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CHAPTER I 
INTRODUCTION 

 
1.1 Background and rationale 
 Developing a new drug is a time-consuming, expensive, and risky process. For 
developing only one novel drug, it normally takes more than 12 years and a billion US dollars on 
average [1]. Moreover, almost 90% of drug candidates fail and are not introduced into the stage of 
clinical trials [2] due to their insufficient efficacy and safety. A strategy known to successfully 
resolve the bottleneck of the drug development is drug repositioning, discovery of new 
indications for existing drugs. Due to availability of their efficacy and safety information, a 
repositioned drug can save more than half of time and costs invested for a de novo drug [1]. 
 To support a task of drug repositioning, many in silico methods have been proposed to 
identify candidates of drug-disease associations for further validation by wet lab experiments. 
Most of them are based on the similarity-based approach, which predicts the same treatments for 
similar diseases and vice versa using drug-drug and disease-disease similarities. For example, 
Gottlieb et al. [3] utilized five drug-related properties and two data sets of diseases to compute 
multiple drug-drug and disease-disease similarity scores for using in the large-scale prediction of 
drug indications (PREDICT). Wang et al. [4] integrated drug target information, drug chemical 
structures, disease phenotypes, and drug-disease associations to develop a three-layer 
heterogeneous network model (TL_HGBI) for predicting links between drugs and diseases. Luo 
et al. [5] proposed a bi-random walk method (MBiRW) which uses drug-drug similarities based 
on chemical substructures and disease-disease similarities based on disease phenotypes to infer 
new drug-disease associations. Liang et al. [6] integrated drug chemical information, protein 
domains, and gene ontology information to compute similarities among drugs in Laplacian 
Regularized Sparse Subspace Learning (LRSSL). Zhang et al. [7] utilized several drug features 
and disease semantic information for computing drug-drug and disease-disease similarities in a 
Similarity Constrained Matrix Factorization method for Drug-Disease associations (SCMFDD). 
With the similarity-based approach, several methods have been recently proposed for drug 
repositioning using network embedding [8, 9] and deep learning [10]. 
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From existing methods, various techniques were deployed to compute drug-drug and 
disease-disease similarities based on drug and disease information. At present, there is no a 
standard method to generate drug-drug and disease-disease similarities. The similarity measures 
created by different methods could be totally incongruent [11]. Furthermore, the unavailability of 
some drug or disease data may preclude the executions of the methods that require various drug 
and disease data [12]. More importantly, only confirmed drug-disease associations (positive 
samples) are affordable, and there are no non-associated pairs of drugs and diseases (negative 
samples) due to lack of application values [13]. Most supervised learning methods treated all 
drug-disease pairs out of positive samples (unlabeled samples) as negative ones although they 
contain both positives and negatives. These contaminated negative samples could lead to an 
unstable decision boundary of the model and result in the inaccurate predictions of drug-disease 
associations [14, 15]. 

To solve the problems, Wu et al. [11] proposed Ensemble Meta-Paths and Singular Value 
Decomposition (EMP-SVD) for predicting drug-disease associations under a Positive-Unlabeled 
(PU) learning setting, a learning approach with positive and unlabeled data. Without relying on 
drug and disease similarities, they utilized meta-paths, path structures for extracting network-
based information, to generate valuable features for each drug-disease pair from the drug-protein-
disease heterogeneous network. To avoid contaminated negative samples, they utilized the 
heuristic strategy for selecting reliable negative samples from unlabeled drug-disease pairs. This 
work shows the efficiency of the meta-path based approach with PU learning by producing the 
superior performance despite less data used (i.e. drug-protein, disease-protein, and drug-disease 
associations), when compared to existing methods. 

Although the meta-path based approach under the PU learning settings is really 
competent, to the best of my knowledge, there are few studies incorporating both techniques. 
Furthermore, most meta-path based methods utilize counts of paths extracted by a meta-path 
without considering information of intermediate nodes along paths although they are very 
important indicators, such as drug-associated and disease-associated proteins. In addition, most 
existing methods employ drug-associated and disease-associated proteins as primary 
intermediaries to bridge between drugs and diseases. With this granular protein information, a 
large number of proteins are required for creating accurate predictions. 
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 In this research, gene ontology (GO) terms, biological functions annotated for genes and 
gene products, are utilized as principal indicators for identifying new drug-disease associations. 
Initially, the feasibility of using GO-based similarity information, or functionality-based 
similarity measures, for discovering relationships between drugs and diseases, between drugs, and 
between diseases was assessed. Next, the novel meta-path based method under the PU learning 
settings was proposed. In this method, the drug-GO-disease tripartite network was constructed by 
using drug-GO, disease-GO, and drug-disease associations. From the network, new features of 
drug-disease pairs were generated by differentiating extracted paths according to their 
incorporated GO nodes and creating as meta-path based profiles of GO functions for each drug-
disease pair, called meta-path based functional profiles. These functional profiles of both positive 
and unlabeled samples were fed into the PU ensemble model to recognize the positive drug-
disease associations from the unlabeled drug-disease pairs. The performance of the proposed 
method was compared with those of existing methods to evaluate its efficiency. After its satisfied 
performance was demonstrated, the proposed method was employed to discover potential drug-
disease associations from the unlabeled drug-disease pairs. 
 
1.2 Research objectives 

1. To investigate the feasibility of utilizing GO functions for discovering relationships 
between drugs and diseases, between drug, and between diseases 

2. To develop a meta-path based method for generating meta-path based functional 
profiles of drug-disease pairs 

3. To propose a PU learning method with meta-path based functional profiles for 
predicting drug-disease associations 

4. To apply the proposed method for discovering potential drug-disease associations 
 
1.3 Scopes of the research 
 In this research, only approved drugs that are used in humans and interact with human 
target proteins in DrugBank (version 5.1.3) are included. Diseases and disease-associated proteins 
are limited to human diseases and human proteins found in DisGeNET (version 6.0). Functional 
information of drugs and diseases used in this research is only Gene Ontology (GO). Only 
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functional annotation data of human proteins downloaded from the Gene Ontology Annotation 
(GOA) database (version 191) are used. GO functions are linked to drugs and diseases through 
drug-associated and disease-associated proteins, respectively. 
 In the initial investigation of using GO functions, only similarity measures based on 
drug-associated and disease-associated GO functions are utilized for predicting drug-disease, 
drug-drug, and disease-disease associations. To enable further discovering of new drug-disease 
associations, the drug-drug associations are categorized based on sharing some common diseases 
between drugs. Similarly, the disease-disease associations are defined based on overlapping some 
common drugs between diseases. Seven well-known similarity indices are compared (i.e. the 
Jaccard, Braun-Blanquet, Simpson, Cosine, Sorgenfrei, McConnaughey, and derived Jaccard 
similarity index) to select the most suitable one for computing the similarity scores of the drug-
disease, drug-drug, and disease-disease pairs. To assess the performance of using the GO-based 
similarity measures for drug repositioning, the performance of using the protein-based similarity 
measures is used as the baseline performance and compared with that of using GO functions. 
 In the proposed method for predicting drug-disease associations, the meta-path based 
functional profiles are constructed using the drug-GO, disease-GO, drug-disease associations. To 
discover novel drug-disease associations, the proposed method is employed to predict the 
unlabeled drug-disease pairs in only the data set used in this dissertation. Information supporting 
potential drug-disease associations discovered by the proposed method is searched from 
ClinicalTrials.gov, Comparative Toxicogenomics Database (CTD), and literature. 
 
1.4 Expected outcomes 
 This research reveals the feasibility of utilizing GO functions in large-scale predicting 
drug-disease associations. This will lead GO functions and other functional information to gain 
more attention in being used to develop more advanced in silico methods for drug repositioning. 
Among potential drug-disease associations discovered in this research, some of them can be 
selected for further studies to verify their associations or to gain more understanding about their 
relationships. By utilizing the proposed method, the large-scale predictions can be conducted on 
larger real data sets to initially screen potential drug-disease associations for further validation in 
wet lab experiments and drug development. 
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1.5 An overview of the dissertation 
 This dissertation report consists of five chapters as illustrated in Figure 1.1. In Chapter I, 
background and rationale, objectives, scopes, and expected outcomes of the research are initially 
introduced. To briefly describe the organization of this dissertation report, an overview of the 
dissertation is also depicted. In Chapter II, background knowledge and some related works are 
given to assist in understanding other parts of this dissertation. First, de novo drug discovery and 
drug repositioning are introduced. Next, a review of the computational methods for drug 
repositioning is provided. Related terminologies are also described with a short review of their 
uses in drug repositioning, including genes, proteins, GO, meta-paths, and PU learning. 
Additionally, a mathematical formulation of XGBoost (eXtreme Gradient Boosting), an important 
model used in this research, is demonstrated. Chapter III includes a feasibility study of utilizing 
GO functions for uncovering relationships between drugs and diseases. The details of this study 
which include data sets, methods, results, discussions, and summary are provided in this section. 
Chapter IV is about another study that proposes a new PU learning method with meta-path based 
functional profiles. The details of the proposed method in terms of materials, methods, results, 
and discussions are explained in this chapter. Finally, Chapter V provides conclusions, 
limitations, and future works of this research. 
 

 
Figure 1.1 An overview of the dissertation 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II 
BACKGROUND KNOWLEDGE AND RELATED WORKS 

 
In this chapter, a motivation and definition of drug repositioning are provided. Next, 

reviews of the computational methods developed for drug repositioning are demonstrated. To 
ease of understanding in the next chapters, some fundamentals about gene ontology (GO), meta-
paths, and positive-unlabeled (PU) learning are also given with examples of related studies 
conducted for drug repositioning. Finally, a mathematical formulation of the extreme gradient 
boosting (XGBoost) method is described. 
 
2.1 De novo drug discovery and drug repositioning 

2.1.1 De novo drug discovery and its challenges 
 De novo drug discovery is the process of bringing a new drug to markets (Figure 2.1). 
Before a drug is widely used to treat patients or sold in markets, it needs to pass several rigorous 
stages to ensure its safety, efficacy, and appropriate used dosage. 
 

 
Figure 2.1 The process of de novo drug discovery (adapted from [1]) 

 
The early stage is to identify a small molecule as a potential candidate compound for 

further evaluation. At this stage, there are different routes that can lead to drug candidates such as 
adapting molecular structures of existing drugs, finding new molecules that can interact with a 
specific target or function in a particular biochemical pathway, and identifying novel compounds 
in nature [16]. This initial stage takes three to six years to achieve a candidate compound. After 
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the early drug discovery, preclinical studies are conducted in laboratories and animals to test 
toxicity and efficacy of the candidate compound [17]. This step takes about three years and is 
required by the US Food and Drug Administration (FDA) before testing a drug on people [1]. 
 After the preclinical research completed, clinical studies (phase I, II, and III) begin to 
assess drug safety and efficacy in humans. In the phase I clinical research, 10 to 100 healthy 
volunteers participate to gather safety information when different doses of the drug are applied 
[17]. Then, few hundreds of people, including both healthy people and patients, involve in the 
phase II clinical stage. The aim of this stage is to investigate effectiveness and side effects of the 
drug [18]. In most clinical studies, the stages of phase I and II takes about three years [19]. Next, 
the phase III clinical research is conducted to demonstrate efficacy and safety of the drug in a 
larger group of people. In general, greater than 300 participants from multiple sites are recruited 
at this stage [17]. Drug side effects that are undiscovered in the phase I and II clinical studies may 
be detected in the phase III clinical studies. It was reported that greater than 70% of candidate 
drugs failed at this stage [18]. Normally, the phase III clinical studies are done for three years 
[19]. After that, all drug safety and efficacy data are submitted to FDA for making a decision to 
approve or not approve the drug. This process may require one to two years [1]. 
 Due to those several stages to ensure drug safety and efficacy, the overall process to 
achieve one novel drug to markets takes 12 to 16 years. This very long time could prevent the 
production of new drugs serving the therapeutic needs of various diseases, such as emerging 
infectious diseases [20]. Moreover, developing a new drug costs more than a billion US dollar on 
average, and the costs increase every year [1]. Despite the larger amount of budgets invested in 
drug development, the trend of the number of FDA approved drugs per dollar are continually 
decreasing since 1950 [21]. This attrition rate is mainly due to more stringent FDA regulations 
and unimpressive results of preclinical and clinical studies of investigated drugs [22]. It was 
estimated that there is a success rate of only 2.01% in de novo drug discovery [19]. Most 
compounds failed to accomplish FDA approval because of their insufficient efficacy and safety 
[22]. All challenges of de novo drug discovery direct researchers and pharmaceutical companies 
to other approaches that can reduce time, costs, and risk in the drug development. 
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2.1.2 Drug repositioning 
 A drug typically interacts with more than one protein and sometimes it binds to unwanted 
targets [23], called off-target proteins. This could lead to negative or positive pharmacological 
effects and also provide opportunities of discovering new drug uses. In general, the process of 
discovering new indications for approved drugs is known as drug repositioning. Sometimes, 
several terms are used synonymously with drug repositioning, such as drug repurposing, drug 
redirecting, drug rediscovery, drug reprofiling, drug retasking, drug redirecting, and therapeutic 
switching [14, 24]. 
 Typically, drug repositioning is conducted in three steps [25] as shown in Figure 2.2. The 
first important step is to identify new promising relations between approved drugs and diseases. 
This task is often accomplished by using computational approaches, but sometimes it is 
conducted by wet lab experiments. This step may include the preclinical testing if there is 
insufficient information about the approved drugs of interest. Then, the clinical trials are 
conducted to investigate safety and efficacy of the drugs when they are applied to the new 
diseases. In some cases of drug repositioning, sufficient information of drug safety and efficacy in 
preclinical models and humans already exists, leading to starting at the stage of the phase III 
clinical studies [26]. Despite existing FDA approval of the investigated drugs, before using for the 
new diseases, the new applications of these drugs need to be approved by FDA again. 
 

 
Figure 2.2 The shortened process of drug repositioning 

 
 Because safety and efficacy information of approved drugs already exists, drug 
repositioning can shorten the conventional process of the drug development. To achieve a 
repositioned drug, it was estimated that drug repositioning takes only six years and costs $300 
million on average [1]. These are drastically reduced from those of de novo drug discovery. 
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Moreover, repositioned drug candidates have lower risks to fail, since they have been already 
approved for their safety in humans [26]. Due to its shorter time, cheaper costs, and lower risks, 
drug repositioning is known to solve the bottleneck in drug development and has been paid more 
attention from researchers and pharmaceutical companies during these recent years. 
 

2.1.3 Successful cases of drug repositioning 
 To explicitly demonstrate the auspiciousness of drug repositioning, some successful 
cases of repositioned drugs are given as shown in Table 2.1. The most well-known repositioned 
drug is sildenafil. This drug acts as a phosphodiesterase type 5 (PDE5) inhibitor and was 
originated to treat angina, a symptom related to coronary heart disease, by Pfizer. Unfortunately, 
this drug failed in the phase II clinical research due to its insufficient efficacy for angina. 
Nevertheless, during the clinical trials, sildenafil was fortuitously found to induce penile erections 
[27]. Then, sildenafil was approved by FDA for the treatment of erectile dysfunction in 1998 and 
globally sold as Viagra with the total sales in 2012 of $2.05 billion [26]. 
 

Table 2.1 Examples of successful repositioned drugs (partially adopted from [26]) 
Drug name Original indication New indication Year of approval 

Aspirin Inflammation, pain Recurrent stroke 1980 
Zidovudine Cancer HIV/ AIDS 1987 
Minoxidil Hypertension Hair loss 1988 
Sildenafil Angina Erectile dysfunction 1998 

Thalidomide Morning sickness Multiple myeloma 2006 
 
 Minoxidil was known to alleviate hypertension and approved by FDA since the 1979 
[28]. During the clinical studies, hair growth in patients was coincidentally specified as an 
adverse effect of minoxidil. This drug was further developed and received the new FDA approval 
for the treatment of hair loss in 1988. It was reported that minoxidil reached the worldwide sales 
in 2016 of $860 million [26]. 
 Zidovudine was first synthesized to serve as an anticancer agent in 1964, but its low 
efficacy and high toxicity led zidovudine to fail the treatment of cancer at that time. Until 1984, it 
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was discovered that zidovudine could inhibit human immunodeficiency viruses (HIV) and raise 
CD4 cells in patients with Acquired Immunodeficiency Syndrome (AIDS) [29]. These led to the 
FDA approval of zidovudine as the first drug used against HIV in 1987 [26]. 
 Thalidomide was approved for the treatment of morning sickness in pregnant women and 
sold in some countries since 1957 [26]. Four years later, thalidomide was withdrawn because it 
was reported that women who had taken this drug during their pregnancies could procreate 
children with serious skeletal defects. Serendipitously, it was found that thalidomide could act as 
an anticancer agent for multiple myeloma, leading to its new FDA approval in 2006 [27]. 
 Aspirin is known to relieve inflammation and pain. Due to the wide range of effects of 
aspirin, it has been revealed the potentialities for treatments of several diseases, including strokes 
and colorectal cancer. In 1980, FDA approved the use of aspirin for preventing recurrent strokes 
after ischemic strokes, a type of strokes [30]. In 2015, US Preventive Services Task Force 
(UPSTF), an independent association of national experts for issuing prevention recommendations, 
officially suggested the use of aspirin for preventing colorectal cancer [26]. However, the use of 
aspirin for the treatment of colorectal cancer has been still under investigation in the stage of 
clinical studies. 
 According to the given cases of drug repositioning, it is noticeable that they were 
coincidentally discovered from the observations during conducting clinical trials or in vitro 
experiments. Sometimes, these experimental approaches take too long to initiate a new drug-
disease therapeutic relation for further validation in the drug repositioning process. However, 
such successful cases motivate researchers to create more systematic and effective approaches 
which can identify a lot of potential drug-disease treatment relations in a short time. 
 
2.2 Computational drug repositioning 
 Due to the advent of advanced biotechnologies, a ton of biological data can be generated 
and publicly provided in many databases, including drug-related and disease-related data. These 
data give us an opportunity to deploy computational approaches for more efficiently uncovering 
potential drug-disease treatment relations. Several computational methods have been proposed for 
identifying drug-disease associations. In this section, an overview of the strategies used in 
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computational drug repositioning is demonstrated. Then, the reviews of existing methods using 
each strategy are given. 
 

2.2.1 Strategies for computational drug repositioning 
 A large number of in silico methods with various strategies have been developed to 
support drug repositioning. To give an overview of those methods, different perspectives are used 
for clustering computational methods used in drug repositioning. For example, Xue et al. [19] 
categorized existing methods into three groups based on their methodologies, which are network-
based, text-mining based, and semantic based methods. In this review, strategies used in 
computational drug repositioning are categorized into five groups which include genetic variation 
based repositioning, signature-based repositioning, molecular docking based repositioning, 
phenotype-based repositioning, and similarity-based repositioning, as shown in Figure 2.3. 
 

 
Figure 2.3 An overview of strategies used in computational drug repositioning 

 
 In genetic variation based repositioning, genome data from many people are compared to 
associate particular variations found in deoxyribonucleic acid (DNA) sequences with a disease 
trait. This approach is known as genome-wide association studies (GWAS). GWAS genes 
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containing genetic variations which are significantly associated with a disease could be proposed 
as potential targets for the disease treatment. Signature-based repositioning utilizes transcriptomic 
data to identify genes that the expression levels are altered due to drug uses or the courses of 
diseases, called gene signatures. Based on the gene signatures of drugs and diseases, novel drug-
disease associations can be inferred. Molecular docking based repositioning typically uses the 
structures of target proteins and small molecules to simulate how the molecules bind to their 
targets. Phenotype-based repositioning employs phenotypic data for discovering new drug-disease 
associations such as electronic health records (EHRs) and clinical data. Similarity-based 
repositioning presumes that similar drugs tend to have the same indications and similar diseases 
should have the same treatments. 
 

2.2.2 Genetic variation based repositioning 
The progress of DNA sequencing technologies leads the cost for an individual’s genome 

cheaper than it was in the past. This helps to produce a bunch of human genome data and gives an 
opportunity to study how genotypes link to phenotypic traits on populations. A genome wide 
association study (GWAS) is an approach that links genetic variants to a particular disease. 
GWAS can be used to infer new targets for a disease which would be utilized for further drug 
development [26]. For example, Sanseau et al. [31] utilized GWAS data obtained from the US 
National Human Genome Research Institute (NHGRI) to construct a collection of genes 
associated with disease traits. They proposed 991 GWAS genes as potential drug targets for drug 
development and found that the 155 out of these genes were already in the process of drug 
development at that time. Interestingly, 92 GWAS genes showed mismatches between their 
disease traits and old drug indications which indicate the opportunities to use those mismatched 
genes as promising targets for the new diseases [31]. Okada et al. [32] conducted the GWAS 
meta-analysis in more than 100,000 European and Asian people to detect the risk loci of 
rheumatoid arthritis (RA). They discovered 101 risk loci in 98 genes which were further proposed 
as potential drug target genes for the treatment of RA. By the enrichment analysis, they also 
demonstrated that those candidate genes significantly overlapped with known drug target genes of 
RA. 
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However, GWAS data provide only genomic information associated with diseases, which 
cannot completely suggest what kind of drugs are potential for the treatment of the diseases (e.g. 
activator or suppressor) [26]. Thus, integrating GWAS data with other omics data, such as 
transcriptomic data, would be more promising to perform functional studies, leading to more 
apparent solutions in drug repositioning. 
 

2.2.3 Signature-based repositioning 
Signature-based repositioning utilizes gene expression data related to drugs and diseases 

to infer new drug-disease associations. A transcriptomic signature of a drug or a disease is 
specific alteration of gene expression levels due to drug uses or the course of the disease. An 
example of this strategy is signature reversion. This approach assumes that a drug can treat a 
disease by reversing the expression levels of genes perturbed under a disease condition to normal 
expression levels [22]. Therefore, gene expression profiles of drugs and diseases are compared to 
discover the opposite expression patterns between drugs and diseases. Dudley et al. [33] 
compared between gene expression profiles of Inflammatory Bowel Disease (IBD) and those of 
164 drugs obtained from the Connectivity Map (CMap) database. Based on the comparison of the 
gene expression profiles, they derived the therapeutic scores of all drugs, which more negative 
values indicate more anti-correlated patterns of the gene expression between drugs and diseases. 
Consequently, topiramate was proposed as a new promising drug for the treatment of IBD. Sirota 
et al. [34] performed a large-scale signature-based drug repositioning by comparing CMap gene 
expression data of 164 drugs against transcriptomic data of 100 diseases. They discovered more 
than a thousand potential drug-disease associations and selected the drug cimetidine to be 
experimentally validated for the treatment of lung adenocarcinoma in mouse models. The results 
also showed the therapeutic effects of cimetidine for this lung cancer. 

Although some studies demonstrate the competence of the signature-based strategy for 
drug repositioning, this strategy has some drawbacks that should be aware of [22]. First, gene 
expression data typically contain a large amount of noise resulting in many false positive or 
negative signatures of drugs and diseases. Furthermore, differential expression of genes 
sometimes is not directly caused by a disease. Therefore, reversing expression levels of those 
genes induced by drugs may not be able to treat the disease. 
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2.2.4 Molecular docking based repositioning 
 Molecular docking is a computational approach to predict the potentiality of small 
molecules in binding to their targets. For this strategy, structural data of both drugs and their 
targets are required. If prior knowledge about an interested target of a disease is known, then 
virtual screening, computational search in multiple drugs to discover those that can potentially 
bind to the target protein, can be performed by the molecular docking technique. In reverse, 
multiple targets can be computationally searched to find the target structure that are most 
compatible with a particular small molecule [26]. To identify potential drug-disease associations, 
Dakshanamurthy et al. [35] performed a large-scale molecular docking with 2,335 crystal 
structures of human proteins and 3,671 FDA approved drugs. Consequently, they discovered 
anticancer effects of mebendazole, an anti-worm drug. They also validated this association by wet 
lab experiments and found that mebendazole can inhibit vascular endothelial growth factor 
receptor 2 (VEGFR2) activity resulting in reducing angiogenesis. 
 Nevertheless, there are some limitations in the use of the molecular docking based 
repositioning [26]. Currently, 3D structural data of many target proteins are still unavailable. Lack 
of the structural data of an interested target impedes the molecular docking based repositioning. 
In addition, the refined target structures are required to obtain accurate results of molecular 
docking. Sometimes, only low-resolution structural data are provided, which could lead to high 
false positive and negative rates in prediction for drug repositioning. 
 

2.2.5 Phenotype-based repositioning 
Phenotype-based repositioning are mainly based on phenotypic information such as 

electronic health records (EHRs) and clinical trial data. EHRs contain medical histories of 
patients which include diagnoses, symptoms, laboratory results, drug prescriptions, responses, 
and medical images. Natural language processing can help to mine such large EHR data for drug 
repositioning. Xu et al. [36] mined EHR data of cancer patients from two large sources and 
constructed a cohort of patients with both cancers and type 2 diabetes to investigate their drug 
exposure. Consequently, they discovered the association between decreased mortality rates in 
cancer patients and the uses of metformin, a drug conventionally used to treat type 2 diabetes. 
Because EHR data are collected from a large number of patients and for long time periods, it 
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would be possible to conduct a large-scale drug repositioning on these massive EHR data. In this 
recent years, researchers and pharmaceutical companies pay more attention on utilizing EHR data 
for drug repositioning. However, some studies with EHRs are stumbled due to the problems of 
data privacy, incompleteness, inaccuracy, and incompatibility [22]. 
 

