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This study aimed to develop a knee-assistive device while walking. The
research was separated into two sections: the gait support simulation in MATLAB
and the prototype of the device. Data on body part positions and ground reaction
force were collected from three adult Thai participants walking at a speed of 1.5
m/s to calculate knee moment. The simulation section provides support moments
during walking using machine learning and artificial stiffness control strategy
(MLASCS), composed of the kNN model and the instantaneous artificial stiffness
per body mass (IASPB) equations. The MLASCS was used to determine the proper
amount of support moment required to assist walking, and its validation via the
recorded data showed that it could reduce the total effort by up to 63.4%. In the
prototype section, the posterior-support device was designed using a 3D printing
filament and tested for durability. The control system used an actuator replicated
from an MIT mini-cheetah servo motor that commanded various parameters such as
angular, angular velocity, angular stiffness, angular damping coefficient, and
angular moment and provided feedback in the form of angular angular velocity and
angular moment. Due to a significant increase in delay time when connecting the
microcontroller to the device, the sets of the if-else function called a state classifier
combined with the IASPB equations were selected as the control system instead of
the MLASCS. Efficiency testing was conducted using electromyography (EMG)
sensors, which revealed mixed results that the device was sometimes helpful and
sometimes not helpful. These may be due to an imperfect gait cycle, motor
command delays, and misalignment of the device, indicating that further data
collection and validation with more samples is necessary to verify the device's
usefulness.
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Chapter 1: Introduction

An excessive amount of standing, sitting, running, and walking
might result in physical aches, especially knee discomfort. Because the
knees support the entire upper body weight during most human activities,
it is fairly prevalent. People's daily life will be greatly impacted by knee
pain, such as difficulty sitting, running, or walking, or a lack of
confidence performing simple tasks [1]. As a result of the spinal cord,
severe injuries, and other diseases, many patients also experience knee
impairments like muscle weakness, discomfort, and paralysis [2, 3].

Several knee gadgets have been developed to treat knee issues. In
general, knee reinforcement devices are mechanical or electromechanical.
It's important to note that the knee reinforcement device's main objective
is to lower or enhance the user's metabolism depending on the work [4].
The equipment should be comfortable and stable when worn by the user

[5].

The support pattern of currently available knee devices can be
categorized into four sides, according to earlier investigations by Zhang
et al. [6]: lateral-support layout (outside), two-side support, improved-
lateral support, and anterior/posterior support. There is about 38% outside
lateral support [7-29]. About 10% of devices are two-sided supports [3,
30-34], 40% are improved lateral supports [35-55], and the other devices
are anterior/posterior supports [6]. The most important aspect that needs
to be taken into consideration is how the device's mechanism flexes and
extends the knee in accordance with knee movement [6]. The knee joint
IS suggested to be described as a four-bar linkage mechanism in a study
publication with a maximum center of rotation error when walking of
1.08 mm [56]. Also, the knee angle may not exceed 70 degrees during a
typical gait cycle [57], therefore there may not be much of a shift in the
center of rotation's position. Then, it can be considered that the upper leg
and lower leg can instantly flex or extend around the fixed revolute joint.

Zhang et al also presented that Many studies of knee assistive
devices use various different actuation types [6]: 1. The active actuation
using an electric or pneumatic actuator as a power source, 2. The passive
actuation device using power from the potential energy of the device
structure, 3. The quasi-active actuation generating power from combining



active and passive actuator. Approximately 73% of the study uses active
actuation [3, 7-23, 30, 35-39, 41-47, 55, 58-67], 10% uses quasi-active
actuation [24-26, 48-51, 54], and 17% uses passive actuation [27-29, 31-
34, 52, 53, 68, 69]. Additionally, pneumatic artificial muscles (PAM) [3,
47, 55, 70], series elastic actuators (SEA) [40, 54, 58, 71, 72], motors [45,
46, 61, 67], and regenerative magnetorheological actuators (RMRA) [73,
74] were typically used in previous gait rehabilitation and human
performance augmentation applications [75].

Due to the wearer's physical connection to the device, control
mechanisms are required for all actuation types while developing knee
exoskeletons. In order to ensure the wearer's security and comfort, the
assistive moment can be produced in accordance with their motions and
intentions. Various control methods for knee exoskeletons have been
proposed, including assist-as-needed control, position-based trajectory
tracking control, and bioelectric signal-based control. [75]. The previous
research employed the following control techniques: 1. Hybrid
position/force control by applying the rotary and linear encoder [47] and
a gauge pressure sensor [55] to generate the support moment; 2. Using
the force control [71, 72], the device is subjected to controlled force or
torque; 3. Bounded control, which raises safety and avoids actuator
saturation [45, 46]; 4. Impedance control, which maps the desired
trajectory and stiffness [40, 58, 61, 67]; 5. position control [54, 73, 74],
which monitors typical gait patterns and operate the device; 6. on-off
control [70] which generates and degenerates support in a particular
circumstance. 6. bioelectric signals-based control [3] that integrates the
relationship between muscle activity and human movement.

