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CHAPTER 1
UNITARY CAYLEY GRAPHS OF MATRIX ALGEBRAS

In this chapter, we provide background and results on the unitary Cayley graph
of matrix algebras. Throughout, all rings have idenity 1 # 0.

1.1 Background on rings and graphs

Let R be a finite ring and R* denote the group of units of R. An ideal M of R
is maximal if M # R and for every ideal J of R, if M C J C R then J = M or
J=R.

Theorem 1.1.1. (/20], Theorem 2.20) If R is commutative and M is an ideal of
R, then M is a maximal ideal of R if and only if R/M is a field.

Next, a commutative ring R is a local ring if R has a unique maximal ideal.
If R is a local ring with the maximal ideal M, then by Theorem m, k:=R/M
is a field, called the residue field. In addition, if ©u € R* and m € M, then

u+m e R*.
Example 1.1.2. 1. Every field is a local ring with the maximal ideal {0}.

2. Let p be a prime and n € N. Then Z,» is a local ring with the maximal ideal

pZy» and the residue field k = Zyn /pZyn = Z,,.

3. Since pZ is a maximal ideal of Z for all primes p, we have Z is not a local

ring.

Theorem 1.1.3. /23] Every finite commutative ring is a product of finite local

Tings.



Example 1.1.4. Let n € N and n > 1. Write n = p{* ... pp* where py, ..., py are

distinct primes and aq,...,ar € N. Then
Zn = Zplal X ... X Zka

where Z,,«; is a finite local ring for all ¢ € {1,... k}.

Let R be a finite commutative ring with identity. An R-algebra is a ring A
such that (A,+) is an R-module and r(ab) = (ra)b = a(kb) for all r € R and
a,b € A. For m,n € N, let M,,(R) be the algebra of n x n matrices over R. The
group of all invertible matrices over R is denoted by GL, (R). Write I, and 0,,x,
for the n x n identity matrix and the m x n zero matrix, respectively. We write

IF, for the field of ¢ elements, where ¢ is a prime power.
Theorem 1.1.5. [21] | GL,(F,)| = (¢" — 1)(¢" — q) ... (¢" — ¢" ).

A matrix in M,,(FF,) is a linear derangement if it is invertible and does not fix
any nonzero vector. Let e, be the number of linear derangements in M, (F,) and
define ey = 1. According to [21], we obtain the recursion formula for e,, namely,

e, satisfies the recursion

n(n—1)

€n = enfl(qn Tt 1)(]”71 + (_1)nq 2

Next, we provide some terminology and results from Graph Theory. For more
details, see [2, 10]. Throughout this dissertation, our graphs are undirected and
their vertex set are finite sets. Let G be a graph with n vertices and V(G) denote
the vertex set of G. For each = € V(G), the degree of z is the number of
neighborhoods of x in GG. The graph G is k-regular if every vertex has degree k..
A k-regular graph G is edge regular with parameters (n, k, \) if there exists a
parameter A such that for any two adjacent vertices, there are exactly A\ vertices
adjacent to both of them. If an edge regular graph with parameters (n, k, \) also
satisfies an additional property that for any two non-adjacent vertices, there are

exactly p vertices adjacent to both of them, then it is called a strongly regular



graph with parameters (n,k, A, p).

Example 1.1.6. Let G be a graph shown in figure 1.1. Then G is an edge regular
graph with parameters (4,2,0) and is a strongly regular graph with parameters
(4,2,0,1).

Figure 1.1

A complete graph is an graph such that any two distinct vertices are adjacent.
A clique is a complete subgraph and the clique number of GG is the maximum size
of cliques in G, denoted by w(G). A set I of vertices of G is called an independent
set if no distinct vertices of I are adjacent. The independence number of G is
the maximum size of independent sets, denoted by a(G). The chromatic number
of GG is the least number of colors needed to color the vertices of G so that no two
adjacent vertices share the same color. We write x(G) for the chromatic number
of G. Note that we must use at least w(G) colors for coloring vertices of G and

each color can be assigned to at most a(G) vertices, so we have

X(G) > max {W(G), M} .

a(@)
Example 1.1.7. Let G be a graph shown in figure 1.2. Note that G contains a
3-cycle. Then x(G) > w(G) > 3. Moreover, we can use precisely 3 colors to color

each vertex of G, so x(G) < 3. It follows that w(G) = x(G) = 3. Next, it is easy

to see that GG has an independent set of size three. For each independent set I of



G, I must contain at most one vertex in the 3-cycle. Since there are two vertices

outside from the 3-cycle, we have o(G) < 3, so a(G) = 3.

Figure 1.2

The adjacency matrix of G with vertex set {vy,vs,...,v,} is the n X n sym-
metric matrix Ag in which entry ajj, is the number of edges (0 or 1) in G with
endpoints {v;, v} for all j,k € {1,2,...,n}. An eigenvalue of G is an eigenvalue
of the adjacency matrix of G, and an eigenvector of GG is an eigenvector of the
adjacency matrix of G. The spectrum of a matrix is the list of its eigenval-

ues together with their multiplicities. The spectrum of G is the spectrum of its

adjacency matrix. If A\y,..., \. are eigenvalues of a graph G with multiplicities
mi, ..., m,, respectively, we write
Ao A
Spec G = '
my ... My

to describe the spectrum of GG. Let GG be a graph of n vertices and let A\q,... A, be

its eigenvalues. The energy of G is

E(G) =Y Iyl

A graph G is hyperenergetic if

E(G) > 2(n—1).



We say that a graph G is bipartite is there is a partition V;,V; of V(G) such
that any two vertices in V; are not adjacent to each other for all i € {1,2}. It is
well-known that if G is a connected k-regular graph, then k is an eigenvalue of G
with the maximal modulus with multiplicity one [10]. Moreover, the eigenvalue
—k is an eigenvalue of G if and only of G is bipartite. A connected k-regular graph

G is Ramanujan if
A <2vE-—-1

for any eigenvalue A of GG other than k£ and —k.

Example 1.1.8. Let G be a graph defined in Example . The adjacency

matrix of G is , _
01 01

1 010
G0\ 1
1 010

Its eigenvalues are —2,0,0 and 2. Then

==
—_—

Spec(G) =

Also, its energy is E(G) = 2+ 2 = 4 < 2(4 — 1), so it is not hyperenergetic.
Finally, GG is 2-regular and 0 is the only eigenvalue of G other than 2. Then G is

Ramanujan.

Let G and H be undirected graphs. The tensor product graph G ® H is the
graph consisting of the vertex set V(G) x V(H) and the edge set

{{(z1,y1), (x2,y2)} : x; is adjacent to x2 in G and y; is adjacent to yo in H}.

Example 1.1.9. The following graphs show the tensor product of the graphs G
and H.



A

* 1
G H

[ ] 2' 5
B
(A1) (4,2) (A,3)

GH
(B,1) (B.2) (B.3)

Furthermore, the eigenvalues of the tensor product G ® H can be determined from

ones of G and H.

Theorem 1.1.10. /23] Let G and H be graphs on m vertices and n vertices,
respectively. Assume that Ay, ..., Ay and py, ... by are eigenvalues of graphs G
and H, respectively. Then the eigenvalues of G ® H are \ju; for i = {1,...,m}
and j ={1,...,n}.

1 -1
Example 1.1.11. According to Example , we have Spec(G) = and
1 1
2 -1 2 1 -1 =2
Spec(H) = . Then Spec(G ® H) =
1 2 12 2 1

We also know that
Theorem 1.1.12. [15] For graphs G and H, x(G ® H) < min{x(G), x(H)}.

Finally, we give a definition of an isomorphism of graphs. Let G and H be
graphs. We say that G is isomorphic to H, denoted by G = H if there is a
bijection f from V(G) onto V(H) such that for any =,y € V(G), x is adjacent to



y in G if and only if f(z) and f(y) is adjacent in H. If G is isomorphic to H, then
we just rename vertices of GG to obtain vertices of H. Thus, two isomorphic graphs

can be viewed as the same graphs but only their vertex sets are labeled differently.

Example 1.1.13. Let G and H be graphs defined below. Define f : {A, B,C, D} —
{1,2,3,4} by f(A) =1, f(B) =2, f(C) =4 and f(D) = 3. Then f is a graph

isomorphism, so the graphs G and H are isomorphic.