2.2.6 Similarity-based repositioning 
During many recent years, the vast majority of computational drug repositioning methods 

have been developed using this strategy. Similarity-based methods discover new drug-disease 
associations mainly based on similarities between drugs and diseases, between drugs, or between 
diseases. An important principle underlying similarity-based methods is Guilt-By-Association 
(GBA) [37]. In drug repositioning, GBA is the principle assumes that similar drugs tend to have 
the same drug indications or share some common diseases as shown in Figure 2.4(a). Conversely, 
similar diseases tend to have common treatments or share some common drugs as shown in 
Figure 2.4(b). Some similarity-based methods utilize both drug-drug and disease-disease 
similarity to infer new drug-disease associations. According to Figure 2.4(c), if drug 1 is similar 
to drug 2, disease 1 is also similar to disease 2, and the association between drug 1 and disease 1 
is known, the association between drug 2 and disease 2 can be inferred by GBA. 
 

 
      (a) Drug-drug similarity (b) Disease-disease similarity       (c) Both similarities 

Figure 2.4 Various cases to illustrate the guilt-by-association principle  (adapted from [22]) 
 
A method that simply applies GBA is the work of Chiang and Butte [38]. They defined 

disease-disease similarity based on medications that are shared between two diseases. They 
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assumed that if there is at least one common drug between two diseases, then all drugs of one 
disease could be used for the treatment of another disease. By investigating FDA approved drugs 
and drug indications, they could suggest more than 57,000 potential drug-disease associations, 
and these associations were 12 times more likely to be found in the database of clinical trials than 
those associations that were not suggested by their proposed method. 

Similarity-based methods can be divided into two groups which are those with similarity 
scores and those without similarity scores. The former is a group of methods that require  
drug-drug and disease-disease similarity scores for further identifying new drug-disease 
associations. The latter is a group of methods that do not pre-compute drug-drug and  
disease-disease similarity scores. Without preparing similarity scores, these methods directly 
integrate heterogeneous data and use more sophisticated approaches to properly manipulate these 
integrated data models for predicting drug-disease associations. For instance, a method creates 
drug features from collected drug properties and uses a machine learning method to predict their 
associated disease classes. In addition, similarity-based methods can be categorized based on their 
core models which are machine learning, deep learning, and network models. To ease of 
understanding, similarity-based methods are mainly separately mentioned according to their core 
models (i.e. network and machine learning models) and chronologically reviewed in this section. 

A network is a powerful tool to represent relationships between one or more than one 
object type. With a support of integrating multiple objects in a network, network-based 
approaches have been widely utilized in many applications, including drug repositioning. With 
linking at least between a drug-drug similarity network and a disease-disease similarity network, 
GBA can be used to infer new missing links between drugs and diseases in the integrated 
network. Wang et al. [39] proposed a Heterogeneous Graph Based Inference (HGBI) method for 
identifying GBA-based missing links between drugs and target proteins. Also, this method can be 
applied for predicting drug-disease associations. Initially, they constructed a network that 
integrates drug-drug similarity scores, disease-disease similarity scores, and known drug-disease 
associations. They computed drug similarity scores based on drug chemical structures and disease 
similarity scores based on Medical Subject Headings (MeSH) terms describing diseases.  
They performed an iterative process to propagate existing edge weights throughout the network to 
generate novel links with their estimated weights between drugs and diseases.  
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Next, Wang et al. [4] improved HGBI by additionally integrating drug-target interactions and 
target-target similarity scores based on the target protein sequences into a heterogeneous network 
and called this new method as the Triple Layer Heterogeneous Graph Based Inference 
(TL_HGBI). They also adjusted the iterative algorithm to be compatible with this triple layer 
network. Consequently, they found that TL_HGBI could perform better than HGBI by integrating 
drug target information. 

With the success of using the heterogeneous networks for drug repositioning, Martínez et 
al. proposed a new method to prioritize drug-disease associations in the heterogeneous network 
called DrugNet [40]. Their network integrates three subnetworks which include the drug-drug 
similarity network based on the Anatomical Therapeutic Chemical (ATC) codes, the  
disease-disease similarity network based on Disease Ontology (DO), and the protein-protein 
interaction (PPI) network. These subnetworks were connected to one another by known  
drug-disease, drug-protein, and disease-protein associations. To prioritize new drug-disease 
associations, they applied a propagation flow algorithm, called ProphNet, which uses a drug and a 
disease of known drug-disease associations as two query nodes for propagating the nodes’ initial 
scores to their neighbors along intra-connections and inter-connections. As a result, DrugNet can 
efficiently identify drug-disease associations studied in the clinical trials with the mean Area 
Under the Receiver Operating Characteristic curve (AUROC) of 0.8364. Moreover, they found 
that there was a bias of ATC codes where some of them were linked to many drugs. This resulted 
in the higher ranking of those diseases due to their propagated scores accumulated from multiple 
drug nodes. 

Luo et al. [5] developed the bi-random walk based method (MBiRW) with new similarity 
measures to predict drug-disease associations. Initially, they computed drug-drug and disease-
disease similarity scores based on the drug chemical structures and disease MeSH terms, 
respectively. By using known drug-disease associations, they improved drug similarity scores 
based on common diseases between drugs and adjusted disease similarity scores based on 
common drugs between diseases. Then, they applied a bi-random walk algorithm in the 
heterogeneous network that integrates the adjusted drug and disease similarity scores with known 
drug-disease associations. Their results showed that MBiRW significantly outperformed 
TL_HGBI and DrugNet. However, they also suggested to improve the performance of MBiRW 
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by using additional information (e.g. target information) for further adjusting similarity scores and 
building a more complex heterogeneous network. 

According to the network-based methods, it is noteworthy that integrating various  
drug-related and disease-related data could improve the performance of a method. Nevertheless, 
more complex networks resulting from multiple data integration require more advanced 
approaches to most advantageously exploit diverse information for making predictions. For many 
recent years, machine learning is widely used to construct a predictive model for diverse 
applications, including drug repositioning. In 2011, Gottlieb et al. [3] proposed the most well-
known machine learning model for PREdicting Drug IndiCaTions (PREDICT). They utilized five 
drug-related data (i.e. chemical structures, side effects, protein sequences, GO annotation, and PPI 
network based information of drug targets) to construct a drug-drug similarity matrix. For 
measuring disease-disease similarity, they used both phenotypic and genotypic data set. The 
phenotypic data are disease terms including MeSH and Human Phenotype Ontology (HPO) 
terms. The genetic data are the data about disease gene signatures obtained from the gene 
expression analysis, including sequences, PPI-based information, and GO annotation of the 
disease genes. In PREDICT, features of drug-disease pairs were obtained by combining all drug 
and disease similarity scores, and these features were fed into a logistic regression model. By 10-
fold cross validation, PREDICT performed better than the method of Chiang and Butte [38] with 
the AUROC value of 0.91. In addition, drug-disease associations proposed by PREDICT were 
significantly found in the list of drug-disease associations under investigation in clinical studies. 
 To predict drug multi-therapeutic classes according to the ATC codes, Napolitano et al. 
[41] developed a multi-class support vector machine (SVM). They derived drug-drug similarity 
scores from chemical structures, PPI-based information of drug targets, and gene expression 
profiles after drug uses. Then, they integrated all drug similarity scores by averaging to obtain one 
drug similarity matrix. They compared the performance of both individual and integrated drug 
similarity measures. As a result, they found that the integrated similarity measure produces the 
highest AUROC value. Moreover, their classifier achieves the accuracy of 78%. 
 Due to availability of diverse drug and disease information, many methods integrated 
multiple similarity measures of drugs and diseases to advantageously exploit different views of 
heterogeneous data, possibly leading to an improved accuracy in predictions [42]. Without using 
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a direct operation (e.g. averaging), another approach which efficiently integrates multiple 
similarity matrices on a latent feature space is a matrix factorization based approach with 
optimization techniques. Zhang et al. [43] proposed the DDR method which were created as a 
nonlinear optimization model to identify new drug-disease associations. They used chemical 
structures, side effects, and target protein sequences to create drug-drug similarity scores and 
employed MeSH, DO, and sequences of disease-associated genes to derive disease-disease 
similarity scores. In DDR, multiple drug and disease similarity measures were integrated with 
different weights through an optimization model resulting in the latent drug clustering and disease 
clustering matrix, respectively. Consequently, DDR outperformed PREDICT and could identify 
the drugs (i.e. nelfinavir and leflunomide) under investigation in clinical trials for the treatment of 
Systematic Lupus Erythematosus (SLE). 
 Liang et al. [6] also proposed another optimization model for drug repositioning called 
Laplacian Regularized Sparse Subspace Learning (LRSSL). In LRSSL, three drug feature 
profiles, including the profiles of drug chemical structures, target domains, and target GO 
annotation, were integrated on a common latent subspace. Then, they formulated an optimization 
model with Laplacian regularization for predicting new drug indications. As a result, LRSSL 
could efficiently identify many new drug indications which were supported by evidence in public 
databases and literature. Moreover, they found that the target protein domain and the functional 
annotation could suggest to underlying mechanisms of the predicted drugs. 
 Zhang et al. [7] developed the Similarity Constrained Matrix Factorization method for 
predicting Drug-Disease associations (SCMFDD). In measuring drug-drug similarities, they 
utilized several drug features, including chemical structures, drug target interactions, enzymes, 
pathways, and drug-drug interactions. They calculated disease semantic similarity scores based on 
MeSH terms. Different combinations between one drug similarity and the disease semantic 
similarity scores were employed as constraints for the matrix factorization of known drug-disease 
associations. By comparing with other methods, SCMFDD noticeably outperformes PREDICT 
and LRSSL. Although all different combinations of drug and disease similarities showed better 
performance than those of other methods, the question which drug and disease features should be 
combined to create the best SCMFDD model for new data sets is still difficult to answer. 
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 With the progress of computing technologies and big data generation, deep learning has 
become popular and also has been applied for drug repositioning. For example, Zeng et al. [9] 
proposed a deep learning method for drug repositioning (deepDR). They used multiple drug 
features which include drug-drug interactions, drug targets, side effects, chemical structures, 
ATC-based drug indications, target sequences, and GO annotation. They fused multiple drug 
features and created common low-dimensional representations of drugs using multi-modal 
autoencoder. After that, they employed the collective variational autoencoder (cVAE) for 
classifying drug-disease associations. By 5-fold cross validation, deepDR achieves the high 
AUROC value of 0.908. With an external data set, deepDR reaches the AUROC value of 0.826. 
Furthermore, they suggested to integrate disease-related data to improve the performance of 
deepDR. 
 In the similarity-based methods, various drug and disease data were included, and 
different techniques were applied to integrate multiple similarity measures. It was found in the 
study of Campillos et al. [22] that some similar drugs based on the drug side effects did not share 
their drug targets or indications. This suggests that drug (disease) similarity based on some drug 
(disease) properties cannot totally point to accurate indications (treatments). With these 
properties, multiple data integration may conceal signals of potential drug-disease associations. 
To avoid this problem, recent methods were proposed with less data required, but they can 
produce better performance than those of existing methods that uses more data. Zhou et al. [8] 
developed a Network Embedding based method for predicting Drug-Disease associations 
(NEDD). This method utilizes the same heterogeneous network as that of HGBI and MBiRW, 
which integrates a drug similarity measure based on chemical structures and a disease similarity 
measure based on MeSH terms with known drug-disease associations. They used HIN2vec 
(Heterogeneous Information Network to Vector) [44], a network representation learning method 
based on neural networks, to create network representation features of drug and disease nodes. 
They utilized a random forest model to classify drug-disease pairs based on those network 
embedding features. Despite the same drug and disease features used, NEDD outperformes the 
existing network-based methods, including HGBI and MBiRW, due to the advantages of a 
network embedding approach. 
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 Another example is the work of Tian et al. [45] who introduced a new method called 
HeteSim_DrugDisease or HSDD for predicting drug-disease associations. They also employed 
the same heterogeneous network as that used in HGBI, MBiRW, and NEDD. They measure 
relatedness between drug and disease nodes through diverse meta-paths, path structures defined 
for extracting semantic information between a pair of node types. HeteSim scores, meta-path 
based scores, were calculated for all drug-disease pairs and used to classify drug-disease 
associations. As a result, HSDD performs better than HGBI and MBiRW. Moreover, HSDD 
outperforms DrugNet, which requires more data than those used in HSDD. 
 In addition to less information required, recent machine learning based methods were 
developed to deal with lack of negative samples in drug repositioning. In nature, only known 
(positive) drug-disease associations are available, but no non-associated (negative) pair between 
drugs and diseases is identified due to its lack of applications [13]. To temporarily unlock this 
limitation, most supervised learning based methods, including deep learning methods, treated all 
unknown (unlabeled) drug-disease associations as negatives. This could result in an unstable and 
unreliable classifier obtained due to making use of contaminated negative samples [46]. 
 To solve this problem, Wu et al. [11] proposed the Ensemble Meta-Paths and Singular 
Value Decomposition (EMP-SVD) method with a heuristic strategy for selecting reliable 
negatives. They used only drug-protein, disease-protein, and drug-disease associations to 
construct a heterogeneous network. Without drug and disease similarity scores, they utilized 
multiple meta-paths to generate network-based features of drug-disease pairs. They selected 
negative samples from unlabeled drug-disease pairs which have no common interacting proteins. 
Based on each meta-path, latent features of both positive and negative drug-disease pairs obtained 
from the singular value decomposition (SVD) method were used to generate a random forest 
classifier. Finally, they aggregated multiple meta-path based classifiers as an ensemble model. As 
a result, EMP-SVD achieves the greatest values of AUPRC (0.956) and AUROC (0.951) when 
compared to state-of-the-art methods, including PREDICT, TL_HGBI, MBiRW, LRSSL, and 
SCMFDD. 

Recently, Liu et al. [47] also developed an improved version of EMP-SVD, called 
Topological Similarity and Singular Value Decomposition (TS-SVD). Based on the same network 
as that of EMP-SVD, they constructed drug-drug and disease-disease topological similarity 
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matrices. To create latent features of drug-disease pairs, they performed SVD on the topological 
similarity matrices of drugs and diseases. They also improved the negative selection strategy of 
EMP-SVD by selecting unlabeled drug-disease pairs with no k-step paths in the network linking 
between drugs and diseases, where k = 1, 2, and 3. The results showed that they can greatly 
enhance the performance of EMP-SVD with the AUROC value of 0.966 and the AUPRC value of 
0.974. 
 The summary of drug and disease data used in each similarity-based method mentioned 
in this section is shown in Table 2.2. It is noteworthy that most existing similarity-based methods 
utilize diverse drug and disease information, such as drug chemical structures, drug-associated 
proteins, drug indications, disease phenotypic terms, and disease-associated proteins, with the 
hope to enhance performance in predicting drug-disease associations. However, multiple data 
integration in similarity-based methods usually raises two difficult questions. First, which should 
drug and disease information be included in the methods? It should be noted that useless drug or 
disease properties included may decrease signals of potential drug-disease associations. In 
addition, the more the drug and disease information required for a method are diverse, the harder 
the execution of that method is. Second, what is the most appropriate way to integrate all drug 
and disease data? Currently, there is no a standard method to integrate diverse similarity 
measures. Different techniques could lead to discrepant results, and no one knows which one is 
more accurate. To avoid these issues, some recent methods were proposed with less but important 
drug and disease information. Despite less data used, these methods can accomplish better 
performance when compared to other methods with the multiple data integration. Moreover, with 
less drug and disease information required, a larger number of drugs and diseases can be probably 
incorporated into a method, enabling a large-scale prediction of drug-disease associations. 
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2.3 Genes, Proteins, and Gene Ontology (GO) 
2.3.1 Use of genes and proteins to discover the drug-disease relationships 

 Genes are portions of a genome which can be encoded to produce gene products, such as 
ribonucleic acids (RNAs) and proteins, which mostly are relevant to some biological functions in 
the cells of organisms. Human diseases can be caused by abnormalities in gene and protein 
functionalities. For example, mutations in the factor VIII gene (F8) or the factor IX gene (F9) 
result in deficiencies of coagulation factor VIII or factor IX which can cause hemophilia type A 
and B [48]. In many studies, genes and proteins associated with diseases are often utilized to 
produce disease-disease similarity measures for predicting disease-disease associations. A high 
score of a disease-disease association could point to a shared cause and treatment of diseases [49]. 
Goh et al. [50] constructed a human disease network (HDN) where connects any two diseases by 
a weighted link based on the number of genes overlapping between both diseases. In HDN, they 
found that diseases in the same disease class are usually grouped in the same network cluster due 
to the greater number of genes shared among the diseases. Since similar diseases are often treated 
by the same drugs, drug repositioning hypotheses could be simply generated within the same 
disease cluster of HDN. However, some disease-disease associations which have no common 
genes cannot be detected using HDN. Zheng et al. [51] constructed expanded HDN (eHDN) by 
integrating PPIs with disease-associated genes. When compared to HDN, they discovered many 
new links between diseases which could benefit more insights regarding disease relations and 
treatments. 
 Drugs interact with their targets, mostly proteins, at the molecular level to affect the 
downstream biological processes for disease treatments. Based on drug-interacting proteins, high 
similarity between two drugs may suggest that both drugs have the same mechanisms of action 
and some common drug indications [52]. Yildirim et al. [53] proposed a drug target network 
which links two drugs if they have at least one common target proteins between drugs. They 
found that drugs which are annotated with similar ATC codes or have similar indications tend to 
be clustered together in the drug target network. Huang et al. [54] developed a database of drug-
protein effects called Drug-protein connectivity MAP (DMAP). Based on these drug-affected 
proteins, they computed drug-drug similarity scores using the Tanimoto cofficients for predicting 
drug-disease associations. When compared to the work that used Connectivity MAP (CMAP) 
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data, they can improve the predictions of drug-disease associations by using DMAP data with 
drug similarity scores. Moreover, they found that nearly a half of their discovered drug-disease 
associations had at least one supporting article in PubMed. 
 Without drug-drug or disease-disease similarity measures, drug-associated and disease-
associated genes or proteins can also be utilized to directly infer drug-disease associations. By 
using the curated data of disease-gene and chemical-gene associations, Davis et al. [55] inferred 
chemical-disease associations based on some common genes between chemicals and diseases. 
From a ton of their data, they obtained about 77,000 inferred chemical-disease relationships in 
total. Yu et al. [56] mapped all proteins associated with a drug and a disease into a PPI network to 
compute a module distance based score of each drug-disease pair for predicting drug-disease 
associations. Based on the module distance based scores, they found significant overlapping 
between their predicted drug-disease associations and those in Comparative Toxicogenomics 
Database (CTD) and literature. 
 In summary, it is noteworthy that integrating other useful information (e.g. PPI network 
information) with drug-associated and disease-associated proteins (or genes) could improve 
identifying drug-disease associations. Sun et al. [57] investigated GWAS genes of five disease 
groups and target proteins of drugs used to treat those diseases in the PPI network. They revealed 
that only a small proportion of known drug-disease associations intersect disease genes and drug 
target proteins. Rutherford et al. [58] predicted the drug-disease relations based on the direct 
interactions between drug target proteins and disease-associated genes in the PPI network. They 
found that this method can identify only a few known drug-disease associations. To improve their 
predictions, they suggested that indirect interactions, paths of more than one PPI step linking 
between drug target proteins and disease genes, should be included in the study. According to 
both studies, it can be implied that many relationships between drugs and diseases are more 
complex than interacting with the same proteins, and they are hardly detected by solely using 
gene and protein information. 
 

2.3.2 An overview of gene ontology 
 Gene Ontology (GO) terms are controlled statements for describing biological functions 
of genes and gene products [59], such as RNAs and proteins. All GO terms are categorized into 
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three non-overlapping classes, also known as GO aspects. They are Cellular Component (CC), 
Molecular Function (MF), and Biological Process (BP). A CC GO term describes a cellular 
location where a gene product is active or functions, such as the plasma membrane region (GO: 
0098590) and cytoplasm (GO: 0005737). An MF GO term indicates a molecular activity that a 
gene product operates, such as the ribonuclease activity (GO: 0004540) and the peptidase activity 
(GO: 0008233). A BP GO term depicts a molecular process or biological pathway which typically 
involves with a series of molecular activities, such as the protein folding (GO: 0006457) and the 
lipoprotein biosynthetic process (GO: 0042158). 
 GO terms are organized in a hierarchical structure as demonstrated in Figure 2.5. Links 
indicate relations between GO terms. The roots of this structure are always three GO classes 
which are cellular component (GO: 0005575), biological process (GO: 0008150), and molecular 
function (GO: 0003674). In general, a GO term in a higher level provides broader descriptions for 
a gene product than that in a lower level. For instance, a CC GO term intracellular organelle (GO: 
0043229) is a child of CC GO term organelle (GO: 0043226). For each gene product, a set of 
particular GO terms can be annotated for describing its functionality. Based on a hierarchy, all 
parental GO terms of the annotated terms are automatically associated with that gene product. 
 

 
Figure 2.5 Examples of GO terms to illustrate their hierarchical structures 
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2.3.3 Gene ontology applications in drug repositioning 
 Gene ontology or GO is often used to enable understanding about molecular mechanisms 
related to a gene product or a set of gene products. For example, with a set of genes differentially 
expressed in a specific condition (e.g. a disease and a drug use), a GO analysis or an enrichment 
analysis is performed to find overrepresented GO terms among those genes, which could imply to 
significant molecular processes relevant to the interested condition. Due to usefulness of GO 
terms, there are some studies that utilized GO terms, especially those of BP and MF, for drug 
repositioning. Mathur and Dinakarpandian [60] used disease-gene associations and BP GO 
annotation data to create associations between diseases and BP GO terms. They also generate 
primary associations between drugs and BP GO terms through overlapping genes between drug 
target genes and disease genes. They analyzed roles of drug targets in gene networks of each 
annotated BP terms to refine drug-BP associations. Based on their disease-BP and drug-BP 
associations, 2,078 drug-disease associations were discovered, and 18% of them were found in 
several clinical studies. 
 Li et al. [61] utilized BP GO functions related to the autoimmune disease, Myasthenia 
Gravis (MG), to find new candidate drugs for MG. They collected 464 drugs which overlap their 
target genes with MG-associated genes. Then, they constructed the drug-GO function network 
and the GO function network by conducting hypergeometric tests. Based on both networks and 
the MG-GO associations, they discovered five promising drugs for the treatment of MG, and two 
of them were under investigation at that time. Passi et al. [62] developed a drug repurposing 
framework based on MF GO functions for tuberculosis (TB). They created the enhanced drug-
target interaction (DTI) network by combining known DTIs with MF GO mapping based DTIs. 
To identify new DTIs, they utilized the network based inference algorithm and a combined 
evidence based method. As a result, they discovered four significant TB targets and inferred some 
novel drugs which are promising for the treatment of TB. 
 In addition, GO functions are utilized in several similarity-based methods for computing 
drug-drug similarity scores. For example, Gottlieb et al. [3] used GO functions of any aspects 
annotated for drug target genes to calculate drug similarity scores in PREDICT. Liang et al. [6] 
utilized MF and BP GO functions annotated for drug targets to form a type of drug feature 
profiles and integrated them with other drug feature profiles in LRSSL. 
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 According to the existing GO-based methods, most of them take advantages of MF and 
BP GO terms but not CC GO terms. In similarity-based methods, GO functions are mostly 
integrated with other drug and disease information for computing drug-drug similarity scores 
rather than solely using drug target proteins. Due to usefulness of GO functions shown in the GO-
based studies, it would be of great interest to solely make use of GO functions of any aspects for 
predicting drug-disease associations. Although there are some GO-based approaches already 
proposed for drug repositioning, they differently utilize GO functions in their own ways, 
suggesting that there is still much more room for novel GO-based methods. 
 
2.4 Meta-paths 
 In this section, the definitions of meta-paths and other relevant terms are introduced to 
mathematically describe what a meta-path is. Also, some basic concepts regarding how to utilize 
meta-paths are demonstrated. Then, a review of meta-path based methods for drug repositioning 
is narrated. 
 

2.4.1 Basic definitions and concepts 
 The following definitions and concepts are mainly referred to [63]. 
 
Definition 2.1 (Heterogeneous network). Let G = (V, E) represent a network, where V and E are 
the set of nodes and links of the network G, respectively, with a node type mapping function  
 : V → A and a link type mapping function   : E → R. A and R are the set of node types and 
link types, respectively. The network G is called a heterogeneous network if the total number of 
node types | A | > 1 or the total number of link types | R | > 1. Otherwise, it is called a 
homogeneous network. 
 
Definition 2.2 (Network schema). The network schema of G, denoted as SG(A, R), is a meta-
structure of G which is defined over the set of node types A and the set of link types R to 
represent an overview of all relationships in G. 
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 An example of a heterogeneous network and its network schema is illustrated in Figure 
2.6. Figure 2.6(a) shows a small subnetwork of a bibliographic network in the field of computer 
science. In the given network, there are three node types (i.e. venue, paper, and author). A set of 
link types of this network contains three link types which include links between venue and paper 
nodes, between paper and author nodes, and between paper nodes. Each link type in a particular 
direction has its semantic annotation as shown in Figure 2.6(b). For instance, a link from a paper 
node to an author node means that the paper was written by the author. Conversely, the meaning 
of a reverse direction of that link is that the author wrote the paper. Although every links between 
different node types in a heterogeneous network are directed links, they can be simplified as 
undirected links if there is no loss of their semantic information. Therefore, sometimes a 
heterogeneous network can be considered as an undirected network. However, for links 
connecting between nodes of the same type (e.g. links between paper nodes), it should be aware 
of semantic annotation loss if their directions are totally discarded. For example, if the link 
between NetClus and GenClus is treated as an undirected link, then we cannot know which one is 
cited by another or cites another. In this case, a heterogeneous network still retains its directed 
links. 
 

  
(a) A bibliographic heterogeneous network (b) A network schema 

Figure 2.6 An example of a heterogeneous network and its network schema [63] 
 
 Because this research uses a tripartite network as a representation model of the collected 
data, the definition of a tripartite network is also given below. According to the definition, a 
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tripartite network can be considered as a special case of heterogeneous networks. Different from 
other heterogeneous networks, a tripartite network is drawn with three node types and three link 
types which connect only between nodes of the different types (i.e. no intra-links between nodes 
of the same types). 
 