T

Considering leg

————— Weight acceptance ———} Terminal stance -

| Stance phase } Swing phase ———]

Figure 1 Human gait cycle (modified from [75, 76])



The knee angle, an angle between the thigh leg and shin leg where
it is zero when two sections are parallel, is between 0 to around 70
degrees while walking, so the device should smoothly move between
these degrees. The quadriceps muscles work across the knee joint as a
pivot joint between the thigh and shin legs [77]. The knee joint's muscles,
tendons, and ligaments can control the joint dynamic and static stability
[78]. In addition, the joint can be assumed as a four-bar linkage [1, 56,
79] with a moving center of rotation point. The joint is stable because
muscles and ligaments [2, 3] act as a damper. There are two basic phases
in a normal human gait cycle: stance phase and swing phase, with the
stance phase being further divided into the weight acceptance phase and
terminal stance phase [75], as shown in Figure 1 (modified from [75]).
The weight acceptance phase occurs when a foot begins to lie on the
ground and sends body weight to the ground for balance. This phase ends
when the foot fully presses the ground. The terminal stance phase starts
when the foot begins to kick the ground to continue walking. The swing
phase occurs after the foot has been propelled off the ground. It is the
phase in which a foot does not touch the ground and swings to prepare for
the next weight acceptance phase. Figure 2 shows the plots of human
knee joint angle and moment per body mass during a gait cycle from
modified raw data [57]. The maximum knee moment per body mass is
around 0.67 Nm/kg. Note that the flexion moment is negative.

A possibility of whether the stance and swing phase can be
predicted by the angular velocity of the lower leg was presented by
Grimmer et a [80]. Attaching five inertial measurement units (IMUs)

makes it possible to detect the stance phase while applying additional rule
sets. The relative velocity between a thigh and shin leg was also
suggested by Javanfar et al [81]. The relative motion between the femur
and tibia can be analyzed by the collision reactions of the knee’s cartilage
and bone. The results can suggest a design concept for a knee device.

The machine learning technique has been used for improving a
knee device. Mokri et al [82] can estimate a muscle force from the
prediction of several machine learning while the input is data from
surface electromyography (SEMG) signals. This method can improve the
performance of therapy and increase the sensitivity between the muscle
model and the tendon stiffness. Machine learning was also applied for
helping people with leg-missing disabilities [83]. The study showed that



the data from a series of foot pressure sensors can be used to predict the
walking phase through the k-nearest neighbor (kNN) algorithm. Not only
healthy gait can be detected by a machine learning model, but an
abnormal gait can also be predicted. Chen et al. presented that their
algorithm can predict the probability of elderly flat ground which is
helpful for rehabilitation monitoring [84].

The control techniques usually require many sensors to control
knee devices because of the complexity of movement that the knee flexes
and extends when the foot touches and does not touch the ground.
Nowadays, actuators combined with an encoder can give feedback on the
motor's current angle and the angular velocity of the joint. For reducing
the number of sensors in the device, this research proposes Machine
Learning and Artificial Stiffness Control Strategy (MLASCS) by using
the knee angle and the knee angular velocity with machine learning and
artificial stiffness techniques for controlling the amount of supporting
moment of the knee assistive device in a gait cycle. The machine learning
model is introduced to classify the state of a gait cycle for mapping the
amount of stiffness to support the required knee moment. This study
explains how to create the MLASCS and validates the efficiency of this
strategy by simulating the effort used when walking with and without
MLASCS. The results of this study can tell if machine learning can be
applied to finding a state of gait, and amount of supporting knee moment.
In addition, the study also designs the knee device with easy putting on
and taking off, flexibility for fitting leg shape, and lightweight criteria for
supporting gait, and verify the built device to see if the MLASCS can be
used for knee devices. If not, the classifier for predicting the state of a
gait cycle to control the device needs to be mentioned.
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The paper is organized as follows. Section 2 describes how to
collect and prepare data for calculations. Section 3 gives details on the
creation of the MLASCS composed of machine learning and artificial
stiffness control techniques. In section 4, the simulation and validation of
the MLASCS are shown. The results and discussion are displayed in
Section 5. Finally, Section 6 concludes all details of the study and
discusses future work.



Chapter 2: Knee Joint Data Collection of Walking
Gait Cycle

Even though there is a lot of recorded knee joint data on a normal
human gait cycle, there might not be much knee data measured on Asian
people which differs from Western people. Therefore, the data in walking
gaits are measured in our research laboratory to make sure the number of
data points is enough for creating a machine learning model.

Chapter 2.1: Data Collection

To analyze and design an assistive knee motion device, knee angle
and moment data are required which can be obtained through inverse
kinematics calculations using ground reaction force (GRF). Motion
capture and force plate sensors are effective in determining knee
movement and GRF. Proper marker placement is necessary for accurate
measurement, and according to recommendations by Robertson et al.
[85], at least two positions in each segment should be marked. To this
end, markers were attached at the CG, hip, knee, ankle, and fingers as
shown in Figure 3. The average walking speed of all participants was 1.5
m/s.

The CG marker, placed around 0.412 of sample height (proximal)
following Robertson et al.'s recommendation [85], was used to estimate
walking speed. Other markers, including the hip, knee, ankle, and finger
markers, were attached according to the Qualisys Software Manual for
3D position measurement to calculate knee and ankle angles. The
experiment involved three Thai adult participants with an average age of
23, a height of 171-172 cm, and a weight of 51.9-61.8 kg. The
measurements were taken using two force plate sensors on the ground
and sixteen marker detectors, one camera, and a marker position setup as
shown in Figure 4. Nine trials were conducted in total.



o—— CG Marker
(Placed under the Navel)

o——— Hip Marker
(Anterior Superior lliac Spine)

- Knee Marker

'/ (Lateral Femoral Condyle)

Knee

Ankle Ankle Marker
™~ " (Apex of the Lateral Malleolus)
L]

* - Finger Marker

(Metatarsus — 5th head)
Right Leg

Figure 3 Positions of markers for collecting data from the Qualisys motion capture
system.