1.2 Results on unitary Cayley graphs of matrix algebras

Let R be a finite ring. The unitary Cayley graph of R, denoted by Cg, is a
graph with vertex set R and for each x,y € R, z is adjacent to y if and only if
r—y € R

Example 1.2.1. We know that Z§ = {1,3,5,7}, so the graph Cz, is regular of
degree 4. Each vertex a is adjacent to a4+ 1,a+3,a+ 5 and a+ 7. We display the
graph Cyz, below.



-1

Note that Cg is an |R*|-regular. If R = Ry X --- x Ry where Ry,..., Ry are
finite rings with identity 1 # 0, then R = Ry x -+ x R}, so

Cr=<Cri®: - ®Ch,-

Properties of the unitary Cayley graphs of finite rings are extensively studied in
several papers (see [I, 4, 7, 12, 14, 115, 16, 17, 23]).

For commutative rings, in 2007, Klotz et al. [17] used properties of positive
integers to study the graph Cz_  where n € N. Klotz determined the clique number,
chromatic number, the independence number, diameter and vertex connectivity of
the graph. Akhtar et al. [I] generalized Klotz’s results by working on Cr where R
is a finite commutative ring by decomposing the ring R to a product of local rings.
They also obtained an automotphism group of Cg. Next, Ili¢ et al. [12] computed
the energy of Cy, where n € N and characterized all positive integers n such that
the graph Cy, is hyperenergetic. In 2011, Kiani et al. [14] showed that if R is a
finite local ring with maximal ideal M of size m, then Cg is a complete multipartite
graph such that each partite set is a coset of M. This gives the eigenvalues and
energy of Cg, namely

|IR*| —m 0

Spec(Cg) = m IR and E(Cg) = 2|R™|.
1 5 wim=1)



Now, let R = Ry X --- X Ry where R; is a finite local ring with maximal ideal
M; of size m; for all i € {1,...,k}. By the above decomposition, all eigenvalues
RX
of Cg are (—1)I¢! | |X with multiplicity H |R}|/m; where C' runs over
[Lcc RIS /m; jec
k X
. o |R|
subsets of {1,...,k}, 0 with multiplicity |R| — H 1+ , and E(Cg) =
M
j=1 J

2F| R*|. Moreover, assume that |R;|/m; < -+ < |Rg|/my. Kiani showed that Cg

is hyperenergetic if and only if R satisfies one of the following properties:
(a) s =2, |Ry|/my >3 and |Ry|/mg > 4,
(b) s > 3 with (|Rs_a|/ms—2 > 3) or (|Rs_1]|/ms—1 > 3 and |R;|/ms > 4).

Hence, the unitary Cayley graphs of finite commutative rings are well-studied.

For non-commutative rings, in 2012, Kiani et al. [15] worked on the unitary
Cayley graph of the ring M, (F,,) x --- x M, (F,,) where nq,...,n; € N. They
computed the clique number, the chromatic number and the independence number
of the graph. For k = 1, their main tools were a subfield K and a right ideal J of
M,,(F,) recalled in the next theorem.

Theorem 1.2.2. |15/ We have

(a) The ring M,,(F,) contains a subfield K of size q",

(b) Let J be the set of matrices in M, (F,) whose the entries of the first row are
all zeros. Then J is a right ideal of M, (F,).

Using the subfield K and the ideal J mentioned above, Kiani obtained the
clique number, the chromatic number and the independence number of Cyy,(,)
recorded in the next theorem. We include his proof in this theorem because we shall
use similar idea to determine these parameters for the subconstituents of Cyy,,(r,)
defined in Chapter 3. The subfield K and the ideal J mentioned in Theorem
also play an important role in our proofs. Kiani extended the result to

CMo, (Fyy ) x5 My,, (Fg, ) by Theorem .

Theorem 1.2.3. [15] We have
(a) w(Cwm,¥,) = X(Cu,r,) = ¢



10

2

(b) a(Cwm, ) = ¢ "

Proof. For (a), since the subfield K forms a clique of size ¢", we have

q" < w(CMn(]Fq)) < X(CMn(]Fq))'

From |M,,(F,)/J| = ¢" and each coset of J is an independent set, it follows that
X(Cu,(x,) < ¢"

Next, we prove (b). Since each coset of J form an independent set, we have
a(Cwm,r,)) = ¢"*~". Note that K is a subgroup of M, (F,) under addition. More-

over, each coset of K is a clique in Cyy, (), 50
2_
a(CMn(Fq)) S |Mn<]Fq)/K| = qn n'

This completes the proof. [

Later, in 2015, Kiani et al. [16] studied the regularity of Cy,,) where n > 2.
It is clear that Cy,(r,) is |GL,(Fq)|-regular. Furthermore, they constructed a
bijection between sets of common neighborhoods of any adjacent vertices to prove
that the graph Cy,(r,) is edge regular with parameter (q”z, |GL,,(F,)| ,en). In

addition, they also proved that Cyy,r,) is strongly regular with parameters

(" (*=1) (¢ —9q).q¢" —2¢* = ¢* +3q,¢* — 2¢° + q),

but the graph Cyy,r,) is not stronly regular. Finally, they calculated the diameter
of the graph Cyr,r,)-

Theorem 1.2.4. [16] The graph Cyi,r,) has diameter 2.

In 2020, we [23] extended Kiani’s results by proving that the graph Cy,,) is
strongly regular if and only if n = 2. Their idea is to see (M, (F,), +) as (Ff, +).
2t Tr(qx

Since all characters of the group (F,,+) is given by x,.(z) = e» ) for all

a,z € F, where Tr is the trace map and p is a characteristic of F,, the eigenvalues
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of Cy,, (IF,) are of the form ([22] Theorem 2)

PA = Z XA(S)v

SeGL, (]Fq)

where A = [a],, ., € Mu(Fy) and xa =[], j, Xa,;- We calculated eigenvalues

nxn

from the following three matrices:

10 --- 0 110 --- 0

00 ---0 100 --- 0
Al :Oan,AQZ . i , and Agz

00 --- 0 100 ---0

Using some combinatorial methods on GL,,(F,), it follows that

pa, =" -D("~q)...(¢"—¢""),
pa,=—("=q)...(¢"—¢"7"), and

pas =q(@"=¢) ... ("),

In addition, it can be showed that if A and B are n x n matrices of the same rank,
then ps = pp. This means that eigenvalues p4,, pa, and py4, are induced from
matrices of rank 0,1 and 2, respectively. Using these eigenvalues, we can determine
a strong regularity, hyperenergeticity and Ramanujan property of Cyy,, (r,)-
Furthermore, we worked on the ring of matrices over finite local rings. Let R
be a finite local ring with unique maximal ideal M and the residue field k. Then

M, (R)/ M, (M) = M, (k). This gives a decomposition
Cht(r) = Ch,y ) @M, (M)

where M, (M) is the complete graph on |M,(M)| vertices with a loop on any

2
o m" 0
vertex. Since Spec <Mn(M)> = , , eigenvalues of Cyy,,(g) can be
1 mh -1

determined from the ones of Cyy, ). Moreover, this decomposition can be used to
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determine strong regularity, hyperenergeticity and Ramanujan property of Cyy, (r).
Before we continue to discuss the next result, we introduce the Bruhat’s de-
composition of GL,(F,). Let S,, denote the set of permutations on {1,...,n}. For

each o € S, define a o-reduced matrix, denote by W, = [IW,;] is the matrix

nxn’

such that
(a) Wiey = 1forall 1 <j<n,
(b) Wi, =0if r > o(j),
(c) Wiy =01ifr > j.

From the definition, note that a o-reduced matrix is not uniquely determined

because there is no condition on some entries of the matrix W, .

Example 1.2.5. Let 0 € S5 defined by (1) = 2,0(2) = 3 and ¢(3) = 1. Then

the possible o-reduced matrices have the form

a 1 0
WO': 0 b 1
1 00

where a,b € IF,.

For A € GL,(F,), we have an uppertriangular matrix L and o € S,, such that
A= LW, ([25] p.- 94). This decomposition is called the Bruhat’s decomposition
of GL,(F,).