Definition 2.3 (Tripartite network). Let G = (V, E) represent a network, where V and E are the set 
of nodes and links of the network G, respectively. Suppose that  : V  → A is a node type 
mapping function such that A = {A1, A2, …, An} and Vi = {v  V | (v) = Ai} for all i = 1, 2, …, n. 
The network G is called a tripartite network if V = V1   V2   V3 and Vi   Vj =   for all i  j, 
and E = {(s, t) | s  Vi, t  Vj and i  j}, where i, j  {1, 2, 3}. 
 
 In a heterogeneous network, any two nodes can be connected together via different 
patterns of paths, and these patterns contribute different meanings [63]. These path patterns are 
known as meta-paths, which can be mathematically defined as follows: 
 
Definition 2.4 (Meta-path). Based on a network schema SG(A, R), a meta-path M with the length l 

is denoted as 
1 2

1 2 1...
lR R R

lA A A
+

→ → → , where Ai  A for all i = 1, 2, …, l + 1 and Rj  R for all j = 1, 
2, …, l, and A1, A2, …, Al+1 or R1, R2, …, Rl are not all the same. The link types Rj can be omitted 
if there is only one link type between the same pairs of node types. Then, the meta-path M can be 
simply written as A1 → A2 → … → Al+1 or A1A2…Al+1. 
 
 Figure 2.7 demonstrates examples of meta-paths in the bibliographic network. Let  
A = {Aa, Ap, Av} be the set of node types of this network, where Aa is the author node type, Ap is 
the paper node type, and Av is the venue node type. Since there are no multiple link types 
connecting between the same pairs of node types, each meta-path can be simply written as a 
sequence of node types. For example, the meta-path Author-Paper-Author is written as AaApAa for 
short. 
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(a) AaApAa (b) AaApAvApAa (c) AaApAv 

Figure 2.7 Examples of meta-paths in a bibliographic network [63] 
 
 Each meta-path has its own meaning. For example, the meta-path AaApAa means that two 
authors work together on a paper. The meta-path AaApAvApAa is about authors who publish their 
papers in the same venue. Finally, the meta-path AaApAv means which venue an author publishes 
his or her paper. A meta-path is considered as a symmetric meta-path if a reverse order of a meta-
path sequence is the same as the ordinary meta-path sequence, such as AaApAa and AaApAvApAa. 
 Meta-paths are path structures defined for extracting paths from a heterogeneous 
network. All paths corresponding to a meta-path is called path instances, which can be defined 
below. Since a network represents a collection of relationships between nodes, a meta-path can be 
considered as a composite relationship of a pair of node types [63]. Path instances under a meta-
path for a particular pair of nodes can serve as supporting evidence of the relationship between 
those nodes with semantic information provided by that meta-path. Thus, a count of path 
instances or a path count can be used as a relatedness or similarity measure between two nodes in 
a heterogeneous network. 
 

Definition 2.5 (Path instance). Suppose that M = 
1 2

1 2 1...
lR R R

lA A A
+

→ → →  defined over a network 
schema SG(A, R) of a heterogeneous network G with a node type mapping function  : V → A and 
a link type mapping function   : E → R, where V is the set of nodes, E is the set of links, A is 

the set of node types, and R is the set of link types in G. A path 
1 2

1 2 1...
le e e

lv v v
+

→ → →  is a path 
instance under meta-path M if (vi) = Ai for all i = 1, 2, …, l + 1 and (ej) = Rj for all j = 1, 2, …, 
l. The number of all path instances extracted from G for a particular pair of node v1 and vl+1 is 
called a path count under meta-path M. 
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 Based on the bibliographic network and the given meta-paths, path instances under each 
meta-path can be extracted from the network as shown in Table 2.3. For example, the path Sun-
NetClus-Han is a path instance corresponding to the meta-path AaApAa. Paths which start and 
terminate at the same nodes are excluded from measuring similarity or relatedness between two 
different nodes. A path count is the simplest measure for evaluating relatedness between nodes. 
Based on the meta-path AaApAa, two authors who show the greatest number of common papers are 
San, Y. and Han, J. Three path instances which demonstrate their collaborations are Sun-NetClus-
Han, Sun-PathSim-Han, and Sun-GenClus-Han. Based on the meta-path AaApAvApAa, two authors 
who publish their papers in the same venue are Sun, Y. and Han, J. In addition, meta-paths can 
also be used to identify relationships between different node types, such as between author and 
venue nodes. The meta-path AaApAv observes venues that each author prefers to publish their 
works. For example, Sun, Y. published two papers in VLDB (i.e. Sun-PathSim-VLDB and Sun-
GenClus-VLDB) and one paper in KDD (i.e. Sun-NetClus-KDD). The high value of a path count 
between an author and a venue may imply to the author’s preference or research interests. 
 

Table 2.3 Path instances corresponding to the given meta-paths (revised from [63]) 
Meta-path Path instance 

Author-Paper-Author 
(AaApAa) 

Sun-NetClus-Han, Sun-PathSim-Han, Sun-GenClus-Han,  
Sun-NetClus-Yu, Sun-PathSim-Yan, Yu-NetClus-Yan,  

Han-PathSim-Yan 
Author-Paper-Venue-Paper-Author 

(AaApAvApAa) 
Sun-PathSim-VLDB-GenClus-Han 

Author-Paper-Venue 
(AaApAv) 

Sun-NetClus-KDD, Sun-PathSim-VLDB,  
Sun-GenClus-VLDB, Yu-NetClus-KDD,  
Han-NetClus-KDD, Han-PathSim-VLDB,  

Han-GenClus-VLDB, Yan-PathSim-VLDB 
 

Path counts from different meta-paths contribute relatedness measures from different 
point of views. For example, the meta-path AaApAa measures the numbers of common papers that 
both authors work on, but the meta-path AaApAvApAa measures the number of common venues 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 34 

where both authors publish their works. The former suggests authors who prefer to work together 
whereas the latter could search for authors who are in the same research fields or share their 
interests. Therefore, multiple meta-paths are usually employed to gain and combine diverse 
semantic information for identifying node relatedness and similarity in a heterogeneous network. 
Moreover, meta-paths with the length more than one or two can be used to identify more 
sophisticated relationships which cannot be detected by simple meta-paths [64]. 
 

2.4.2 Applications of meta-paths in drug repositioning 
 Most networks in real world are heterogeneous networks where integrate diverse node 
and relation types, such as a social network fused across platforms (i.e. Facebook, Twitter, etc.). 
This heterogeneity brings riches of semantic information which needs a powerful approach to 
mine its. A meta-path based approach is an effective method that can extract semantic 
information from a heterogeneous network. During many recent years, this method has been 
gained attention and widely adopted in numerous applications, such as decision making, 
information retrieval, product recommendation, drug-target interaction predictions, and drug 
repositioning. 

To the best of my knowledge, only few meta-path based methods were proposed for 
predicting drug-disease associations due to their recent introducing in drug repositioning.  
Tian et al. [45] proposed HeteSim_DrugDisease (HSDD) for identifying new drug-disease 
associations. They employed a meta-path based measure called HeteSim [65] for predicting new 
links between drugs and diseases in a heterogeneous network of drug and disease similarity 
scores. For each drug-disease pair, multiple meta-paths with lengths less than five were utilized, 
and then multiple HeteSim scores were combined with penalization of longer meta-paths due to 
their less semantic contributions. As a result, HSDD outperforms existing methods that use the 
same drug-disease network such as HGBI (a network propagation method) and MBiRW (a bi-
random walk method). 
 With machine learning techniques, Wu et al. [11] developed Ensemble Meta-Paths and 
Singular Value Decomposition (EMP-SVD) for predicting drug-disease associations. From the 
drug-protein-disease heterogeneous network, they utilized five meta-paths to generate five feature 
matrices containing path counts of all drug-disease pairs. Each of them was reduced its dimension 
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by using SVD to obtain a latent feature matrix, and then it was used to build a random forest 
classifier. They combined five classifiers to obtain an ensemble model for classifying drug-
disease pairs. Despite less data used (i.e. drug-disease, drug-protein, and disease-protein 
associations), EMP-SVD significantly outperforms other methods that require more drug and 
disease data, such as PREDICT, LRSSL, and SCMFDD. Moreover, EMP-SVD does not 
precompute drug and disease similarity scores but takes advantages of meta-paths to extract more 
meaningful information about drugs and diseases from the heterogeneous network. 
 In addition to SVD, network embedding with meta-paths is also applied to find low-
dimensional representation of drugs and diseases from a heterogeneous network. Yang et al. [66] 
proposed Heterogeneous network Embedding for Drug-disease association (HED) to uncover new 
associations between drugs and diseases. This method adopts a meta-path based network 
embedding method called metapath2vec [67]. In brief, metapath2vec employs meta-paths in 
guiding a random walk algorithm to create neighborhood information of a node and then 
leverages the skip-gram model to obtain a low-dimensional representation vector of each node. 
This vector of a drug and a disease node were concatenated to obtain a feature vector of a drug-
disease pair. Then, Yang et al. [66] built an SVM classifier to predict drug-disease associations 
based on the network embedding features. By network embedding and meta-paths, HED 
outperforms the Random Walk with Restart on the Heterogeneous network (RWRH) method. 
Recently, Zhou et al. [8] also proposed another network embedding method with meta-paths 
called NEDD or Network Embedding for predicting Drug-Disease associations. They employed a 
two-layer heterogeneous network, integrating drug and disease similarity scores with known 
drug-disease associations, and adopted a new network embedding method with meta-paths called 
HIN2vec [44]. By using HIN2vec, they obtained low-dimensional representations of drug and 
disease nodes, and then they performed an element wise product between a latent feature vector 
of a drug and that of a disease to obtain a feature vector of a drug-disease pair. Based on the 
network embedding features, a random forest classifier was used to predict drug-disease 
associations. They found that NEDD outperforms other methods that use the same heterogeneous 
network (e.g. HGBI and MBiRW). Furthermore, they claimed that the superior performance of 
NEDD results from utilizing meta-paths which can extract high-order relationships between drugs 
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and diseases, especially when the first-order relationships disappear in unknown drug-disease 
associations. 
 These meta-path based methods can demonstrate the capability of meta-paths in 
capturing valuable semantic information for predicting drug-disease associations. However, some 
limitations of the existing methods should be mentioned for further improvements. First, most 
methods (e.g. HSDD and EMP-SVD) discard information of intermediate nodes along the meta-
path and focus on only two ending nodes in the path. For any two ending nodes, path instances 
under the meta-path are treated the same way although they include different intermediate nodes 
in the paths. Generally, in drug repositioning, intermediate nodes are important indicators that 
link between drugs and diseases and may be greatly valuable for discovering drug-disease 
associations such as proteins and GO functions associated with drugs and diseases. Second, it is 
difficult to integrate information from multiple meta-paths in the network embedding methods 
(i.e. HED and NEDD). Generally, node representation features from a single meta-path, which 
was manually selected, were used to predict drug-disease associations, leading to loss of 
information from other meta-paths [68]. 
 
2.5 Positive-Unlabeled (PU) learning 
 In this section, the definition of PU learning and the reasons why it is important are 
described. Some examples of PU learning methods are also provided to illustrate how they 
manipulate positive and unlabeled data. Furthermore, existing PU learning methods developed for 
drug repositioning are reviewed to demonstrate how PU learning can be applied for predicting 
drug-disease associations. 
 

2.5.1 Introduction to PU learning 
 To create a binary classification model, both positive-labeled and negative-labeled 
samples are required. Nonetheless, in many real situations, only positive-labeled data are 
available. For example, in medical records of patients, only diseases that have been diagnosed are 
recorded, but there is no information about diseases that have not been diagnosed for the patients. 
Visited pages of users are recorded and labeled as user interests, but it cannot explicitly determine 
in which pages users are not interested. Some positive-labeled samples are obtainable in such 
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situations, and the remaining samples are unlabeled, where each of them can be either positive or 
negative. With these positive and unlabeled data, a learning approach that is different from a 
traditional binary classifier is required. 
 A solution used to deal with positive and unlabeled data is learning from only positive 
samples, or one-class learning. A well-known method of this approach is one-class support vector 
machine (SVM) [69]. The aim of this method is to estimate the smallest boundary with the 
hyperparameters of a radius and a center which covers all available positive data points, as shown 
in Figure 2.8(a). Nevertheless, the drawback of this method is that it may lead to overfitting 
models which cannot practically recognize positive samples from unlabeled samples, especially 
when only small amounts of positive samples are labeled [70]. To improve the performance of 
one-class learning models, both positive and unlabeled samples are introduced into the learning 
process. This approach is known as Positive-Unlabeled (PU) learning. The assumption of PU 
learning is that a group of unlabeled samples contains both positive and negative samples. Thus, 
the major goal of PU learning is to accurately identify positive sample from unlabeled samples. 
With the distributional information in unlabeled data, the performance of a classifier can be 
improved as illustrated in Figure 2.8(b). 
 

 

  
(a) One-class learning (b) PU learning 

Figure 2.8 One-class learning versus PU learning  (adapted from [70]) 
 
 PU learning has been known to researchers in the field of machine learning since the 
early 2000s [71], and it has been gained a lot of attention during these recent years. PU learning 
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has been successfully adopted in various applications, such as remote sensing data analysis, 
recommendation systems, and bioinformatics. PU learning is simply considered as a special case 
of semi-supervised learning, which exploits some of labeled samples, including positives and 
negatives, with unlabeled samples to construct a decision boundary [71]. 
 

2.5.2 Categories of PU learning methods 
 Generally, PU learning methods can be classified into three broader categories: two-step 
methods, biased learning methods, and bootstrap sampling based methods [71]. In two-step 
methods, a set of reliable negative samples is primarily specified, and then a traditional binary 
classifier is employed to learn from positive and those selected negative samples. One commonly 
used strategy to find reliable negative samples is the spy strategy (Figure 2.9). 
 

 
Figure 2.9 Illustration of the spy strategy 

 
 In the spy strategy, unlabeled samples (U) are initially used as negative samples to train 
an ordinary binary classifier with positive samples (P). Then, some of positive samples are 
randomly selected and act as spy positive samples (S). The trained model is used to predict both 
spy samples and all unlabeled samples. The minimum predicted score of S serves as a threshold 
score for identifying a set of reliable negative samples (RN), unlabeled samples with predicted 
scores less than the threshold score. This whole process can be repeatedly conducted for several 
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times with different sets of spy samples to obtain more reliable negative samples. Finally, both 
positive and a final set of reliable negative samples are used to create a final classifier. 
 Another technique commonly used in most two-step methods is the heuristic strategy. 
Based on different domain knowledge, assumptions, and techniques, diverse heuristic methods 
were proposed for identifying their own negative samples. For example, Zheng et al. [72] devised 
similarity scores between drugs using multiple drug information to identify pairs of drugs which 
have less similarity scores as credible negative samples in predicting drug-drug interactions. For 
the same application, DDI-PULearn (Drug-drug interaction prediction based on PU learning) [73] 
selects reliable negative samples using iterative one-class SVM with a high-recall constraint and 
drug features different from the previous one. 
 Although two-step PU methods have been successfully applied in many applications, 
some disadvantages of this strategy should be mentioned. In a particular domain, diverse 
techniques were proposed for the reliable negative selection even though there is no standard 
method to measure the quality of negatives obtained. No one can prove that all reliable negative 
samples acquired are exactly negative or cover the whole set of negative samples in a data set. 
Moreover, most two-step heuristic methods use a threshold score (e.g. drug-drug similarity scores 
for screening out likely potential drug-drug interactions) to include or exclude unlabeled samples 
into a set of reliable negatives [74], and this set of reliable negatives can directly affect a model 
performance. However, an optimal threshold score may be data dependent, leading to different 
sets of negative samples acquired and different model performance achieved. 
 The second category of PU learning methods is based on biased learning. In these 
methods, unlabeled samples are considered as negative samples and used to train a traditional 
classifier with biased weights of samples from different classes. A well-known example of biased 
learning methods is a biased SVM method [75], which was firstly introduced for text 
classification. With unlabeled samples that vastly outnumber positives, a biased SVM assumes 
that most of unlabeled samples are likely negative. In a cost function of this method, a weight of 
positive errors is typically greater than that of unlabeled errors to minimize the number of 
unlabeled samples which will be predicted to be positive. There are also other machine learning 
methods that were proposed with the idea of biased learning for PU data such as weighted logistic 
regression [76]. An advantage of biased learning is that it does not require a pre-determined set of 
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reliable negatives like two-step methods. Nevertheless, one of its disadvantages is that the values 
of biased weights typically deviate relying on data used in the tuning process [74]. These values 
could result in poor performance of a biased model due to its under-prevention or over-prevention 
of positive and unlabeled errors. 
 Another class of PU learning methods is based on bootstrap sampling and ensemble 
learning. This strategy takes advantages of classifiers’ instability occurred when classifiers are 
trained on positive instances and bootstrap samples of unlabeled instances. Then, an ensemble 
model is responsible to improve the performance of those unstable classifiers. Mordelet and Vert 
[77] proposed a bagging SVM for learning PU data. This method is based on the bootstrap 
aggregating technique, also called the bagging-like strategy (Figure 2.10). In a bagging SVM, 
unlabeled data are resampled by bootstrap subsampling, randomly selecting with replacement, to 
generate t bootstrap samples (U1, U2, …, Ut). Each of them with the same set of positive samples 
are used to create each base SVM classifier. Then, multiple predictions of a testing sample are 
aggregated to obtain an ensemble prediction. According to their results, a bagging SVM 
outperforms one-class SVM and runs faster than a biased SVM, especially when unlabeled 
greatly outnumbers positive samples. 
 

 
Figure 2.10 A bagging SVM 

 
A bagging SVM has been adopted in various applications. For example, Deepika and 

Geetha [70] utilized a bagging SVM to predict drug interactions from multiple drug input 
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features, such as chemical substructures, drug targets, side effects, and drug indications. Recently, 
Singh et al. [78] compared several deep learning and machine learning methods, including a 
bagging SVM, for developing an automated COVID-19 detection using lung computerized 
tomography (CT) scan images. They found that a bagging SVM outperforms other methods with 
an accuracy of up to 96%. The success of a bagging SVM motivates other researchers to 
introduce other bootstrap aggregating based methods for PU data, such as a robust ensemble of 
SVMs [79] and a corrected ensemble of SVMs [80]. One advantage of bootstrap sampling based 
methods is that they do not require reliable negative samples. However, base classifiers may still 
suffer from unlabeled positive instances in bootstrap samples, which could propagate 
classification errors to the ensemble model [74]. 
 

2.5.3 PU learning methods for drug repositioning 
 To the best of my knowledge, only few PU learning methods were proposed for 
predicting drug-disease associations. Wu et al. [81] developed a PU learning method for drug-
disease associations (PUDrDi). This method exploits a biased SVM classifier for learning features 
of drug-disease pairs derived from drug chemical substructures and disease symptoms. They 
compared the performance of PUDrDi with some machine learning methods (i.e. k-nearest 
neighbors and a random forest classifier) and one well-known drug repositioning method (i.e. 
HGBI). The results showed that PUDrDi outperforms all compared methods in most evaluation 
metrics. 
 Wu et al. [11] proposed the EMP-SVD (Ensemble Meta-Paths and Singular Value 
Decomposition) method, which is a two-step PU learning method. They assumed that a drug and 
a disease which interact with some common proteins are likely associated with each other. 
Therefore, they selected unlabeled pairs of drugs and diseases which have no common proteins 
between them as reliable negative samples. With this heuristic strategy, EMP-SVD achieves the 
highest values in all evaluation metrics when compared to several state-of-the-art methods, such 
as PREDICT, TL_HGBI, MBiRW, and LRSSL. Another recent method which is also based on 
the two-step strategy is Topological Similarity and Singular Value Decomposition (TS-SVD) 
[47]. Although this method is relied on the same heterogeneous network used in EMP-SVD, 
different techniques to construct features of drug-disease pairs and select reliable negative 
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samples are employed in TS-SVD. This method assumes that a drug and a disease node which 
have k-step paths (k = 1, 2, 3) linking between them in the drug-protein-disease heterogeneous 
network are more likely associated with each other. Thus, TS-SVD selects unlabeled pairs of drug 
and disease nodes that have no k-step paths between them (k = 1, 2, 3) to serve as reliable 
negatives. When compared to other methods, it was found that TS-SVD performs better than all 
compared methods, including EMP-SVD, despite less drug and disease information used. 
 
2.6 Extreme Gradient Boosting (XGBoost) 
 The Extreme Gradient Boosting (XGBoost) [82] method  is a state-of-the-art machine 
learning method that is widely used during these recent years in many applications, such as 
personal credit assessment, network intrusion detection, financial trading, and drug discovery 
[83]. This is an improved implementation of the gradient boosting tree (GBT) algorithm to 
enhance its computational speed and performance. XGBoost, and also GBT, is an ensemble 
model with a boosting technique, a sequential aggregation of multiple weak learners (e.g. decision 
trees) to become a strong one. In this section, a mathematical description of XGBoost is provided 
to gain insights how it is formulated and how it works. 
 Given a data set D = {(xi, yi) | xi  ℝm, yi  ℝ} with n samples and m features. Note that  
xi = {xi1, xi2, …, xim} is a feature vector of the ith sample, and yi is a class label of the ith sample, 
where i = 1, 2, …, n. The XGBoost model creates t base classifiers (i.e. decision trees) providing t 
predictions which are sequentially aggregated as ( )ˆ t

iy  for the ith sample, as shown in (2.1). Notice 
that ( )ˆ t

iy  is an aggregate prediction result of the ith sample in the tth iteration, and fk(x) is a decision 
tree of the kth iteration, where k = 1, 2, …, t. 
 
   (0 )ˆ 0iy =   
   (1) ( 0 )

1 1( ) ( )ˆ ˆi ii iy f x y f x= = +   
   ( 2 ) (1)

1 2 2( ) ( ) ( )ˆ ˆi ii i iy f x f x y f x= + = +  (2.1) 
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 To build trees in the XGBoost model, it is formulated as an optimization problem as 
shown in (2.2), where ˆ( , )L y y  is the total loss function of the model, and ˆ( , )i il y y  is a loss 
function of each sample when comparing between its actual and predicted class. ( )f  is the 
regularization term that penalizes a regression tree according to its complexity, as shown in (2.3). 
In the regularization term, the first term penalizes a tree with more depth and too many leaf 
nodes, leading to very few examples in each leaf node. The second regularization term is for 
smoothing the final learnt weights (or the predicted scores of the leaf nodes) to avoid overfitting. 
Note that  is the minimum loss reduction, T is the number of leaf nodes in a tree,  is the 
regularization parameter to avoid overfitting, and j is a predicted score of the jth leaf node in a 
tree. 
 

( )( ) ( ) ( )

1 1
ˆ ˆmin ( , ) min ( , ) ( )

n t
t t t

i i k
i k

L y y l y y f
= =

= +    (2.2) 

2

1

1
( )

2

T

j
j

f T  
=

 = +   (2.3) 

 
 According to (2.1), substitute ( )ˆ t

iy  by ( 1)ˆ ( )t
i t iy f x−

+  in (2.2) and use the second-order 
Taylor expansion to approximate the total loss function of the tth iteration. Then, this total loss 
function can be derived and simplified as shown in (2.4), where gi and hi are the first and second 
partial derivatives of the loss function ( )ˆ( , )t

i il y y  with respect to ( 1)ˆ ty − . 
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 Denote Ij = {i | q(xi) = j} represent a set of instances that belong to the jth leaf node in a 
tree, where q(xi) is a tree’s structure function that map data instance xi to the jth leaf node, and  
j = 1, 2, …, T. Thus, a function of a decision tree f (x) can be represented by q(x). Substitute  
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f (x) = q(x) into (2.4), then the rewritten equation can be shown in (2.5), where 
j

j i
i I

G g


=   and 

j
j i

i I
H h



=  . 
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 Note that Tt is the total number of leaf nodes in the tth tree, t, j is a predicted score of the 
jth leaf node in the tth tree. Now the objective function of the tth iteration can be obtained as shown 
in (2.5). This is a function of t, j, because gi and hi are values that can be computed from the loss 
function. To get the optimal t, j at the tth step ( *

,t j ), take the derivative of the variable t, j and 

solve for the root of the equation. Then, *
,t j  that minimizes the objective function is shown in 

(2.6), and its minimum value of the objective function ( ( )tL ) is shown in (2.7). 
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t j
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
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H


=

= − +
+

  (2.7) 

 
 The function in (2.7) can be used to evaluate the quality of a tree with the structure q(x), 
similar to the impurity score. The example for illustrating the method to compute this score is 
given in Figure 2.11. 
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Figure 2.11 An example illustrating the score calculation of a tree structure  

(adapted from [82]) 
 
 According to Figure 2.11, I1 = {1}, I2 = {2}, and I3 = {3, 4, 5}. From (2.7), the score of 
the given tree can be computed as in (2.8). The smaller score indicates the better structure of the 
decision tree. 
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 It is impossible to generate all possible decision trees and then compute the structure 
scores to select the best one at each iteration. Thus, a greedy algorithm that begins with the tree of 
a single node and then iteratively splits to create the optimal tree is exploited. The formula that is 
used to select the split candidates is written in (2.9), where IL and IR represent the sets of instances 
in the left and right nodes after the split. Note that I = IL  IR, where I is the instance set before 
the split. The chosen candidate for the split is the one that gives the maximum loss reduction 
(Lsplit). 
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 

   
  

 (2.9) 

 
 Because XGBoost is implemented with the aim to enhance GBT, several unique features 
of XGBoost make it more attractive and popular until now. The advantages of XGBoost are 
discussed as follows: 

▪ Parallelization - XGBoost can take advantages of multiple cores on CPU, because it 
is designed by a block structure, where data in each block can be sorted parallelly. 
This makes XGBoost run faster than many other boosting algorithms. In addition, 
XGBoost provides an option to construct each tree in parallel. 