Force Plate 11

" There are 8 marker dectectors, 2 force plate sensors, and 1 camera in this experiment room.

(a)
Figure 4 The experiment room consists of 8 marker detectors, 2 force plates, and 1
camera and the origin and axis of the tests (a), and the position of the marker on the
participant (b).



Chapter 2.2: Data Analyzing

The recorded data from the motion capture was resampled to have
a uniform sampling frequency of around 240 Hz using MATLAB.
Additionally, MATLAB was used to remove any noise present in the
data.

Kinematics of Knee

The raw 3D position data of the CG, hip, knee, ankle, and finger
markers were used to determine the knee and ankle angles. Since the
variation in the y-axis data is negligible, only the X-Z plane data was
analyzed. To perform further calculations, velocity and acceleration
needed to be calculated from the position and angle data. The Centered
Finite-Difference (CFD) method with an accuracy of order four was
utilized for this purpose. The regular CFD equation [86]:

L [f(x+h; hf(x h)] 6

can be calculated for more accurate prediction in the first derivatives for
velocity [87]

.o [f(x+2h)+8f(x+h)-8f(x-h)+f(x-2h)] )
fo= 12h
and second derivatives for acceleration [87]
. [-f(x+2h)+16f(x+h)-30f(x)+16f(x-h)-f(x-2h)] (3)
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Figure 5 The average and the boundary of the maximum and minimum of all post-
processed data in (a) The knee angle; (b) The knee angular velocity (knee omega).



where X is the time values, f(x) is the function, f'(x) is the first derivative
function, f'(x) is the second derivative function, and h represents the
small step time.

Based on the collected data, some noise was observed in the knee
angle data, which required post-processing signal filtering before
determining the knee angular velocity (knee omega) and CG velocity for
convincing the speed of walking where the plot of CG speed is shown in
figure A.1 in Appendix A.. Figure 5 shows the average of the processed
knee angles and knee omegas with the boundaries of all nine-trial data,
with the starting position being when the heel touches the force plate. The
average data for knee and ankle angles, angular velocity, and angular
acceleration of all trials are presented in Table B.1 in Appendix B.

Kinetics of Knee
The following is the process for calculating knee moment (Mynee)
from the GRF. All equations are modified from Newton’s 3™ Law
(equations 4-5) for planar motion where the free body diagrams of the
lower leg and the foot are shown in Figure 6. There are two steps in this
calculation. The first step is the calculation of both x and z directions of
the ankle reaction force (Fx anke @and F; ane) and the ankle moment
(Mankie) from the x and the z directions of the GRF (GRF4 and GRF,)
shown in equations 6-8,
D F-ma, @

Z Mg = la ()

where ). F represents the summation of all the forces that act on the body,
m is the mass of the body, and a is the acceleration of the body. > M is
the summation of all action moments exerted on the body around a
specific point (G), the | is the moment of inertia of the body around the
point, and the a is the angular acceleration of the body around the point.
From the free body diagram of the lower leg and foot shown in figure 6,
the forces on the ankles are:
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Lower Leg Foot

Figure 6 The free body diagrams of the lower leg and the foot for calculating the
knee moment.

Fx,ankle:GRFx 'mfootax,foot (6)

Fz,ankle:GRFz'Wfoot'mfootaz,foot (7)

And the moment around the ankle is

Mankle:GRFz (RX,GRF)+GRFX (RZ,GRF) - Wfoot (Rcm,ankle)+lankleaankle (8)

where the GRF, and GRF, are the ground reaction force in the x and z
directions, respectively, shown in Figure 7. The Ry cre and R, grr are the
lever arm distance between the instantaneous center of rotation of the
ankle (ICRake) and GRFy and GRF,, respectively. Note that, the position
data of the ankle marker, placed at the apex of the lateral malleolus, was
used as the position of the ICRanke in this calculation. The mass Mgt IS
the estimated mass of the foot, which is approximately 0.0145 of body
mass (Myody) [85], ax foot @Nd &, oot are the accelerations at the foot’s
center of mass in the x and z-directions, W;o: is the weight of the foot.
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Figure 7 The average and the boundary of Ground reaction force (GRF) in x and z
axis
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The Rcm ankie 1S the lever arm distance between the ICRgnke and
Wioot, lankie 1S the moment of inertia around ICR e Of Which the radius of
gyration is approximately 0.690 of the foot length [85], and aankie IS the
angular acceleration of the ankle. All positions of the variables are shown
in Figure 6, where Fx knee and F knee are the knee reaction forces in the x
and z direction, respectively. Hence, the moment of the knee My Can be
calculated from Fx ante, Fz, ankie @nd Mankie Via equation:

Mknee =Vvleg (Rcm,knee) - Mankle'Fz, ankle (Rx, leg) - Fx, ankle (Rz, leg)+Iknee Oknee (9)

where W, is the weight of the lower leg which is approximately
0.0465 of body mass [85], Rem, knee 1S the level arm distance between the
instantaneous center of rotation of the knee ICRynee and Wieg, Ry 1eg, @nd
R;, ey are the lever arm distances between ICRynee and Fy, ankie and F, ankie,
respectively, lknee IS the moment of inertia around ICRyne Of Which the
radius of gyration is approximately 0.528 of the lower leg length [85],
and aunee IS the angular acceleration of the knee. The average reaction
force of the ankle, and moment around ankle and knee of all trials are
shown in table B.2.