Chen et al. [4] obtained all eigenvalues of Cyy,(r,) using enumerative com-
binatorics. For each k € {1,...,n}, they computed an eigenvalue ps where

I Ok
A= * O Let

Otm—t)xt  O(m—k)x(n—k)

G}C = {S = [Sij] € GLn(Fq) | S11+ ...+ Sk € kerTr} .

nxn
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Assume that [F, has characteristic p > 0. It follows that

GL,(F,)| — |G
p—1

To compute |G|, note that for each S € Gy, S = LW, for some L an upper
traingular matrix and o € S,, by the Bruhat’s decomposition. They determined

the number of possible matrices L and W, by counting the elements of
{(SL‘l,...,l’m) S (]F;)m |21+ 4 x, € kerTr}.
They found that

Gal = = [|GL(F)] + (~1)*(p — 1)g3 =1 |GL,_4(F,)]

RN

SO

E(k—1)

pa = (—1)fqzF @D |GL, L (F)l = (=D = (" =) ... (" — ")

I Ok x (n—r)

where A = for all £ € {0,...,n}. Since any two matri-

Ot—r)xk  Onek)x(n—k)
ces of the same rank produce the same eigenvalues, They obtained all eigenvalues

of CMn(]Fq)'
Theorem 1.2.6. [4/ The eigenvalues of the graph Cy,,) are
(a) No(n,q) = (¢" —1)...(¢" — ") with multiplicity one,
(b) A\(n,q) = (—1)qu(k2_1) (q"—q") ... (¢"—q" 1) with multiplicity
forallk € {1,...,n—1}, and

(" =1)...(¢" — ¢* 1)

(¢ =1)...(¢" —¢*1)

n(n—1)

(c) M\(n,q) = (=1)"q 2 with multiplicity (¢" —1)...(¢" — ¢q" ).

Results on the eigenvalues of Cyy,(r,) have been extended in [19]. Huang et al.
[19] defined the Cayley graph G(m,n,r), where m,n € N and 0 < r < min{m,n},

to be the graph whose vertex set is the set of m x n matrices over the field F, and
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two matrices A and B are adjacent if and only if rank(A — B) = r. Note that
G(n,n,n) is indeed the unitary Cayley graph of matrix algebra. They followed the
idea of Chen’s paper and computed the eigenvalues of the graph G(m,n,r).

1.3 Objectives

In this dissertation, we examine the eigenvalues of M,,(F,) and construct new fam-
ilies of non-commutative DU-ring, which is defined later in chapter II. Moreover,
from Theorem , the graph Cyy,,(r,) has diameter two. This leads us to define
the first and second subconstituents of Cyy,, r,) and inspires us to study their spec-
tral properties. We determine the eigenvalues of the subconstituents of Cy,r,)
and analyze their hyperenergeticity and Ramanujan property, and computing the
clique numbers, the chromatic numbers and the independence numbers of the sub-
constituents.

The second chapter consists of two sections. We define a DU-ring and review
Kiani’s work in the first section. In the next section, we compare the modulus
of each eigenvalue of Cy,,(r,) obtained in [4] to show that the following rings are

DU-rings.
(a) My, (F,,) x ---x M, (F,,) where g1, ..., g, are pairwise relatively prime.
(b) My, (Fg,) X My, (Fg,).

(€) My (Fpsr) X My, (F ) X - X My, (szk) X M, (szk) where pq,...,pp are

pil
distinct primes and s1, ..., Sk, t1,...,tx € N.

We divide the third chapter into five sections. We give the definition of sub-
constituents of a graph and describe the subconstituents Cg) and Cg) of unitary
Cayley graph of a finite ring R in the first section. The second section contains
terminologies of Cayley graphs of finite groups and their associated sets, and Rep-
resentation Theory used in this work. In the third section, we find the associated
set of the graph Cl(vl[l(Fq) and prove that this set is a union of conjugacy classes.

We determine all eigenvalues of the graph Cl(vlll (F,) by using the character table of
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GLy(F,). We show further that it is hyperenergetic and Ramanujan if ¢ > 3. In
the next section, we prove that the graph Cﬁ)z (F,) is the tensor product between a
complete graph and a complete multipartite graph and obtain its spectrum. We
apply this result to conclude that Cﬁl (Fy) is hyperenergetic but it is not Ramanu-
jan if ¢ > 5. Finally, we compute the clique numbers, chromatic numbers and
the independence numbers of the subconstituents of the graph Cyy,r,) in the fi-
nal section. This chapter is a joint work with Y. Meemark. The paper has been
published in Finite Fields and Their Applications [24]. Finally, we conclude the

results we obtained in this dissertation in the fourth chapter.



CHAPTER II
RING DETERMINED BY UNITARY CAYLEY GRAPHS

2.1 Kiani’s conjecture and DU-rings

Let R be a finite ring. The Jacobson radical of a ring R is the intersection of all
maximal ideals of R. It is denoted by Ji. We say that the ring R is semisimple
it Jp = {0}.

Example 2.1.1. 1. If R is a finite local ring with unique maximal ideal M.
then Jp = M. In particular, [F, is a semisimple ring. On the other hand, Z,»

is not semisimple for all primes p and n > 2.

2. For a finite ring R, we have by (8] that Jyi,(r) = M,(Jr). Hence, the matrix

algebra M, (F,) is semisimple for all n € N.

By Wedderburn-Artin theorem [g], any finite semisimple ring is of the form
My, (Fy, ) x - - x M, (F,, ). Moreover, it is easy to see that R/Jg is always semisim-
ple. Hence, the ring R/Jg can be expressed to the product of matrix algebras.

Kiani et al. proved the following results.

Proposition 2.1.2. [15] Let R and S be finite rings such that Cr = Cg. Then
(a) Cryyp = Csyus,
(b) |Jr| = |Js|, and
(c) if R is semisimple, so is S.

Proposition 2.1.3. [15/

(a) If m,n € N, and Cyr,x, ) = Cu,,(r,,), then ¢ = g2 and m = n.
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(b) If S is a finite ring and Cg = Cyy,(r,), then S = M, (F,).

For finite rings R and S such that Cr = Cg, it is not neccessary that R = S.
For example, we have Cz, = Cgz,y/z2) but Zy and Zs[z]/(2*) are not isomor-
phic because they have different characteristics. However, we can see that Zy =
Zy]Jz, = Lolx]/(2*)] I,/ 22)- Kiani also conjectured that for any rings R and
S, if Cgp = Cg, then R/Jr = S/Js. They showed that the conjecture holds for
the class of finite commutative rings by examining eigenvalues of these two graphs.
Furthermore, by Proposition , it suffices to verify this conjecture for the class
of finite semisimple rings. This leads to study rings determined by unitary Cayley
graphs (DU-rings). A ring R is a DU-ring if for any ring S such that Cr = Cg,
we have R = S. It follows from Proposition that M, (F,) is a DU-ring. Note
that Kiani’s conjecture is equivalent to saying that every semisimple ring is a DU-
ring. In the next section, we provide an application of eigenvalues of M, (F,) to
determine new families of such rings, which makes Kiani’s conjecture closer to be

true.

2.2 Constructions of DU-rings

In this section, we use the eigenvalues of the unitary Cayley graph of matrix

algebras to discover new families of non-commutative DU-ring.

According to Theorem , we note that

‘ )\k—l (TL7 Q)

n—k+1
=q —1>1
Ai(n, q) '

for all k£ € {1,...,n}, so we have
[Ao(n, )| > [Ar(n, q)] > -+ > [Auci(n, @)| = [An(n, )] (2.1)

Next, we prove the following lemmas.

Lemma 2.2.1. Let F = M, (F,,) x --- x M, (F,,) and & = M,,,, (F,,) x --- X
M, (Fy,). If the graphs Cx and Cg are isomorphic, then ¢i* ... q" =" ... 1"
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Proof. From the above discussion, the least modulus of the eigenvalues of Cz is

ni(ng—1) ng(ng—1)
— 2 2
|/\n1(n1,(]1)||)\nk(”k»%)| = - gy 3
and the least modulus of the eigenvalues of C¢ is
my(mq—1) my(m;—1)
— 2 2
| Ay (ma, )| o | A, (M, 1) | = 14 Ty
Since the graphs are isomorphic, we can conclude that
ny(ny—1) ng(ng—1) mq(mq—1) my(m;—1)
¢ 1 q 2 o =rp o
Also, the number of their vertices are equal, so
2 2 2 2
nl nk — m ml
a7/ ./ gt =mrit..on
It follows that ¢i*...q.* = r{" ... as desired. O

Lemma 2.2.2. Let F = M, (F,,) X --- x M, (F,,) and &€ = M,,,, (F,,) x -+ x
M, (Fy,).  Assume that the graphs Cr and Cg are isomorphic. The following

statements hold.

