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Soil pollution is one of the pollutions caused by nature and human
activities, which are mostly the use of insecticide and chemical fertilizer to make
plants grow well and produce more products. However, these chemicals are
absorbed by soil. In this research work, properties of chemical compound affecting
soil sorption were analyzed, and model that can predict soil sorption coefficient of
chemicals (Koc) was examined by using quantitative structure property relationship
(QSPR) technique. Totally 1,327 compounds were selected, and their three-
dimensional structures were constructed. Semi-empirical PM7 method was used for
geometry optimization calculations. A total of 1,536 physicochemical properties
were computed. Multiple linear regression was employed to analyze properties of
compound affecting soil sorption and to find QSPR model. The obtained model has

a good relationship and predictive ability with r* = 0.762 and ¢ = 0.761.
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CHAPTER 1
INTRODUCTION

1.1 Overview

Nowadays, many chemicals are absorbed into the soil by several processes
both naturally occurring causes such as acid rain, volcano eruptions, earthquake,
tsunami, and anthropogenic causes such as landfil, mining, industrial waste,
agricultural activities (using insecticides and herbicides to protect the crops from insects
and pests). In these activities, a large number of chemicals in the soil are residues, and
they cause soil pollution that affects the plants and other living things that live in the
soil. Finally, it is a health hazard to animals and humans. Therefore, scientists are
interested in studying the quantity of chemicals that were adsorbed in the soil to use
the information for planning and controlling the quantity of residual chemicals in the
soil. It also assessed the environmental risk and impact of each chemical. However,
the experiment for chemisorption measurement in the soil requires a budget of
instruments, chemicals, and time-consuming for analysis. Hence, the Quantitative
Structure-Property Relationship (QSPR) method has been widely applied in the
prediction of soil sorption because it can predict chemical adsorption conveniently
and rapidly, save the budget and time, and reduce the use of chemicals that will

produce waste.

1.2 Quantitative structure-property relationship

The Quantitative Structure-Property Relationship (QSPR) method is a chemical
information technique about the mathematical model that shows a correlation
between chemical structure and property. This method can develop a mathematical
model that connects with the physicochemical properties of a molecule by using

chemometric methods to explain the physicochemical properties. [1]



The molecular descriptors of a molecule are shown in the numeric equation
and then these molecular descriptors are used to calculate the physicochemical
properties of the molecule. [2] The molecular descriptors can be estimated
physicochemical properties, and are divided into many classes such as constitutional
descriptors (molecular weight, total number of atoms, functional group), topological
descriptors (connectivity index, Wiener index, Balaban index), electrostatic descriptors
(polarizability, dipole moment), geometrical descriptors (molecular volume, molecular
surface area), thermodynamic descriptors (vibrational frequencies, translational
frequencies, rotational frequencies), and quantum chemical descriptors (HOMO/LUMO

energies, standard heat of formation). [3]

The QSPR models can be developed by first collecting the data: the data is
collected and used to create the 3D structures for calculating molecular descriptors.
Second, building the model: built QSPR model by the quantitative relationship
between something’s values and structural properties. And last, validation of the QSPR

model by validating both the internal and the external QSPR model. [4]

1.3 The soil sorption coefficient

In general, soil sorption is experimentally measured as the organic carbon-water
partition coefficient or soil sorption coefficient (Koc). Koc value can be calculated from
the ratio between the concentrations of dissolved chemicals in the soil and the
concentration of dissolved chemicals in the water compared to the organic carbon
content of a soil as shown in the equation below. From the equation, it seems that
Koc may relate with an octanol-water partition coefficient (log P). Therefore, there are
several QSPR publications that used log P as descriptor to predict the value of Kqc.
The soil sorption coefficient is applied in an environmental risk assessment and is
important for the characterization of the dispersion of chemicals in the soil phase and

water phase. [5]



concentration of chemical in soil 100

Koc =

concentration of chemical in water % organic carbon content of soil

1.4 Literature reviews

There are several research on the QSPR models of soil sorption coefficient.

In 1994, Lohninger [6] built QSPR models of a training set of 120 pesticides and
analyzed them with multiple linear regression (MLR) and neural network methods. The
QSPR model was obtained from 11 structural parameters. It consisted of 2 topological
parameters and 9 structural fragment parameters. And resultant prediction in a test

set of 81 pesticides was similar to the model that used the water solubility parameter.