1.2 _

08 L

Knee Moment per Body Mass (Nm/kg)

-04

| | 1 | | | 1 1 | |
0 10 20 30 40 50 60 70 80 0 100
Percent of Gait (%)

Figure 8 The average and the boundary of the knee moment per body mass from the
calculations.
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The knee moment per body mass (MPByne) during a gait cycle of
all trials can be determined from the knee moment (Mynee) and the body
mass (Mpody):

M
MPBjee=——=. (10)

The average and boundary values of knee moment per body mass
are presented in Figure 8, where positive values indicate knee extension
moment and negative values indicate knee flexion moment. Although the
results differ slightly from Winter's [57] previous study, the overall trends
of knee moments are similar. Differences in step lengths, foot shapes,
stride patterns, and other factors may account for the variations in the
results. Moreover, knee moment paths may differ even within the same
person across steps. Therefore, it is reasonable to observe variations in
knee moments among different individuals.
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Chapter 3: Simulation in MATLAB

A critical step in the development of a knee assistive device is the
validation and testing of the control system. To ensure the safety and
efficacy of the device, it is advisable to validate the control system
through simulation before deployment. In this regard, we present a
simulation study comprising three parts: 1) Machine Learning and
Acrtificial Stiffness Control Strategy (MLASCS), the control system
utilized for simulation, 2) Simulation and Validation, and 3) Results and
Discussions. The simulation results will provide insight into the
effectiveness of the control strategy and its ability to support high knee
moments during walking. The findings from this study will aid in the
development of a safe and efficient knee assistive device for those in
need.

Chapter 3.1: Machine Learning and Artificial Stiffness

Control Strategy (MLASCS)

The Machine Learning and Artificial Stiffness Control Strategy
(MLASCS) is proposed as a promising approach to control a knee
assistive device in a gait cycle. Unlike traditional methods that rely on a
wide range of information, only the knee angle and angular velocity (knee
omega) are required to determine the state of a gait cycle and the amount
of support moment provided by the device. To ensure the safety of the
wearer, the MLASCS control system should be combined with a
possibility checking function, which can increase the accuracy of state
prediction, and various stiffness functions that can enhance the suitability
of supporting moment. Additionally, the use of artificial stiffness with a
goal position can generate a moment of direct command. Artificial
stiffness is a function that can predict the amount of stiffness required to
support gait based on the knee angle and the state of gait.

Classification and Training for Machine Learning Model

In order to determine the appropriate knee moment support at any
position of a gait cycle, it is necessary to classify the walking stage,
which consists of two main phases: the stance phase and the swing phase.
However, a single knee angle can occur in both phases. Thus, it is
essential to develop a machine learning model that can accurately classify
the walking state and predict the phase to provide proper knee moment
support.
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Classification

It has been previously established that a single knee angle cannot
be used to determine the position of a gait cycle or the state of walking.
Therefore, knee omega is proposed as the second variable for classifying
the state. Figure 9 displays the post-processed knee angle and knee omega
data for all nine-trial data, and their relationship. However, it should be
noted that the inner and outer loop cannot be directly mapped to the
swing and stance phases. Thus, a new set of states should be defined to
allow for more precise control in this system.

Based on the observations from a gait cycle, a classification of four
states can be made by identifying the local minimum and maximum
points in a knee angle. These states are named as Initial Place, Final
Place, Initial Lift, and Final Lift states, with each state's position shown in
Figure 9. The mapping of these states to a gait cycle is illustrated in
Figure 10. The Initial Place state is marked by a fully extended knee
before the heel touches the ground (Omega is more than zero within the
inner loop). After the knee extends due to body weight while being
placed on the ground, the Final Place state starts (Omega is less than zero
within the inner loop). The Initial Lift state starts when the foot kicks the
ground and starts flexing within the stance phase (Omega is more than
zero). Finally, the Final Lift state occurs when the knee extends for a heel
strike in the next gait cycle (Omega is less than zero). By using these four
states, a machine learning model can be trained to classify the walking
stage and determine proper knee moment support at any position of a gait
cycle.

Based on the observation of the gait cycle, the knee angle in the
Initial and Final Place states does not exceed 25 degrees. In the Initial
Place state, the knee omega is positive while it is negative for the Final
Place state. For the Initial and Final Lift states, the knee omegas have the
same characteristics as the Initial and Final Place states, but the knee
angle can be up to 70 degrees based on the recorded data.
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Figure 9 The plot of the nine-trial recorded Knee Angle from post-processed
recorded data and Knee Omega from post-processed and calculated recorded data by
equation 2 which the plot can be separated into Initial Place, Final Place, Initial Lift,
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Figure 10 Knee angle and states of a gait cycle.
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Training

After defining the states of all training data, MATLAB version
R2022b (MathWorks, Natick, MA, USA) was used for data analysis. The
Statistics and Machine Learning Toolbox was used for classification. The
advantage of using a machine learning technique is its ability to classify
accurately even with a large amount of training data. It is important to
note that the model should be able to predict the state correctly for a
specific gait speed before testing with different gait speed training data.
This study focuses on a gait speed of approximately 1.5 m/s. The training
data was tested with several classifiers including decision trees (accuracy:
80.0%-92.5%), discriminant analysis (accuracy: 76.6%-77.1%), Naive
Bayes classifiers (accuracy: 77.6%-81.5%), support vector machines
(accuracy: 84.8%-93.7%), and nearest neighbor classifiers (accuracy:
78.8%-95.0%). The K-Nearest Neighbor (KNN) algorithm was found to
be the most accurate classifier with an accuracy of approximately 95.0%.
Table 1 shows the training settings for the KNN classifier.

Table 1 The settings for training the KNN machine learning model.