▪ Sparsity awareness - Most of large data matrices contain a lot of zero elements, 
which probably are missing values or generated by some data pre-processing 
techniques (e.g. one hot encoding features). To handle with missing values, XGBoost 
assigns them to a default direction that will minimize training loss. 

▪ Regularization - XGBoost provides an option to penalize a complex model using L1 
and L2 regularization to prevent overfitting models. 

▪ Effective pruning - Most efficient algorithms for tree pruning cost high time 
complexity. XGBoost constructs a tree with the depth up to the parameter max_depth 
that is primarily specified, and then it begins pruning backward until the loss reaches 
below the given threshold. 

▪ Continued training - XGBoost provides an option to retrain the fitted model on new 
coming data. 

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III 
PROTEINS VERSUS FUNCTIONAL INFORMATION 

 
 In this chapter, utilizing proteins and functional information, or gene ontology (GO) 
functions, in discovering relationships of drugs and diseases are discussed. The aim of this study 
is to demonstrate the advantages of using GO functions when compared to a classical technique 
that directly uses proteins. Herein, the key to identify associations of drugs and diseases is a 
similarity based on proteins or GO functions that are associated with drugs and diseases. 
 
3.1 An overview of this study 
 Since proteins play crucial roles in drug actions and disease processes, high similarities 
based on drug-associated and disease-associated proteins could indicate the relationships of drugs 
and diseases [49, 52]. Nevertheless, some relationships with lack of some common proteins 
cannot be detected by protein-based similarities [58]. For example, a drug and a disease are 
associated with two different proteins, but these proteins work together in the same biological 
functions. To overcome this limitation, the scope of the consideration should be extended beyond 
proteins. Herein, functional annotations of proteins or GO functions are used to reveal the 
relationships of drugs and diseases for drug repositioning. There are three relationships of drugs 
and diseases investigated in this study, as shown in Figure 3.1. 
 

 
(a) Drug-disease relationship (b) Drug-drug relationship (c) Disease-disease relationship 

Figure 3.1 Three relationships of drugs and diseases under investigation 
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 The first case is the direct relationship between drugs and diseases. Figure 3.1(a) shows 
that although a drug and a disease are relevant to different proteins, this kind of relationships 
could be detected by some common GO functions or drug-disease similarity based on GO 
functions. The second case is the relationship between two drugs which can treat some common 
diseases. In Figure 3.1(b), two drugs could interact with different proteins, but they could affect 
the same downstream biological functions resulting in the abilities to treat the same diseases. For 
this case, drug-drug similarity based on GO functions are measured to identify potential drug-
drug associations. The third case is the relationship between two diseases which can be treated by 
the same drugs. Figure 3.1(c) demonstrates that two diseases could be associated with each other 
through some common GO functions rather than proteins. For this case, disease-disease similarity 
based on GO functions is more promising to predict disease-disease associations, when compared 
to the similarity based on proteins. 
 An overview of this study is shown in Figure 3.2. Four data sets, functional annotation 
data of human proteins, drug-protein association data, disease-protein association data, and drug-
disease association data, were used. Based on drug-disease association data, all drug-disease, 
drug-drug, and disease-disease pairs can be generated and prepared for further classifications. 
 

 
Figure 3.2 A conceptual diagram depicting an overview of the study 
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Drug-GO and disease-GO associations were derived from the functional annotations, the 
drug-protein associations, and the disease-protein associations. Based on drug-GO associations, 
disease-GO associations, and a similarity index, similarity scores between drugs and diseases, 
between drugs, and between diseases can be computed. These similarities are called as GO-based 
or functionality-based similarities. Similarly, protein-based similarity scores between drugs and 
diseases, between drugs, and between diseases can be calculated from drug-protein and disease-
protein associations. 
 Since a number of similarity indices can be used to compute both protein-based and 
functionality-based similarity scores, the most suitable similarity index for those tasks should be 
initially determined by comparing among different similarity indices. Based on the selected 
similarity index, both protein-based and functionality-based similarity scores were computed and 
then used to classify drug-disease, drug-drug, and disease-disease associations. The performance 
of protein-based similarities is used as the baseline performance, and it is compared with that of 
functionality-based similarities to demonstrate the improved performance of functionality-based 
similarities. To exemplify some predictions using functionality-based similarities, three case 
studies (an inferred drug-disease, drug-drug, and disease-disease association) are shown with their 
supporting evidence. 
 
3.2 Data sets 
 For this research, four main data sets were collected from different sources as shown in. 
Table 3.1. Drug-disease associations were downloaded from Comparative Toxicogenomics 
Database (CTD) [84], a version released in August 2019, and the study of Gottlieb et al. [3]. To 
obtain a reliable data set, only CTD drug-disease relations with supporting literature were used. 
Gottlieb et al. [3] created a gold-standard data set by manually assembling drug-disease 
associations found in at least two sources of multiple databases. Both data sets were 
systematically integrated to obtain a larger one. The collection of drug-disease associations used 
in this research can be accessible at http://ieeedataport.org/3540. All approved drugs and their 
target proteins were downloaded from DrugBank (version 5.1.3) [85]. Diseases and their 
associated proteins were collected from the curated data available on DisGeNET (version 6.0) 

http://ieeedataport.org/3540
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[86]. The functional annotation data of all human proteins were downloaded from the Gene 
Ontology Annotation (GOA) database (version 191) [87]. 
 

Table 3.1 The list of data with their sources and versions 
Data Source Version 

Drug-disease associations 
CTD [84] and the study of 

Gottlieb et al. [3] 
CTD version released 

in August 2019 
Drug-protein associations DrugBank [85] 5.1.3 

Disease-protein associations DisGeNET [86] 6.0 
Functional annotation of 

human proteins 
GOA [87] 191 

 
3.3 Methods 

3.3.1 Preparation of drug-disease, drug-drug, and disease-disease pairs 
 In this step, all drug-disease, drug-drug, and disease-disease pairs are generated and 
labeled based on the list of known drug-disease associations. All drug-disease pairs were 
generated by combining all drugs and all diseases. Drug-disease pairs which are known drug-
disease associations are considered as positive samples whereas the remaining pairs are unlabeled 
samples. In case of drug-drug pairs, all possible drug-drug pairs were generated by pairing two 
distinct drugs together. Drug-drug pairs which share at least one common disease are positive 
samples, and the remaining pairs are unlabeled samples. Similarly, all possible disease-disease 
pairs were originated by pairing two different diseases. Disease-disease pairs which have some 
common diseases are labeled as positive samples, and the remaining pairs are unlabeled samples. 
 

3.3.2 Construction of drug-GO and disease-GO associations 
 In this work, drug-GO and disease-GO associations are principal components mainly 
used to connect drugs and diseases. The schematic diagrams that summarize the methods of 
constructing drug-GO and disease-GO associations are shown in Figure 3.3. In this figure, m and 
s represent the number of proteins associated with a drug and a disease, respectively. Let n1,  
n2, …, and nm be the number of GO functions associated with drug’s proteins p1, p2, …, and pm, 
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respectively. Similarly, t1, t2, …, and ts are the number of GO functions associated with disease’s 
proteins p1, p2, …, and ps, respectively. 
 

 
Figure 3.3 Schematic diagrams summarizing how to construct drug-GO and disease-GO 
associations 

 
 From Figure 3.3(a), the drug-protein association data and the functional annotation data 
of human proteins were used to map drugs to their associated GO functions. Similarly, all 
diseases were linked to their associated GO functions by using the disease-protein association 
data and the GO annotation data, as shown in Figure 3.3(b). GO functions of all GO aspect, 
including Cellular Component (CC), Molecular Function (MF), and Biological Process (BP), 
were used to link to drugs and diseases to gain as much as possible information about drugs and 
diseases. GO terms are represented via a tree-like structure which can describe the relations 
among different GO terms. GO functions at the higher level provide broader statements about 
genes and gene products than those at the lower level. By directly mapping a protein to its GO 
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functions, redundant GO terms from different levels can be linked to that protein. To avoid the 
redundant annotation, only drug-GO and disease-GO associations of the most detailed GO 
functions or GO leaf nodes were kept using the R package named multidimensional gene set 
analysis of genomic data (mdgsa) [88]. 
 After that, an enrichment analysis was performed for selecting GO functions significantly 
associated with drugs and diseases using one-sided Fisher’s exact tests [89]. For a given pair of a 
drug (a disease) and a GO function, the p-value (p) of that pair can be calculated by the 
hypergeometric distribution, as shown in (3.1). N and M represent the total number of human 
proteins and the number of proteins annotated by that GO function, respectively. n and m are the 
number of proteins associated with that drug (disease) and the number of proteins annotated by 
that GO function and associated with that drug (disease), respectively. 
 

n

k m

M N M

k n k
p N

n
=

−  
  −  

=
 
 
 

  (3.1) 

 
 The multiple testing conducted for all drug-GO or disease-GO associations increases a 
False Discovery Rate (FDR) resulting in an increased number of false positive associations 
obtained. To reduce false positives, the Benjamini-Hochberg method [90] was performed. To 
obtain Benjamini-Hochberg p-values (pBH), p-values from the Fisher’s exact tests (p) were 
adjusted following to (3.2). Note that i is a rank of a drug-GO or a disease-GO association when 
all drug-GO or disease-GO associations are sorted in ascending order according to their p-values 
from the Fisher’s exact tests, and r represents the total number of tests. Drug-GO and disease-GO 
associations with pBH values less than 0.05 are significant relations and then preserved for further 
using. 
 

min min , 1BH
i jj i

r
p p

j

  
=    

  
 (3.2) 
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3.3.3 Measurement of protein-based and functionality-based similarities 
 After getting drug-GO and disease-GO associations, functionality-based similarity scores 
can be computed for all drug-disease, drug-drug, and disease-disease pairs, as illustrated in Figure 
3.4. Then, these similarity scores were used to classify drug-disease, drug-drug, and disease-
disease associations. A similarity index can be employed to measure functionality-based 
similarities from the lists of drug-GO and disease-GO associations. In parallel, protein-based 
similarities between drugs and diseases, between drugs, and between diseases are also measured 
from drug-protein and disease-protein associations. Because a number of similarity indices can be 
applied for the similarity measurement, comparison among several similarity indices to select the 
most suitable one for the measurement is necessary. 
 

 
Figure 3.4 An overview of the measurement of functionality-based similarities 

 
 In this step, seven commonly used similarity indices, the Jaccard, Braun-Blanquet, 
Simpson, Cosine, Sorgenfrei, McConnaughey, and derived Jaccard similarity index, are applied 

for the measurement. Let x and y be a drug or a disease, and SSimilarityIndex(x, y) be a function that 
gives a similarity score between x and y by using a particular similarity index. X and Y are the set 
of proteins or GO functions associated with x and y, respectively. All similarity indices are 
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formulated as shown in (3.3) - (3.9), where | · | is the number of all elements in a set, and “ \ ” is 
the difference between any two sets. 
 

Jaccard

X Y
S x y

X Y
( , )


=


 (3.3) 

( , )
max( , )BraunBlanquet

X Y
S x y

X Y


=

 
(3.4) 

( , )
min( , )Simpson

X Y
S x y

X Y


=

 
(3.5) 

( , )Cosine

X Y
S x y

X Y


=
  

(3.6) 

( )
Sorgenfrei

X Y
S x y

X Y

2

( , )


=


 
(3.7) 

( ) ( )
McConnaughey

X Y X Y Y X
S x y

X Y

2 \ \
( , )

 − 
=


 

(3.8) 

( )

( )
DerivedJaccard

X Y
S x y

X Y
log 1

( , )
log 1

+ 
=

+   
(3.9) 

 
3.3.4 Performance measurement 

 To compare among seven similarity indices or between protein-based and functionality-
based similarities, the performance of all similarity indices, protein-based similarities, and 
functionality-based similarities is measured. According to the actual and predicted classes of 
testing samples, a confusion matrix can be generated as shown in Figure 3.5. TP, FP, FN, TN 
represent the number of true positives, false positives, false negatives, and true negatives, 
respectively. In a confusion matrix, the higher the number of true positives and true negatives of a 
model are, the better the model performs. Several confusion matrices were constructed and 
investigated to compare the prediction results of drug-disease, drug-drug, and disease-disease 
associations between using protein-based and functionality-based similarity scores. 
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Figure 3.5 A confusion matrix 

 
 All information in a confusion matrix can be summarized as a single number of an 
evaluation metric for easier interpretation of the prediction results. Several well-known evaluation 
metrics were employed in this study, including precision (PRE), recall (REC), accuracy (ACC), 
and F1-score (F1). They can be calculated following to (3.10) - (3.13). However, only positive and 
unlabeled samples are identified in this study but not for negative samples. To estimate values of 
the evaluation metrics, all unlabeled samples are considered as negative ones. Values of all 
evaluation metrics are ranged from zero to one. Higher values of the metrics indicate better model 
performance. 
 

TP
PRE

TP FP
=

+
 (3.10) 

TP
REC

TP FN
=

+
 (3.11) 

TP TN
ACC

TP FP FN TN
+

=
+ + +

 (3.12) 

1

2 PRE REC
F

PRE REC
 

=
+

 (3.13) 

  
In addition, a Receiver Operating Characteristic (ROC) and a Precision-Recall (PR) 

curve are plotted to investigate the overall performance of protein-based and functionality-based 
similarities. An ROC curve is a plot between true positive rates (TPR) and false positive rates 
(FPR) which can be computed following to (3.14) - (3.15). Each value of TPR or FPR is 
calculated according to the one threshold score. To create this plot, threshold scores are changed 
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from low to high values. When negatives largely outnumber positives, values of FPR could be 
flatten by a high value of TN resulting in a misleading ROC curve [91]. An additional plot 
recommended for this situation is a PR curve, which is a plot of precision and recall values 
according to several threshold scores. To summarize information of an ROC and a PR curve, an 
Area Under an ROC curve (AUROC) and an Area Under a PR Curve (AUPRC) are computed. 
An AUROC and an AUPRC value are between zero and one. The higher the value of AUROC or 
AUPRC of a model is, the better the model performs. 
 

TP
TPR

TP FN
=

+
 (3.14) 

FP
FPR

TN FP
=

+
 (3.15) 

 
3.3.5 Classification of drug-disease, drug-drug, and disease-disease associations 
By using a given similarity index, protein-based or functionality-based similarity scores 

can be computed for all drug-disease, drug-drug, and disease-disease associations. In all 
association types, these similarity scores are directly used to identify positive associations from 
unlabeled associations. Each drug-disease, drug-drug, or disease-disease association is classified 
as either a “1” (positive) or “0” (unlabeled) based on its similarity score (x) and a given threshold 
score (t) as shown in (3.16), where f (x) is a function assigning a binary class for a sample. 

 
x t

f x
x t

1 if
( )

0 if






= 


 (3.16) 

 
 In predicting drug-disease, drug-drug, and disease-disease associations as the binary 
classes, the Youden’s index [92] is used to find an optimal threshold score. Based on this method, 
an optimal threshold (t* ) is estimated at a point which provides the maximum difference between 
the values of TPR and FPR in an ROC curve. By [93], this can be written as shown in (3.17), 

where t is a threshold score. TPRt and FPRt represent the values of true positive rate and false 
positive rate at t, respectively. 
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t*  max t t
t

TPR FPR= −  (3.17) 

 
3.4 Results 

3.4.1 Data summarization 
 For further investigation drug-associated and disease-associated proteins in a protein-
protein interaction (PPI) network, drugs and diseases whose all associated proteins cannot be 
mapped into the PPI network are excluded from this study. In total, 904 drugs, 524 diseases, 
6,782 proteins, and 8,301 GO functions are included in the study (Table 3.2). Out of these GO 
functions, 901 (10.9%) are Cellular Component (CC) terms, 2,407 (29.0%) are Molecular 
Function (MF) terms, and 4,993 (60.1%) are Biological Process (BP) terms. 
 

Table 3.2 The total numbers of drugs, diseases, proteins, and GO functions 
Drugs Diseases Proteins GO functions 

904 524 6,782 8,301 
 
 The total numbers and some statistical information of all relations are summarized in 
Table 3.3. For the drug-related relations, there are 9,427 drug-protein interactions and 52,038 
drug-GO associations in total. For disease-related associations, there are 32,659 disease-protein 
associations and 91,998 disease-GO associations in total. By mapping proteins to their associated 
GO functions, the greater numbers of drug-GO associations (up to six times) and disease-GO 
associations (up to three times) are obtained when compared to the total numbers of drug-protein 
interactions and disease-protein associations, respectively. This is because most proteins are often 
related to more than one GO function or annotated with terms of more than one GO aspect [94]. 
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Table 3.3 Statistical information of drug-protein, drug-GO, disease-protein, and disease-GO 
associations 

Statistical 
information 

Relations of drugs Relations of diseases 

Drug-protein 
interactions 

Drug-GO 
associations 

Disease-protein 
associations 

Disease-GO 
associations 

Total number 9,427 52,038 32,659 91,998 
Mean  

(per drug or disease) 
10.4  

proteins 
57.6  

GO functions 
62.3 

proteins 
175.6 

GO functions 
Standard deviation 

(per drug or disease) 
13.1 

proteins 
51.4 

GO functions 
162.7 

proteins 
217.6 

GO functions 

Minimum 
1.0 

protein 
2.0 

GO functions 
1.0 

protein 
1.0 

GO function 

Maximum 
188.0 

proteins 
545.0 

GO functions 
1,086.0 
proteins 

944.0 
GO functions 

 
 Furthermore, the numbers of proteins or GO functions associated with a drug and a 
disease are also investigated (Table 3.3). Due to the larger number of drug-GO connections, a 
drug involves with 57.6 ± 51.4 (Mean ± SD) GO functions of any aspects whereas a drug 
interacts with only 10.4 ± 13.1 proteins in average. The number of GO functions per drug is up to 
six times greater than that of proteins per drug. For a drug, the numbers of associated proteins and 
GO functions range from 1 to 188 proteins and from 2 to 545 GO functions, respectively. For a 
disease, the ranges of the numbers of associated proteins and GO functions are 1 to 1,086 proteins 
and 1 to 944 GO functions, respectively. In average, a disease is associated with 175.6 ± 217.6 
GO functions of any aspects, up to three times greater than that of proteins (62.3 ± 162.7 proteins 
per disease). Since two or more GO functions of multiple GO aspects can be linked to drugs and 
diseases, a drug or a disease usually accumulates its associated GO functions with the larger 
number than that of proteins. With the more extensive and multiple views of GO functions, 
potential associations of drugs and diseases could be more efficiently discovered when compared 
with proteins. 
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 The numbers of all drug-disease, drug-drug, and disease-disease pairs are shown in Table 
3.4. Based on 904 drugs and 524 diseases, there are 473,696 drug-disease pairs in total. Only 
6,144 out of them (1.3%) are known or positive drug-disease associations whereas 467,552 out of 
them (98.7%) are unknown or unlabeled drug-disease associations. This extremely low proportion 
of the positive drug-disease pairs could suggest that there is still a room for discovering potential 
drug-disease associations. By pairing two distinct drugs, 408,156 drug-drug pairs can be 
generated. Among these pairs, 47,094 drug-drug pairs (11.5%) share at least one common disease 
and are labeled as positive whereas 361,062 drug-drug pairs (88.5%) are unlabeled. By combining 
two different diseases, 137,026 possible disease-disease pairs can be created. In these pairs, there 
are 17,129 disease-disease pairs (12.5%) which share at least one common drug and are labeled as 
positives. The remaining disease-disease pairs or 119,897 pairs (87.5%) are clustered together in 
the unlabeled group. 
 

Table 3.4 The numbers of drug-disease, drug-drug, and disease-disease pairs in each class 

Type of pairs 
Number of pairs in each class (%) 

Total number of pairs 
Positive Unlabeled 

Drug-disease pairs 6,144 (1.3%) 467,552 (98.7%) 473,696 
Drug-drug pairs 47,094 (11.5%) 361,062 (88.5%) 408,156 

Disease-disease pairs 17,129 (12.5%) 119,897 (87.5%) 137,026 
 

3.4.2 Investigation of sharing proteins and GO functions among known associations 
 To preliminarily provide insights into relationships of drugs and diseases, the 
investigation of sharing proteins and GO functions among known (positive) drug-disease, drug-
drug, and disease-disease associations are conducted. In this experiment, only the positive pairs 
are mainly observed because they are expected to find some common proteins or GO functions 
which reflect the existence of their relationships. 
 Initially, the relationships of drug-associated and disease-associated proteins on a 
protein-protein (PPI) interaction network are observed for the positive drug-disease, drug-drug, 
and disease-disease pairs. For each pair, the associated proteins (e.g. drug target proteins or 
disease-associated proteins) are mapped onto the human PPI network downloaded from the 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 60 

STRING database (version 11.0) [95]. Drugs and diseases whose no associated proteins can be 
mapped onto the PPI network are excluded from the experiment. The pairs corresponding to those 
drugs and diseases are also removed. For each positive pair, to investigate how the associated 
proteins interact with one another in the PPI network, distances of shortest paths connecting 
between drug-associated and disease-associated proteins are measured. Because a drug and a 
disease can interact with one or more proteins, there could be several shortest path distances 
measured for one positive pair. Herein, a value used to represent a distance for each positive pair 
is the minimum distance of the shortest paths connecting between two associated proteins of that 
pair. For example, for a positive drug-disease pair, the distance on the PPI network of each 
shortest path connecting between a protein associated with the drug and a protein associated with 
the disease is measured. After getting all shortest path distances, the minimum value of them is 
used to describe the distance on the PPI network between that drug and that disease. Since two 
proteins with a small distance on a PPI network are usually expected for their functional 
relationships, this small distance between drug-associated and disease-associated proteins could 
point to the relationships between drugs and diseases [96, 97]. A zero distance of a positive pair 
means that this pair has at least one shared protein. The distances on the PPI network of all 
positive drug-disease, drug-drug, and disease-disease pairs are summarized in Figure 3.6. 
 

   
(a) Drug-disease pairs (b) Drug-drug pairs (c) Disease-disease pairs 
Figure 3.6 Coverages of positive pairs according to their distances on the PPI network 

 
 Out of 6,144 positive drug-disease pairs, only 2,412 pairs (39.26%) have some common 
proteins between their drug-associated and disease-associated proteins (Figure 3.6(a)). Mostly in 
3,732 pairs (60.74%), a drug and a disease connect to each other with the distances up to five on 
the PPI network. Especially, the direct connections between drug-associated and disease-
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associated proteins cover 2,601 positive drug-disease pairs (42.33%). Among 47,094 positive 
drug-drug pairs, the pairs that share at least one drug-associated protein has the coverage of 
22,936 pairs (48.70%), as shown in Figure 3.6(b). In more than a half of the positive drug-drug 
pairs or 24,158 pairs (51.30%), two drugs link to each other via the paths of up to five steps in the 
PPI network. To link two associated diseases on the PPI network, only 8,222 positive disease-
disease pairs (48%) have some overlapping proteins (Figure 3.6(c)). Conversely, the disease-
disease pairs with the distances up to five steps on the PPI network cover 8,907 (52%) of all 
positive disease-disease pairs. 
 From the results of the PPI distances of the positive pairs (Figure 3.6), it can be 
concluded that most drug-disease, drug-drug, and disease-disease associations have more 
complex relationships than directly interacting with the same proteins. In the PPI network, the 
connections between drugs and diseases, between two associated drugs, and between two 
associated diseases mostly occur with the distances of two or more steps. Thus, the association 
classification solely based on overlapping of drug target proteins and disease-associated proteins 
can result in low sensitivity of predictions. Rutherford et al. [58] showed that only direct 
interactions between drug-associated and disease-associated proteins cannot completely discover 
known drug-disease associations. Indirect interactions, PPI paths of the longer distances, could be 
considered to increase the sensitivity of predictions, but the question of how long the distance 
should be is still currently discussed [58, 97]. To resolve this issue, an alternative method is 
taking advantages of more extensive information (i.e. GO functions) which could be capable of 
discovering both direct and indirect relationships of drugs and diseases. The coverages of the 
positive drug-disease, drug-drug, and disease-disease pairs which share at least one common GO 
function of each GO aspect and all GO aspects are preliminarily investigated and shown in Figure 
3.7. 
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(a) Drug-disease pairs (b) Drug-drug pairs (c) Disease-disease pairs 

Figure 3.7 Coverages of positive pairs that share and do not share their GO functions 
 
 According to Figure 3.7(a), there are 43.1%, 71.4%, and 76.9% of known drug-disease 
associations that share at least one common GO function of Cellular Component (CC), Molecular 
Function (MF), and Biological Process (BP), respectively. Especially when any GO aspect is 
included, 84.4% of known drug-disease associations share at least one common GO function. In 
Figure 3.7(b), 25.9%, 70.3%, and 70.9% of known drug-drug associations share at least one 
common GO function of CC, MF, and BP, respectively. When any GO aspect is considered, up to 
80% of the positive drug-drug pairs have at least one overlapping GO function. From Figure 
3.7(c), more than a half of known disease-disease associations are found to share their GO 
functions of CC (55.3%), MF (71.2%), and BP (79.8%) aspects. Greater than these coverages, 
86.1% of the positive disease-disease pairs are found to share their GO functions of any GO 
aspect.  