In 2003, Eduardo et. al. [7] built QSPR models of 82 organic compounds that
included polar, non-polar, saturated, unsaturated, aliphatic, aromatic, and polycyclic
aromatic compounds. The best correlation of the QSPR model had r? = 0.94 with 5
parameters, namely molecular weight, the number of benzene rings, and the number
of nitrogen, oxygen, and sulfur atoms. It was found that this QSPR model used simple
parameters that were calculated from the molecular formula and the calculation of
these parameters did not need to use quantum theory and software in calculation.
Furthermore, this model could be good and predicted the soil sorption coefficient in

a data set of 43 organic compounds.

In 2005, Irish et. al. [8] studied the QSPR model of 344 compounds of organic
pollutants that different classes. The QSPR was built from each of the classes and all
344 compounds. It found that the QSPR models from each of the classes were better
than all compounds, and some QSPR models used log Koy parameter, whereas some

QSPR models did not use log Koy parameter too.

In 2007, Pablo et. al. [9] studied the QSPR model of 163 non-ionic organic
pesticides and used 1,247 theoretical descriptors to analyze the correlation with

statistical methods that they contained forward stepwise regression (FSR), genetic



algorithm (GA), and the replacement method (RM). It was found that the QSPR models

contained 6 descriptors without logP parameter in these methods.

In 2009, Nasser et. al. [10] studied the QSPR models of 124 pesticides and used
1,457 descriptors to analyze the correlation with linear regression (multiple linear
regression, MLR) and non-linear regression (artificial neural network, ANN). It was found

that the QSPR models contained 7 descriptors without logP parameter.

In 2013, Ralpho et. al. [11] studied the QSPR model of 143 pesticides by using
log P that were calculated from different algorithms. It was found the algorithm used
to calculate logP parameter had effect on the performance of the QSPR model.

Therefore, the best model obtained from logP parameter was a suitable calculation.

In 2014, Yonghua et. al. [12] studied the QSPR model of 964 several organic
compounds to analyze with 3 statistical methods: multiple linear regression (MLR),
local lazy regression (LLR), and Least squares support vector machine (LV-SVM). The
QSPR model contained 4 parameters that included logP descriptor in this model. And
the QSPR model from the LS-SVM method analysis has the highest efficiency compared

to MLR and LLR methods.

In 2019, Carlos et al. [13] studied the QSPR of a training set of 639 non-ionic
organic compounds, then they built the QSPR model by using only logP parameter,
but a training set was changed the size for studying the effect of sized and the statistical
quality. It was found that the sizes of the training set had not affected the efficiency

in the prediction of QSPR model.

All of the research articles, some research works used logP parameter while
some research did not. Therefore, this research would like to know the parameter that
affects soil sorption by using quantitative structure-property relationship methods to

know the factor of soil sorption.



1.5 Objectives

This research aims to find physicochemical properties that affect soil sorption

and to find QSPR modeling for predicting soil sorption coefficient.



CHAPTER 2
COMPUTATIONAL EXPERIMENT

2.1 Materials

2.1.1 Personal Computer

2.2.2 HyperChem Professional 8.0 software
2.2.3 MOPAC 2016 software

2.2.4 Materials studio software

2.2.5 Mordred software [14]

2.2 Computational method
2.2.1 Finding the QSPR Models

2.2.2.1 Collected Data Set

To research, study and collect data from 1994-2019 research
articles [6-13] that included chemical names, chemical structures, chemical formulas,

CAS no., and soil sorption coefficient (log Kqc). It is a total of 1,327 compounds.
2.2.2.2 Built the Chemical Structure

The 2D, and 3D structures of all 1,327 compounds were built in
HyperChem Professional 8.0 software. Geometry optimizations were performed with
the semi-empirical PM7 method in MOPAC 2016 software. A total of 1,536
physicochemical properties were calculated in Material Studio software and Mordred

software.



2.2.2.3 Built the QSPR Model

1,327 compounds were divided into a training set of 928
compounds and a test set of 399 compounds. The QSPR model was built using the
training set by a correlation between log Ko and physicochemical properties and

analyzed with the multiple linear regression (MLR) method in Materials Studio software.
2.2.2.4 Validation of the QSPR Model

The QSPR model that was obtained from the calculation in step
2.2.2.3 is analyzed to validate its efficiency using compounds in the test set. The

predicted log K, values are compared with their corresponding experimental values.
2.2.2.5 Adjustment of the QSPR Model

One of the major disadvantages of MLR method is its sensitivity
to outliers. Therefore, it is usually necessary to adjust the QSPR model by omitting

some outliers to improve the performance of the model.