Setting Detalil
Preset Fine KNN
Number of Neighbors 3
Distance Metric Chebyshev
Distance Weight Equal
Standardize Data True

Improving

The Continuity of State Checking (CoSC) is a technique used to
improve the prediction accuracy of the machine learning model. It
confirms the correctness of the prediction by checking the last and current
predicted states. Since walking is a continuous loop posture, the CoSC
ensures that the predicted state always follows the loop of states in a gait
cycle.

By applying the CoSC to the machine learning model, the accuracy
has increased to 99.9%, as seen in the validation Confusion Matrix in
Figure 11. The number of the test data is 1260. One data was predicted as
the final place state instead of the initial place state, and one data was
predicted as the initial place state instead of the final lift state. However,
the accuracy of the model may decrease if it is used to predict data from



18

gait speeds other than 1.5 m/s, since the model was trained on data from
that specific gait speed.
One limitation of the machine learning model is its processing time. The

fastest prediction speed is around 168 observations per second, and this
speed may vary depending on the computer and its processor.

Final_Lift

Final Place

True Class

Initial_Lift

Initial_Place

Final_Lift Final_Place Initial_Lift Initial_Place
Predicted Class

Figure 11 The Validation Confusion Matrix of the machine learning model by testing
from 1,260 test data. One data was predicted as the final place state instead of the
initial place state, and one data was predicted as the initial place state instead of the

final lift state.
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Artificial Stiffness Control

An artificial stiffness control mechanism represents a promising
approach to support knee moments during the gait cycle. This approach
was inspired by the observation of a torsion spring's ability to generate a
return moment when it moves from rest. By commanding a controllable
actuator with the desired position, the artificial rest position, and the
proportional gain, it can emulate a torsion spring with the desired
stiffness. In comparison to the direct torque applied method, this
technique may be more user-friendly, as the supporting moment acts like
an elastic spring. As the actuator approaches the desired position, the
generated moment should decrease and eventually come to a stop upon
reaching the desired position.

Instantaneous Artificial Stiffness (IAS)

The estimation of instantaneous artificial stiffness (IAS) involves
determining a constant angle deflection value that is added to the knee
angle, and using this value along with the knee moment (Myne) tO
calculate the 1AS. A low deflection angle value results in a higher IAS,
while a high deflection angle value results in a lower IAS. This
relationship can be seen in the equation used to calculate knee moment.

Mknee = IAS x (deflection angle), (11)

Therefore, in this study, a deflection angle of 10 degrees was
chosen since the instantaneous artificial stiffness was not too high, and it
provided sufficient deflection for actuator operation. To estimate the
instantaneous artificial stiffness per body mass (IASPB), the MPBynee Was
utilized instead of the Mynee, as Shown in Equation 12, where 'i' represents
the knee angle in degrees:

PBknee(i)

IASPB (i)=M n (12)
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Artificial Stiffness Control Equations

In order to make the estimation of instantaneous artificial stiffness
per body mass (IASPB) applicable to different individuals with varying
gait cycles, equations were derived to estimate the IASPB throughout a
gait cycle. The average knee moment per body mass (AMPBynee) Was
obtained by averaging all MPByqee values and was used to derive IASPB
equations for each state using the polyfit function in MATLAB.
Equations 13-16 show the |ASPB|p, |ASPBFP, |ASPB||_, and IASPBg.
functions, which represent the IASPB in the Initial Place, Final Place,
Initial Lift, and Final Lift state, respectively, where "a" is the knee angle.
The plots of the IASPB path on the knee angle in all trials and the
estimated values from the equations in each state are presented in Figure
12. The equations of IASPB in the initial and final place, and final lift can
be mapped into the second-degree polynomial equations, but the initial
place required the fifth-degree equation due to the complexity of the plot.
The positive values indicate the extension direction, while the negative
values indicate the flexion direction.
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The proposed system integrates Artificial Stiffness Control with
machine learning, as illustrated in Figure 13. The machine learning model
utilizes the current knee angle (0) and angular velocity (o) measured by
the encoder to predict the current state of the gait cycle. Based on the
predicted state and 0, the current IASPB is calculated. Multiplying the
IASPB by the body mass results in an Instantaneous Artificial Stiffness
(IAS) value. To generate the supporting moment for the knee, the
actuator requires both the IAS and the desired position (Ogesirea), Which is
set to be 10 degrees away from 0. Finally, the IAS and Ogesireq are utilized
to command the actuator.

IASPBip (a) = 0.0073a2+ 0.0391a + 0.0179 (13)
IASPBrs (a) = 0.0023a%+ 0.0237a + 0.0303 (14)

IASPB, (a) = -0.002a° + 0.0057a* + 0.0067a%- 0.026a% + 0.0019a + 0.0279 (15)

IASPBFL (a) = - 0.0028a%2 + 0.0111a - 0.003 (16)
Actuator&Encoder
0 Machine | Mapping
Learning | tothe
w Model state "| IASPB
Odesired IASPB
—

Figure 13 The concept of Artificial Stiffness Control combined with machine
learning.
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Chapter 3.2: Simulation and Validation

This section describes the simulation method used to validate the
MLASCS concept and compare the walking efficiency over a gait cycle,
with modifications based on [31]. The simulation utilized the average
knee angle and knee omega data from all nine-trial recordings for testing.
The supporting moment, generated by the actuator to assist walking, was
estimated using the instantaneous artificial stiffness (IAS) equations. The
simulation followed the same path as shown in Figure 13, where the
sample knee angle and omega predicted the gait state using the machine
learning model. The predicted state and knee angle were then used to
calculate the IASPB using equations 13-16. The IASPB was multiplied
by the sample mass to predict the amount of supporting moment, which
was then multiplied by the angle deflection to calculate the supporting
moment. The validation was performed by comparing the effort required
over a gait cycle with and without the supporting moment.