In all three cases, known associations tend to share their BP GO functions greater than 
GO functions of other aspects. This suggests that among three GO aspects, BP GO functions can 
be used to achieve higher sensitivity in the predictions of drug-disease, drug-drug, and disease-
disease associations. Many previous studies focused on either MF or BP GO functions to uncover 
the relationships between drugs and diseases [60, 61], between diseases [98, 99], or between 
drugs [62]. However, different aspects of GO functions contribute functional annotations for 
drugs and diseases from different points of views. Utilizing all GO aspects could provide the 
greatest advantages for the predictions of all three associations. This is supported by the results of 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 63 

the largest coverages of the known associations in all three cases when all GO aspects are used. 
Hence, all GO aspects are utilized in this study, and sharing GO functions of any GO aspect 
between drugs and diseases, between drugs, or between diseases is a matter of uncovering 
relationships of drugs and diseases. 
 To compare between proteins and GO functions, the numbers of positive pairs that share 
at least one common protein and GO function are investigated and shown in Table 3.5. It is 
noticeable that for all pair types, the positive pairs tend to share their GO functions rather than 
proteins. Lower than 50% of known drug-disease, drug-drug, and disease-disease associations 
share their proteins. This may be because the relationships of drugs and diseases are complex 
beyond detecting by overlapping proteins between drugs and diseases, between drugs, or between 
diseases. By detecting overlapping GO functions, the percent coverages of known drug-disease, 
drug-drug, and disease-disease associations increase to 84.4%, 79.1%, and 86.1%, respectively. 
This suggests that GO functions can improve the sensitivity of the predictions of drug-disease, 
drug-drug, and disease-disease associations, when compared to proteins. 
 
Table 3.5 Comparison of the numbers of pairs that share proteins and GO functions in the 
positive class 

Type of pairs 
Number of pairs 

Total number Sharing 
protein (s) 

Sharing GO 
function (s) 

Positive drug-disease pairs 2,412 (39.3%) 5,188 (84.4%) 6,144 
Positive drug-drug pairs 22,936 (48.7%) 37,259 (79.1%) 47,094 

Positive disease-disease pairs 8,222 (48.0%) 14,746 (86.1%) 17,129 
 
 The number of pairs that share GO functions in each class is compared and shown in 
Table 3.6. To verify the greater proportion of GO-sharing pairs in the positive class, Fisher’s 
exact tests were performed. In case of drug-disease pairs, more than 84% of the positive pairs 
share GO functions, which is significantly greater than the proportion of unknown drug-disease 
associations that share GO functions (p-value = 1.5 × 10-566). Moreover, up to 80% of known 
drug-drug associations have overlapping GO functions whereas about 67% of unknown drug-drug 
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associations share GO functions. For drug-drug pairs, it can be concluded that the drug-drug pairs 
that share GO functions are found in the positive class rather than in the unlabeled class (p-value 
= 3.0 × 10-656). In the positive class, more than 86% of the disease-disease pairs have some 
overlapping GO functions. When compared to those found in the unlabeled class, it is found that 
the disease-disease pairs that share GO functions are more frequently found in the positive class 
than in the unlabeled class (p-value = 7.9 × 10-1,234). Based on these results, it can be summarized 
that sharing GO functions among drugs and diseases does not occur by chance and is more 
commonly found in the positive class than in the unlabeled class. This suggests that it would be 
promising to use GO functions for identifying the relationships among drugs and diseases. 
 

Table 3.6 Comparison of the number of pairs that share GO functions in each class 

Type of pairs 
Number of pairs that share GO functions  

in each class P-value 
Positive Unlabeled 

Drug-disease pairs 5,188 (84.4%) 250,564 (53.6%) 1.5 × 10-566 
Drug-drug pairs 37,259 (79.1%) 242,021 (67.0%) 3.0 × 10-656 

Disease-disease pairs 14,746 (86.1%) 69,581 (58.0%) 7.9 × 10-1,234 
 

3.4.3 Selection of the most suitable similarity index 
 In the previous section, drug-disease, drug-drug, and disease-disease pairs, especially that 
are positives or known associations, are categorized into a group of pairs that share and do not 
share their proteins or GO functions. In this section, protein-based or functionality-based 
similarities between drugs and diseases, between drugs, or between diseases are measured as 
similarity scores. Since a variety of similarity indices can be used for this task, it is necessary to 
identify the most suitable one for further using. In this study, seven well-known similarity indices 
are compared (i.e. the Jaccard, Braun-Blanquet, Simpson, Cosine, Sorgenfrei, McConnaughey, 
derived Jaccard similarity index). By using each similarity index, both protein-based and 
functionality-based similarity scores are computed for all drug-disease, drug-drug, and disease-
disease pairs. Then, these similarity scores were used to classify drug-disease, drug-drug, and 
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disease-disease associations. From the classification, the AUROC values of all similarity indices 
for both protein-based and functionality-based similarities are shown in Figure 3.8. 
 

 
(a) Drug-disease associations (b) Drug-drug associations (c) Disease-disease associations 

Figure 3.8 Areas under the ROC curves (AUROC) of all similarity indices for protein-based and 
functionality-based similarities 
 
 It is noticeable that using functionality-based similarities produces higher AUROC 
values than those of protein-based similarities in all three cases whatever similarity index are 
used. When different similarity indices are applied for computing protein-based similarity scores, 
little improvement in AUROC values is obtained, especially in the classification of drug-disease 
(Figure 3.8(a)) and disease-disease associations (Figure 3.8(c)). Conversely, significant 
improvement in AUROC values of functionality-based similarities can be seen, especially in the 
case of drug-drug associations (Figure 3.8(b)). For protein-based similarities, the similarity index 
that can produce the highest AUROC values is the derived Jaccard similarity index. Its AUROC 
values are 0.671, 0.597, and 0.695 in case of drug-disease, drug-drug, and disease-disease 
associations, respectively. In terms of functionality-based similarities, the derived Jaccard 
similarity index also performs the best with the AUROC values of 0.748, 0.605, and 0.745 for 
drug-disease, drug-drug, and disease-disease associations, respectively. Interestingly, the derived 
Jaccard similarity index produces the highest performance whereas the ordinary Jaccard similarity 
index performs worse than several similarity indices. It has been revealed that the log-
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transformation introduced into the Jaccard similarity index can lead the newly derived similarity 
index which is uncorrelated with the ordinary one [100]. Moreover, the result showing the best 
performance of the derived Jaccard similarity index has also found in the study of Wijaya et al. 
[101], who specified the most appropriate similarity index for classifying matching efficacies of 
herbal medicine pairs. Therefore, the derived Jaccard similarity index is further used for 
computing both protein-based and functionality-based similarity scores. 
 

3.4.4 Comparison of protein-based and functionality-based similarities 
 To assess the advantages of using functional information in uncovering relationships 
between drugs and diseases, the performance of protein-based similarities serves as the baseline 
performance and is compared with that of functionality-based similarities. In this experiment, 
only the derived Jaccard similarity index is applied to compute drug-disease, drug-drug, and 
disease-disease similarity scores. 
 The ROC curves of protein-based and functionality-based similarities are plotted as 
shown in Figure 3.9. In all three cases, it is noticeable that both protein-based and functionality-
based similarities can improve the classification of the completely random model (red-dashed 
lines). According to Figure 3.9(a), it was found that functionality-based similarity scores of drug-
disease pairs can significantly improve the classification of drug-disease associations with an 
increased AUROC value of 0.748, whereas the AUROC value of protein-based similarities is 
0.671. Likewise, the classification of disease-disease associations using functionality-based 
similarity scores is significantly improved with an AUROC value of 0.745 when compared to that 
of protein-based similarity scores (AUROC = 0.695), as shown in Figure 3.9(b). In the 
classification of drug-drug associations (Figure 3.9(c)), using functionality-based similarity scores 
results in an AUROC value of 0.605 which is slightly greater than that of protein-based similarity 
scores (AUROC = 0.597). 
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(a) Drug-disease associations (b) Drug-drug associations (c) Disease-disease associations 

Figure 3.9 ROC curves of protein-based and functionality-based similarities 
 
 In addition to the ROC curves, the PR curves of both protein-based and functionality-
based similarities are also investigated as shown in Figure 3.10. In the classification of drug-
disease associations (Figure 3.10(a)), using functionality-based similarities results in an AUPRC 
value of 0.059, which is lightly greater than that uses proteins (AUPRC = 0.055). Similarly, the 
AUPRC value of functionality-based similarities is increased to 0.349 in the classification of 
disease-disease associations (Figure 3.10(c)), whereas the AUPRC value of proteins is 0.345. 
Despite insignificant improvement in the classification of drug-drug associations, the AUPRC 
value of functionality-based similarities (AUPRC = 0.178) is greater than that of protein-based 
similarities (AUPRC = 0.177), as shown in Figure 3.10(b). 
 

 
(a) Drug-disease associations (b) Drug-drug associations (c) Disease-disease associations 

Figure 3.10 Precision-recall curves of protein-based and functionality-based similarities 
 
 Based on the Youden’s index, the optimal threshold scores can be estimated from the 
ROC curves. When using protein-based similarities, the threshold scores are 0.1, 0.138, 0.099 for 
classifying drug-disease, drug-drug, and disease-disease associations, respectively. When using 
functionality-based similarities, the threshold scores are 0.264, 0.369, and 0.297 for predicting 
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drug-disease, drug-drug, and disease-disease associations, respectively. Based on these threshold 
scores, the confusion matrices resulting from the predictions of drug-disease, drug-drug, and 
disease-disease associations can be generated as shown in Figure 3.11. 
 

 
(a) Drug-disease associations (b) Drug-drug associations (c) Disease-disease associations 

Figure 3.11 Confusion matrices of protein-based and functionality-based similarities 
 
 In each confusion matrix, the total number of each column is a constant, equal to the total 
number of positive or negative samples. For example, in both confusion matrices of Figure 
3.11(a), the summations of the numbers in each column are the total number of positive and 
negative drug-disease associations (i.e. 6,144 and 467,552, respectively). When comparing 
between a confusion matrix of a protein-based similarity (top) and that of a functionality-based 
similarity (bottom), the number of true positives (TP) will be increased or decreased by only 
changing between true positives and false negatives (FN). Likewise, the number of true negatives 
will be increased or decreased by only transferring between true negatives (TN) and false 
positives (FP). Therefore, only the numbers of accurate predictions, i.e. TP and TN, will be 
discussed here.  
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According to Figure 3.11(a), the numbers of accurate predictions of drug-disease 
associations when using protein-based similarities are 2,660 for TP and 402,076 for TN. It was 
found that the numbers of accurate predictions increase when using drug-disease similarity scores 
based on GO functions (TP = 3,836 and TN = 419,643) for predicting drug-disease associations. 
From Figure 3.11(b), the number of true positives increases from 24,114 to 27,463 when using 
functionality-based similarity scores for predicting drug-drug associations. The number of true 
negatives is also improved from 216,263 to 244,961 by using functionality-based similarities. In 
the classification of disease-disease associations (Figure 3.11(c)), the greater numbers of accurate 
predictions are gained when using functionality-based similarities (TP = 11,008 and TN = 
102,159), when compared to those of protein-based similarities (TP = 9,855 and TN = 93,510). 
Based on the confusion matrices (Figure 3.11), the values of precision, recall, accuracy, and F1-
score are computed and shown in Figure 3.12.  
 

 
(a) Precision (b) Recall 

 
(c) Accuracy (d) F1-score 

Figure 3.12 Precision, recall, accuracy, and F1-score of protein-based and functionality-based 
similarities 
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 Figure 3.12 clearly shows that using functionality-based similarity scores in the 
classification of drug-disease, drug-drug, and disease-disease associations can improve values in 
all evaluation metrics, when compared to those obtained by using protein-based similarity scores. 
By using GO functions, the percentages of recovered positive samples (recall values) are 
increased from 43% to 62% in the classification of drug-disease associations, from 51% to 58% in 
the classification of drug-drug associations, and from 58% to 64% in the classification of disease-
disease associations, as shown in Figure 3.12(b). Similarly, the accuracy values are also improved 
when functionality-based similarity scores are utilized to classify drug-disease associations 
(89%), drug-drug associations (67%), and disease-disease associations (83%), as illustrated in 
Figure 3.12(c). Since there are few positive samples relative to samples in another class, the 
precision values obtained are quite low (Figure 3.12(a)), especially in the classification of drug-
disease associations. As mentioned before, less than 2% of drug-disease pairs are positive. 
Therefore, drug-disease pairs that are predicted to be positive are mostly considered to be FP, 
resulting in a flatten precision value. Nevertheless, the greater numbers of TP detected by using 
functionality-based similarities result in the higher precision values when compared to those 
obtained by using protein-based similarities. Similarly, despite the flatten F1 scores, similarities 
based on GO functions can improve the predictions of drug-disease, drug-drug, and disease-
disease associations as shown in Figure 3.12(d). 
 From these results, it can be concluded that drug-associated and disease-associated 
GO functions are very useful for identifying relationships between drugs and diseases, between 
drugs, and between diseases. By using GO functions, the greater numbers of positive drug-
disease, drug-drug, and disease-disease associations can be detected resulting in improved 
performance, when compared to that obtained from using protein information. This may be 
because broader information provided by GO functions supports drug-disease, drug-drug, and 
disease-disease similarity detection. Davis et al. [102] investigated BP GO functions and genes 
overlapping between old and new diseases of three repositioned drugs, which are thalidomide, 
raloxifene, and sildenafil. They found that relevant diseases in all three cases significantly share 
their GO functions rather than genes. Moreover, Rutherford et al. [58] observed drug-associated 
and disease-associated proteins on a PPI network. They revealed that most of known drug-disease 
associations cannot be easily detected by direct interactions, but they tend to have longer PPI 
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connections between drug-associated and disease-associated proteins in the PPI network. That is 
why many positive samples cannot be detected by using protein-based similarities. 
 

3.4.5 Case studies 
 In this section, a novel drug-disease, drug-drug, and disease-disease association predicted 
by using functionality-based similarity scores are selected for discussions. Each of them was also 
searched for supporting evidence from literature and a database of clinical studies 
(ClinicalTrials.gov). 
 
 1) Tolcapone and attention deficit-hyperactivity disorder (ADHD) 
 This is a discovered drug-disease association with a functionality-based similarity score 
of 0.484. The drug tolcapone (DB00323) is currently approved for the treatment of Parkinson’s 
disease. ADHD (OMIM: 143465) is a mental health disease which affects several people’s 
behaviors including overactivity, lack of attention, and impulsiveness [103]. In ClinicalTrials.gov, 
it was found a clinical study (NCT03904498) which has been recently conducted to investigate 
the use of tolcapone for patients with both alcohol addiction and ADHD. At present, the 
molecular mechanisms of tolcapone remain unclear, especially those involving with ADHD. 
However, nine overlapping GO functions between tolcapone and ADHD were found, such as 
catechol O-methyltransferase (COMT) activity (GO: 00162606), dopamine catabolic process 
(GO: 0042420), and short-term memory (GO: 0007614). From a literature search, it was found 
that the COMT enzyme can diminish the level of dopamine in the prefrontal cortex [104], which 
controls various behaviors involving with ADHD. In addition, tolcapone can inhibit the COMT 
enzyme to maintain the level of dopamine [105]. 
 
 2) Glimepiride and nicorandil 
 This is a potential drug-drug association with a functionality-based similarity score of 
0.488. They have four overlapping GO functions which are ion channel binding (GO: 0044325), 
potassium ion import across plasma membrane (GO: 1990573), inward rectifying potassium 
channel (GO: 0008282), and sulfonylurea receptor activity (GO: 0008281). Because these two 
drugs highly involve with similar GO functions, they may be able to treat some common diseases. 
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Figure 3.13 shows known indications of glimepiride and nicorandil, where some of them could be 
newly suggested for one of those two drugs. Glimepiride (DB00222) is approved for T2D or type 
2 diabetes mellitus (OMIM: 125853) and some other variants of diabetes, including type 1 
(OMIM: 125850), type 2 (OMIM: 125851), and type 3 (OMIM: 600496) maturity-onset diabetes 
in young. Nicorandil (DB09220) is approved for cardiac arrhythmia (OMIM: 115000) and 
myocardial infraction (OMIM: 608446). 
 

 
Figure 3.13 An inferred association of glimepiride and nicorandil 

 
By a literature search, it was found that the abnormality in controlling the potassium 

channel activity involves with the progression of T2D [106], and the dysfunction of several ion 
channel activities can affect Ca2+ controlling and  -cell function in T2D [107]. Additionally, 
there is a clinical study with an ID of NCT03775902 which was conducted to study the use of 
nicorandil for patients with T2D. According to all supporting information, an association of 
nicorandil and T2D can be suggested as a potential one, and some overlapping GO functions may 
be used to guide how nicorandil and T2D are associated with each other. 
 
 3) Myotonia congenita and Gitelman syndrome 
 This is a proposed disease-disease association with a high functionality-based similarity 
score of 0.667. They share three GO functions which are voltage-gated chloride channel activity 
(GO: 0005247), chloride transmembrane transport (GO: 1902476), and chloride channel complex 
(GO: 0034707). Since these two diseases are highly related to the same GO functions, it would be 
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possible that they can be treated by some common drugs. The approved drugs of both diseases are 
listed in Figure 3.14. 
 

 
Figure 3.14 An inferred association of Myotonia congenita and Gitelman syndrome 

 
 Myotonia congenita (OMIM: 255700) is a rare disease which affects skeletal muscles. 
The drugs approved for this disease are acetazolamide (DB00819) and carbamazepine 
(DB00564). Gitelman syndrome (OMIM: 263800) is a rare disease with the abnormality in 
controlling various ions in the body such as potassium, magnesium, and calcium [108]. One drug 
that has been approved for this disease is indomethacin (DB00328). Despite no clinical studies 
found to support a cross relationship between these two diseases, a literature search reveals that 
carbamazepine can impact the sodium transport in the toad Pleurodema thaul [109], and this 
activity involves with the progression of Gitelman syndrome [110]. According to these results, it 
could recommend an association between carbamazepine and Gitelman syndrome for further 
investigation. 
 
3.5 Discussions 
 Since proteins play crucial roles in drug actions and disease processes, drug-associated 
and disease-associated proteins are usually utilized to identify the relationships between drugs and 
diseases, between drugs, and between diseases. An advantage of this approach is that the data of 
drug-protein and disease-protein associations are uncomplicated and broadly available in many 
databases, such as DrugBank [85], Therapeutic Target Database (TTD) [111], DisGeNET [86], 
and OMIM [112]. Moreover, predicting drug-disease, drug-drug, and disease-disease associations 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 74 

based on protein similarities is manageable and straightforward. However, this approach could 
not discover some complex relationships with the lack of proteins explicitly shared between drugs 
and diseases, between drugs, or between diseases. 
 To improve the predictions of the drug-disease, drug-drug, and disease-disease 
associations, the proposed approach is based on the functionality-based similarities, which are the 
similarity measures from drug-associated and disease-associated GO functions. With the broader 
information of the GO functions, the proposed approach can recover the greater numbers of the 
positive drug-disease, drug-drug, and disease-disease associations, when compared to those of the 
protein-based similarities. In addition, the multi-aspects of the GO functions provide more 
information about drugs and diseases which would be of great advantages for classifying the 
drug-disease, drug-drug, and disease-disease associations. 

However, there are some drawbacks of GO functions that need to be concerned. Firstly, 
linking GO functions to drugs and diseases is burdensome. Since GO terms are organized in the 
hierarchical structure, the GO functions of different levels can be mapped to a protein and 
therefore a drug or a disease. The redundancy of these semantically related GO functions may 
lead to the inflated similarity scores of the drug-disease, drug-drug, and disease-disease pairs. To 
reduce the redundancy, only the drug-GO and disease-GO pairs with the most detailed GO 
functions or leaf nodes were maintained in this study. By this technique, there will be no 
semantically related GO terms retained for each drug and disease, but those GO functions could 
be still from the different levels. For example, regulation of translational elongation 
(GO:0006448) is an ancestor node of regulation of cytoplasmic translational fidelity 
(GO:0140018), and the former GO function is linked to a drug whereas the latter is mapped to a 
disease. The similarity score of this drug-disease pair cannot be measured although the drug and 
disease are functionally related. This leads the functionality-based similarity measures to loss of 
the similarity information of such GO functions. To recover this kind of the similarity 
information, a reasonable solution is applying GO semantic similarity measures, such as the 
Resnik [113] and Wang [114] similarity scores. In addition, the similarity scores should be 
relative to the levels of the considered GO functions because the deeper GO terms provide the 
more specific information. For example, a drug-disease pair that possesses term GO:0140018 
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should have the larger similarity score than another drug-disease pair that shares term 
GO:0006448. 

Secondly, the similarities based on GO functions of the distinct aspects (i.e. BP, MF, and 
CC) can differently imply to the functional relationships between two proteins. Especially when 
the similarities are identified solely based on CC GO functions, it could not conclude whether 
both proteins are functionally related or not. Similarly, the similarities solely based on CC GO 
functions between drugs and diseases, between drugs, and between diseases could not reliably 
point to the potential drug-disease, drug-drug, and disease-disease associations, respectively. This 
can be supported by the results that there are only the small proportions of the positive drug-
disease pairs (43%), drug-drug pairs (26%), and disease-disease pairs (55%) that have some 
common CC GO functions. Therefore, the CC GO functions should be exploited with the BP or 
MF GO functions to create more reliable functionality-based similarity scores. Additionally, the 
similarity information provided by the distinct GO aspects should differently contribute to the 
functionality-based similarity scores. 

Finally, some GO terms provide too general information and could not indicate the 
specific biological activities or pathways in which proteins work, such as protein binding 
(GO:0005515) and scaffold protein binding (GO:0097110). Such GO functions could inflate the 
functionality-based similarity measures, resulting in the increased numbers of false positive drug-
disease, drug-drug, and disease-disease associations. Therefore, it would be advantages if the 
trivial GO functions will be removed from the computation of the functionality-based similarity 
scores. 
 
3.6 Summary 
 In this study, the feasibility of utilizing GO functions for discovering relationships 
between drugs and diseases, between drugs, and between diseases is evaluated. Generally, drug-
associated and disease-associated proteins are used to identify these relationships via similarity 
measures based on those proteins. However, the relationships between drugs and diseases can be 
more complex than interacting with the same proteins, leading to a failure of the protein-based 
similarity strategy in detecting many of those relationships. This motivates to exploit other 
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broader information (i.e. GO functions) for predicting drug-disease, drug-drug, and disease-
disease associations. 
 Initially, all drug-disease, drug-drug, and disease-disease pairs were generated. Drug-
disease pairs were labeled as positive if they are known drug-disease associations, otherwise they 
were unlabeled. To connect between drugs and diseases, a pair of two drugs was labeled as 
positive if they share at least one common disease. If not, it was unlabeled. Similarly, a pair of 
two diseases was positive if they have at least one common drug. Otherwise, it was unlabeled. All 
drug-disease, drug-drug, and disease-disease pairs were measured functional similarity levels 
using drug-GO and disease-GO associations. Seven well-known similarity indices were 
compared, and the most suitable one (i.e. the derived Jaccard index) was selected to compute the 
functionality-based similarity scores for all drug-disease, drug-drug, and disease-disease pairs. 
These scores were directly employed to classify the drug-disease, drug-drug, and disease-disease 
associations to evaluate how well the functionality-based similarity measures can be used to 
discover the relationships between drugs and diseases. The performance of the protein-based 
similarity measures served as the baseline performance and was compared with that of the 
functionality-based similarity measures. 
 As a result, the classifications of the drug-disease, drug-drug, and disease-disease 
associations were improved by using the functionality-based similarity measures with the better 
values in all evaluation metrics (i.e. precision, recall, accuracy, and F1), when compared to those 
of the protein-based similarity measures. Furthermore, the case studies showed that the 
functionality-based similarity measures can be used to discover new drug-disease associations 
under investigation or with supporting literature. According to these results, it could suggest that 
GO information is a promising indicator that can be used to discover the relationships between 
drugs and diseases, between drugs (probably sharing common diseases), and between diseases 
(probably sharing common drugs). With these advantages of the GO functions, it would be of 
great interest to integrate all independent functionality-based similarity information with more 
sophisticated methods to achieve more reliable and accurate predictions of the drug-disease 
associations. 
 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV 
META-PATH BASED FUNCTIONAL PROFILES FOR PREDICTING 

DRUG-DISEASE ASSOCIATIONS 
 

In the previous chapter, GO information is shown as a promising signal in uncovering 
relationships between drugs and diseases, between drugs, and between diseases. In this chapter, a 
PU learning method with meta-path based functional profiles is proposed for predicting drug-
disease associations. This method takes advantages of GO functions and meta-paths to create 
novel network-based features of drug-disease pairs, called meta-path based functional profiles. 
 
4.1 An overview of the study 
 A diagram that provides an overview of this study is shown in Figure 4.1.  
 

 
Figure 4.1 A schematic diagram providing an overview of this study 

 
First, a drug-GO-disease tripartite network was constructed by integrating three 

association data sets, including drug-GO, disease-GO, and drug-disease associations. From the 
tripartite network, meta-path based functional profiles were generated for all drug-disease pairs 
by using the proposed algorithms. These meta-path based functional profiles were then prepared 
to further use in the development of a classification model. To show the superior performance of 
the proposed method, the researcher compared its performance with those of existing methods. 
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Finally, the proposed method was employed to predict potential drug-disease associations, and 
these inferred associations were also searched for supporting evidence in a database of clinical 
trials and literature to demonstrate the practicality of the proposed method. The source codes and 
data sets used in this study are freely available at https://github.com/thitipongk/MGPDDA. 
 
4.2 Data sets 
 In this method, only three association data sets are used which are drug-GO, disease-GO, 
and drug-disease associations. These data sets are the same data sets as described in Chapter III 
(see the section 3.2 for the data sources). In brief, drug-GO associations were generated by using 
drug-protein associations and GO annotation data of human proteins (see the section 3.3.2 for 
more details). Similarly, disease-GO associations were constructed by using disease-protein 
associations and GO annotation data of human proteins (see the section 3.3.2 for more details). A 
collection of known drug-disease associations was obtained by integrating the gold standard data 
set of Gottlieb et al. [3] and drug-disease therapeutic relations downloaded from CTD [84]. 
 