CHAPTER 3
RESULTS & DISCUSSIONS

3.1 Division of chemicals to a training set and a test set

After chemical structures that were built in 3D, computed geometry
optimization with semi-empirical PM7, and calculated physicochemical properties in
Materials Studio and Mordred software, and a data set of 1,327 compounds was
divided into 2 groups, namely a training set of 928 compounds and a test set of 399

compounds, it showed in Appendix A and B.

3.2 Construction of quantitative structure-property relationship models

The quantitative structure-property relationship models constructed for the
correlation between the soil sorption coefficient and the physicochemical properties,
24 physicochemical properties in Materials Studio software and 1,519 physicochemical

properties in Mordred software.
3.2.1 Construction of QSPR model from Materials Studio software
3.2.1.1 Using 1 physicochemical property

The model 1 was constructed the correlation between the log
Koc of the training set and AlogP98 (Octanol-Water Partition Coefficient) property that

related to the model 1.

Before adjusted Model 1: log Ky = 0.503 * AlogP98 + 1.386
n=928,r* = 0598, g = 0.596

After adjusted Model 1: log Koc = 0.5800 * AlogP98 + 1.236

n = 860, r* = 0.757, o = 0.756
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Figure 3.1 Scatter plot of the calculated vs experimental log Koc of a training set of

model 1

And model 1 was validated in the test set of 399 compounds.
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Figure 3.2 Scatter plot of the predicted vs experimental log Koc of a test set of

model 1



3.2.1.2 Using 17 physicochemical properties

The model 2 was constructed the correlation between the log
Koc of a training set and 17 physicochemical properties that consist of MW (Molecular
weight), AlogP98 (Octanol-Water Partition Coefficient), HBA (Hydrogen Bond Acceptor),
HBD (Hydrogen Bond Donor), nRB (Number of Rotatable Bond), TE (Total Energy), MD
(Molecular Density), MV (Molecular Volume), MA (Molecular Area), MP (Mean
polarizability), MF (Molecular flexibility), NBE (Non-bond Energy), Ob (Orbitals), DM
(Dipole Moment), MR (Molecular refractivity), WI (Wiener index), and ZI (Zagreb index).
It found that the physicochemical properties, namely ALogP98 (Octanol-Water Partition
Coefficient), HBA (Hydrogen Bond Acceptor), MF (Molecular Flexibility), and ZI (Zagreb

Index) related to the correlation of the model 2.

Before adjusted Model 2:  log Koc = 0.475 * AlogP98 - 0.0879 * HBA + 0.0204 * MF

+0.00347 * ZI + 1.422
n =928, r* = 0.614, ¢ = 0.610

After adjusted Model 2: log Koc = 0.519 * AlogP98 - 0.0957 * HBA + 0.0172 * MF

+ 0.00458 * ZI + 1.376

n =694, r* = 0.802, o = 0.793
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Figure 3.3 Scatter plot of the calculated vs experimental log Koc of a training set of
model 2

And model 2 was validated in the test set of 399 compounds.
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Figure 3.4 Scatter plot of the predicted vs experimental log Ko of a test set of

model 2
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3.2.1.2 Using 24 physicochemical properties

The model 3 was constructed the correlation between the log
Koc of a training set and 24 physicochemical properties that consist of MW (Molecular
weight), AlogP98 (Octanol-water partition coefficient), HBA (Hydrogen Bond Acceptor),
HBD (Hydrogen Bond Donor), nRB (Number of Rotatable Bond), TE (Total Energy), MD
(Molecular Density), MV (Molecular Volume), MA (Molecular Area), MP (Mean
polarizability), MF (Molecular flexibility), NBE (Non-bond Energy), Ob (Orbitals), DM
(Dipole Moment), QM (Quadrupole moment), MR (Molecular refractivity), WI (Wiener
index), and ZI (Zagreb index), J (Balaban index), Kl (Kappa index), Chl (Chi index), nAtom
(Number of all atoms), nEle (Number of Elements), and nRing (Number of rings). It
found that the physicochemical properties, namely AlogP98 (Octanol-water partition
coefficient), HBA (Hydrogen Bond Acceptor), nRB (Number of Rotatable Bond), TD (Total
Dipole), QM-zz (Quadrupole ZZ), and WI (Wiener index) related to the correlation of

the model 3.