(a) If gi* < ... < @ and r™ < ... <", then k =1 and ¢ = r]"" for all

ie{l,... k}.

(b) There is a permutation o of {1,...,k} such that ¢ = 7@ for all i €

(1,....k).

Proof. First, we prove (a). By Lemma , we have
@t =t (2.2)

Note that

| GLn, (Fy,)

Mg qi) = (g — @) ... (" —q" ") = ,
l(n q) (QZ q) (qz 4q; ) ql"z_]_
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for all i € {1,...,k}. Set

k l
Q=]]IGL.(F,)| and R=]]IGLy(F.)
i=1

i=1

Since Cr and Cg are isomorphic and they are regular of degrees () and R, respec-
tively, we have () = R. The k eigenvalues of Cx of the largest modulus smaller

than @ are
1
qZ’“—lQ_ _CA“—lQ’

and the [ eigenvalues of Cg of the largest modulus inferior to R are

e

my — — . m
T 1 fi=. 1

Without loss of generality, we assume that £ < [. Thus,

g —1

for all ¢ € {1,...,k}, which implies that ¢"* = r™ for all i € {1,...,k}. Applying
this result to (@) gives ry o™ =1 and it forces that k = 1.

To prove (b), we recall that

ni(n;—1) (n;=1)(n;—2) (n)(n;—1)

Ani (i i) = q; 2 and [ Noi(nog)l=¢ > (- ) =q¢ > (¢-1)

forallie {1,...,k}. Set

Thus, M and N come from the eigenvalue of least modulus of Cx and Cg, respec-
tively, so M = N. The k eigenvalues of Cx of least modulus larger than M are
(i —1)M, ..., (g —1)M, and the k eigenvalues of C¢ of least modulus larger than
N are (ry —1)N, ..., (rpy — 1)N. This induces a permutation o of {1,...,k} such
that (¢ — 1)M = (54 — 1)N, so q; = 14() for all i € {1,...,k}. O
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The first main result is presented in the following theorem.

Theorem 2.2.3. Let F = M, (F,,) x --- x M,,, (F,,) and € = M,,,, (F,,) x --- X
M, (F.,). If the graphs Cx and Cg¢ are isomorphic and qi,...,q; are pairwise
relatively prime, then F and &€ are isomorphic. Consequently, if qi,...,qx are

pairwise relatively prime, then My, (F,,) x -+ x My, (F,,) is a DU-ring.

Proof. First, we assume that ¢i* < ... < ¢* and " < ... < ™. We can
conclude from Lemma (a) that k = and ¢ =r;" for alli € {1,...,k}. For
any i € {1,...,k}, we write ¢; = p{* and r; = p* for some s, ..., 5k, t1,...,tx €N
and pi,...,p, are distinct prime numbers since ¢, ..., g, are pairwise relatively

prime. It follows that

for all i € {1,...,k}. Also, Cx and Cg¢ have the same number of vertices, so
n? n? m? m?
AR 5 R
n? m?2 .
Since qi,...,q, are pairwise relatively prime, we have ¢;* = r;* for all ¢ €
{1,...,k}. This implies that
sing = tymy? (2.4)

foralli e {1,...,k}. By (@) and (@), we can conclude that s; = t; and n; = m;
for all i € {1,...,k} and hence F and &£ are isomorphic. O

Next, we prove the second main result.

Theorem 2.2.4. Let F = M, (F,, ) x M,,,(F,,) and € = M, (F,.,) X My, (Fpy). If
Cr and Cg are isomorphic, then F and € are isomorphic. Consequently, M, (F,, )%

M., (Fy,) is a DU-ring.

Proof. Assume that ¢i"* < ¢3? and r{"* < ry". By Lemma (a), we get ¢i'* =

mi

ri"™ and ¢y? = ry?. Write ¢; = pi* and r; = pf for © € {1,2} where py,ps are
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primes and sy, s9,t1,12 € N. It follows that
S1np = tlml, (25)

and

S9Ny — tng. (26)

If p1 # po, then we are done by Theorem . Suppose further that p; = ps.

Since Cx and C¢ have the same number of vertices, we have
s117 + son3 = tym? + tama. (2.7)

By Lemma (b), we have {q1,q2} = {r1,m}. If ¢ = r; and ¢ = ry, then

s1 = t1 and sy = ty, and so n; = my and ny = msy. Now, we assume that ¢ = r9

and ¢u = r;. Thus, s; =t and sy = t;. By (@) and (@),
nNing = 1Mm1Mmeo.

Moreover, plugging som; = s1n; and sgng = syms into (@) and dividing both
sides by s; give

n: + mony = myny + mj. (2.8)

Similarly, we have

n3 -+ ming = mang + mji. (2.9)

We can conclude from (@) and (@) that n? +n2 = m? +m32. Since nyny = mimsy,
it follows that ny +ngy = m; +my. Hence, the sets {ny, no} and {my, ms} are the set
of solutions of the equation 2 —(my+ms)x+mims = 0. Then {ny,na} = {my, my}.
We distinguish two cases.

Case 1. ny = my and ny = my. By (@) and (@), we have s; = t; and sy = t9, SO
F and & are isomorphic.

Case 2. n; = my and ny = my. We know that s; = ty and s; = ¢;. It follows that

F and & are isomorphic. O
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Remark 2.2.5. Unfortunately, for £ > 3, the above arguments do not follow easily.
For example, when & = 3 under the same set-up, we work on F = Mnl(lﬁ‘pil) X
M,, (Fp?) X M, (Fp‘;?’) and & = M, <Fpt11) X My, <FP;2) X My, <Fp§3) with pit™ <
Py < pPand pit™ < p™? < p™3. By Lemma (a), we have pji™ = pi"i
for all 7 € {1,2,3}. Then

S1nq1 = tlml, SoTly = tgmg, and S3Ng = t3m3. (210)

In addition, by Lemma P.2.3 (b), we have {pj*,ps*,p5’} = {p}',p%.p5}. If pr =

pa = p3, then {sq, 2,53} = {t1,%2,t3}. Assume further that s; = t9, sy = t3 and

s3 = t1. The system () becomes
$1M1 = $3Mi, SaNg = S1My, and s3ng = Soyms. (2.11)
Again, since Cx and Cg¢ have the same number of vertices, we get
S1M] + Son3 + 83N = S3M7 + s1M3 + S9mM3. (2.12)

However, it seems difficult to derive from only () and () to reach the
isomorphism of F and £ as we have done in the proof of Theorem .

Finally, we let = M,,, (F:1) x My, (]Fptll) X - X My, (Fpik) x M, (Fp;k) and
E =M,y (Fg) x My, (Fpy) X - - x My, (Fy, ) x M,, (F,, ), where pq, ..., py are distinct
primes and s;’s, t;’s are positive integers. We may assume that pji™ < pi™ for
all i € {1,... k}. Suppose that the graphs Cx and Cg are isomorphic. Let i €
{1,...,k}. According to the Lemma (a), we may write ¢; = p* and r; = pl*,

and p;""™ = p}

7

Vi

and pf”“ = pf , so we have s;m; = a;u; and t;n; = b;v;. Since

P1, - - ., pr are distinct primes, comparing the number of vertices of the graphs gives
s;m? + tin? = a;u? + biv?. In addtion, Lemma (b) implies {s;,t;} = {u;, v}
Thus, we have the same system of equations as in the proof of Theorem . It
follows that M, (F =) x My, (]Fp:) and M, (F,,) x M,,(F,,) are isomorphic for all

i € {1,...,k}. Hence, F and & are isomorphic. Therefore, we have proved our
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final result.

