractor. This completes the proof.

4.2 Permanence of Solutions

In this section, we prove the permanence of model (4.1).

Theorem 4.4. If R0 > 1, then the model (4.1) is permanent for any initial

conditions (3.1).

Proof. By the positivity and boundedness of solutions, it suffices to prove a uni-

versal lower bound for Sn, In and Rn.

Estmate for Sn. There is a constant mS > 0 such that Sn ≥ mS for all n ≥ 1.

Proof of Estimante for Sn. By Proposition3.1 (Positivity) and (4.2), we have

Sn+1 =
hΛ + Sn + hγRn+1

Π1 + hGn

≥ hΛ

Π1 + hgM1
=: mS > 0,

where gM1 = max
I≥0

g1(I).

Estimate for In. There is a constant mI > 0 such that lim inf
n→∞

In ≥ mI .

Proof of Estimate for In. By the hypothesis, f1(0)
µ2+k

Λ
µ1

> 1, so we get by the continuity

of f1 that we can choose µ > 0 (small) and ρ ∈ N (large) to satisfy

λ := min
I∈[0,ν]

f1(I)

µ2 + k

Λ

µ1 + νfM
1

(
1− 1

(Π1 + hνfM
1 )

ρm

)
> 1,
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where fM
1 = max

I≥0
f1(I).

We denote

S∆ :=
Λ

µ1 + νfM
1

(
1− 1

(Π1 + hνfM
1 )

ρm

)
.

Then we get

f1(I)S
∆ > λ(µ2 + k) for all I ∈ [0, ν]. (4.12)

Claim 1. If In ≤ ν for n ∈ [n1, n2] with n2 − n1 ≥ m+ ρm then

Sn2+1 > S∆.

Proof of Claim 1. For n = n2, we have In−j ≤ ν for j = 0, 1, 2 . . . ,m, which implies

g1(In−j) = f1(In−j)In−j ≤ νfM
1 ,

and so

Gn =
m∑
j=0

pjg1(In−j) ≤ νfM
1 .

By Proposition 3.1 and (4.2)

Sn+1 =
hΛ + Sn + hγRn+1

Π1 + hGn

≥ hΛ + Sn

Π1 + hGn

≥ hΛ + Sn

Π1 + hνfM
1

.

Similarly, we also obtain for n = n2 − 1, n2 − 2, . . . , n2 − ρm,

Sn+1 ≥
hΛ

Π1 + hνfM
1

+
Sn

Π1 + hνfM
1

.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

27

By iterative method,

Sn2+1 ≥
hΛ

Π1 + hνfM
1

+
1

Π1 + hνfM
1

(
hΛ + Sn2−1

Π1 + hνfM
1

)
=

hΛ

Π1 + hνfM
1

+
hΛ

(Π1 + hνfM
1 )2

+ · · ·+ hΛ

(Π1 + hνfM
1 )ρm+1

+
Sn2−ρm

(Π1 + hνfM
1 )ρm+1

=
hΛ

(Π1 + hνfM
1 )

(
1 +

1

(Π1 + hνfM
1 )

+ · · ·+ 1

(Π1 + hνfM
1 )ρm

)
+

Sn2−ρm

(Π1 + hνfM
1 )ρm+1

=
hΛ

(Π1 + hνfM
1 )

(
Π1 + hνfM

1 − 1

h(µ1 + νfM
1 )

)(
1− 1

(Π1 + hνfM
1 )

ρm+1

)
+

Sn2−ρm

(Π1 + hνfM
1 )ρm+1

>
Λ

µ1 + νfM
1

(
1− 1

(Π1 + hνfM
1 )

ρm+1

)

>
Λ

µ1 + νfM
1

(
1− 1

(Π1 + hνfM
1 )

ρm

)
= S∆.

Claim 2. If In ≤ ν for n ∈ [n1, n2] with n2 − n1 ≥ m+ ρm then

In2+1 ≥ κ min
p∈[n2−m,n2]

Ip,

where κ := 1+λh(µ2+k)
1+h(µ2+k)

> 1 is a constant.

Proof of Claim 2. Let us denote

σ = min
p∈[n2−m,n2]

Ip.

By (4.2), Claim 1, and (4.12), we get

In2+1 =
In2 + h

∑m
j=0 pjf1(In2−j)In2−jSn2+1

Π1

≥
σ + h

∑m
j=0 pjf1(In2−j)σS

∆

1 + h(µ2 + k)
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≥
σ + hσ

∑m
j=0 pjλ(µ2 + k)

1 + h(µ2 + k)

= σ

(
1 + hλ(µ2 + k)

1 + h(µ2 + k)

)
= κσ.