Supporting Moment Simulation

The simulation settings were done to have the test as close to the
real system. The knee angle (6) and the knee omega (®) of the sample
were imported one set at a time. Then, this set was used to predict the
state and determine the IAS and 0O4.eq- The IAS from the IASPB
equations can be either positive or negative, but stiffness in negative has
no meaning. In the case that the IAS is negative, it will be change to
positive, and the 0,...q Will be negative instead. The IAS, 0, and 04.gireq
can be used to estimate the supporting moment (M;) with an adjustable
percentage of support (n), between 0-1, by the following equation:
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Figure 14 Plots of the average and boundary of knee moment (Mknee) and remaining
knee moment (M), the moment that is still required for walking after being supported
by the device when the percentage of support (n) is 0.7.

Ms = n|IAS| (9 3 edesired)' (17)

and Ms was used to calculate the remaining knee moment (M,), the
moment that is still required for walking after being supported by the
device, via the equation:

Mr = Mknee - Ms. (18)

After simulating multiple sets of gait data, it was discovered that
the generated supporting moment (M;) was often higher than the required
moment, which indicated over-assistance. To address this issue, the
percentage of support was optimized to prevent such moments in all trial
data. The percentage of support (n) was found to be less than 70% or 0.7.
Subsequently, all Myne values were compared to their average and
boundary when n was set to 0.7. This comparison is illustrated in Figure
14,

100
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Effort over a gait cycle

To validate and compare the MLASCS concept, an effort analysis
over a gait cycle was conducted using the methodology presented by
Chaichaowarat et al [31]. The effort over a gait cycle was divided into
two components, the Extension Effort (EE) and Flexion Effort (FE),
which were obtained by integrating the Extension Moment (EM) and
Flexion Moment (FM) over a Percent of Gait (PoG) using Equations 19-
20. The Total Effort (TE) was then calculated by summing the EE and FE
using equation 21. This approach was used to quantify the difference in
effort between the sample path and the resulting path obtained with
assistance from the device. The efforts for each trial were calculated from
the measured knee moment, while the remaining efforts were determined
from the moments with assistance from the device. The resulting effort
profiles are shown in Figure 15.

1

EE= J EM dPoG (19)
0
1

FE= f FM dPoG (20)
0

TE = EE + FE (21)
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Figure 15 Comparison of the effort over a gait cycle from recording walking data
and remaining effort over a gait cycle in each trial. Note that the numbers shown at
the top of the bars are the total effort of each bar.
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Chapter 3.3: Results and Discussion

Knee assistive devices rely on knee angle and knee moment data to
ensure safe and effective device control. To optimize device control
during walking gait, additional information regarding the gait phase is
required, as varying levels of support are needed during different phases.
To address this need, the Machine Learning and Artificial Stiffness
Control Strategy (MLASCS) has been developed to classify the four
phases of gait: initial place, final place, initial lift, and final lift. This
classification is then used in conjunction with knee angle data to estimate
the appropriate level of support required via the instantaneous artificial
stiffness per body mass (IASPB) equations discussed in the previous
section.

The IASPB equations, which calculate the instantaneous artificial
stiffness per body mass, were divided into four functions: IASPBp,
IASPBep, IASPB, and IASPBE, each corresponding to the Initial Place,
Final Place, Initial Lift, and Final Lift state, respectively. To ensure that
the supporting moment generated does not exceed or fall short of the
required knee moment for walking, each IASPB function was calculated
using the average knee moment per body mass (AMPBnee). A percentage
of support (n) was introduced to adjust the supporting moment, with the
optimal value of n being 0.7 to prevent over-assisting moments.

In the simulation section, the MLASCS was tested using both the
recorded trial data and average data to validate the efficiency of the
strategy. The effort over a gait cycle was used as a metric to compare the
results obtained with and without assistance. The results indicate that the
machine learning model's prediction accuracy is high, and the 1ASPB
equations can provide the necessary stiffness to support the knee in each
position, which is generally slightly lower than the required amount for
walking. The total effort of the recorded data was normalized to 100% for
easy comparison with the total effort after support was provided in each
trial, as presented in Table 2.
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The analysis of the total effort of the remaining after supporting in
each trial demonstrated that the MLASCS was effective in assisting knee
moments during walking. The percentage of remaining effort was found
to be dependent on the percentage of support (n) selected for the
individual user. If n is set too high, the supporting moment will exceed
the required moment, resulting in a larger effort than necessary. On the
other hand, if n is set too low, the effort will be close to the required
effort, indicating insufficient support. Table 2 reveals that the extension
effort was significantly reduced by the strategy in comparison to flexion
effort. However, in some trials, the flexion effort was reduced by less
than 10% or even increased, which could potentially cause harm to the
user. Therefore, the selection of n should be personalized based on the
user's needs. It is important to note that if n is set too small, the
supporting moment will be minimal, and if n is set too high, the
supporting moment will exceed the required moment, both of which may
cause problems.