Theorem 2.2.6. Let F = My, (F:1) X Mnl(]Fptll) X e+ X My (Fpei) X M, (szk)

where py, ..., px are distinct primes and s;’s and t;’s are positive integers. Then F

is a DU-ring.



CHAPTER I11
SUBCONSTITUENTS OF UNITARY CAYLEY
GRAPHS OF MATRICES OVER FINITE FIELDS

3.1 Subconstituents of graphs

Let n € N. First, we provide a definition of subconstituents of a graph. Let G be a
graph. A subgraph X of G is an induced subgraph if V(X) C V(G) and for any
xz,y € V(X), x is adjacent to y in X if and only if they are adjacent in G. Note
that the induced subgraph X is obtained by removing some vertices of G together
with edges containing a removed vertex.

Now, let G be a graph with diameter 2 and = € V(G). Let N(z) denote the

set of neighbors of x in G. We have

V(G) = {z} UN(z) U(V(G) ~ (N(2) U {z})).

Since G has diameter 2, the set V(G) ~\ (N(x) U {x}) is the set of non-adjacent
vertices to x except x itself. This leads us to define the first and the second
subconstituents of G. The first subconstituent of G at z is the subgraph of
G induced by the set N(x) and the second subconstituent of G at z is the
subgraph of G induced by the set V(G) ~\ (N(z) U{z}).

Example 3.1.1. Let G be the following graph.
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Consider the vertex E, we have the set of neighborhoods of E is {A,C}, so we
obtain subconstituents of G at * = E. From the graphs below, the left-hand side
displays the first subconstituents of G at x = E and the right-hand side displays

the second subconstituent of G at © = FE.

@

Subconstituents of strongly regular graphs are studied in many graphs and
have many interesting properties. The second subconstituent of the Hoffman-
Singleton graph is determined by its spectrum in [§]. Moreover, the discovery of
which graph has strongly regular subconstituents interests mathematicians. For
example, Cameron et al. [3] used the Bose-Mesner algebra of a strongly regular
graph to classify strongly regular graphs whose subconstituents are strongly regu-
lar, and Kasikova [[13] used the same tools to classify distance-regular graph which
has strongly regular subconstituents. In addition, we can use eigenvalues of sub-
constituents to prove the uniqueness of strongly regular of some parameter, e.g.,
Clebsch graph is a unique strongly regular graph with parameters (16, 5,0,2) (see
[10] p.230).
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According to Theorem , the graph Cyy,, r,) has diameter 2, it motivates us
to study subconstituents of unitary Cayley graph of matrix algebras. Let R be
a finite ring. For x € R, the maps f : N(0) — N(z) and g : R~ (N(0)U{0})
— R~(N(z)U{z}) which both send y to z —y are graph isomorphisms. Hence, we
may only study the subconstituents at x = 0 and we write Cg) and Cg) for the first

subconstituent and the second subconstituent of Cg at x = 0 € R, respectively.

3.2 Eigenvalues of normal Cayley graphs and a character

table of the group GLy(F,)

Let G be a finite group and V a finite-dimensional complex vector space. A
representation of G on V is a homomorphism p : G — GL(V') where GL(V)
denotes the group of automorphisms on V. Let p be a representation of G on V.
Then for each g € G, p(g) is a linear transformation on V. A subspace W of V' is
p-invariant under G if p(g)(W) C W for all g € G. If p has no proper invariant

subspace of V', then we say that p is an irreducible representation.

Example 3.2.1. 1. Let G be a group and V' a vector space. Define p : G —
GL(V) by p(g) = 1y where 1y is the identity map on V. Then p is a

representation of G on V.

2. Let z € C. We know that (R, +) is an additive group. Define p : R — GL(C)
by
(p(z))(w) = e*w

for all z € R and w € C. Then p is a representation of (R, +).

Example 3.2.2. 1. Every representation p : G — GL(V) with dimV = 1 is

always irreducible.

2. Define p : R — GL(R?) by rotations of R?, that is,

cosr —sinx
plz)=|
sinz coszx
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for all x € R. Since there is no one-dimensional subspace is mapped to itself

by all rotations, it follows that p is irreducible.

Next, we define a character of a representation. A character y correspond-
ing to p is the complex-valued function on G defined by x(g) = tr(p(g)) for all
g € G where tr(p(g)) is the trace of the matrix representation of p(g) on V. A
character is said to be irreducible if they are induced from an irreducible rep-
resentation. The dimension of a character is the dimension of vector space V.
It is easy to see that x(1) = dimV where 1 is the identity of the group G, and
X(ghg™") = tr(p(g)p(h)p(g~")) = tr(p(g)plg~")p(h))) = x(h) for all g,h € G.
Thus, a character is a constant on a conjugacy class of G.

Now, we focus on characters of the group F qX. Readers can see [18] for more
details. If F* = (a) for some a € F, then the irreducible characters of the group
(Fy,-) are xx(v) = e i1 forall ¥ = a™ € Fy and k € {0,1,2,...,q — 2}. Write
Fy = (a) where a € F;. We have for k € {0,1,...,q — 2},

q

if k=0,

—
Z Xk(x) = ;

z€F) 0 otherwise.

Let G be a finite group and S be a subset of G not containing the identity and
S = S~ where S7! = {s7!: s € S}. The Cayley graph of G associated to S
is the undirected graph Cay(G, S) whose vertex set is G and for each g, h € G, g
is adjacent to h if and only if g = hs for some s € S. We say that a Cayley graph

is normal if S is a union of conjugacy classes of G.

Example 3.2.3. Let G = S3 and S = {(123), (132)}. Since S is a conjugacy class
of S, the Cayley graph Cay(G, S) is a normal Cayley graph. The graph Cay(G, S)

is shown below.
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(13) (123)

(23) (132)

Eigenvalues of a normal Cayley graph can be determined by using the next

theorem.

Theorem 3.2.4. [2¢]

Let G be a finite group and S be a subset of G' not containing the identity and
S =S  where S7' = {s7': s € S}. If S is a union of conjugacy classes of G and
X1, - - -, Xr are irreducible characters of G, then the eigenvalues of Cay(G,S) are

1
Aj = ) > xi(s)

seS

with multiplicity m; = Z xx(1)? for all j € {1,...,7}.
Afiﬁj
Now, we focus on the group GLy(F,). The conjugacy classes of GLo(F,) are

given in the following table. The readers can see [9] for more details.
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Representatives Number of elements | Number of classes
z 0
ay = ,x #0 1 qg—1
x
1
,r #0 ¢ —1 qg—1
x
z 0 —1)(q—2
0 vy 2
£y
( ,y # 0 (g is odd)
q(qg —1
2 —q ( . )
0 it
d, = .z € EXF, (¢qis even)
1 2+ 2

Here, ¢;, and ¢, , are conjugate, d,, and d, _, are conjugate, and d, and d.. are

conjugate. Moreover, let E =T, [y/¢] be an extension of F, of degree two. We can

identify the matrices d, , as ¢ = x +y4/e and the matrices d, as z in E\F,. Now,

let «, 8 be distinct irreducible character of IFqX and ¢ an irreducible characters of

E* such that ¢? # ¢ and ¢ is not an irreducible character of ]FqX. The next table

presents all irreducible characters of GLs(

specify their values on each conjugacy class of GLo(F,).

[F,). As mentioned earlier, it suffices to

Theorem 3.2.5. [9] The character table of GLy(F,) is presented by the following

table.
(0 z) (0 I) (0 y) doy = <z E:) =¢ | d= (T L zq> ==
U a(z?) afz?) a(ry) a(¢?) a(z?)
Vo qa(z®) 0 a(zy) —a(¢) —a(z1)
Wap | (a+Da(x)b(x) | alx)f(z) | a(@)Bly) + a(y)B(x) 0 0
Xy (¢ —De(z) —¢p(x) 0 —(0(Q) +9(C1) | —(p(z) + ¢(z7))

Moreover, Uy, Vo, Wo 3 and X, are of dimension 1, q,q+1 and g—1, respectively.
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3.3 Spectral properties of Cy |

In this section, we study spectral properties of Cl(\/ll)z(lﬁ'q)’ We start by showing
that 01(\/1121(13*4) is Cay (GL,(F,), (I, + GL,(F,)) N GL,(F,)). To see this, let A, B €
GL,(F,). Then AB~! € GL,(F,) and

A— B eGL,(F,) <= (AB™' —1,)B € GL,(F,)
<= (AB™' - 1,) € GL,(F,)
<= AB™' € (I, + GL,(F,)) N GL,(F,).