Claim 3. It is impossible that In ≤ ν for all sufficient large n.

Proof of Claim 3. Assume the contrary that there is n1 such that In ≤ ν for all

n ≥ n1. Denote n2 = n1 +m+ ρm and put

σ = min
p∈[n2−m,n2]

Ip.

We have by Claim 2 that

In2+1 ≥ κσ,

where κ > 1. Observing that

min
p∈[n2+1−m,n2+1]

Ip ≥ σ.

Then we get by Claim 2 once again that

In2+2 ≥ κ min
p∈[n2+1−m,n2+1]

Ip ≥ κσ.

Continuing the argument, we obtain

In ≥ κσ for all n ≥ n2 + 1.

Let n3 = n2 + m + ρm = n1 + 2(m + ρm). Since In ≤ ν for all n ∈ [n2, n3] and

observe that

min
p∈[n3−m,n3]

Ip ≥ κσ,
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by Claim 2, we get

In3+1 ≥ κ min
p∈[n3−m,n3]

Ip ≥ κ2σ.

Note that

min
p∈[n3+1−m,n3+1]

Ip ≥ κσ.

Then we apply Claim 2 again to get

In3+2 ≥ κ min
p∈[n3+1−m,n3+1]

Ip ≥ κ2σ.

Continuing the argument, we have

In ≥ κ2σ for all n ≥ n3 + 1.

Setting nl = n1 + (l − 1)(m+ ρm) and repeating the process, we obtain

In ≥ κl−1σ for all n ≥ nl + 1.

Since κ > 1, by selecting l large enough, we can choose n ≥ n1 such that

In ≥ κl−1σ > ν,

which is a contradiction. Hence, Claim 3 is true.

Now we are ready to prove the lower estimate for In. According to Claim 3, there

are the following two possibilities.

(i) In > ν for all sufficiently large n.

(ii) In oscillates about ν for large n.

Obviously, for the case (i), we have lim infn→∞ In ≥ ν. Therefore, we give the proof

only for the case (ii). We show that there is a constant mI > 0 such that In ≥ mI
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for all large enough n. Suppose n1 < n2 are such that

In1 ≥ ν, In2 ≥ ν and In < ν for n1 < n < n2.

For any n > 0, it follows from (4.2) that

In+1 =
In + hGnSn+1

Π2

≥ In
Π2

.

By iterative method, we have

In ≥ In−1

Π2

≥ In−2

Π2
2

≥ · · · ≥ In−p

Πp
2

provided p ≤ n. Denote n3 = n1 + 1 +m+ ρm. If n1 ≤ n ≤ n3, then

In ≥ In1

Πn−n1
2

≥ In1

Π1+m+ρm
2

≥ ν

Π1+m+ρm
2

=: mI .

If n2 ≤ n3, then we obtain

In ≥ mI for all n ∈ [n1, n2].

Suppose n2 > n3. By the previous case, we get In ≥ mI for all n ∈ [n1, n3]. Next,

we will show that In ≥ mI for all n ∈ [n3 + 1, n2]. Clearly, In2 ≥ ν ≥ mI . Since

n3 − (n1 + 1) = m + ρm and In < ν for all n ∈ [n1 + 1, n3], it follows by Claim 2

that

In3+1 ≥ κ min
p∈[n3−m,n3]

Ip ≥ κmI ≥ mI .

Observe that

min
p∈[n3+1−m,n3+1]

Ip ≥ mI .
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Employing In < ν for n ∈ [n1 + 2, n3 + 1], we get by Claim 2 again that

In3+2 ≥ κ min
p∈[n3+1−m,n3+1]

Ip ≥ κmI

as long as n3 + 1 < n2. By induction, we finally conclude that

In ≥ mI for all n ∈ [n3 + 1, n2].

Since n1 and n2 are chosen in an arbitrary way and mI is independent of those,

we conclude that In ≥ mI for all large n. Therefore,

lim inf
n→∞

In ≥ mI

as desired.

Estimate for Rn. There is a constant mR > 0 such that lim inf
n→∞

Rn ≥ mR.

Proof of Estimate for Rn. From the third equation of (4.2) and Proposition 3.1,

we get

Rn+1 =
Rn + hkIn+1

Π3

>
hkIn+1

Π3

.

Consequently,

lim inf
n→∞

Rn ≥ hk

Π3

lim inf
n→∞

In ≥ hk

Π3

mI =: mR.