After thorough testing and validation, the MLASCS appears to be a
promising strategy for knee-assistive devices. The technique has
demonstrated its ability to accurately predict the amount of supporting
moments required based on recorded gait data. Additionally, the
MLASCS has a high processing speed of approximately 165 observers/s,
allowing it to estimate the amount of supporting moment for a single gait
cycle in around 1.1 seconds while walking at a speed of 1.5 m/s. The
results indicate that the walking effort can be significantly reduced to
63.4% when the percentage of support (n) is set at 0.7. These findings
suggest that the MLASCS has the potential to improve the efficiency and
safety of knee-assistive devices, although further research is needed to
investigate its effectiveness across different users and conditions.
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Chapter 4: Knee Device Prototype

This chapter presents a discussion on the conceptual design of a
knee device, including joint alignment, human attachment, and the
controlling system. The knee device should be able to support while
walking and freely move in the walking angle range. The device should
be designed for easy wear and remove, with a user-friendly human
attachment mechanism that includes a mechanical emergency stop. The
device joint should be aligned to the knee joint. The strength of the device
must be validated to assess the possibility of breakage. The controlling
system may have a safety function that can impower the system in case of
emergency. To validate muscle activity, electromyography (EMG)
sensors were utilized to test muscle activity levels when wearing the
device, wearing without support, and not wearing the device.

Chapter 4.1: Device Design

The device can be divided into three main sections: leg attaching
section, body device section, and joint section. The attachment parts were
constructed using flexible materials to accommodate various leg shapes
of the users. In order to ensure user safety, the device structure was
designed to be durable and equipped with mechanical safety measures in
case of actuator or coding failure. The joint design presented in this study
utilized a single revolute joint due to the limited knee flexion required for
walking. It should be noted that the device was designed to provide
support for the right leg specifically.

Leg attachment section

The design process for the device began with the attachment parts,
which are positioned at four locations on the human leg - two on the
upper leg and two on the lower leg. The attaching position requires
flexible material for fitting the leg shape, and it should be tightened with
the leg for preventing relative movement between the leg and the device.
To optimize the extension moment required for walking, the attachment
parts were primarily aligned posteriorly, as indicated by the design shown
in Figure 16. The attachment parts consisted of three components, as
depicted in the figure. The first component, called the fitting, was
attached to the human leg and secured in place with a strap. This
component was fabricated using TPU filament and 3D printing
technology, allowing it to partially flex to fit the wearer's leg shape. The
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second component, the fitting connector, was locked into the fitting with
a transition fit and connected to the core of the device. This component
required a hard and inflexible material and was therefore fabricated using
PLA filament and 3D printing technology.

Although the fitting and fitting connector were connected with a
transition fit, a fitting knot was still necessary to prevent movement in the
assembly direction. This component, called the fitting knot, was used to
obstruct any unwanted movement.

Fitting Connector

Fitting

Fitting Knot

(a) (b)

Figure 16 The component (a), and the assembled model of the attachment part (b).
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Body device section

The body sections of the device serve as the frame components that
connect all other sections together, similar to the chassis of a car. These
parts consist of the top connector and the bottom connector for the upper
and lower sections, respectively. Given their importance in supporting
knee moment, these parts must be highly durable and not fragile, and
were therefore constructed using PLA filament and 3D printing
technology. As shown in Figure 17, the top and bottom connectors were
attached to the fitting connector part using bolts and nuts. Once the fitting
connector and the top/bottom connectors were securely connected, the
fitting knot was used to lock all movement in place with a mechanical
lock.

Attachment Part

Bottom Connector,

Attachment Part

(@) (b)

Figure 17 The body and attachment section of upper part (a) and lower part (b).
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Joint section

The joint component of the device was divided into two parts: the
top motor connector and the bottom motor connector, as illustrated in
Figure 18. The joint was designed as a single revolute joint that allows for
free rotation during walking. However, to prevent harm in the event of
actuator malfunction, it was deemed necessary to include a mechanical
stop. The emergency stop mechanism was incorporated to halt device
movement when the angle of the device is less than zero degrees.

Mechanical emergency stop

Bottom motor connector

Figure 18 The joint part
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The assembled device consists of an upper part and a lower part,
each of which is composed of two attachment parts, a top/bottom
connector, and a top/bottom motor connector, as shown in Figure 19.
Figure 20 shows the built device when it is worn by the user.

Top Connector
—

Top motor connector

/

Attachment Part

O\

\ Bottom motor connector

S

Bottom Connector

Figure 19 The assembled device.

(a) (b)
Figure 20 A sample wearing the built device and walk at the heel strike state (a), and
the toe off state (b).
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Chapter 4.2: Device strength

Because all sections were built by a 3D printing technology,
strength validation is required. As the quality of printing may vary
depending on the 3D printer, it is essential to conduct a study on the
device's durability. Therefore, the device was separated into upper and
lower parts for the durability study. While the infill density and pattern
can be set during the building process, they do not necessarily guarantee
the printing quality. Additionally, 3D CAD programs may have limited
capabilities in analyzing 3D printed materials. For this study, the device
was assumed to be built with 100% infill and analyzed only for safety
factors. Table 2 shows the material properties of the PLA and TPU used
in the study. Each part was loaded with 40 Nm, which is the maximum
average knee moment during a gait cycle from previous calculation, at the
position connecting to the motor. The attachment components were fixed,
and bolts and nuts were added to connect all components, as shown in
Figure 21. The results showed that the safety factor of both the upper and
lower parts exceeded 15, indicating that the device is not likely to break
during operation due to the input moment.