Before adjusted Model 3:  log Koc = 0.476 * AlogP98 - 0.0744 * HBA - 0.0180 * nRB
- 0.0367 * TD + 0.00732 * QM-zz + 0.000430 *

WI + 1.682
n =928 r° = 0.622, o = 0. 616

After adjusted Model 3: log Koc = 0.563 * AlogP98 - 0.0670 * HBA - 0.0214 * nRB
-0.0449 * TD + 0.00798 * QM-zz + 0.000341 *

WI + 1.539

n = 838, r* = 0.800, o = 0.795



Calculated log K

12

7.00

6.00

5.00

4.00

3.00

2.00
R? = 0.800

1.00 o
0.00 o
0.0 100 200 300 400 500 600  7.00

-2.00
Experimental log K
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And model 3 was validated in the test set of 399 compounds.
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Figure 3.6 Scatter plot of the predicted vs experimental log Ko of a test set of

model 3
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3.2.2 Construction of QSPR model from Mordred software
3.2.2.1 Using 1 physicochemical property

The model 4 was constructed the correlation between the log
Koc of a training set and SlogP (Octanol-Water Partition Coefficient) property that

related to the model 4.

Before adjusted Model 4:  log Ko = 0.505 * SlogP + 1.410
n =928, r’ = 0.552, ¢ = 0.549

After adjusted Model 4: log Koc = 0.638 * SlogP + 1.152

n=834,r* = 0.762, g = 0.761
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Figure 3.7 Scatter plot of the calculated vs experimental log Koc of a training set of
model 4

And model 4 was validated in the test set of 399 compounds.
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Figure 3.8 Scatter plot of the predicted vs experimental log Koc of a test set of

model 4
3.2.2.2 Using 1,519 physicochemical properties

The model 5 was constructed the correlation between the log
Koc of a training set and 1,519 physicochemical properties such as SlogP (Octanol-
Water Partition Coefficient), VR2 Dzi (Normalized Randic-like eigenvector-based index
from Barysz matrix weighted by ionization potential), MDEO-11 (Molecular Distance
Edge between primary O and primary O), ICO (0-ordered neighborhood information
content), nAtom (Number of all Atoms), nHRing (Number of Rings), nG12FAHRing
(Number of 12-or-Greater-Membered Aliphatic Fused Hetero ring), AXp-4dv (4-ordered
averaged Chi path weighted by valence electron), C3SP3 (SP3 Carbon bound to 3 other
Carbon), etc. It found that the physicochemical properties, namely SlogP (Octanol-
Water Partition Coefficient), MDEO-11 (Molecular Distance Edge between primary O and
primary O), ICO (0-ordered neighborhood information content), nHRing (Number of

Rings), nG12FAHRing (Number of 12-or-Greater-Membered Aliphatic Fused Hetero ring),
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and C3SP3 (SP3 Carbon bound to 3 other Carbon) related to the correlation of the

model 5.

Before adjusted Model 5:  log Ko = 0.530 * SlogP + 0.345 * MDEO-11 - 0.913 * ICO
+ 0.253 * nHRing + 1.628 * nG12FAHRIng -

0.256 * C3SP3 + 2.597
n =928, r*=0.637,q = 0. 623

After adjusted Model 5: log Koc = 0.631 * SlogP + 0.345 * MDEO-11 - 0.933 * ICO
+ 0.147 * nHRing + 1.378 * nG12FAHRIng -

0.143  * C3SP3 + 2.434

n = 840, r* = 0.804, g* = 0.802
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6.00 o * °
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2.00
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Calculated log K-
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0.00
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Figure 3.9 Scatter plot of the calculated vs experimental log Koc of a training set of
model 5

And model 5 was validated in a test set of 399 compounds.
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Figure 3.10 Scatter plot of the predicted vs experimental log Koc of a test set of

model 5

In this research, the soil sorption strongly depended on logP property. The soil
sorption coefficient (log Kyc) is related to the logP property in a positive way. It showed
that a compound with high logP value is highly absorbed by the soil. This agrees with
the research work of Ralpho et. al. (2013) [11], Yonghua et. al. (2014) [12] and Carlos
et. al. (2019) [13]. And this data supported the theory of the soil sorption coefficient

that it is related to logP property.