Therefore, the proof is complete.

4.3 Numerical Simulations

For the model (4.1), Theorem 4.3 implies that the disease goes to extinction if

R0,1 < 1. According Theorem 4.4, the disease is permanent if R0 > 1. In this

section, the numerical simulations will be given to confirm the validity of the

theoretical results obtained in the previous section. Consider the following SIRS
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Figure 4.1: Numerical solution (Sn, In, Rn) of model (4.13) with R0,1 = 0.9524

epidemic model:

Sn+1 = Λ−
2∑

j=0

pj
δIn−jSn+1

1 + βIn−j + αI2n−j

− µ1Sn+1 + γRn+1 + Sn,

In+1 =
2∑

j=0

pj
δIn−jSn+1

1 + βIn−j + αI2n−j

− (µ2 + k)In+1 + In,

Rn+1 = kIn+1 − (µ3 + γ)Rn+1 +Rn, n = 0, 1, 2, . . . .

(4.13)

For simplicity, some parameters are fixed: p1 = 0.2, p2 = 0.3, p3 = 0.5, k =

0.7, γ = 0.3, δ = 2, α = 1. Now, we present the examples and the numerical

simulations for model (4.13) with different parameters.

Example 4.5. We choose Λ = 0.2, β = 0.3, µ1 = µ3 = 0.3, µ2 = 0.7. Assuming

the following initial conditions: Sj = 3, Ij = 1, Rj = 0.5 (j = −2,−1, 0), by

calculation, we have that R0,1 = 0.9524 and the disease-free equilibrium E0 =

(0, 0, 0.67). According to Theorem 4.3, the disease-free equilibrium E0 is globally

stable, which is shown in Figure 4.1.

Example 4.6. We choose Λ = 0.2, β = −0.3, µ1 = µ3 = 0.3, µ2 = 0.7. Assuming

the following initial conditions: Sj = 3, Ij = 1, Rj = 0.5 (j = −2,−1, 0), by

calculation, we have that R0,1 = 0.9743 and the disease-free equilibrium E0 =

(0, 0, 0.67). According to Theorem 4.3, the disease-free equilibrium E0 is globally

stable, which is shown in Figure 4.2.
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Figure 4.2: Numerical solution (Sn, In, Rn) of model (4.13) with R0,1 = 0.9743

Figure 4.3: Numerical solution (Sn, In, Rn) of model (4.13) with β > 0 and R0 = 7.6923

Figure 4.4: Numerical solution (Sn, In, Rn) of model (4.13) with β < 0 and R0 = 7.6923
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Example 4.7. We choose Λ = 1, β = 1, µ1 = µ3 = 0.2, µ2 = 0.6. Setting the

following initial conditions: Sj = 3, Rj = 0.5 (j = −2,−1, 0), I−2 = I−1 = 1 and

I0 = 0.1, by calculation, we obtain R0 = 7.6923. According to Theorem 4.4, the

disease is permanent as shown in Figure 4.3.

Example 4.8. We choose Λ = 1, β = −1, µ1 = µ3 = 0.2, µ2 = 0.6. Setting the

following initial conditions: Sj = 3, Rj = 0.5 (j = −2,−1, 0), I−2 = I−1 = 1 and

I0 = 0.1, by calculation, we obtain R0 = 7.6923. According to Theorem 4.4, the

disease is permanent as shown in Figure 4.4.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

STABILITY OF A DISCRETE SIRS EPIDEMIC MODEL

WITH INCIDENCE RATE (δI2S)/(1 + βI + αI2)

In this section, we consider the discrete SIRS epidemic model (1.7) with nonlinear

incidence rate

g2(I)S =
δI2S

1 + βI + αI2
.

Then (1.7) may be written as follows:
Sn+1 = h (Λ−GnSn+1 − µ1Sn+1 + γRn+1) + Sn,

In+1 = h (GnSn+1 − (µ2 + k)In+1) + In,

Rn+1 = h (kIn+1 − (µ3 + γ)Rn+1) +Rn, n = 0, 1, 2, . . . ,

(5.1)

and it can be rearranged to obtain the explicit form

Sn+1 =
hΛ + Sn + hγRn+1

Π1 + hGn

,

In+1 =
hGnSn+1 + In

Π2

,

Rn+1 =
hkIn+1 +Rn

Π3

,

(5.2)

where Gn = Gn(I) =
m∑
j=0

pjg2(In−j). Here, we write

g2(I) = f2(I)I, where f2(I) =
δI

1 + βI + αI2
.
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Taking Sn+1 = Sn, In+1 = In = 0, Rn+1 = Rn gives Sn = S0 and Rn = 0; hence,

(5.1) admits a unique disease-free equilibrium E0 = (S0, 0, 0). To find the endemic

equilibria E∗ = (S∗, I∗, R∗), we consider the equations
Λ− g2(I

∗)S∗ − µ1S
∗ + γR∗ = 0,

g2(I
∗)S∗ − (µ2 + k)I∗ = 0,

kI∗ − (µ3 + γ)R∗ = 0.