4.3 Methods 

4.3.1 Construction of a drug-GO-disease tripartite network 
 A drug-GO-disease tripartite network used in this study contains three node types (drug, 
GO, and disease nodes) as shown in Figure 4.2(a). The set of all drug, GO, and disease nodes in 
the network are R = {r1, r2, …, rm}, G = {g1, g2, …, gp}, and D = {d1, d2, …, dn}, respectively. m, 
p, and n represent the total number of all drug, GO, and disease nodes, respectively. In the 
tripartite network, links are connected only between different node types, and there are three 
different link types as shown in Figure 4.2(b). The links “associated with” connect between drug 
and GO nodes or between disease and GO nodes. The links “treats” and “treated by” bridge 
between drug and disease nodes. 
 To construct a drug-GO-disease tripartite network, the data of drug-GO, disease-GO, and 
drug-disease associations are used. Based on these association data, this network is simply 
represented as an unweighted and undirected network as demonstrated in Figure 4.2(a). However, 
each link in this network can represent bidirectional relationships with semantic annotations 
between any two nodes of different types, as shown in Figure 4.2(b). 

https://github.com/thitipongk/MGPDDA
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(a) A drug-GO-disease tripartite network (b) Network schema 
Figure 4.2 Illustration of a drug-GO-disease tripartite network and its network schema 

 
4.3.2 Generation of meta-path based functional profiles for drug-disease pairs 

 A meta-path is a path structure, written by a sequence of node and link types, for 
extracting paths in a heterogeneous network. Because a heterogeneous network represents a 
collection of relationships between diverse nodes, a meta-path can be considered as a composite 
relationship between a starting node type and a terminating node type. Under a meta-path, paths 
extracted from a network for a pair of nodes can be considered as semantic information 
describing the relationship between those nodes from a point of view. Therefore, multiple meta-
paths are often used to aggregate distinct semantic information from different points of view. 
 After a drug-GO-disease tripartite network is constructed, novel meta-path based features 
are generated for each drug-disease pairs. Unlike other existing meta-path based features, the 
proposed features can retain information of intermediate nodes (i.e. GO functions) by 
differentiating paths under a meta-path according to their incorporating intermediate nodes and 
creating as profiles of intermediaries. In this work, functional profiles or GO profiles are 
generated for each drug-disease pair using meta-paths, that is why these new features is called 
meta-path based functional profiles. 
 To generate meta-path based functional profiles for each drug-disease pair, three meta-
paths, denoted as M1, M2, and M3, are employed in this study. All meta-paths always start with 
drug nodes and terminate with disease nodes so that semantic information of drug-disease pairs 
will be extracted from the network. In a path, a starting drug node is called a target drug, and a 
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terminating disease node is called a target disease. Only the meta-paths incorporating the GO 
node type are used so that meta-path based functional profiles can be generated. The lengths of 
the meta-paths are limited up to three, because too long meta-paths often contribute useless 
information and are hardly detected in a network [115]. 
 For each drug-disease pair, a meta-path based functional profile is a vector with the 
length equal to the total number of all GO functions. Each element in that vector is a count of the 
extracted paths, starting from a target drug node and terminating at a target disease node, under a 
meta-path considered. Therefore, a meta-path based functional profile can be considered as a 
functional profile containing association degrees of each GO function to a drug-disease pair based 
on a count of paths under a meta-path. Each meta-path accumulates GO functions that are 
involved with a drug-disease pair from different points of view described as follows: 
 

Meta-path 1 (M1): Drug - GO - Disease 
From both drug and disease perspectives, this meta-path accumulates GO functions 
where both drugs and diseases participate in. For a drug-disease pair, GO functions that 
overlap between those of a target drug node and a target disease node are accumulated 
and considered as GO functions associated with both that target drug and disease. 
 
Meta-path 2 (M2): Drug - GO - Drug - Disease 
For each drug-disease pair, this meta-path investigates GO functions where two drugs 
participate in. From a drug perspective, GO functions that are shared between those of a 
target drug and each drug known to be associated with a target disease are accumulated 
and considered as GO functions associated with both that target drug and disease. 
 
Meta-path 3 (M3): Drug - Disease - GO - Disease 
This meta-path observes GO functions which two diseases are involved with for a drug-
disease pair. From a disease perspective, GO functions overlapping between those of a 
target disease and each disease known to be associated with a target drug are collected 
and considered GO functions that both target drug and disease are involved with. 
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 The pseudocodes of generating M1-based , M2-based, and M3-based functional profiles for 
all drug-disease pairs (XM1

, XM2
, and XM3

) are shown in Algorithms 4.1 - 4.3. A drug-GO, disease-

GO, and drug-disease association matrices are denoted as Arg, Adg, and Ard, respectively. ʘ is an 
element-wise product or the Hadamard product. 
 
Algorithm 1: Generating M1-based functional profiles (XM1

) 

Input:  Arg  ℝm×p and Adg  ℝn×p 
Output:  XM1  ℝmn×p 

1. For each drug node ri  R 
2.  For each disease node dj  D 
3.   XM1

((ri, dj), :) = Arg(ri, :) ʘ Adg(dj, :) 

4.  EndFor 
5. EndFor 
 
Algorithm 2: Generating M2-based functional profiles (XM2

) 

Input:  Ard  ℝm×n and Arg  ℝm×p 
Output:  XM2  ℝmn×p 

1. For each drug node ri  R 
2.  For each disease node dj  D 
3.  Find a set of drug nodes associated with dj from Ard(:, dj), denoted as Rdj  R. 
4.  Initialize XM2

((ri, dj), :) as a vector whose all elements are zero. 

5.  For each drug node u  Rdj 
6.    XM2

((ri, dj), :) = XM2
((ri, dj), :) + Arg(ri, :) ʘ Arg(u, :) 

7.  EndFor 
8.  EndFor 
9. EndFor 
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Algorithm 3: Generating M3-based functional profiles (XM3
) 

Input:  Ard  ℝm×n and Adg  ℝn×p 
Output:  XM3  ℝmn×p 

1. For each drug node ri  R 
2.  For each disease node dj  D 
3.  Find a set of disease nodes associated with ri from Ard(ri, :), denoted as Dri  D. 
4.  Initialize XM3

((ri, dj), :) as a vector whose all elements are zero. 

5.  For each drug node v  Dri 
6.    XM3

((ri, dj), :) = XM3
((ri, dj), :) + Adg(dj, :) ʘ Adg(v, :) 

7.  EndFor 
8.  EndFor 
9. EndFor 
 
 To clearly demonstrate how to create meta-path based functional profiles, an example 
with a small drug-GO-disease tripartite network is given in Figure 4.3. This network consists of 
three drug nodes (i.e. r1, r2, and r3) and two disease nodes (i.e. d1 and d2) which are associated 
with three GO nodes (i.e. g1, g2, and g3). The drug-GO, disease-GO, and drug-disease association 
matrices that represent this network can be constructed and denoted as Arg  ℝ3×3, Adg  ℝ2×3, and 
Ard  ℝ3×2, respectively. Each row in Arg can be considered as a functional profile of each drug, a 
binary vector indicating which GO functions are associated with that drug. Similarly, each row in 
Adg is a functional profile vector of each disease. A result of an element-wise product performed 
between two different functional profiles is a profile vector indicating common GO functions 
between those two profiles. 
 To create the M1-based functional profile of drug-disease pair r1-d1, an element-wise 
product is performed on the functional profile vector of drug r1 and that of disease d1. 
Consequently, a vector with the length of three (the total number of GO functions) is obtained, 
where a value of one appears at the locations of common GO functions shared between those of 
drug r1 and disease d1. In this example, both r1 and d1 are associated with all GO functions. Thus, 
all elements in the M1-based functional profile of pair r1-d1 are ones. Furthermore, each value in 
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this functional profile represents a count of paths incorporating each GO node under meta-path 
M1. In this M1-based functional profile, the first value of one is from path r1-g1-d1, the second 
value of one is from path r1-g2-d1, and the third value of one is from path r1-g3-d1, as enumerated 
in Figure 4.3. 
 

 
Figure 4.3 A demonstration of generating meta-path based functional profiles and further 
processes 
 
 To investigate GO functions through a view of drugs, drugs associated with target 
disease d1 are identified from the drug-disease association matrix Ard. Consequently, there are two 
drugs (i.e. r2 and r3) associated with d1. Then, an element-wise product is performed between the 
functional profile vector of target drug r1 and each drug associated with d1 separately. To obtain 
the M2-based functional profile of r1-d1, all profile vectors resulted from the element-wise 
products are summed up together. Each value in this M2-based functional profile represents a 
count of paths that incorporates each GO node under M2. The value of one at the position of the 
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GO function g1 is counted from path r1-g1-r2-d1. The value of two at the second column of the M2-
based functional profile is a result of paths r1-g2-r2-d1 and r1-g2-r3-d1. 
 To observe GO functions through a disease perspective, all diseases connected to target 
drug r1 are primarily identified by searching for values of ones in the second column of Ard. As a 
result, only disease d2 is found to be associated with target drug r1. Then, an element-wise product 
is performed on the functional profile vector of d1 and d2 to obtain the M3-based functional profile 
vector of r1-d1. In this functional profile, the value of one at the third position is a count of path  
r1-d2-g3-d1, which incorporates GO function g3 in the path. 
 It is noteworthy that a row summation of XMi, where i = 1, 2, 3, is equivalent to a total 
count of paths under a meta-path with regardless of differences of intermediate nodes. This 
measure is known as a conventional path count and commonly used in many meta-path based 
studies. The proposed algorithms can differentiate this ordinary path count according to GO 
functions incorporated in the paths to construct meta-path based functional profiles. These 
functional profiles could gain more network-based information which are useful for the 
classification of drug-disease associations, when compared to an ordinary one. 
 These processes are repeatedly conducted to create meta-path based functional profiles 
for all drug-disease pairs. Consequently, the matrices of M1-based, M2-based, and M3-based 
functional profiles or XM1, XM2, and XM3 are obtained, where XM1  ℝ6×3, XM2  ℝ6×3, and  
XM3  ℝ6×3. Because multiple combinations of the functional profile matrices can be produced, an 
optimal combination should be primarily specified before preparing features of drug-disease 
pairs. To achieve this task, both independent and combined profile matrices are investigated. To 
construct a combined functional profile matrix, two different profile matrices are concatenated 
together and denoted by XMiMj, where i, j = 1, 2, 3. In case of XM1M2M3, it is created by 
concatenating all three functional profile matrices. In total, seven distinct functional profile 
matrices are obtained (i.e. XM1, XM2, XM3, XM1M2, XM1M3, XM2M3, and XM1M2M3). These functional 
profiles are high dimensional feature matrices, especially when the total number of GO functions 
is very high, leading to unsuitability for training and testing a classification model. Therefore, the 
dimensionality reduction is performed on all seven profile matrices by using the singular value 
decomposition (SVD). Then, latent features of these different profile matrices are tested to choose 
the best one for further development of a classification model. 
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4.3.3 Dimensionality reduction of meta-path based functional profiles 
 After completing the step of generating meta-path based functional profiles, XM1  ℝmn×p, 
XM2  ℝmn×p, and XM3  ℝmn×p are obtained, where m, n, and p are the total number of drugs, 
diseases, and GO functions. These functional profile matrices are high dimensional features, 
especially when the total number of GO functions (p) is very high, and all profile matrices are 
concatenated to produce XM1M2M3. In case of XM1M2M3, a feature vector of a drug-disease pair has the 
length as many as 3p, three times the total number of all GO functions. These high dimensional 
features could result in the complexity of a model leading to its low generalization. Before using 
these features in a classification model, dimensionality reduction of meta-path based functional 
profiles is conducted by using the truncated SVD [116]. This method is commonly used for data 
dimensional reduction in various applications, such as document clustering [117], medical image 
classification [118], disease diagnosis models [119], and drug repositioning [11, 47], due to its 
simplicity and efficiency. 
 Let X  ℝmn×q be a functional profile matrix, where q = p, 2p, 3p. By SVD, X can be 
decomposed as shown in (4.1), where U and V are orthonormal matrices, and S is a diagonal 
matrix containing singular values of matrix X. Singular values in S are sorted in descending order.  
 

mn q
T

mn q mn mn q qX U S V
  

=  (4.1) 

 
Generally, bottom singular values are near zeros or equal to zeros, which can be 

truncated for dimensionality reduction. To approximate matrix X as X̂ , the first r columns of U, 
the first leading r singular values of S, and the first r rows of VT are selected, where  
r << min{mn, q}, as shown in (4.2). The r-dimensional latent feature matrix (Y) of functional 
profile matrix X can be defined in (4.3). 
 

ˆ ˆ ˆ ˆ
r r

T
mn q mn q mn r r qX X U S V

   
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  
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 Note that F  is the Frobenius norm which can be defined following to (4.4), where xj 
represents the jth column of X, 2  is the Euclidean norm, and tr(X) is a trace of square matrix X 
or a summation of all diagonal elements of X. It can be shown in (4.5) that the square of the 
Frobenius norm of X is the summation of the squares of its singular values. 
 

( )
22

21 1 1
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= = = =   (4.5) 

 
 For each functional profile matrix, a latent feature percentage (l) is used to control the 
number of retained components (r) or the number of latent features obtained from SVD as shown 
in (4.6), where q is the total number of features in an original functional profile matrix. For a 
latent feature matrix corresponding to each value of l, the coverage percentage of all singular 
values (E) can be estimated following to (4.7). The suitable value of l for each functional profile 
matrix is specified at the minimum value where E reaches at least 95%. This means that the 
summation of the squares of all singular values should be maintained at least 95% in truncated 
matrix X̂ . 
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4.3.4 A classification model framework 

 Normally, only known or positive drug-disease associations can be found whereas no 
negative drug-disease pair or drug-disease non-association is identified due to lack of its 
applications [13]. In a set of drug-disease pairs, there are positive and unlabeled data, where a 
group of unlabeled samples contains both positives and negatives. To deal with this limitation, 
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many supervised learning based methods consider all unlabeled samples as negatives without 
awareness of contamination due to undiscovered positives. A classifier trained on positives and 
this kind of contaminated negatives could gain a deceptive decision boundary, especially when a 
large number of inaccurate negatives are included [15]. Some of existing methods randomly 
selected a subset of unlabeled samples to use as negatives with the hope to reduce the number of 
fallacious negatives obtained. Due to an uncontrollable proportion of noisy negatives, this 
strategy may lead to an unstable classifier [15] (i.e. different sets of negatives produce seriously 
distinct decision boundaries of a classifier). 
 To take advantages of model variances, an ensemble learning with positive-unlabeled 
(PU) data, so-called a PU bagging classifier, is employed in the proposed method. Bagging or 
bootstrap aggregate is an ensemble technique known to efficiently reduce model variances and 
improve model generalization by aggregate predictions from multiple meta-learning models 
trained on different subsets of data. This technique has been successfully adopted with PU data in 
many studies such as an ensemble SVMs for predicting kinase substrates [80] and a bagging 
SVM for identifying drug-drug interactions (DDIs) [70]. A framework of a classification model 
used in the proposed method is depicted in Figure 4.4. 
 

 
Figure 4.4 A classification model used in the proposed method 
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 In this work, known drug-disease associations are positive samples (P) with the class 
labels of “1” whereas the remaining drug-disease pairs are unlabeled samples (U) with the class 
labels of “0”. In general, unlabeled drug-disease pairs greatly outnumber positive drug-disease 
associations. To deal with this, unlabeled drug-disease pairs are randomly sampled with 
replacement to generate T bootstrap samples (i.e. U1, U2, …, UT) of the sizes equal to P. Then, the 
same set of positive samples (P) and each bootstrap sample of unlabeled pairs are used to train a 
base classifier, leading to T base classifiers obtained. Based on latent features of meta-path based 
functional profiles, these multiple models are used to recognize positive samples from unlabeled 
samples in the proposed method. 
 Suppose that x is a latent feature vector of meta-path based functional profiles of a testing 
drug-disease pair. ht(x) is a function of the tth base classifier (t = 1, 2, …, T) which gives a 
predicted probability of being in the positive class of a testing sample. With a given threshold 
score (z), a testing sample is predicted as either “1” (positive) or “0” (unlabeled) by a function 
(x), as shown in (4.8). In this work, a threshold score or z was set as 0.5. To combine multiple 
predictions obtained from T base classifiers for a testing sample, the averaging and majority 
voting schemes are employed, which can be defined in (4.9) and (4.10), respectively. 
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 In the proposed method, an Extreme Gradient Boosting model (XGBoost) [82] is used as 
a base classifier. XGBoost is a boosting ensemble model that has been applied in various fields, 
such as network intrusion detection, personal credit evaluation, drug discovery, and financial 
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trading. During these recent years, XGBoost has been a competitive method with deep learning 
methods due to its beneficial features (e.g. parallelization and regularization) and high 
performance [83]. Due to its high efficiency, XGBoost is selected to learn PU data with the hope 
that it can handle the noise in unlabeled data and result in improved performance of a PU bagging 
classifier. 
 

4.3.5 Experimental settings and performance evaluation 
 In this section, data manipulation for properly developing a classification model and 
evaluating performance of the proposed and other compared methods is described. In the model 
development, which parameter values were tuned and how this process was performed are 
explained next. Finally, evaluation metrics used in this study are shown. 
 
 1) Data manipulation 
 To properly manage data for each experiment in this study, the data of all drug-disease 
pairs were manipulated as shown in Figure 4.5, where P and U represent the set of all positive and 
unlabeled drug-disease pairs, respectively. In the beginning, all samples in P were shuffled and 
then divided into approximately equal five subsets. Each of them was combined with a set of 
unlabeled samples resulting from randomly sampling without replacement from U with the size of 
its positive samples. This set is called an outer testing data set which will be preserved for only 
performance evaluation of the proposed method. Out of this data set, the remaining data set is 
called an outer training data set which will be used in the experiments involving with model 
development. Outer testing data sets cannot be used in the stage of model development to avoid 
overfitting problems likely occurred when testing sets are already seen. To use in performance 
evaluation of each model under different settings (i.e. in terms of different meta-path based 
functional profiles or parameter values used), an inner testing data set was generated by randomly 
sampling 20% of positive and unlabeled samples in an outer training data set. Out of this data set, 
a set the remaining drug-disease pairs is called an inner training data set which will be employed 
for training a classification model. To avoid random bias, the whole process of generating all data 
sets was repeated for ten times, and the results obtained from all repetitions were used to estimate 
average performance values of each model. 
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Figure 4.5 Data manipulation for the experiments of this study 

 
 During the stage of model development, each model under a particular setting is trained 
on an inner training data set and then tested on an inner testing data set. A set of parameter values 
providing the highest performance values over all experimental repetitions will be selected and 
used in subsequent processes. Under an optimal choice of model settings, a classification model 
was retrained on the whole set of an outer training data set and then tested on an outer testing data 
set to measure performance of the proposed method. For other existing methods compared with 
the proposed method, their parameter values were tuned by using only outer training data sets, 
similar to those conducted for the proposed method. Each method under its optimal setting will be 
tested on outer testing data sets. To prevent random bias in performance comparison, both 
positive and unlabeled samples in all outer testing data sets were maintained as the same for both 
the proposed methods and other methods. 
 
 2) Selection of model inputs and parameter values 
 There are three parts of a model which can affect the performance of the proposed 
method, including an input set of meta-path based functional profiles, values of XGBoost 
parameters, and settings involving in the aggregate process. 
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▪ Input sets of meta-path based functional profiles 
Because three different meta-path based functional profiles are generated (i.e. XM1, 
XM2, and XM3), an optimal choice to use them should be initially specified before 
tuning other model parameters. Seven different functional profile matrices, 
including both independent and integrated functional profiles which can be 
generated by concatenating distinct functional profile matrices together (i.e. XM1, 

XM2, XM3, XM1M2, XM1M3, XM2M3, and XM1M2M3), were investigated. For each profile 
matrix, the truncated SVD was performed to find its low-dimensional 
representations of drug-disease pairs. Then, the obtained latent features of drug-
disease pairs in inner training data sets were used to build classification models, and 
then these models were tested with drug-disease pairs in inner testing data sets. A 
functional profile matrix that provides the greatest average performance values will 
be selected and used in the next experiments. In this step, the values of all XGBoost 
parameters were set at the default values, the number of bootstrap samples (T) was 
fixed at ten, and the aggregate scheme used was the averaging method. 
 

▪ XGBoost parameters 
After obtaining an optimal input matrix of meta-path based functional profiles, its 
latent features were used to tune XGBoost parameters, including learning_rate (a 
shrinkage factor of each added tree), n_estimators (the number of trees), max_depth 
(a maximum depth of a tree), and min_child_weight (a minimum summation of 
instance weights in a child node). The sets of parameter values under investigation 
are shown as follows: learning_rate = {0.1, 0.3, 0.5}, n_estimators = {100, 300, 
500}, max_depth = {4, 6, 8}, and min_child_weight = {3, 5, 7}. A grid search was 
performed on outer training data sets to find optimal values of these parameters. To 
avoid laboriousness in independent tuning multiple base classifiers, the set of these 
optimal values was used for all base classifiers in this study. During tuning 
XGBoost parameters, the T value was set at ten, the averaging scheme was used to 
combine multiple predictions from those ten XGBoost classifiers. 
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▪ The number of bootstrap samples (T) and aggregate schemes 
After getting optimal values of XGBoost parameters, a suitable value of T and 
aggregate method were identified. The values of T under investigation are 10, 20, 
30, 50, 70, 100, 150, and 200. To combine multiple predictions obtained from 
multiple XGBoost classifiers, two aggregate schemes were compared, which are the 
averaging and majority voting scheme. The values of T and aggregate schemes were 
simultaneously changed to observe which value of T and aggregate scheme can 
produce the highest performance values. In this experiment, the values of XGBoost 
parameters were set at the optimal values identified previously. 

 
 3) Evaluation metrics 
 To evaluate performance of the proposed method and other compared methods, well-
known performance measures are used, including precision (PRE), recall (REC), and accuracy 
(ACC). In addition, two useful comprehensive metrics, F1-score (F1) and Matthew’s correlation 
coefficients (MCC) are also employed in this study. All of these metrics can be computed as 
shown in (4.11) - (4.15), where TP, FP, FN, TN represent the number of true positives, false 
positives, false negatives, and true negatives, respectively. 
 

TP
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TP FP+
=  (4.11) 
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TP FN+
=  (4.12) 
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 Although a set of truly negative samples is not known in this PU learning, all unlabeled 
samples are typically treated as negatives to estimate evaluation metrics referred to the negative 
set, such as precision, accuracy, F1, and MCC. An additional metric that is used in several PU 
learning based studies [76, 81] is F1-score for PU learning (F1, PU), which requires only 
information from the positive class. This measure can be computed following to (4.16), where N 
is the total number of testing samples, and UP is the number of unlabeled samples which are 
tested and predicted as positives. 
 

2 2

1,PU

( ) ( )REC REC N
F TP UP TP UPN



+ +
= =  (4.16) 

 
 According to the above evaluation metrics, a predefined threshold score is required for 
predicting testing samples as binary classes and computing their values. To assess performance on 
all possible threshold scores, an ROC and precision-recall (PR) curve are also plotted. 
Additionally, an AUROC and AUPRC values are computed to summarize those curves. 
Furthermore, this PR curve is also exploited to specify an optimal threshold score to predict a 
binary class for each drug-disease pair. In the PR curve, a selected threshold score is a point 
where achieves the maximum F1 value. This strategy was also used in several studies such as [11] 
and [47]. 
 In many studies, K top ranked drug-disease associations were recommended as potential 
drug-disease associations. To analyze the capability of recovering positive samples in top-K 
results, some evaluation metrics are derived and computed based on these top-K predictions as 
shown in (4.17) - (4.20). These evaluation metrics were also used to evaluate performance of 
models in many recent studies, such as[45], [120], and [121]. In this study, the values of K were 
varied from 0 to 1,300 with the step of ten. To make these metrics different from the traditional 
ones, the researcher denote precision, recall, F1, and F1, PU that are computed at each value of K as 
PRE@K, REC@K, F1@K, and F1, PU@K, respectively. Note that K = 0, 10, 20, …, 1,300, and Np 
is the number of positive samples in a testing data set. 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 94 
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4.4 Results 

4.4.1 The constructed drug-GO-disease tripartite network 
 Based on drug-disease, drug-GO, and disease-GO association data, the drug-GO-disease 
tripartite network used in this study was constructed and shown in Figure 4.6. This is an 
undirected and unweighted tripartite network, where only nodes of different types are linked 
together. Some basic properties of this network are summarized in Table 4.1.  
 

 
Figure 4.6 The constructed drug-GO-disease tripartite network 
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In this network, there are 1,022 drug nodes, 585 disease nodes, and 8,320 GO nodes. GO 
nodes of all aspects were included into this network because they all can provide information 
about relationships between drugs and diseases. Among all GO nodes, there are 5,009 Biological 
Process (BP) nodes (60%), 2,408 Molecular Function (MF) nodes (29%), and 903 Cellular 
Component (CC) nodes (11%). 
 

Table 4.1 Properties of the drug-GO-disease tripartite network 

Network 
compartment 

Type Total number 
Average node degree 

or link density 

Nodes 

drug 1,022 
51.3 GO functions 

6.6 diseases 

GO function 8,320 
6.3 drugs 

11.1 diseases 

disease 585 
157.5 GO functions 

11.5 drugs 

Links 
drug-GO 52,463 0.0062 

disease-GO 92,135 0.0189 
drug-disease 6,710 0.0112 

 
 According to Table 4.1, there are three link types in the tripartite network which are 
52,463 drug-GO links, 92,135 disease-GO links, and 6,710 drug-disease links. Only small 
number of known drug-disease associations are detected when compared to drug-GO and disease-
GO associations. Link densities were calculated from proportions of existing links to all possible 
links. The link densities of drug-GO, disease-GO, and drug-disease associations are 0.0062, 
0.0189, and 0.0112, respectively. The disease-GO links are three times denser than the drug-GO 
links. This may be because the greater number of disease proteins was included in the study than 
that of drug target proteins, leading to the larger number of GO functions linked to diseases. In 
case of drug-disease associations, only 1.12% of all possible drug-disease pairs have already 
detected in this data set. These light existing links between drugs and diseases suggest that there 
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is still much room for new drug-disease associations and provide us an opportunity to uncover 
potential drug-disease associations in this study. 