Table 3.1 Comparison of physicochemical properties, r*, and g” values all of models

Model Physicochemical properties r? q°
1 AlogP98 0.757 0.756
2 AlogP98, HBA, MF, ZI 0.802 0.793
3 AlogP98, HBA, nRB, TD, QM-zz, WI 0.800 0.795
4 SlogP 0.762 0.761
5 SlogP, MDEO-11, ICO, nHRing, nG12FAHRIing, C3SP3 0.804 0.802
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Table 3.1 summarizes data of all models, in which the physicochemical
properties of model 1-3 were calculated in Materials Studio software and those of
model 4-5 were calculated in Mordred software. All five QSPR models have the logP
property, but the difference in each model was the number of physicochemical
properties which were added in the other models. In model 1 that used AlogP98
calculated in Materials Studio 2020 software and model 4 that used SlogP calculated
in Mordred software, they have very similar statistical values. However, the model 4 is
preferred because the Mordred software is free software so all researchers can use the
software conveniently without any restriction. Therefore, model 4 that was log Koc =
0.638 * SlogP + 1.152 with r* and g values of 0.762 and 0.761 was chosen. Then, it
was validated in the test set giving r? value of 0.569. Therefore, model 4 has good
statistics and can be applied to compounds with diverse structural classes than

previous published QSPR models.

The number of physicochemical properties used in model 2 is 4 while model
3 and 5 used 6 physicochemical properties, and their r* values were increased from
0.762 in model 1 to 0.802, 0.800, and 0.804 in model 2, 3, and 5 respectively. The r?
values were increased by just 5.12 to 5.25 percentage when changing from using only
1 physicochemical property (model 4) to 4 and 6 physicochemical properties (model
2,3, and 5). This increase in r* values is statistically not significant, therefore, models 2,

3 and 5 were not chosen.

3.3 Comparison of r? and g” values of each group by using model 6, 7 and 8

Because model 4 was constructed by using several structural groups, it is
interesting to investigate QSPR model for each individual structural group whether
using only SlogP property would be adequate, or the addition of other properties into
the model would result in a higher efficiency. Therefore, the physicochemical

properties, namely MDEO-11, ICO, nHRing, nG12FAHRIng and C3SP3, which were
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obtained in model 5, were correlated in each group. Statistics for QSPR models of 11

different structural groups are shown in Table 3.2.

Table 3.2 r* and ¢ values of model 6 and 7

*Model 6 **Model 7
Gr. structure n Property(ies)
2 qz 2 qz
1 | PAHs 58 | 0.344 | 0.310 | SlogP 0.344 | 0.310
2 | Ether 20 | 0.494 | 0.339 | SlogP 0.494 | 0.339
3 | Alcohol 55 1 0.922 | 0.877 | SlogP MDEO-11 0.960 | 0.895
4 | Organophosphorus 60 | 0.278 | 0.225 | SlogP MDEO-11 0.334 | 0.188
5 | Amine 35 | 0517 | 0.403 | SlogP ICO 0.723 | 0.693
6 | Nitrile 18 | 0.738 | 0.723 | SlogP ICO 0.796 | 0.742
7 | Organosulfur 19 | 0.370 | -0.401 | SlogP ICO 0.546 | -0.407
Aliphatic
8 149 | 0.555 | 0.550 | SlogP MDEO-11 ICO 0.647 | 0.607
hydrocarbons
SlogP MDEO-11 ICO
9 | Carbonyl derivatives | 181 | 0.594 | 0.582 0.665 | 0.614
C3SP3
Benzene and SlogP MDEO-11 ICO
10 539 | 0.566 | 0.562 0.639 | 0.627
derivatives C3SP3
SlogP MDEO-11 C3SP3
11 | Heterocyclic 173 | 0.326 | 0.316 0.417 | 0.281
G12FAHRing
12 | Other compound 20 - - - - -

* used only SlogP in model 6

**used some physicochemical properties that obtained in model 5 into model 7

After the model 7 was constructed, it used some physicochemical properties

that obtained in model 5, the results showed that the compounds in group 1 and 2

still used only SlogP property but the statistics of these groups were not high. It

indicated that these structures may have other factors to affect the soil sorption or

may have complicated mechanisms of soil sorption. Model for compounds in group 3,

which uses SlogP and MDEO-11, has high efficiency with the values of r? = 0.960 and
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g’ = 0.895. Model for compounds in group 4 used the same physicochemical
properties as that of group 3, but the statistics of group 4 were lower than group 3.
From compounds in group 5, 6, and 7, models of these groups use 2 physicochemical
properties, i.e., SlogP and IC0. Model for group 8 has 3 physicochemical properties:
SlogP, MDEO-11, and ICO. Models for group 9 and 10 have 4 physicochemical
properties, which are SlogP, MDEO-11 ICO, and C3SP3. Model for group 11 uses 4

physicochemical properties, which are SlogP, MDEO-11, C3SP3, and nG12FAHRIing.