(5.3)

Solving the last equation for R∗ and adding the first two’s, we obtain

R∗ =
kI∗

µ3 + γ
, S∗ = S0 − µ2(µ3 + γ) + kµ3

µ1(µ3 + γ)
I∗. (5.4)

By plugging S∗ into the second equation of (5.3), I∗ > 0 satisfies

1 + βI∗ + α(I∗)2 − δI∗

µ2 + k

(
S0 − µ2(µ3 + γ) + kµ3

µ1(µ3 + γ)
I∗
)

= 0.

Then I∗ satisfies the equation

(A+ α)I2 − (B − β)I + 1 = 0, (5.5)

where

A =
δ

µ2 + k

µ2(µ3 + γ) + kµ3

µ1(µ3 + γ)
, B =

δ

µ2 + k
S0.

Clearly, A > 0 and B > 0. The existence of the endemic equilibria E∗ determined

the roots of (5.5), which are

I+ =
B − β +

√
D

2(A+ α)
and I− =

B − β −
√
D

2(A+ α)
,

where D = (B − β)2 − 4(A+ α).
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Then we have

I+I− =
1

A+ α
> 0 and I+ + I− =

B − β

A+ α
.

Note that D ≥ 0 if and only if A ≤ (B−β)2−4α
4

. We denote

A0 =
(B − β)2 − 4α

4
, I0 =

B − β

2(A+ α)
.

It follows that if A > A0, in other words, D < 0, then (5.1) has no endemic

equilibrium.

• If B ≤ β then I+ + I− ≤ 0. So (5.1) has no endemic equilibrium if and only

if A ≤ A0.

• If B > β then I+ + I− > 0, so (5.1) has either one endemic equilibrium with

I∗ = I0 or two endemic equilibria. The first case occurs if and only if A = A0

and the second one occurs when A < A0.

Theorem 5.1. (5.1) has a unique disease-free equilibrium E0 = (S0, 0, 0). Re-

garding the endemic equilibria E∗ = (S∗, I∗, R∗) of (5.1), the following results

hold.

(a) there is no endemic equilibrium provided one of the following conditions holds:

(i) A > A0;

(ii) A ≤ A0 and B ≤ β;

(b) there is a unique endemic equilibrium if and only if A = A0 and B > β;

(c) there are two endemic equilibria if and only if A < A0 and B > β.

Next, we consider a special case of model (5.2) by letting m = 0 and γ = 0,

that is, (5.2) degenerates into the following discrete SIR epidemic model without
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delay times: 

Sn+1 =
hΛ + Sn

Π1 + hg2(In)
,

In+1 =
hg2(In)Sn+1 + In

Π2

,

Rn+1 =
hkIn+1 +Rn

Π3

.

(5.6)

In order to obtain the local stability of the disease-free equilibrium of (5.6), the

third equation of (5.6) can be omitted without loss of generality properties. We

define the following functions:

F (S, I) =
hΛ + S

Π1 + hg2(I)
,

G(S, I) =
hg2(I)F (S, I) + I

Π2

.

(5.7)

Then the Jacobian matrix of (5.7) is given by

J((S, I)) =


∂F (S, I)

∂S

∂F (S, I)

∂I

∂G(S, I)

∂S

∂G(S, I)

∂I

 , (5.8)

where

∂F (S, I)

∂S
=

1

Π1 + hg2(I)
,

∂F (S, I)

∂I
= −hg′2(I)(hΛ + S)

(Π1 + hg2(I))2
,

∂G(S, I)

∂S
=

hg2(I)

Π2(Π1 + hg2(I))
,

∂G(S, I)

∂I
=

1

Π2

(
1 + hg2(I)

∂F (S, I)

∂I
+ hF (S, I)g′2(I)

)
,

and

g2(I) =
δI2

1 + βI + αI2
, g′2(I) =

δI(2 + βI)

(1 + βI + αI2)2
.
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Now, we give the following theorem about the local stability of the disease-free

equilibrium of (5.6).