Due to denser existing links between diseases and GO functions, one disease is associated 
with up to 158 GO functions whereas one drug is associated with about 51 GO functions on 
average. To link GO functions to their associated drugs or diseases, drug-associated and disease-
associated proteins were used. Therefore, the numbers of proteins associated with one drug or one 
disease can be also investigated. Consequently, the average numbers of GO functions associated 
with one drug or one disease are more than twice times greater than those of proteins interacting 
with one drug (9.6 proteins per drug) or one disease (55.9 proteins per disease). When compared 
to proteins, a drug or a disease is typically relevant to many GO functions, especially when all 
GO aspects are considered. Conversely, one GO function is also involved with many drugs (6.3 
drugs per GO function) and many diseases (11.1 diseases per GO function) on average. 
According to the results, it suggests that there is much more chance that a drug or a disease would 
overlap their GO functions with other drugs or diseases when compared to proteins. This enables 
an opportunity to improve an identification of relationships between drugs and diseases using GO 
functions. When considered links between drugs and diseases, one drug is associated with 6.6 
diseases whereas one disease is associated with 11.5 drugs on average. This result supports the 
paradigm of using one drug for multiple diseases or vice versa, and also drug repositioning. 
 

4.4.2 Usage of different meta-path based functional profiles 
 Because three different meta-path based functional profiles are generated (i.e. XM1, XM2, 
and XM3), which functional profiles should be included in the classification of drug-disease 
associations needs to be initially specified. Both independent and integrated functional profile 
matrices are investigated, including XM1, XM2, XM3, XM1M2, XM1M3, XM2M3, and XM1M2M3. Notice that 
XMiMj represents an integrated functional profile matrix which concatenates functional profile 
matrix XMi and XMj together, where i, j = 1, 2, 3, and XM1M2M3 is the functional profile matrix that 
concatenates all different functional profile matrices. 
 Before training classification models on these functional profile matrices, the truncated 
SVD was performed to find their low-dimensional representations. For each functional profile 
matrix, the number of latent features acquired is determined by a latent feature percentage, which 
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is relative to the number of all features in an original functional profile matrix. An optimal 
number of retained components or the suitable number of latent features is specified at the 
minimum value where has the coverage percentage of all singular values at least 95%. The 
number of latent features selected for each functional profile matrix is shown in Table 4.2. 
 

Table 4.2 The selected latent feature percentage for each functional profile matrix 
Matrix of meta-path 

based functional profiles 
Latent feature 

percentage (l) 

The number of 

latent features (r) 
XM1 7.992% 665 
XM2 0.432% 36 
XM3 4.699% 391 

XM1M2 0.228% 38 
XM1M3 2.415% 402 
XM2M3 1.868% 311 

XM1M2M3 1.278% 319 
 
 According to Table 4.2, the selected latent feature percentages (l) of all functional profile 
matrices are less than 10%, and the corresponding numbers of the latent features (r) range from 
36 to 665 features. This could indicate that SVD can efficiently reduce the dimensions of all 
functional profile matrices. Furthermore, the functional profile matrices that originally have large 
latent feature matrices (i.e. XM1 and XM3) require smaller numbers of new latent features to retain 
the same amount of information when they are combined with XM2. This suggests that combining 
multiple functional profile matrices contributes much more information than using the 
independent meta-path based functional profiles. Due to integration of different information 
provided by multiple meta-paths, the combined functional profile matrices could be more useful 
for the classification of drug-disease associations. 
 Next, each latent feature profile matrix obtained from SVD was used to train and test a 
classification model so that the performance of different functional profile matrices can be 
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estimated and compared. The mean values of some evaluation metrics and their standard 
deviations (SD) are shown in Figure 4.7. 
 

  
(a) Mean AUROC ± SD (b) Mean AUPRC ± SD 

  
(c) Mean F1 ± SD (d) Mean F1, PU ± SD 

Figure 4.7 Performance comparison of using different meta-path based functional profiles 
 
 When comparing among the independent functional profile matrices, it was found that 
M3-based functional profiles can produce the highest values in all performance metrics (AUROC 
= 0.8815, AUPRC = 0.9126, F1 = 0.8243, and F1, PU = 1.3663). With the data set used in this 
study, it may suggest that meta-path M3 is the most effective meta-path which can accumulate the 
greatest amount of useful information for classifying drug-disease associations. However, the 
performance of M3 can still be enhanced by combining XM3 with other functional profile matrices. 
The performance of a classification model was slightly improved when using the combined 
functional profile matrix XM1M3 (AUROC = 0.8955, AUPRC = 0.9167, F1 = 0.825, and  
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F1, PU = 1.3678), and it was significantly improved when using XM2M3 (AUROC = 0.925, AUPRC = 
0.941, F1 = 0.8613, and F1, PU = 1.484). The highest values in all evaluation metrics are produced 
by using the functional profile matrix which integrates all meta-path based functional profiles or 
XM1M2M3 (AUROC = 0.9259, AUPRC = 0.9416, F1 = 0.8615, and F1, PU = 1.485). From these 
results, it can be concluded that integrating multiple meta-path based functional profiles could 
gain more beneficial information for classifying drug-disease associations, resulting in a 
performance improvement when combined functional profile matrices are used. By integrating 
multiple functional profile metrices, diverse information of drug-disease pairs provided by 
different meta-paths are aggregated, which could be useful for predicting drug-disease 
associations. 
 To support why integrating multiple meta-path based functional profiles is more useful, 
both independent and integrated functional profile matrices are investigated. Because it is difficult 
to measure how useful information contained in each functional profile matrix is, information loss 
in each matrix is observed instead. This investigation is limited to only a set of 6,710 positive 
drug-disease associations because obvious relationships can be found only in this set. For these 
known drug-disease associations, some GO functions associated with them should be detected by 
meta-paths and included into their functional profiles so that their relationships are detectable by a 
classification model. However, it was found that some of them have all-zero functional profiles or 
all-zero features in some functional profile matrices. To compare information loss between 
different functional profile matrices, the number of positive samples that have all-zero functional 
profiles or all-zero features are observed in each functional profile matrix and shown in Table 4.3. 
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Table 4.3 The number of positive samples that have all-zero functional profiles in each functional 
profile matrix 

Matrix of meta-path 
based functional profiles 

Positive samples that have all-zero functional profiles 

Number Percentage 
XM1 1,469 22.30% 
XM2 369 5.50% 
XM3 127 1.89% 

XM1M2 369 5.50% 
XM1M3 127 1.89% 
XM2M3 1 0.01% 

XM1M2M3 1 0.01% 
 

The numbers of positive samples that have all-zero M1-based, M2-based, and M3-based 
functional profiles are 1,496 (22.30%), 369 (5.50%), and 127 (1.89%), respectively. This could 
indicate that there are a greater number of positive samples that M1 cannot detect their associated 
GO functions when compared to those exploiting M2 and M3. This higher number could lead a 
classification model to confusion and result in its worse performance, which can be seen in Figure 
4.7. Nevertheless, the loss of functional information in a meta-path based functional profile 
matrix can be resolved by integrating multiple functional profile matrices. For example, by 
concatenating XM1 and XM2, the number of positive samples that have no any detected GO 
functions can be reduced from 1,496 (22.30%) to 369 (5.50%). Especially, those functional 
profile matrices combining with XM3 (i.e. XM1M3, XM2M3, and XM1M2M3) can greatly reduce their 

numbers of all-zero functional profiles in the positive samples. For instance, in XM2M3 and XM1M2M3, 
there is only one positive samples left (0.01%) that has all-zero functional profiles. These results 
could partially support why combining multiple meta-path based functional profiles is better than 
solely using an independent functional profile matrix. Due the greatest values in all evaluation 
metrics of XM1M2M3, this functional profile matrix is used as an input of the proposed method for 
further classifying drug-disease associations. 
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4.4.3 Selected values of model parameters 
 After getting an appropriate input for the proposed method, optimal values of model 
parameters are then identified. For the proposed method, two main sets of parameters needed to 
be tuned are XGBoost parameters and those relevant to combining multiple predictions (i.e. the 
number of bootstrap samples and aggregate schemes). 
 
 1) XGBoost parameters 
 There are four XGBoost parameters were tuned by using outer training data sets. They 
are learning_rate (a shrinkage factor of an added tree), n_estimators (the number of tree), 
max_depth (a maximum depth of a tree), and min_child_weight (a minimum summation of 
instance weights in a child node). A grid search was performed to evaluate performance of 
models with all possible combinations of the predefined values of all parameters. An optimal set 
of parameter values was manually selected from a set that provides the highest values in most 
comprehensive evaluation metrics (i.e. AUPRC, AUROC, F1, and F1, PU). As a result, the selected 
set of parameter values are {learning_rate, n_estimators, max_depth, min_child_weight } = {0.3, 
500, 6, 3}. With this set of parameter values, the model can produce the mean AUPRC of 0.9427, 
the mean AUROC of 0.9286, the mean F1 of 0.8633, and the mean F1, PU of 1.4921. 
 
 2) Aggregate schemes and the number of bootstrap samples (T) 
 To combine multiple predictions from several base classifiers, a suitable aggregate 
scheme and the appropriate number of bootstrap samples (T) should be primarily determined. 
Two aggregate schemes are considered which are the averaging and majority voting scheme. The 
values of T under investigation are 10, 20, 30, 50, 70, 100, 150, and 200. To find the suitable 
values of both parameters, they were combined together, and the models with these different 
settings of both parameters were evaluated their performance. In this experiment, the parameters 
of all XGBoost classifiers were set at the optimal values previously found. For each T value, the 
mean AUPRC and F1, PU values of both averaging and majority voting schemes with their SDs are 
computed and shown in Figure 4.8. 
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(a) Mean AUPRC ± SD (b) Mean F1, PU ± SD 
Figure 4.8 Performance comparison of using different aggregate schemes 

 
 When comparing between the averaging and majority voting scheme, it is noticeable that 
models with the averaging scheme can produce the higher mean AUPRC and F1, PU values, no 
matter what value of T is used. Furthermore, the majority voting scheme requires a larger value of 
T when compared to that of the averaging scheme to obtain a stable ensemble model. This may be 
because the majority voting scheme is directly based on a binary class given for each testing 
sample (see the section 4.3.4 for more details). With unstable base classifiers, early predicting a 
testing sample as a binary class could result in too diverse predictions of each testing sample. This 
leads to the difficulty to create accurate combined predictions by the final ensemble model, 
especially when the small value of T is used. To resolve this problem, the majority voting scheme 
requires the larger value of T to make more accurate combined predictions when compared to that 
used in the averaging scheme. According to these results, the averaging scheme is selected to use 
in the proposed method. 
 Next, the suitable value of T is identified when the averaging scheme is applied in the 
proposed method. When T was increased in each time, the old and new mean AUPRC values of 
the averaging scheme was compared by one-sided t-tests to examine whether there is a significant 
improvement in AUPRC values or not. According to Figure 4.9, the mean AUPRC values are 
significantly improved until T reaches the value of 50. After T is increased above 50, only 
insignificant improvements in the mean AUPRC values are found. The mean AUPRC value and 
its SD at T = 50 for the averaging scheme is 0.9436 ± 0.0026. Thus, T is set at 50 and the 
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averaging scheme is applied to combine multiple predictions obtained from base classifiers in the 
proposed method. 
 

 
Figure 4.9 Improvements of mean AUPRC values when T was increased and the averaging 
scheme was used 
 

4.4.4 Comparison with other methods 
 In this section, the performance of the proposed method with an optimal setting is 
evaluated by comparing with other existing methods. Four state-of-the-art methods and one 
baseline method are selected to compare with the proposed method. The first method is a three-
layer heterogeneous graph based inference (TL_HGBI) [4] method, which integrates drug target 
information with drug-drug and disease-disease similarity scores. The second method is MBiRW 
[5], that exploits a bi-random walk algorithm to predict new links between drugs and diseases in a 
two-layer heterogeneous network. The third method is the ensemble meta-paths and singular 
value decomposition (EMP-SVD) [11] method, that uses a meta-path based ensemble model with 
a heuristic strategy to select reliable negatives for predicting drug-disease associations. The fourth 
method is the topological similarity and singular value decomposition (TS-SVD) [47] method, an 
improved version of EMP-SVD that exploits topological similarity features of drugs and diseases. 
The baseline method directly exploits path counts as features of drug-disease pairs for predicting 
drug-disease associations. This method is compared with the proposed method to show the 
superior performance of novel features of drug-disease pairs or meta-path based functional 
profiles. 
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 Each method was trained on outer training data sets and then tested with outer testing 
data sets. The same drug-disease pairs were maintained in all outer testing data sets to ensure that 
all methods are tested on the same data sets. Due to multiple outer testing data sets used, the 
average values of all evaluation metrics are computed to represent performance of each method. 
For all methods, the mean values of each evaluation metric and their SDs are shown in Table 4.4. 
 

Table 4.4 Performance comparison of the proposed method and other methods 

Metrics 
Methods 

Baseline TL_HGBI MBiRW EMP-SVD TS-SVD 
Proposed 
method 

AUROC 0.864** 
± 0.007 

0.831** 
± 0.007 

0.892** 
± 0.008 

0.928** 
± 0.005 

0.904** 
± 0.006 

0.930 
± 0.006 

AUPRC 0.886** 
± 0.005 

0.829** 
± 0.009 

0.903** 
± 0.008 

0.940* 
± 0.004 

0.919** 
± 0.005 

0.944 
± 0.004 

PRE 0.782** 
± 0.028 

0.732** 
± 0.018 

0.820** 
± 0.024 

0.846** 
± 0.024 

0.825** 
± 0.026 

0.886 
± 0.021 

REC 0.802** 
± 0.028 

0.839** 
± 0.021 

0.830** 
± 0.022 

0.857n.s. 
± 0.027 

0.825** 
± 0.027 

0.842 
± 0.019 

ACC 0.788** 
± 0.012 

0.765** 
± 0.010 

0.823** 
± 0.010 

0.850** 
± 0.007 

0.824** 
± 0.009 

0.867 
± 0.007 

MCC 0.578** 
± 0.023 

0.537** 
± 0.017 

0.648** 
± 0.020 

0.700** 
± 0.014 

0.649** 
± 0.017 

0.735 
± 0.015 

F1 
0.791** 
± 0.008 

0.781** 
± 0.006 

0.825** 
± 0.008 

0.851** 
± 0.006 

0.824** 
± 0.007 

0.863 
± 0.007 

F1, PU 1.253** 
± 0.025 

1.227** 
± 0.019 

1.361** 
± 0.026 

1.449** 
± 0.022 

1.359** 
± 0.022 

1.492 
± 0.024 

Note that 1) numbers in the table are average performance values with their standard deviations,  
   2) a bold number indicates the maximum value of each evaluation metric, and 
   3) the subscripts denote p-values of one-sided t-tests, where n.s. (not significant) is  
                     marked for p-values  0.05, a single asterisk (*) is marked for  
                     0.01  p-values < 0.05, and a double asterisk (**) is marked for p-values < 0.01.  
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 When comparing between the proposed method and the baseline method, it is found that 
the proposed method outperforms the baseline method at the significant level of 1%, no matter 
which evaluation metric is considered. This suggests that meta-path based functional profiles are 
more useful features than ordinary path counts for classifying drug-disease associations. It means 
that the information of the intermediate nodes (i.e. GO functions) in the tripartite network is also 
important and very useful in uncovering the relationships between drugs and diseases. 
 When compared to other state-of-the-art methods, it is noticeable that the proposed 
method can produce the maximum values in almost evaluation metrics. At the low significance 
level of 0.01, the mean AUROC, PRE, ACC, MCC, F1, and F1, PU values of the proposed method 
are significantly greater than those of all compared methods. The mean AUPRC value of the 
proposed method is significantly higher than those of other methods at the significance level of 
0.05 In case of REC values, the proposed method has the greater mean REC value (0.842 ± 0.019) 
than those of the others, except EMP-SVD (0.857 ± 0.027). It can be implied that the smaller 
number of positive samples in a testing data set is recovered by the proposed method when 
compared to that of EMP-SVD. This may be because the proposed method predicts the fewer 
number of the positive drug-disease associations than that of EMP-SVD. To support this reason, it 
is noteworthy that the proposed method has the higher F1, PU value than that of EMP-SVD despite 
the lower REC value of the proposed method found. According to the formula of F1, PU shown in 
(4.16), it can suggest that the proposed method has the lower probability of predicting a sample as 
positives than that of EMP-SVD. Despite this lower probability, those samples that are predicted 
as positives by the proposed method are more reliable because it has the maximum PRE value, 
the estimated probability that a testing sample is accurately predicted to be positive. 
 Surprisingly, TS-SVD (an improved version of EMP-SVD) has worse performance than 
that of EMP-SVD. This is mainly because of different heuristic strategies for selecting reliable 
negative samples used. In EMP-SVD, negative samples are selected from unlabeled pairs of drugs 
and diseases that have no common interacting proteins between them. In TS-SVD, unlabeled 
drug-disease pairs with no k-step neighbors (k = 1, 2, 3) are considered as reliable negative 
samples. It is noteworthy that the EMP-SVD strategy will be equivalent to the TS-SVD strategy if 
it uses only k = 2. This means that a set of TS-SVD negative samples is a subset of EMP-SVD 
negative samples, and the larger number of unlabeled samples are thrown away by the TS-SVD 
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method. This leads TS-SVD to generate the overfit model with only seen drug-disease pairs 
(positives and selected negatives) and less generalized for unseen unlabeled drug-disease pairs. 
 In addition, the performance of all methods was evaluated based on top K ranked 
predictions. With this strategy, the evaluation metrics (i.e. PRE, REC, F1, and F1, PU) were 
computed at several values of K and called as PRE@K, REC@K, F1@K, and F1, PU@K. The 
considered K values range from 0 to 1,300 with the step of ten. At a particular value of K, the 
average value of each evaluation metric is used to represent the estimated value of that metric. 
The mean PRE@K, REC@K, F1@K, and F1, PU@K values of all methods are shown in Figure 
4.10. 
 

 

  
(a) Mean PRE@K (b) Mean REC@K 

  
(c) Mean F1@K (d) Mean F1, PU @K 

Figure 4.10 Comparison of performance based on top-K ranked predictions 
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 According to Figure 4.10, no matter which metric is considered, the proposed method has 
higher values than those of other methods, especially when K is large. When K is small, the top-K 
ranked predictions of all methods accurately include only positive drug-disease associations. 
Nevertheless, the top-K predictions of most methods encompass other samples that are not 
positive, when K is increasing. From Figure 4.10(a), it is noticeable that the top K predictions of 
the proposed method covers the greatest number of positive testing samples, especially when K is 
larger than 760. Figure 4.10(b) shows that the proposed method can recover the highest number 
of positive samples although it is not obviously seen in the plot, especially when compared to 
EMP-SVD. 
 To explicitly demonstrate the position of K where the proposed method outperforms 
other methods, the values of each evaluation metric of the proposed method are compared with 
those of other methods at each value of K by using one-sided Wilcoxon signed rank tests. The 
smaller the value of K that initiates the statistical significance is, the better the performance of the 
proposed method is. P-values obtained from the tests for each metric are shown in Figure 4.11. 
The red dashed lines specify the significance level of 0.05. A marker with a red border indicates 
the position of K where a mean performance measure of the proposed method begins significantly 
higher than that of a compared method. 
 In all evaluation metrics, the K values that the mean values of the proposed method begin 
significantly higher than those of TL_HGBI, MBiRW, Baseline, TS-SVD, and EMP-SVD are 10, 
30, 180, 260, and 540, respectively. These numbers indicate the values of K which top-K 
predictions of the proposed method are more accurate than those of compared methods. For 
example, when compared to TL_HGBI, only top 10 ranked predictions of the proposed method 
contain the larger number of accurate predictions than those obtained from TL_HGBI. According 
to these results, it can conclude that the proposed method can recover the larger number of 
positive drug-disease associations in top-K predictions than those gained from other methods. 
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(a) PRE@K (b) REC@K 

  
(c) F1@K (d) F1, PU @K 

Figure 4.11 P-values of Wilcoxon signed rank tests for comparing performance based on top-K 
ranked predictions 
 

4.4.5 Validation of predicted drug-disease associations 
 To predict potential drug-disease associations, the proposed method with the optimal 
settings was used. In this step, all positive drug-disease associations were exploited to train a 
classification model, and then the trained model was employed to predict all 591,160 unlabeled 
drug-disease pairs. To predict which unlabeled pairs are probably in the positive class, the 
threshold score was specified at the maximum F1, PU value. By this strategy, almost known drug-
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disease associations (98.05%) were predicted as positives. This number is greater than that 
obtained from using the strategy of the maximum F1 score, which is commonly used in many 
studies. As a result, the threshold score used in this study is 0.990385 which provides the 
maximum F1, PU of 76.90. With this threshold score, 895 unlabeled drug-disease pairs (309 drugs 
and 149 diseases) were recommended as candidate drug-disease associations. Therefore, the 
remaining 590,265 unlabeled pairs of drugs and diseases can be considered as non-candidate 
drug-disease associations. The full list of 895 discovered drug-disease associations is provided at 
http://ieee-dataport.org/3540. 
 To validate that information supporting the candidate drug-disease associations is not 
found by chance, both candidate and non-candidate drug-disease associations were searched for 
their supporting evidence from two databases: ClinicalTrials.gov and CTD. The numbers of the 
candidate and non-candidate drug-disease associations that their supporting information is found 
or not found are summarized in Table 4.5. 

ClinicalTrials.gov is a database that collects clinical studies conducted in more than 200 
countries around the world. This database is maintained by U.S. National Library of Medicine 
(NLM) and National Institutes of Health (NIH). As a result, 337 out of 895 drug-disease 
associations (37.7%) were reported in ClinicalTrials.gov whereas only 15,380 non-candidate 
associations (2.6%) were also found in that database. By the one-sided Fisher’s exact test, it can 
be concluded that this supporting information is significantly found in the candidate drug-disease 
pairs but not in the non-candidate drug-disease pairs with a p-value of 1.23   10-283. 
 
Table 4.5 Summary of candidate and non-candidate drug-disease associations and their 
supporting evidence 

Source of evidence 
The number of candidate drug-

disease associations (%) 
The number of non-candidate 
drug-disease associations (%) 

Found Not found Found Not found 

ClinicalTrials.gov 
337 

(37.7%) 
558 

(62.3%) 
15,380 
(2.6%) 

574,885 
(97.4%) 

CTD with inferred 
associations 

511 
(57.1%) 

384 
(42.9%) 

92,408 
(15.7%) 

497,857 
(84.3%) 

http://ieee-dataport.org/3540
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 Comparative Toxicogenomics Database or CTD is a large database that contains a wide 
variety of relations such as chemical-gene, disease-gene, and chemical-disease relations. From 
CTD, the newer version of chemical-disease associations (released on March 29, 2020) was 
downloaded to examine whether the proposed method can identify new associations recently 
reported in CTD or not. According to those CTD data, 15 therapeutic drug-disease relations have 
been recently recorded in CTD with supporting literature. Out of those 15 associations, the 
proposed method can discover four drug-disease associations, which are the benoxaprofen 
(DB04812) - psoriasis 6 (OMIM: 605364), clonazepam (DB01068) - epilepsy (OMIM: 600131), 
pioglitazone (DB01132) - anxiety (OMIM: 607834), and resveratrol (DB02709) - autoimmune 
disease (OMIM: 109100) associations. 
 In CTD, there also are inferred chemical-disease relations made by using the curated 
chemical-gene and gene-disease relations. The process to infer chemical-disease relations of CTD 
has been cautiously conducted, and only chemical-gene and gene-disease relations that have 
supporting literature have been used. Based on these well-curated relations, a relation between a 
chemical and a disease can be inferred if they share some common genes. These inferred drug-
disease associations in CTD were also exploited to verify the candidate drug-disease associations 
obtained by the proposed method. Consequently, 511 of 895 candidate drug-disease associations 
(57.1%) were found in CTD whereas 92,408 non-candidate relations (15.7%) were also inferred 
by CTD. From the one-sided Fisher’s exact test, it can be summarized that the CTD drug-disease 
relations are significantly found in a group of candidate drug-disease associations but not in a 
group of non-candidate pairs with a p-value of 2.84   10-176. 
 

4.4.6 Case studies 
 In this section, some cases of the discovered drug-disease associations are selected for 
literature investigation to ensure the practicality of the proposed method. Among the discovered 
drug-disease associations, all novel drugs recommended for esophageal cancer (OMIM: 133239) 
are selected for further discussion, as shown in Table 4.6. 
 Esophageal cancer is a type of cancer that occurs in the esophagus, a long tube that 
connects between the throat and the stomach. In 2020, it has been reported that esophageal cancer 
is at the sixth rank of cancer causing deaths (544,000 deaths), and one of every 18 cancer deaths 
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is caused by this cancer [122]. Nevertheless, the causes of this disease still remain unclear, and no 
effective treatment is provided for this type of cancer [123]. By the proposed method, seven new 
drugs were discovered for esophageal cancer (Table 4.6). For each drug, it was searched for 
supporting information from CTD, ClinicalTrials.gov, and literature. In CTD, drug-disease 
relations can be categorized in two main groups, which are those reported with supporting 
literature (therapeutic) and those predicted based on overlapping genes between the curated 
chemical-gene and gene-disease relations (inferred). If a drug is investigated in clinical studies for 
esophageal cancer, it will be labeled as “Found”. A drug with lack of supporting information from 
CTD or ClinicalTrials.gov is denoted as “NA”. 
 