In the considered model shown in Appendix D, the significantly increased r?
was a higher percentage of 10 per the addition of 1 property, it was found that group
4, 5, and 7 conformed to this criterion. However, considering q2 values of groups 4, 5,
and 7, the q2 values of group 4 and 7 were decreased, therefore, addition of
physicochemical property in models 4 and 7 did not improve the model, but the g
value of group 5 increased significantly. Hence, only group 5, which is amine
compounds, has higher efficiency of the QSPR model. The obtained QSPR models have
different physicochemical properties in each structural group. Therefore, these results
indicated that the soil sorption mechanism was complicated and related to different

several properties.



Table 3.3 Comparison of the correlation of model 6, 7 and 8

20

Model 6 Model 7 Model 8
Gr. structure n
r? qz 2 qz 2 qz
1 | PAHs 58 0.344 0.310 0.344 0.310 0.364 0.290
2 | Ether 20 0.494 0.339 0.494 0.339 0.539 -75.26
3 | Alcohol 55 0.922 0.877 0.960 0.895 0.960 0.941
4 | Organophosphorus 60 0.278 0.225 0.334 0.188 0.347 0.184
5 | Amine 35 0.517 0.403 0.723 0.693 0.752 | -109.88
6 | Nitrile 18 0.738 0.723 0.796 0.742 0.796 | -293.13
7 | Organosulfur 19 0.370 -0.401 0.546 -0.407 0.633 -0.454
Aliphatic
8 149 | 0.555 0.550 0.647 0.607 0.657 0.641
hydrocarbons
9 | Carbonyl derivatives | 181 | 0.594 0.582 0.665 0.614 0.668 0.617
Benzene and
10 539 | 0.566 0.562 0.639 0.627 0.640 0.628
derivatives
11 | Heterocyclic 173 | 0.326 0.316 0.417 0.281 0.431 0.277
12 | Other compounds 20 = = ¢ -

In Table 3.3, Model 6 used only SlogP, Model 7 used some additional

physicochemical properties that were obtained in model 5, and model 8 used all

physicochemical properties in model 5. All of these models were constructed the

correlation of each group between log Ko and physicochemical properties to improve

the statistics. The results showed that models for compounds in group 1, 2, 4, 5, 6, 7,

and 11 have quite low r? values, and their g” values were lower than model 6 which

used only SlogP and model 7 which used one additional property. Models for

compounds in groups 3, 8, 9, 10 and 11 have similar r* and g” values to model 6 and

7, therefore, they are statistically no different. In summary, first, some physicochemical

properties might not be suitable for some structural group and second, the addition

of a number of physicochemical properties might decrease the efficiency of model.
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CHAPTER 4
CONCLUSIONS

The quantitative structure-property relationship (QSPR) method in this work
showed the mathematical model of a correlation between the soil sorption coefficient
(log Koc) and physicochemical properties that were calculated in Materials Studio and
Mordred software. All of 1,327 several structural compounds, such as aliphatic
hydrocarbon, alcohol, ether, carbonyl, amine, benzene derivatives, aromatic
hydrocarbon, heterocyclic aromatic hydrocarbon, polycyclic aromatic hydrocarbon etc.
were collected in the research article, then the structures were built 3D structure,
optimized geometry, calculated physicochemical properties and constructed the
models and analyzed model multiple linear regression analysis. It found that the
model 4: log Koc = 0.638 * SlogP + 1.152 was selected as the best QSPR model because
the physicochemical property was calculated in Mordred software that is free software
and values of r* and g are 0.762 and 0.761, respectively. The model was validated in
a test set, it gave r* predicted = 0.569. So, model 4 had better statistics and might be

applied to several classes of structures than previous research.

Adding physicochemical properties from model 5 into model 4 could improve
r* values of group 4 (organophosphorus), 5 (amine), and 7 (organosulfur) but the g?
values of group 4 and 7 were decreased, whereas the g values of group 5 was
significantly increased, so group 5 which is amine compound was higher efficiency of
QSPR model. Therefore, the addition of a number of physicochemical properties might
be decreased the efficient model. It indicated that the mechanism in the soil sorption
of each step was complicated and related to different several properties, therefore,

the model also obtained different physicochemical properties of each structural group.
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