Theorem 5.2. The disease-free equilibrium E0 of (5.6) is locally asymptotically

stable.

Proof. Substituting the disease-free equilibrium E0 = (S0, 0) into the jacobian

matrix (5.8) yields

J(E0) =


1

1 + hµ1

0

0
1

1 + h(µ2 + k)

 .

It is easily seen that the eigenvalues of J(E0) are

λ1 =
1

1 + hµ1

and λ2 =
1

1 + h(µ2 + k)
.

Obviously, |λ1|, |λ2| < 1 for all h. Therefore, the disease-free equilibrium E0 of

(5.6) is always locally asymptotically stable.

5.1 Global Attractivity of the Disease-Free Equilibrium

In this section, by constructing a suitable Lyapunov function, we obtain the global

attractivity of the disease-free equilibrium of (5.1).

Theorem 5.3. The disease-free equilibrium E0 of (5.1) is globally attractive pro-

vided

R0,2 :=
fM
2 S0

µ2 + k
≤ 1,

where fM
2 = maxI≥0 f2(I).

Proof. Let (Sn, In, Rn) be any positive solution of (5.1) with initial condition (3.1).
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Define

U1(Sn) =
1

h

(
Sn − S0 − S0 ln

(
Sn

S0

))
,

U2(In) =
1

h
In + (µ2 + k)

m∑
j=0

pj

n∑
l=n−j

Il,

U3(Rn) =
1

2h
R2

n,

U4(Nn, Rn) =
1

2h
(Nn − S0 + ηRn)

2,

where Nn = Sn + In +Rn and η = µ2−µ1

k
≥ 0.

Computing ∆nU1 := U1(Sn+1)− U1(Sn), we have

∆nU1 =
1

h

(
Sn+1 − S0 − S0 ln

(
Sn+1

S0

)
− Sn + S0 + S0 ln

(
Sn

S0

))
=

1

h

(
Sn+1 − Sn − S0 ln

(
Sn+1

Sn

))

Employing that ln(1− x) ≤ −x for all x < 1 yields

− ln
(
Sn+1

Sn

)
= ln

(
1−

(
1− Sn

Sn+1

))
≤ −

(
Sn+1 − Sn

Sn+1

)
. (5.9)

From (5.9) and (5.1), it follows that

∆nU1 ≤
1

h

(
Sn+1 − Sn − S0

(
Sn+1 − Sn

Sn+1

))
=

1

h
(Sn+1 − Sn)

(
1− S0

Sn+1

)
= (Λ−GnSn+1 − µ1Sn+1 + γRn+1)

(
1− S0

Sn+1

)
= (Λ− µ1Sn+1)

(
1− S0

Sn+1

)
+ γRn+1

(
1− S0

Sn+1

)
−GnSn+1 +GnS

0

= µ1

(
S0 − Sn+1

)(
1− S0

Sn+1

)
+ γRn+1

(
1− S0

Sn+1

)
−GnSn+1 +GnS

0.

(5.10)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

41

Computing ∆nU2 := U2(In+1)− U2(In), we have

∆nU2 =
1

h
(In+1 − In) + (µ2 + k)

(
m∑
j=0

pj

n+1∑
l=n+1−j

Il −
m∑
j=0

pj

n∑
l=n−j

Il

)

=
1

h
(In+1 − In) + (µ2 + k)

m∑
j=0

pj(In+1 − In−j)

= GnSn+1 − (µ2 + k)In+1 + (µ2 + k)In+1 − (µ2 + k)
m∑
j=0

pjIn−j

= GnSn+1 − (µ2 + k)
m∑
j=0

pjIn−j.

(5.11)

Computing ∆nU3 := U3(Rn+1)− U3(Rn) gives

∆nU3 =
1

2h
(R2

n+1 −R2
n)

=
1

2h
(Rn+1 −Rn)(2Rn+1 +Rn −Rn+1)

≤ 1

2h
(Rn+1 −Rn)(2Rn+1)

= (kIn+1 − (µ3 + γ)Rn+1)Rn+1.