Table 4.6 The list of new drugs proposed for esophageal cancer 

DrugBank ID Drug name 
Supporting evidence 

CTD 
(Therapeutic/ Inferred/ NA) 

ClinicalTrials.gov 
(Found/ NA) 

DB00441 Gemcitabine Inferred Found 
DB00482 Celecoxib Inferred Found 
DB01041 Thalidomide Inferred Found 
DB01234 Dexamethasone Inferred Found 
DB00635 Prednisone NA Found 
DB11672 Curcumin Inferred NA 
DB00541 Vincristine NA NA 

 
 According to Table 4.6, four drugs were investigated for the treatment of esophageal 
cancer in clinical studies and inferred by CTD. Gemcitabine (DB00441) is approved for the 
treatment of various types of cancer, such as ovarian and non-small cell lung cancer. In 
ClinicalTrials.gov, many clinical studies investigated the combination use of gemcitabine with 
other drugs and radiation therapy in patients with esophageal cancer, such as the clinical studies 
ID NCT00759226 and NCT00012363. Recently, Yang et al. [124] conducted a meta-analysis of 
randomized clinical trials and revealed that gemcitabine-based combination therapy can improve 
response rate and disease control rate in patients with esophageal cancer. Celecoxib (DB00482) is 
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a drug that can relieve inflammation and is approved for the treatment of osteoarthritis and 
rheumatoid arthritis. In ClinicalTrials.gov, many clinical studies focused on using multiple drugs, 
including celecoxib, for the treatment of esophageal cancer. For example, the clinical study 
NCT00520091 was conducted to observe the use of celecoxib with irinotecan, cisplatin, and 
radiation therapy in patients with esophageal cancer. Despite unclear mechanisms of actions of 
celecoxib, it has been recently found that celecoxib can reduce zinc deficiency, a risk of 
esophageal cancer, resulting in suppressing tumorigenesis [125]. Thalidomide (DB01041) is 
currently used for the treatment of erythema nodosum leprosum. The clinical study of 
NCT01551641 investigated the down-regulated expression of vascular endothelial growth factor 
(VEGF) genes induced by thalidomide in esophageal cancer patients. Wang et al. [126] also 
revealed that the use of thalidomide with chemo-radiotherapy significant increases survival rates 
in esophageal cancer patients with high levels of serum VEGF. Dexamethasone (DB01234) has a 
wide range of indications, including anti-inflammation and immunosuppression. An example of 
clinical studies related to this drug is that with an ID of NCT01217060. This clinical trial studied 
the chemo-radiotherapy, including the use of dexamethasone, in patients with early-stage 
esophageal cancer before surgery. Many studies were conducted with the attempt to reveal 
molecular mechanisms of dexamethasone. A study of Yamawaki et al. [127] showed that this 
drug increases the extracellular secretion of cystatin C in esophageal cancer cells, leading to 
reduced cancer invasion and metastasis. 
 Prednisone (DB00635) is another drug that is indicated for anti-inflammation and 
immunosuppression in various diseases, such as allergic and skin disorders. In CTD, this drug is 
not inferred to be associated with esophageal cancer due to the lack of common genes between 
this disease and prednisone. However, this association can be discovered by the proposed method. 
A clinical study conducted by Shanghai Zhongshan Hospital (NCT03039608) investigated the 
combination treatment of triamcinolone and prednisone in patients with early esophageal 
neoplasm. It was shown by [128] that prednisone can prevent esophageal stricture, an abnormal 
narrowing of the esophageal in patients with esophageal cell carcinoma. 
 Curcumin (DB11672) is a natural compound which is currently indicated for several 
uses, such as reducing inflammation, improving cholesterol levels, and maintaining blood sugar 
levels. Although there is no a clinical study found for this association, it was provided as an 
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inferred drug-disease association in CTD. From a literature search, it was found that several 
derivatives of this compound have been developed for the treatment of various types of cancer, 
including esophageal cancer [129]. Furthermore, Subramaniam et al. [130] also revealed that 
curcumin can inhibit the growth of esophageal cancer cell lines by reducing Notch-1 activation, 
which is linked to tumorigenesis. 
 Vincristine (DB00541) is approved for particular types of cancer, such as acute 
lymphocytic leukemia and Hodgkin lymphoma. Interestingly, association between vincristine and 
esophageal cancer is not reported in both CTD and ClinicalTrials.gov, but it was discovered by 
the proposed method. According to a literature search, a recent finding revealed that the 
combination treatment by using the drugs vincristine and amlodipine can substantially decrease 
the viability of neuroblastoma cell lines [131]. 
 
4.5 Discussions 
 The three central compartments of the proposed method are the drug-GO-disease 
tripartite network, meta-path based functional profiles, and the PU bagging classifier. With these 
compartments, the proposed method significantly outperforms the existing methods and can 
efficiently identify the potential drug-disease associations. In the drug-GO-disease tripartite 
network, GO functions act as central indicators connecting between drugs and diseases, between 
drugs, and between diseases in the meta-paths. When compared to the methods that exploit 
proteins as intermediate nodes (i.e. EMP-SVD [11] and TS-SVD [47]), the proposed method 
produces the superior performance. In the drug-protein-disease network of EMP-SVD and TS-
SVD, only a single protein node was employed to link between a drug and a disease node, 
between two drug nodes, and between two disease nodes. This may lead to loss of many 
relationships which have no overlapping proteins and loss of the capability of detecting many 
potential drug-disease associations. The broader information and multi-aspects of GO functions 
provide more meta-path based information and enable the proposed method to identify the greater 
numbers of the relationships in the drug-GO-disease tripartite network. However, some 
relationships between drug and disease nodes, between drug nodes, or between disease nodes 
which are linked by the semantically related GO functions of the different levels may still be 
undetectable by the meta-paths. To recover such relationships, the GO semantic similarity scores 
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(e.g. the Resnik [113] and Wang [114] measures) can be utilized to additionally create the 
weighted links between GO functions. 
 In addition to GO functions, the meta-path based functional profiles enable the proposed 
method to improve the predictions of the drug-disease associations. The meta-path based 
functional profiles enhance the ordinary path counts by incorporating information of the 
intermediate nodes (i.e. GO function nodes) along the meta-paths and creating as the functional 
profiles of each drug-disease pair. When compared to the method that directly uses path counts as 
the features of the drug-disease pairs (the baseline method), the proposed method significantly 
outperforms the baseline method. This indicates that the meta-path based functional profiles 
contain more useful information for classifying the drug-disease associations than the ordinary 
features. Furthermore, the proposed method with rich of the meta-path based information exploits 
only three meta-paths to create the superior performance, when compared to EMP-SVD that 
combines the network-based information from five meta-paths. Nevertheless, the values in the 
meta-path based functional profiles are derived from the path counts which may overly benefit the 
GO nodes with high degrees. To improve the meta-path based functional profiles, the meta-path 
based measures which were proposed to reduce the effect of high-degree nodes can be adopted, 
such as HeteSim [65] and DPRel [132]. 
 Another benefiting compartment of the proposed method is the PU bagging model. 
Without reliable negatives, all unlabeled data out of the testing data sets are introduced into the 
training process of the proposed method to generate multiple bootstrap samples. This approach 
can advantageously utilize as many as possible data in hand whereas the two-step based methods 
(e.g. EMP-SVD and TS-SVD) discard a lot of unlabeled data that are not considered as reliable 
negatives. In EMP-SVD and TS-SVD, only the positive and reliable negative data were used to 
train the model, which may be overfit and could not practically identify the potential associations 
from the unlabeled drug-disease pairs. 
 In addition, each base classifier of the PU bagging model (i.e. XGBoost) can efficiently 
learn PU data and identify the positive drug-disease associations from the unlabeled pairs. This 
can be supported by the result of the preliminary study, which the different machine learning 
algorithms were compared to select the best one to serve as the base classifier of the PU bagging 
model. There are eight machine learning methods, including the multilayer perceptron (MLP), 
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logistic regression (LR), k-nearest neighbors (KNN), support vector machine (SVM), random 
forest (RF), adaptive boosting (AdaBoost), gradient boosting tree (GBT), and XGBoost. The 
drug-disease association data of Gottlieb et al. [3] were used, and the features of each drug-
disease pair were generated by integrating all meta-path based functional profiles. The nested 5-
fold cross validation was performed to evaluate the performance of each method. The mean F1, PU 
values and their SDs are shown in Table 4.7. The one-sided t-tests were conducted to examine 
whether the mean F1, PU value of XGBoost is significantly greater that of each method or not. 
 

Table 4.7 Performance comparison of the machine learning methods 
Method Mean F1, PU and SD P-value 

MLP 1.091  0.055 1.94  10-28 
LR 1.152  0.047 1.22  10-26 

KNN 1.185  0.042 1.51  10-21 
SVM 1.226  0.041 7.38  10-16 
RF 1.275  0.039 9.17  10-5 

AdaBoost 1.249  0.040 7.02  10-13 
GBT 1.289  0.042 0.0119 

XGBoost 1.296  0.044 - 
 
 According to Table 4.7, it is noticeably that XGBoost significantly outperforms the 
others with the mean F1, PU value of 1.296 at the significance level of 0.05. With the PU data, the 
ensemble models with the bagging technique (i.e. RF) and the boosting technique (i.e. AdaBoost, 
GBT, and XGBoost) perform better than the others. This may be because the ensemble models 
can reduce the variations of the individual classifiers caused by the unlabeled positive samples. 
However, too many reduced variations among the base classifiers does not benefit the PU 
bagging classifier. Thus, the boosting models are selected because they can reduce model bias, 
but not variances, of each base classifier. Among the boosting algorithms, GBT and XGBoost can 
produce the high mean values of F1, PU. Due to many beneficial features of XGBoost (e.g. 
parallelization) and the best performance, XGBoost is exploited as the base classifiers in the 
proposed method. XGBoost may increase the variances among the individual classifiers whereas 
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the regularization of XGBoost could control the prediction errors of each individual classifier. 
This results in the less propagated errors from each base classifier and then the less total errors of 
the PU bagging model, when compared to other machine learning methods. 
 
4.6 Summary 
 In this study, the PU learning method with meta-path based functional profiles is 
proposed for predicting drug-disease associations. Due to a proof of concept showing the 
feasibility of using GO functions for drug repositioning, GO functions are utilized as significant 
indicators for linking drugs to diseases in this method. With useful information of GO functions, 
only three association data are required for the proposed method (i.e. drug-GO, disease-GO, and 
drug-disease associations). Then, the drug-GO-disease tripartite network can be constructed using 
those association data. By taking advantages of meta-paths, the novel features of each drug-
disease pair can be generated by differentiating paths from a drug to a disease according to GO 
functions and creating as the functional profiles. These profile features are called meta-path based 
functional profiles. Different from ordinary path count features, the proposed features can 
incorporate information of intermediate nodes (GO functions), which could be very useful in the 
classification of drug-disease associations. When compared to a method solely depending on path 
count features (the baseline method), it was found that the proposed method significantly 
outperforms the baseline method. 
 Due to the high dimensions of the meta-path based functional profiles, SVD was 
conducted to find their low-dimensional features. These features were exploited to develop the 
PU bagging classifier for recovering the positive drug-disease associations from the unlabeled 
drug-disease pairs. Unlike the existing PU learning methods, the proposed method does not 
require a set of reliable negatives, generally selected by heuristic strategies. In the proposed 
method, all unlabeled drug-disease pairs can be introduced into the training process. This enables 
the classification model to learn from numerous PU data, possibly leading to high generalization 
performance of the model. However, training the model with a set of unlabeled samples 
(containing data from both classes) could yield an unstable classifier. To stabilize classification 
models, the PU ensemble model or the PU bagging classifier is utilized in the proposed method. 
This method also takes advantages from the boosting technique by using the gradient boosting 
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method or XGBoost as the base classifier to decrease bias of each base classifier but increase 
variances among multiple classifiers. By combining both the bagging and boosting technique, the 
proposed method can significantly outperform several state-of-the-art methods. In addition, a 
large number of the candidate drug-disease associations with supporting evidence demonstrate an 
efficiency of the proposed method in discovering new drug-disease associations. 
 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V 
CONCLUSIONS AND FUTURE WORKS 

 
In this chapter, overall works conducted in this dissertation are concluded, especially in 

terms of their contributions and limitations. Furthermore, a perspective of future works is also 
provided to suggest a direction for further improvement of this research. 
 
5.1 Conclusions 
 In this research, a new perspective to conduct in silico methods for predicting drug-
disease associations is introduced. Typically, drug-associated and disease-associated proteins are 
the first things that most researchers exploit for uncovering relationships between drugs and 
diseases. Herein, functional information (i.e. GO functions) about drugs and diseases, beyond the 
scope of drug-associated and disease-associated proteins, are utilized in a specific way that is 
different from existing methods. 
 At the beginning, the feasibility of utilizing GO functions for uncovering relationships 
between drugs and diseases was assessed. Drug-disease, drug-drug, and disease-disease similarity 
were investigated using protein and GO information about drugs and diseases. The classification 
of drug-disease, drug-drug, and disease-disease associations based on the protein-based and 
functionality-based similarity measures was conducted to examine how well GO information can 
be used to detect associations between drugs and diseases, between drugs, and between diseases. 
Drug-disease pairs were labeled as positive if they are known drug-disease associations, 
otherwise they were unlabeled. To bridge between drugs and diseases, a pair of two drugs was 
labeled according to how they share their associated diseases. If they share at least one common 
disease, then that pair is labeled as positive. If not, it is unlabeled. Similarly, a pair of two 
diseases was labeled as positive if they share at least one common drug, otherwise that pair was 
unlabeled. To define similarity measures, seven well-known similarity indices (i.e. the Jaccard, 
Braun-Blanquet, Simpson, Cosine, Sorgenfrei, McConnaughey, and derived Jaccard index) were 
utilized and compared. The derived Jaccard similarity index was selected as the most suitable one 
due to its best performance in the classification of drug-disease, drug-drug, and disease-disease 
associations. With the derived Jaccard similarity index, the performance measures of protein-
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based similarity scores in the classification of all pair types were compared with those of 
functionality-based similarity scores. It was found that functionality-based similarity scores are 
better measures for identifying drug-disease, drug-drug, and disease-disease associations, because 
using GO functions can achieve higher values in all evaluation metrics, when compared to those 
obtained by using proteins. 
 The first study reveals that GO information about drugs and diseases is very significant 
and useful for identifying relationships between drugs and diseases, between drugs, and between 
diseases. With the broader information provided by GO functions, the larger amounts of potential 
drug-disease, drug-drug, and disease-disease associations could be probably detected, especially 
drugs and diseases that involve with one another via the more complex relationships than 
interacting with the same proteins. Although the improvements of classifying the drug-disease, 
drug-drug, and disease-disease associations are shown by using GO functions, solely using the 
functionality-based similarity scores is not enough to produce the high values in all evaluation 
metrics, particularly precision and F1. In addition, the drug-disease associations are not directly 
inferred in the predictions of drug-drug and disease-disease associations. Therefore, it would be 
of great advantages if the functionality-based similarity information of drug-disease, drug-drug, 
and disease-disease pairs is integrated in a more complex model to identify more credible and 
accurate drug-disease associations. 
 According to the feasibility of functionality-based similarity information in the use for 
drug repositioning, another work of this research is the development of a novel computational 
method that advantageously exploits GO information for predicting drug-disease associations. 
Initially, the drug-GO-disease tripartite network was constructed by using only three data sets, 
which are drug-GO, disease-GO, and drug-disease associations. From the tripartite network, three 
meta-paths (drug-GO-disease, drug-GO-drug-disease, and drug-disease-GO-disease) were utilized 
to extract functionality-based similarity information between drugs and diseases, between drugs, 
and between diseases for each drug-disease pair. Based on each meta-path, this information was 
created as profiles of GO functions or novel meta-path based features, termed as meta-path based 
functional profiles. Unlike other existing meta-path based features, the proposed features can 
incorporate information of intermediate nodes along meta-paths (i.e. GO functions) by 
differentiating path instances under a meta-path according to GO function nodes included in the 
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paths. GO information provided by each meta-path is from different perspectives. Thus, an 
integration of all meta-path based functional profiles helps gaining more complete information 
about the drug-disease pairs. Before training a classification model, the low-dimensional 
representation features of the integrated meta-path based functional profiles were obtained by 
using SVD. 
 Due to the unavailability of negative samples or non-associated pairs of drugs and 
diseases, the positive-unlabeled (PU) learning approach was adopted in this study. Positive 
samples are known drug-disease associations whereas the remaining drug-disease pairs are 
unlabeled samples, which can be either positive or negative. Due to unlabeled positive samples, a 
binary classifier trained on positive samples and unlabeled subsamples may gain an unstable 
decision boundary. To take advantages of these classifiers’ variances, a PU bagging classifier, an 
ensemble model where each base classifier trained on positive data and bootstrap samples of 
unlabeled data, is utilized in the proposed method. In addition to the bagging technique, the 
proposed method employs the boosting machine learning method, XGBoost, as a base classifier 
to learn training samples with noise in the unlabeled subsamples. With the PU ensemble model of 
the boosting base classifiers, the proposed method significantly outperforms state-of-the-art 
methods, including TL_HGBI, MBiRW, EMP-SVD, and TS-SVD. Moreover, meta-path based 
functional profiles are shown to be more useful features for predicting the drug-disease 
associations than ordinary path counts, which summarize all path instances under a meta-path by 
discarding information of the intermediate nodes. 
 With less required but important drug and disease information, the proposed method can 
produce the superior performance, when compared to other existing methods. By directly 
integrating GO information of drugs and diseases into the tripartite network, drug-drug and 
disease-disease similarity measures are not pre-computed for the proposed method, but it utilizes 
meta-paths for extracting relatedness information of each drug-disease pair from the network. The 
proposed method does not require a pre-determined set of reliable negative samples, which no 
one can guarantee that they are truly negative. A particular strategy for selecting negative samples 
from unlabeled samples could lead to sample selection bias. A selected set of reliable negative 
samples could be unrepresentative of all negative samples, resulting in low generalization ability 
of models. 
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 Although many contributions of this research can be shown, there are also some 
limitations that should be noticed for further improvements. First, the current version of GO 
annotation data are still not complete. Because new knowledge about genes, gene products, and 
their functions are discovered every day, GO annotation data are regularly updated, and their new 
versions are then released. Since the proposed method is solely based on GO information about 
drugs and diseases, the incomplete GO annotation data could result that some potential drug-
disease associations cannot be detected by the proposed method. Second, the proposed method is 
based on an ensemble model where each base classifier is also an ensemble model (i.e. XGBoost). 
This costs high computational time in the training process, especially when the number of 
bootstrap samples (T) is large. However, a multithreading implementation of the proposed method 
can help reducing its running time. 
 
5.2 Future works 
 In this research, only GO information about drugs and diseases are used. In the future, 
other functional information (e.g. pathway information) about drugs and diseases can be utilized 
to bridge between drugs and diseases. Other valuable drug information (e.g. chemical structures 
and side effects) and disease information (e.g. phenotypic terms) can be integrated with GO 
information to improve the predictions of drug-disease associations. To enhance meta-path based 
functional profiles, other meta-path based similarity measures such as HeteSim can be adopted. In 
addition, network embedding and deep learning methods are also interesting to be utilized in the 
PU learning settings for predicting drug-disease associations. 
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APPENDIX 
 

This table contains some examples of potential drug-disease associations discovered by the 
proposed method. They are the first 100 drug-disease associations, out of 895 discovered drug-
disease associations. Drugs are represented by DrugBank IDs and diseases are represented by 
Online Mendelian Inheritance in Man (OMIM) IDs. Supporting evidence of each drug-disease 
pair is searched from CTD and ClinicalTrials.gov. In CTD, “Therapeutic” drug-disease relations 
are reported with supporting literature whereas “Inferred” drug-disease relations are predicted 
from disease-gene and chemical-gene relations in CTD. “Found” refers to drug-disease 
associations under investigation in registered clinical studies of the database ClinicalTrials.gov. 
“NA” means that there is no supporting evidence for a drug-disease pair found in CTD or 
ClinicalTrials.gov. The full list of all discovered drug-disease associations is freely available 
online at http://ieee-dataport.org/3540. 
 

No. DrugBank ID OMIM ID 
Supporting evidence 

CTD  ClinicalTrials.gov 
1 DB01229 OMIM:276300 NA NA 
2 DB00531 OMIM:276300 Inferred Found 
3 DB04812 OMIM:605364 Therapeutic NA 
4 DB01234 OMIM:605027 Inferred Found 
5 DB02709 OMIM:155255 Inferred NA 
6 DB00544 OMIM:254500 Inferred Found 
7 DB00773 OMIM:114550 Inferred Found 
8 DB01169 OMIM:605027 Inferred Found 
9 DB13956 OMIM:102500 Inferred NA 

10 DB00959 OMIM:266600 Inferred Found 
11 DB01042 OMIM:276300 NA NA 
12 DB00457 OMIM:115000 Inferred NA 
13 DB01248 OMIM:605027 Inferred Found 
14 DB02709 OMIM:276300 Inferred NA 

http://ieee-dataport.org/3540


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 135 

No. DrugBank ID OMIM ID 
Supporting evidence 

CTD  ClinicalTrials.gov 
15 DB00328 OMIM:276300 Inferred NA 
16 DB00264 OMIM:606799 Inferred Found 
17 DB00773 OMIM:137215 Inferred Found 
18 DB00317 OMIM:276300 Inferred NA 
19 DB01050 OMIM:180300 Inferred Found 
20 DB01162 OMIM:115000 NA Found 
21 DB06202 OMIM:102500 NA NA 
22 DB00883 OMIM:108725 Inferred Found 
23 DB00515 OMIM:601626 Inferred NA 
24 DB00571 OMIM:164230 NA Found 
25 DB00482 OMIM:601626 Inferred Found 
26 DB00675 OMIM:155255 Inferred Found 
27 DB00449 OMIM:608622 NA Found 
28 DB00747 OMIM:600116 Inferred NA 
29 DB01068 OMIM:600131 Therapeutic NA 
30 DB00650 OMIM:276300 NA Found 
31 DB00619 OMIM:601626 Inferred Found 
32 DB01181 OMIM:254500 Inferred Found 
33 DB00762 OMIM:114480 Inferred Found 
34 DB00619 OMIM:109800 Inferred Found 
35 DB00381 OMIM:115000 Inferred Found 
36 DB09110 OMIM:276300 NA NA 
37 DB00650 OMIM:607893 Inferred Found 
38 DB00794 OMIM:103780 NA NA 
39 DB00514 OMIM:147530 NA NA 
40 DB01262 OMIM:276300 Inferred NA 
41 DB00960 OMIM:115000 NA NA 
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No. DrugBank ID OMIM ID 
Supporting evidence 

CTD  ClinicalTrials.gov 
42 DB00541 OMIM:137215 Inferred NA 
43 DB00958 OMIM:114550 Inferred Found 
44 DB00313 OMIM:143465 Inferred Found 
45 DB09070 OMIM:102500 NA NA 
46 DB00945 OMIM:266600 Inferred NA 
47 DB01234 OMIM:155255 Inferred Found 
48 DB00905 OMIM:608622 NA Found 
49 DB01185 OMIM:176807 NA NA 
50 DB01204 OMIM:211980 Inferred NA 
51 DB00570 OMIM:605839 NA NA 
52 DB00373 OMIM:606799 NA Found 
53 DB00305 OMIM:276300 Inferred NA 
54 DB01204 OMIM:608935 Inferred NA 
55 DB00820 OMIM:608622 NA Found 
56 DB00188 OMIM:276300 Inferred NA 
57 DB00244 OMIM:180300 Inferred Found 
58 DB01136 OMIM:108725 Inferred Found 
59 DB08804 OMIM:102500 NA NA 
60 DB00445 OMIM:601626 Inferred NA 
61 DB00334 OMIM:115000 NA NA 
62 DB00367 OMIM:102500 NA NA 
63 DB00958 OMIM:254500 Inferred Found 
64 DB14490 OMIM:137215 NA NA 
65 DB00883 OMIM:606799 Inferred Found 
66 DB01234 OMIM:184700 Inferred Found 
67 DB00246 OMIM:143465 Inferred Found 
68 DB00317 OMIM:137215 Inferred Found 
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No. DrugBank ID OMIM ID 
Supporting evidence 

CTD  ClinicalTrials.gov 
69 DB00987 OMIM:109800 Inferred Found 
70 DB01203 OMIM:115000 NA Found 
71 DB00694 OMIM:109800 Inferred Found 
72 DB00287 OMIM:608622 NA Found 
73 DB00661 OMIM:108725 Inferred Found 
74 DB00290 OMIM:109800 Inferred Found 
75 DB00790 OMIM:108725 Inferred NA 
76 DB00290 OMIM:114480 Inferred Found 
77 DB00776 OMIM:607834 Inferred Found 
78 DB00502 OMIM:143465 Inferred NA 
79 DB00489 OMIM:606799 Inferred Found 
80 DB00722 OMIM:108725 Inferred Found 
81 DB13063 OMIM:601518 Inferred NA 
82 DB01065 OMIM:102500 NA NA 
83 DB01202 OMIM:267740 NA NA 
84 DB00309 OMIM:276300 NA NA 
85 DB00262 OMIM:137215 Inferred NA 
86 DB00255 OMIM:184700 Inferred NA 
87 DB01042 OMIM:601518 Inferred NA 
88 DB00328 OMIM:605027 Inferred NA 
89 DB00829 OMIM:608516 Inferred Found 
90 DB00571 OMIM:143465 Inferred NA 
91 DB00408 OMIM:143465 Inferred NA 
92 DB00502 OMIM:164230 Inferred Found 
93 DB00945 OMIM:106300 Inferred Found 
94 DB01169 OMIM:236000 Inferred Found 
95 DB00541 OMIM:114550 Inferred Found 
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No. DrugBank ID OMIM ID 
Supporting evidence 

CTD  ClinicalTrials.gov 
96 DB00694 OMIM:114480 Inferred Found 
97 DB01234 OMIM:109800 Inferred Found 
98 DB00396 OMIM:192000 NA NA 
99 DB00749 OMIM:180300 Inferred Found 

100 DB00958 OMIM:605027 Inferred Found 
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