It also follows that the graph Cl(vlll(qu) is regular of degree | (I, + GL,,(F,)) N GL,(F,)| =
en, defined in the Chapter 1. Moreover, for A, B € GL,,(F,), we have

ABA™' € (1, + GL,(F,) N GL,(F,) < ABA™' —1, € GL,(F,)
= A(B-1,)A7! € GL,(F,)
< (B —-1,) € GL,(F,)

<= B € (I, + GL,(F)) N GL,(F,).

Thus, (I, + GL,(F,)) N GL,(F,) is a union of conjugacy classes, so Cl(\il(m,) is a
normal Cayley graph. We record this result in

Theorem 3.3.1. The graph Cl(\/lll(]Fq) is the normal Cayley graph of GL,(F,) asso-
ciated with (1, + GL,,(F,)) N GL,(F,) and it is reqular of degree e,,.

Next, we determine all eigenvalues of Cl(\z(Fq). Let k € {0,1,...,9 — 2} and
consider yj, an irreducible character of F,'. We first handle the case ¢ is odd by

showing some lemmas on sums of characters of IF;.

Lemma 3.3.2. If q is odd, then for k € {0,1,...,q — 2},

_1
g—1 Uke{&gg—}

> xu(r?) =

z€Fy 0 otherwise.



Proof. We know that

q—2

(@) =D xul(a®) =

z€Fy m

Note that es-t = 1 if and only if k =0or k =

q—2 q—2
4rmimk
> T =D (e

q_

—1
Z xr(2?) = ¢ — 1. Finally, if k ¢ {O, QT}, then

z€lFy

amik\ 4—1
17 (e q—1>
> Xul(@) = =0

and the proof is completed.

Lemma 3.3.3. If q is odd, then for k € {0,1,...

;

1 —

4mik )

P —5¢+6 ifk=0,
-1
(@ > xley)={-g+3 k=1, and
z,yeF X ~{1}
and T#y 2 Oth@TUﬂSQ
\
.
¢ —q ifk=0,
—1
(b) Z Xi(@® — ey?) = —q+1 if/fqu>
(x,y)€Fg X FY
0 otherwise.

Proof. We note that

2.

z,yeF X ~{1}
and z#y

Xk(zy) =

z€Ry

= ZXk(x) -

weF;

\

Z Xk ()

,q—2} ande € Fy\F

Z Xk(y) | — Z Xi(2?)

yeEFX €l

2
q’
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| 1
CIfk e {0‘-’7} then

]

we have

- Y @ - ) )

z€FF ~{1}
2

mEF;

yeFy ~{1}

Zxk(wg) -2 Zxk(a:) + 2.

mEF;
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If £ =0, then applying Lemma gives the right-hand side equals ¢*> — 5¢ + 6.
If k= %, then the right-hand side is —q + 3. Finally, if & & {O, %}, then
the summands on the right-hand side are all gone and we get 2 left. This proves
(a).

For (b), since ¢ is not a square in F;, £ = F,[/c] is an extension of degree two
of Fy. Thus, £ = {x + y\/c : 2,y € F}. Moreover, let N/, be the norm map.
Recall that for z,y € Fy, Ng/p, (z + yv/e) = 2 — ey® and by Hilbert’s Theorem

90, Ng/F, is surjective with kernel of size ¢ + 1. Consider the sum

> @ —ey?) = > xe(@® =) = > xal(a?

(z,y)€Fg X F (z,y)€Fq X Fq ~{(0,0)} z€F)
= Z Xk (Ng/r, (r +yVe)) Z Xk (z
(zy)€EFq x Fq ~{(0,0)} z€eF )
= |kerNE/]Fq‘ Z Xk(x) ~ Z Xk(xQ
z€lFy z€F )
= (g+1) Y xxl@) = Y xule?)
z€FY z€RY
-1
If & = 0, then the right-hand side becomes ¢*> — ¢, and if k = qT’ then the
-1
right-hand side is —(¢ — 1) by Lemma . Finally, for k ¢ {0, QT}, it also
follows that each summand on the right-hand side is 0. [

Lemma 3.3.4. For k,l € {0,1,...,q— 2} such that k # 1, we have

-1 ifk+l=q—-1,
(@) > xul@)xi(z) = ! / ! and

z€F ) 0 otherwise,

4 fO<k+l<q—1,k1#0,
(b) Z k(@) xa(y)+xe(v)xa(2)] =
2,yeFX {1} 2(3—¢q) otherwise.
and T#£y



33

Proof. Let xx and x; be distinct irreducible characters of ]F;. Then we have

q—2

2ri(k+l)m

E Xk(m)Xz(ff):E e ot
J?EF; m=0

Similar to the proof of Lemma , we can conclude that

S @ g—1 ifk+1e{0,q—1},
e\T)Xxi(T) =

zeFy 0 otherwise.

Since k, [ are distinct, k£ + [ # 0, and so we have (a).

For (b), we consider the sum

S e@xi) +xea@]l =2 > xel@)xiy)

z,y€F S ~{1} z,yeFx ~{1}
and r#y and z#y
=21 > @ | | Do x| =D @@ — D xl@) - Y x®)
€l yeFry TR zeF; ~{1} yeFy ~{1}

Since k A, k+1#0. If k+1=q—1, then k,[ # 0 because 0 < k,l < q¢— 2. Part

(a) gives

Y ha@x®) + xa@)x@)] =2(-(g = 1) +2) =23 - q).

z,y€Fy ~{1}
and z#y

Assume that k + [ # ¢ — 1. We distinguish two cases.
Casel. k=0orl=0,say k=0. Then [ # 0 and so

> ba@xa) +xe@)xl@)] =2(—(g—1)+2) =2(3 - q).

zyeF s ~{1}
and z#y

Case 2. k,l # 0. Then we conclude that

S D@ + xey)x()] = 2.

z,yeF X ~{1}
and z#£y
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This completes the proof. O

Remark 3.3.5. Assume that ¢ is odd. Before computing the eigenvalues of

Cl(vlli(]Fq), we note that for each z,y € I,
(a) a, € GLo(F,) N (Iy + GLy(F,)) if and only if z # 1
(b) b, € GLy(F,) N (I + GLy(F,)) if and only if x # 1
(¢) oy € GLo(Fy) N (Io + GLo(F,)) if and only if z,y # 1
(d) dyy € GLo(Fy) N (Io + GLy(F,)) for all z € F, and y # 0.

To verify (d), we suppose that there exist 2 € F; and y € I such that

77 1) e
det 3 =0,
Y r—1
so (x —1)*> —ey?* =0 in F,. Thus, x + yy/e = 1 in E. Since {1, /c} is an F,-basis

of E, we have y = 0 which is absurd.

From the character table of GLy(IF,) mentioned at the second section of this
chapter, let A\, denote an eigenvalue induced from an irreducible character x. Since

the character U,, has dimension one, the above remark gives

M, = Y @)@1Y @)

z€FF {1} z€FF ~{1}
2 2
q° +q q —dq
+ > xley) + > @ — ey,
z,y€Fy ~{1} (z,y)EFg X FY
and z#£y
According to Lemmas B?)j and B.B.j, we have Ay, = qt—2¢3—q¢*+3q, )\qu_l =q
2
and
2
q°+q
My, = (=1) +(¢* = D(=1) + 1+1)=g¢

-1
it k & {O, QT} It follows that the eigenvalues of Cl(\?z (Fy) obtained from U, are
q* — 2¢° — ¢* + 3¢ and ¢ with multiplicities 1 and g — 2, respectively.
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Now, we work on V,,. Since V,, has dimension ¢, we have

1 24
=2 le X @)+ ST )

2
zeFF ~{1} z,yef X ~{1}
and z#y
2
qa —4q
— 5 Z Xk(xQ o €y2)
('I7y)qu X ]F;

Again, applying Lemmas b3j and B?)ﬁ gives Ay, = —¢*+q+1, Avy. . =4

q—
2

and

1

2
+
Avy, = P <Q(—1) g 1=

(1+1))=q

-1
itk ¢ {0, qT } Thus, the eigenvalues of Cl(vl[)2 (Fy) obtained from V,, are —¢*+q¢+1
and ¢ with multiplicities ¢> and ¢* + ¢*(q — 3) = ¢* — 2¢?, respectively.
Next, we consider the eigenvalues induced from the character W, ,, with k # [.