(5.12)

Finally, computing ∆nU4 := U4(Nn+1, Rn+1)− U3(Nn, Rn), we get

∆nU4 =
1

2h

[
(Nn+1 − S0 + ηRn+1)

2 − (Nn − S0 + ηRn)
2
]

=
1

2h

(
Nn+1 +Nn − 2S0 + η(Rn+1 +Rn)

)
(Nn+1 −Nn + η(Rn+1 −Rn))

=
1

2h

(
2Nn+1 +Nn −Nn+1 − 2S0 + η(2Rn+1 +Rn −Rn+1)

)
× (Nn+1 −Nn + η(Rn+1 −Rn))

=
1

h

(
Nn+1 − S0 + ηRn+1

)
(Nn+1 −Nn + η(Rn+1 −Rn))

+
1

2h
(Nn −Nn+1 + η(Rn −Rn+1)) (Nn+1 −Nn + η(Rn+1 −Rn))

=
1

h

(
Nn+1 − S0 + ηRn+1

)
(Nn+1 −Nn + η(Rn+1 −Rn))

− 1

2h
(Nn −Nn+1 + η(Rn −Rn+1)) (Nn −Nn+1 + η(Rn −Rn+1))
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=
1

h

(
Nn+1 − S0 + ηRn+1

)
(Nn+1 −Nn + η(Rn+1 −Rn))

− 1

2h
(Nn −Nn+1 + η(Rn −Rn+1))

2

≤ 1

h

(
Nn+1 − S0 + ηRn+1

)
(Nn+1 −Nn + η(Rn+1 −Rn)) .

By (5.1) and that Nn+1 −Nn = h (Λ− µ1Sn+1 − µ2In+1 − µ3Rn+1), we obtain

∆nU4 ≤ [Λ− µ1Sn+1 − µ2In+1 − µ3Rn+1 + η (kIn+1 − (µ3 + γ)Rn+1)]

×
(
Nn+1 − S0 + ηRn+1

)
=
[
−µ1

(
Sn+1 − S0 + In+1

)
− (µ3 + (µ3 + γ)η)Rn+1

]
×
(
Sn+1 + In+1 +Rn+1 − S0 + ηRn+1

)
= −µ1

(
Sn+1 − S0 + In+1

)2 − (1 + η) (µ3 + (µ3 + γ)η)R2
n+1

− (µ3 + (µ3 + γ)η + µ1 (1 + η)) In+1Rn+1

− (µ3 + (µ3 + γ)η + µ1 (1 + η))
(
Sn+1 − S0

)
Rn+1.

(5.13)

We define the following candidate for a Lyapunov function:

U(Sn, In, Rn) = U1(Sn) + U2(In) + ρ1U3(Rn) + ρ2U4(Nn, Rn),

where ρ1 and ρ2 are positive constants that will be selected in later. Calculating

∆nU := U(Sn+1, In+1, Rn+1)− U(Sn, In, Rn),

we get by (5.10) and (5.11) that

∆nU = ∆nU1 +∆nU2 + ρ1∆nU3 + ρ2∆nU4

≤ µ1

(
S0 − Sn+1

)(
1− S0

Sn+1

)
+ γRn+1

(
1− S0

Sn+1

)
−GnSn+1 +GnS

0

+GnSn+1 − (µ2 + k)
m∑
j=0

pjIn−j + ρ1∆U3(n) + ρ2∆U4(n)
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= µ1

(
S0 − Sn+1

)(
1− S0

Sn+1

)
+ γRn+1

(
1− S0

Sn+1

)
+ ρ1∆U3(n) + ρ2∆U4(n)

− (µ2 + k)
m∑
j=0

pjIn−j

(
1− f2(In−j)S

0

µ2 + k

)
.

Using (5.12), (5.13), the hypothesis and that f2(I) ≤ fM
2 for all I ≥ 0, we have

∆nU ≤ µ1

(
S0 − Sn+1

)(
1− S0

Sn+1

)
+ γRn+1

(
1− S0

Sn+1

)
+ ρ1∆U3(n) + ρ2∆U4(n)

≤ µ1

(
S0 − Sn+1

)(
1− S0

Sn+1

)
+ γRn+1

(
1− S0

Sn+1

)
+ ρ1kIn+1Rn+1

− ρ1(µ3 + γ)R2
n+1 − ρ2µ1

(
Sn+1 − S0 + In+1

)2
− ρ2 (1 + η) (µ3 + (µ3 + γ)η)R2

n+1

− ρ2 (µ3 + (µ3 + γ)η + µ1 (1 + η)) In+1Rn+1

− ρ2 (µ3 + (µ3 + γ)η + µ1 (1 + η))
(
Sn+1 − S0

)
Rn+1.

By choosing the positive constants ρ1 and ρ2 as follows:

ρ1 =
γ

kS0
and ρ2 =

γ

S0
(µ3 + (µ3 + γ)η + µ1 (1 + η))−1 ,

we have

∆nU ≤ µ1

(
S0 − Sn+1

)(
1− S0

Sn+1

)
+ γ

(
1− S0

Sn+1

)
Rn+1 +

γ

S0
In+1Rn+1

− ρ1(µ3 + γ)R2
n+1 − ρ2µ1

(
Sn+1 − S0 + In+1

)2
− ρ2 (1 + η) (µ3 + (µ3 + γ)η)R2

n+1 −
γ

S0
In+1Rn+1 −

γ

S0

(
Sn+1 − S0

)
Rn+1

= µ1

(
S0 − Sn+1

)(
1− S0

Sn+1

)
+ γ

(
1− S0

Sn+1

)
Rn+1

− ρ1(µ3 + γ)R2
n+1 − ρ2µ1

(
Sn+1 − S0 + In+1

)2
− ρ2 (1 + η) (µ3 + (µ3 + γ)η)R2

n+1 −
γ

S0

(
Sn+1 − S0

)
Rn+1.

It is clearly that ∆nU ≤ 0 whenever Sn+1 = S0. Applying Sn ̸= S0 for all n > 0
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yields

µ1

(
S0 − Sn+1

)(
1− S0

Sn+1

)
+ γ

(
1− S0

Sn+1

)
Rn+1 +

γ

S0

(
S0 − Sn+1

)
Rn+1

=
(
S0 − Sn+1

) [
µ1

(
1− S0

Sn+1

)
+

γ

S0
Rn+1

]
+ γ

(
1− S0

Sn+1

)
Rn+1

=
(
S0 − Sn+1

)(
1− S0

Sn+1

)(
1

S0

)[
Λ +

((
1− S0

Sn+1

)−1

+
S0

S0 − Sn+1

)
γRn+1

]
= − 1

S0Sn+1

(Sn+1 − S0)2(Λ + γRn+1).

This implies that

∆nU ≤ −ρ1(µ3 + γ)R2
n+1 − ρ2µ1

(
Sn+1 − S0 + In+1

)2
− ρ2 (1 + η) (µ3 + (µ3 + γ)η)R2

n+1 −
1

S0Sn+1

(Sn+1 − S0)2(Λ + γRn+1).

Finally, we have ∆nU ≤ 0. Moreover, ∆nU = 0 implies that Sn+1 = S0, Rn+1 = 0

and then In+1 = 0 for all n ≥ 0. Substituting them into model (5.1), we obtain

that Sn = S0, In = 0 and Rn = 0 for all n ≥ 0. In addition, {E0} is the largest

invariant set where ∆nU = 0. By using the LaSalle invariance principle of stability

theory of the difference equations, we directly obtain that E0 is globally attractive.

This complete the proof.

5.2 Numerical Simulations

For the model (5.1), Theorem (5.1) implies that the disease goes to extinction if

R0,2 ≤ 1. In this section, we give numerical simulations to verify theoretical results
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Figure 5.1: Numerical solution (Sn, In, Rn) of model (5.14) with R0,2 = 0.8571

obtained in the previous section. Consider the following SIRS epidemic model:

Sn+1 = Λ−
2∑

j=0

pj
δI2n−jSn+1

1 + βIn−j + αI2n−j

− µ1Sn+1 + γRn+1 + Sn,

In+1 =
2∑

j=0

pj
δI2n−jSn+1

1 + βIn−j + αI2n−j

− (µ2 + k)In+1 + In,

Rn+1 = kIn+1 − (µ3 + γ)Rn+1 +Rn, n = 0, 1, 2, . . . .

(5.14)

For simplicity, some parameters are fixed: p1 = 0.2, p2 = 0.3, p3 = 0.5, k =

0.8, γ = 0.3, δ = 2. Now, we present the examples and the numerical simulations

for model (5.14) with different parameters.

Example 5.4. We choose Λ = 0.3, β = 0.5, α = 1, µ1 = µ3 = 0.2, µ2 = 0.6.

Assuming the following initial conditions: Sj = 3, Ij = 1, Rj = 0.5 (j = −2,−1, 0),

by calculation, we have that R0,2 = 0.8571 and the disease-free equilibrium E0 =

(0, 0, 1.5). According to Theorem 4.3, the disease-free equilibrium E0 is globally

stable, which is shown in Figure 5.1.

Example 5.5. We choose Λ = 0.3, β = −0.5, α = 2, µ1 = µ3 = 0.2, µ2 = 0.7.