Since W, y, has dimension ¢ + 1, we have

Ao = o7 | @+ D) Y @@+ (@ -1 Y @)

zeFF {1} z€FF ~{1}

+92+q > e@x®) +xe@)xl))

2
z,yeF ~{1}
and z#y

First, we assume that k + 1 = ¢ — 1. Thus, k,l # 0. Note that there are q
choices of such £, [. It follows from Lemma that

W, = 7 (@4 D=2+ @ D=2 +2 (L) 3-0) =o

qg+1

If0<k+1<q—1, then we have two cases to consider. If k = 0 or [ = 0, then
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there are ¢ — 2 choices of k and [, and

W, = 7 (@ DED+ @ - 0042 (T 6-0) = —ata -2

—3)2
If k,1 # 0, then there are (g 5 ) choices of k and [, and

W, = 7 (@ DD+ @ -0+ (TE) @) =

Thus, the eigenvalues of Cl(vl[i(Fq) obtained from W,, ,, are —¢(q — 2) and ¢ with
1)%(g —2)(¢g — 3
9 and (¢ + )(q2 )(g —3)

Finally, let ¢ be an irreducible character of £ such that ¢? # . Hence, ¢ is
2

multiplicities (¢ + 1)%(q

, respectively.

a non-trivial character and there are

choices of . Since X, has dimension

q — 1, we have

1

Ax, = qu (¢—1) Z p(r) = (¢ = 1) Z ¢(x)
zeF; ~{1} z€lFF ~{1}
T > 105 (pla+ryv/e)+ (e — y/e)
(z,y)E€Fg X FY
= q%l (-9 ) @+ (- = (-0 Y  elz+y/e)
7S (z,y)EFg X FY
= q%l (—(cf —q) Y elw)+ (¢ - Q)> =q.

(a—1)?*(¢* —g)
5 :
Summing all multiplicities of the eigenvalue ¢ from each character gives its total

Hence, the eigenvalue from this case is ¢ with multiplicity

multiplicity ¢* — 2¢® — 2¢® + 4q + 1. Therefore, we obtain the spectrum of Cl(\/lll )
in the case that ¢ is odd. For ¢ even and ¢ > 4, we can find all eigenvalues corre-
-1

1 2
Note that the eigenvalue obtained from the case k = CJT when ¢ is odd is always

sponding to each U,, V) and X, in the similar manner without the case k =
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q. Hence, the eigenvalues corresponding to those characters of the case ¢ is even
and ¢ > 4 are equal to the eigenvalues in the case ¢ is odd. As for eigenvalues

+1)%(¢ —2
corresponding to W,, ,,, we have multiplicities of ¢ become (g )"(q ) and

(¢ +1)%(¢—4)(¢—2) (¢+1)*(q —2)(g—3)
2 2
ities of ¢ when ¢ is even remains the same.

Finally, if ¢ = 2, then the graph C{!) J(8,) has (22 —1)(2% — 2) = 6 vertices and

whose sum is again , so the multiplic-

is two copies of K3, so its spectra are 2 of multiplicity 2 and —1 of multiplicity 4.

Thus, we completely determine the spectrum for the graph C Ma(F,)"

2 —1
Theorem 3.3.6. (a) If ¢ =2, then Spec Cl(\/ll)g(IFq) = 5 4
(1) 7
(b) If ¢ > 3, then Spec CMQ(Fq) =
¢ —2¢° — ¢* + 3q q —¢+q+1 ¢ —2¢°
1 =263 =22 +4qg+ 1 ¢ (q+1)%(q—2)

Moreover, E(CI(\}I)Q(]FOI)) = 2¢° — 2¢* — 8¢® +6¢* + 8q for all ¢ > 2.

Furthermore, for all ¢ > 3, we have

E(C{e,) —2((@ =@ —q)—1)
=2¢° —2¢" = 8¢° +6¢> + 8¢ — 2 ((¢* = 1)(¢* —q) — 1)
=2¢° — 4¢" — 6¢° +8¢* + 6q + 2 > 2¢° — 4¢* — 6¢°

=2¢*(q —3)(g+1) > 0.

This proves hyperenergeticity of the graph C1(\/11)2(1Fq) when ¢ > 3, while Cl(\Z(ZQ) is
not hyperenergetic because its energy is 8 < 2(6 — 1).

Since C\Y is disconnected, it is not Ramanujan. We show that the graph

M2 (Zs)

Cl(\/lll(IFq) is Ramanujan for ¢ > 3. Since | — @ +q+ | >1]—qlg—2) > q it

suffices to show that 24/(¢* — 2¢* — ¢> + 3¢ — 1 > ¢* — ¢ — 1 which is equivalent
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to 4(¢* —2¢* — > + 3¢ — 1) > (¢* — ¢ — 1)?, and we have

4" —2¢° — @ +3¢—1)— (¢ —q—1)> =3¢* — 6¢° — 3¢> + 10g — 5

> 3¢" — 6¢° — 3¢ =3¢*((g—1)*—2) > 0.

We record this work in

Theorem 3.3.7. The graph Cl(\/l[)2 (F,) s hyperenergetic and Ramanujan. Moreover,

Cl(\/lll(ZQ) is neither hyperenergetic nor Ramanujan.

)

3.4 Spectral properties of C&(F )

We study the second subconstituent, of Cy,,) in this section. We first show that
the graph is a tensor product of a complete graph and a complete multi-partite
graph and so we can calculate its eigenvalues. Let Fg“ denote the set of column
vectors of size 2 x 1 over ;. Since a 2 X 2 matrix is non-invertible if and only if

its column vectors are parallel, we can conclude that

My(Fy) ~ (GL2(F,) U{02x2}})

_ U {(ag g):aeIFq} U{(ﬁ 6):17€F§X1\{5}}

TEF2X1 {0}

where 0 denotes the zero vector of Fg“. Before giving a structure of the graph

CI(VZIZ 7,7 We need the next lemma.

Lemma 3.4.1. Let A, B be non-invertible matrices in My(F,),a,b € F, and v,% €

F2! {0}

(a) If A = (aﬁ 17) and B = <bw w), then A — B is non-invertible if and only
if a=">b or v,w are linearly dependent, or equivalently, A — B is invertible if

and only if a # b and U,w are linearly independent.
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(b) If A= (aﬁ U) and B = (@U 6), then A — B is non-invertible if and only

if U and W are linearly dependent.

Proof. Observe that
A — B is non-invertible <= (a0 — bif) = ¢(¥ — W) for some ¢ € F,,.

Assume that A— B is non-invertible and v,  are linearly independent. Then a = ¢
and b = ¢, so a = b. Conversely, the case a = b is clear. If @ = ¢t for some c € F,,

then A — B = <(a —be)v (1 — c)ﬁ) is non-invertible. This proves (a). For (b),

we have
A — B is non-invertible <= a¥ — W = ¢v for some c € F,
<= (a — c¢)¥ = for some c € F,,
which is equivalent to ¢ and @ being linearly dependent. ]

In the next step, we define two graphs G and H as follows: G is the complete
graph on g+ 1 vertices parametrized by the set of projective lines P*(F,) = {[a, 1] :
a € F,yU{[1,0]} and the vertex set of H is F2*" ~{0} and for any 7, @ € F2<! ~{0},
v and W are adjacent if and only if ¢ and w are not parallel. Note that H is the
complete (g + 1)-partite graph such that each partite has ¢ — 1 vertices.

Let f : C1(\/21)2(1Fq) — G ® H defined by <a17 U) — ([a,1],?) and <17 6) —>
([1,0],7) for any a € F, and 7 € F.*! ~{0}. Thus, f is bijective. Now, let A, B be
nonzero non-invertible matrices in My(F,), a,b € F, and ¢, € Fg“, A= (a{f {;’)

and B = <bu_f u‘;’) Lemma (a) implies

A— B e GLy(F,) <= a#b and ¥, are linearly independent

< ([a,1],7) is adjacent to ([b,1], ).

Next, we assume that A = (aﬁ 77> and B = (w 6) From Lemma (b), we
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have

A — B € GLy(F,) <= vand @ are linearly independent

< ([a,1],7) is adjacent to ([1,0], ).

Hence, f is a graph isomorphism, so we have the structure of the graph Cl(\il( F)-

Theorem 3.4.2. The graph Cl(\Z(Fq) is the tensor product of the complete graph on
q + 1 vertices and the complete (q + 1)-partite graph such that each part has ¢ — 1

vertices, and it is a (¢* — ¢*)-regular graph.

Recall that eigenvalues of the tensor product can be determined by Theorem
. Since the eigenvalues of G' are ¢ with multiplicity 1 and —1 with multiplicity
q and the eigenvalues of H are ¢°—q, —g+1 and 0 of multiplicities 1, ¢ and ¢*> —q—2,

repectively, we obtain the spectrum and energy of the graph Cl(\/zll (Fy)"

Theorem 3.4.3. We have

3 o= 2
@ (- —¢+q q-1 0
Spec CMQ(IFq) = ) ,
1 2q q q° —3q—2
Moreover, E(Cﬁi(Fq)) = 4q¢® — 44>

Since the number of vertices of Cl(\/2[i(IFq) is | Ma(F,) \ (GLa(F,) U{02x2})| =
¢ +¢*—q—1and

A4 =4 2"+ ¥ —q—2) =2¢° = 6> +2¢+4=2(¢—2)(¢* —q¢—1) > 0.

Thus, Cl(\/2[)2(]Fq) is hyperenergetic unless ¢ = 2. Finally, we show that the graph

Cl(\?li(Fq) is not Ramanujan. Since ¢®> — ¢ is an eigenvalue of CI(VQIL(]Fq), we claim that

(¢*—q)* > 4(¢®> — ¢* —1), which is equivalent to the inequality ¢* —6¢>+5¢*+4 > 0.

This holds for ¢ > 5 because ¢! — 6¢> + 5¢°> +4 = ¢*(¢ — 1)(¢ — 5) + 4 > 0. For

q € {2, 3,4}, it is easily seen that c? is Ramanjan in all cases. We record both
Ma(Fq)

results in
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Theorem 3.4.4. The graph CI(\Z(Fq) is hyperenergetic if and only if ¢ > 3, and it

is Ramanujan if and only if ¢ < 4.

3.5 Clique numbers, chromatic numbers and independence

numbers

In this section, we compute the clique number, the chromatic number and the
independence number of subconstituents of Cyy,r,). Recall that we have a subfield

K and the right ideal J of the ring M,,(F,) as mentioned in Theorem . We
start with the first subconstituent. Note that 0,., € K and so K ~\ {0,x,}

forms a complete subgraph in Cl(\/lli(]Fq)' Hence, w(Cl(lel(]Fq)) > q" — 1. Next, write

n

q

M, (F,) = U(Bl + J) as a union of cosets of J where the coset By + J = J. Note
i=1

that each coset forms an independent set and 0,,x,, € J. It follows that GL,(F,) is a
qTL

subset of U(Bi—i-J) and hence X(Cl(\/l[l(IFq)) < ¢"—1. Since W(Cfvl[i(mq)) < X(Cf\z(]ﬁ‘q))v

=2
we have the following theorem.

Theorem 3.5.1. w(Cl(vl[l(Fq)) — X(Cl(\/l[i(ﬂ?q)) = q" A

Recall that if G is a graph, then a(G) > |V((CG;)) | Theorem gives
X

| GLn(Fy)| _

)
o ) > =
Ml X(CL s

Consider the group K* as a multiplicative subgroup of GL,(F,). Let X = AM
and Y = AN where M, N € K* such that M # N and A € GL,(F,). Then
X —Y = A(M — N) is invertible because M, N € K*. It follows that each coset
forms a complete graph. This implies that a(C&i(Fq)) <(q—4q)...(¢" —q").

Hence, we have shown

Theorem 3.5.2. a(Cl(\z(]Fq)) =(q"—q)...(¢"—q¢").



42

By Theorem , we have the second subconstituent of Cyy,(r,) is the tensor
product of the complete graph on ¢ + 1 vertices G and the complete ¢ + 1-partite
graph H such that each partite has ¢ — 1 vertices. Since x(G) = x(H) = ¢ + 1,
we can conclude that X(Cl(\il(Fq)) < ¢+ 1. Moreover, let V(G) = {a1,...,a4+1}
and Vi,...,V 41 be the partites of H. Choose v; € V; for all i € {1,...,q+ 1}.
We can see that the subgraph of G ® H induced by {(a1,v1), ..., (agt1,V44+1)} is a
complete graph, so w(G ® H) > g+ 1. Thus, we obtain the clique number and the

chromatic number of the graph Cﬁl (F,)"
Theorem 3.5.3. W<CI(\/2[)2(]FQ)) = X(Cl(\/QI)g(IF‘q)) =q+1.
Our final theorem gives the independence number of 01(\2 (F)"
Theorem 3.5.4. 0‘(01(\2(1&,)) =q¢*—1.
Proof. Similar to the proof of Theorem , we know from Theorem that

M, (FF GLy(F 0 S+ —q—1
O‘(Cﬁl(wq)) > | My () ~ ( (§)< ) U{020})| ¢ +g 1q — 1
X(Cir,e,) @t

q2

Write My(F,) = U(A’ + K) as a union of cosets of K. Then an independent set of
i=1 ;

Cﬁi(Fq) is contained in U(A’ + K). Since each coset forms a complete subgraph,
i=2

we have a(Cﬁl ) < ¢ — 1 and the result follows. O



CHAPTER IV
CONCLUSIONS

In the second chapter, we use eigenvalues of Cyy,, (r,) to show that the folloing rings

are DU-rings.
(a) My, (Fy,) x -+« x M, (F,, ) where ¢, ..., g are pairwise relatively prime.
(b) M, (Fg,) X My, (g, ).

(€) My (Fper) X My, (Fper) X+ X My, (szk) x M, (szk) where pq,...,pp are

i1
Py
distinct primes and sy, ..., Sk, t1,...,tr € N.
In the third chapter, we obtain spectral properties of substituieren of Cy,(r,)

and compute thier clique numbers, chromatic numbers and independence numbers.

First, we list the results on the graph Cl(\z (F,)"

L. Cf\il(ﬂ?q) is the normal Cayley graph of GL,, (F) associated with (I, + GL,(F,))N

GL,(F,) and it is regular of degree e,,.

2. If ¢ = 2, then Spec CM2(IF JR
‘ 2 4
3. If ¢ > 3, then Spec C{{) . =
' —2¢* — ¢* + 3¢ q —¢#+q+1 ¢ — 2¢*
1 ¢* —2¢° —2¢° +4q+ 1 ¢ (¢+1)*(¢—2)

4. For q > 3, the graph Cl(\i)Q(Fq) is hyperenergetic and Ramanujan.

Moreover, Cl(\g (Z2) is neither hyperenergetic nor Ramanujan.

1 1 n 1 n n n—
5. w(Cy. ) = X(CY.5,)) = ¢" — 1 and a(Cy) o ) = (¢" = q) ... (¢" — ¢"1).



Finally, we list the results on the graph Cﬁl (Fy)"
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6. The graph Cﬁl(Fq) is the tensor product of the complete graph on g + 1

10.

vertices and the complete (¢ + 1)-partite graph such that each partite has

q — 1 vertices, and it is a (¢* — ¢?)-regular graph.

3_ 2 .2 _
Spec C?) = ¢4 ¢t a-l 0
’ p MQ(]Fq) 2 3
1 2q q q° —3q—2
The graph Cl(\?[)2 (F,) is hyperenergetic if and only if ¢ > 3.

The graph Cl(\/2[)2(]Fq) is Ramanujan if and only if ¢ < 4.

2 2 2
W(Cl(wl(mq)) = X(C&Z(Fq)) =q+ 1 and O‘(Cl(\a)z(wq)) =q¢* -1
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