Assuming the following initial conditions: Sj = 3, Ij = 1, Rj = 0.5 (j = −2,−1, 0),

by calculation, we have that R0,2 = 0.8589 and the disease-free equilibrium E0 =

(0, 0, 1.5). According to Theorem 4.3, the disease-free equilibrium E0 is globally

stable as shown in Figure 5.2.
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Figure 5.2: Numerical solution (Sn, In, Rn) of model (5.14) with R0,2 = 0.8589

Figure 5.3: Numerical solution (Sn, In, Rn) of model (5.14) with R0,2 = 12.6765

Figure 5.4: Numerical solution (Sn, In, Rn) of model (5.14) with R0,2 = 4.1335
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The following examples indicate that R0,2 > 1 is not the sufficient condition

for the permanence of the model (5.14).

Example 5.6. We choose Λ = 1.5, β = −1, α = 2, µ1 = µ3 = 0.2, µ2 = 0.7.

Assuming the following initial conditions: Sj = 3, Rj = 0.5 (j = −2,−1, 0), I−2 =

I−1 = 1 and I0 = 0.1, by calculation, we have that R0,2 = 12.6765. Figure 5.3

demonstrates that the infection persist indefinitely.

Example 5.7. We choose Λ = 1.5, β = −1, α = 0.8, µ1 = µ3 = 0.2, µ2 = 1.5.

Assuming the following initial conditions: Sj = 3, Rj = 0.5 (j = −2,−1, 0), I−2 =

I−1 = 1 and I0 = 0.1, by calculation, we get R0,2 = 4.1335. Figure 5.4 indicates

that the outbreak will extinct.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER VI

FURTHER RESEARCH

In this thesis, we have concentrated on the SIRS epidemic model with the incidence

rates

δI

1 + βI + αI2
or δI2

1 + βI + αI2
.

The distributed time-delay is also included in such model, so the dynamic behavior

of the model at time t depends on the whole period prior to time t. Actually, the

model can be extended to be more realistic. For a further research, we have the

following ideas for the modeling:

1) Epidemic models with a general nonlinear incidence rate. From our

analysis presented in this thesis, sufficient conditions for the global attractivity of

disease-free equilibrium are obtained. Although many numerical simulations ex-

hibit interesting behaviors of solutions of the model, one question still unanswered

is whether the endemic equilibrium of the model is a global attractor. However, the

techniques used in this work can be extended to study the SIRS epidemic model

with a more general nonlinear incidence rate.

2) Non-autonomous epidemic models. In this work, we assume that the

parameters in the epidemic model such as the recruitment rate, death rates, trans-

mission of the disease, and recovery rate etc., are all constant. Actually, in the

real environment, those parameters will usually change with time. Therefore, non-

autonomous epidemic models with time-dependent parameters, are more suitable

and more realistic to model the dynamics of disease. There has been some research

work on the non-autonomous epidemic models (see [32, 33]).
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3) Epidemic models with vaccination. The model (1.1) can be extended by

including a class for vaccinated individuals.



Ṡ(t) = Λ− βsS(t)I(t)− (µs + kv)S(t) + γrR(t) + γvV (t),

İ(t) = βsS(t)I(t) + βvV (t)I(t)− (µi + kr)I(t),

Ṙ(t) = krI(t)− (µr + γr)R(t),

V̇ (t) = kvS(t)− (µv + γv)V (t)− βvV (t)I(t),

where βs and βv are the transmission coefficients of the S- and V - classes respec-

tively; µs, µi, µr, µv are, respectively, the death rates of S-, I-, R-, and V -classes;

kr and kv are the recovery and the vaccination rates respectively; γr and γv are the

loss of immunity rates of R- and V -classes respectively. To the best of our knowl-

edge, there is limited literature on discrete epidemic models including vaccinated

class.

4) Epidemic models with age-structure. Age-structure in epidemic models

has been studied in both discrete and continuous approaches. See for instance

[4,7,27]. In our model, we assume that the diseases exhibit temporary immunity of

recovered individuals from infection. To study the role of age-dependent immunity,

the age of recovery should be characterized in the model. Therefore, the third

equation of (1.1) may be replaced by the equation of the form

∂r(a, t)

∂a
+

∂r(a, t)

∂t
= −(µ3 + γ(a))r(a, t),

r(a, t) = kI(t), r(a, 0) = r0(a),

where r(a, t) is the density of recovered individuals with respect to the age of

recovery a at time t, and γ(a) is the rate that the recovered individual with the

recovery-age a loses immunity and returns to be susceptible. In addition, for the

models with vaccination, we may take into account the effect of age of vaccination

as well.
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