Table 3 Material properties of PLA and TPU

Mechanical Properties
Young’s modulus 2.7 GPa
Poisson’s ratio 0.33
Shear modulus 1.5 GPa
PLA Density 1.240 g/cm?®
Strength
Yield strength 55 MPa
Tensile strength 45 MPa
Mechanical Properties
Young’s modulus 0.8 GPa
Poisson’s ratio 0.45
Shear modulus 1.5 GPa
TPU Density 1.120 g/cm®
Strength
Yield strength 30 MPa
Tensile strength 45 MPa
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Connected all componcents

via bolts and nuts
Applied 40 Nm moment

Fixed the human attachment parts

Applied 40 Nm moment

Figure 21 Load and constrain setting for durability test of the upper part (Left) and
lower part (Right).
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Chapter 4.3: Controlling System

The control system was divided into two main parts, namely the
actuator and the control parts. The actuator part describes the motor
utilized in the system, while the control part discusses the design of the
control system used to command the actuator input, utilizing output
feedback data from the actuator.

Actuator

The device utilized an actuator that was replicated from an MIT
mini-cheetah servo motor (GIM8008 series), which can be directed to
execute various commands such as position, velocity, torque, joint
stiffness, and joint damping coefficient. The communication interface
adopted by the device is the CAN-BUS communication protocol. The
motor specification is shown in Appendix C. The motor is capable of
generating a maximum moment of approximately 15 Nm. Although the
highest recorded average knee moment during gait is 40 Nm, the device
was designed to provide partial support to the knee moment due to safety
concerns. Hence, the maximum moment of the motor which is around
40% of the maximum knee moment meets this requirement.

Control

In the MATLAB simulation section, a control concept was
developed and verified. However, to implement this concept in real
systems, further steps are necessary. While the k-nearest neighbor (KNN)
model, classified by the Statistics and Machine Learning Toolbox in
MATLAB version R2022b (MathWorks, Natick, MA, USA), was used in
the simulation, the performance revealed that leading to system delays
and latency, only 3-4 predictions possible in a single gait cycle which
means the method is not fast enough to support gait. Additionally,
discrepancies were observed between the knee angles and angular
velocity feedback from the actuator and the data recorded by the motion
capture system. For example, the maximum knee angle in the initial place
Is around 20 degrees, but 25 degrees when reading feedback from the
motor. To address this, knee angles and angular velocities were re-
recorded, and a new state classifier model was constructed. Finally, the
accuracy of the new state classifier model needs to be verified before
deployment.
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Re-recording knee angle and angular velocity

The knee angle and omega data were recorded to observe the
behavior of the motor in a gait cycle. A sample walked with the device at
1.5 m/s, matching the motion capture camera’s speed. The recorded data
Is shown in Figure 22.

The knee omega in the initial place state is often observed within
the range of 0 to around 150 deg/s while some data exceed 150 deg/s, but
less than 250 deg/s. In the final place state, the observed knee omega
range is smaller than the initial place state within -100 to O deg/s.

The knee angle range in the initial and final lift state is between 0
to 70 degrees, while the plot of the knee angle to the knee omega can be
observed as a right-beveled circle. The maximum knee omega in the
initial lift state is around 450 deg/s, and the minimum knee omega in the
final lift state is around -400 deg/s.
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Figure 22 The recorded knee angle and knee omega in the initial and final place
state (a), and initial and final lift state (b).
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State Classifier

The k-nearest neighbor (kNN) model was replaced with a faster if-
else concept as it was found to be more efficient during MATLAB
experiments. The state classifier was implemented using multiple if-else
functions to predict the current state using the current knee angle and
omega along with the latest predicted state. The predicted state and the
current knee angle were then used to determine the appropriate stiffness
for supporting the knee moment during walking, following the same
equations as used in the simulation. To prevent hazardous moments for
the wearer, the state classifier for controlling the device was designed to
prevent movement if the feedback angle exceeded 70 degrees, the
maximum observed knee angle from the Re-recording knee angle and
angular velocity section.

The system's decision-making process involves checking the
current knee angle (0) at the beginning to determine the predicted state.
At first, the starting state is the final lift state. Then, the state will operate
with the following conditions. If 0 is greater than 70 degrees, the
predicted state is the same as the last predicted state. However, if 0 is less
than or equal to 70 degrees, the system checks if 0 is greater than 25
degrees. If 0 is greater than 25 degrees and the current knee omega (o) is
positive, then the initial lift state is predicted. On the other hand, if o is
negative, the predicted state is the final lift state.

If the knee angle 6 is less than or equal to 25 degrees, the system
follows a decision-making process in the order shown below, skipping
the remaining steps if the state is already predicted. First, if the last
predicted state is the final lift state and o is greater than zero, the
predicted state is the initial place state. However, if o is less than zero,
the predicted state remains the final lift state. Next, if the last predicted
state is the initial place state and o is greater than zero, the predicted state
remains the initial place state. If o is less than zero, the predicted state is
the final place state. Lastly, if o is greater than zero, the predicted state 1s
the initial lift state, otherwise, the predicted state is the final place state.

The methods above are the if-else set that is used in the controlling
system. Besides, Figure 23 summarizes the system as a state flow for easy
understanding.
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Validation of the state classifier

The state classifier created in Figure 23 needed to be validated
before being used for real-time classification to support knee moments
during walking. Validation was performed using the re-recorded data
from the knee device passing through the state classifier to compare the
correctness of the predicted state. The results showed that the accuracy of
the classifier was around 98.6%, with the confusion chart displayed in
Figure 24.

The validation of the state classifier was conducted using 2,974 data sets.
The accuracy rate for the final place state was found to be 100%.
However, in the final lift state, out of 955 data sets, only 935 were
accurately predicted. It was also observed that in the initial lift state, out
of 1,024 sets, only 4 were inaccurately predicted, and in the final place
state, out of 592 sets, 18 were wrongly predicted.

Final Lift 20

Final Place 403
o
u
=

Initial Lifi 4
Initial Place 18 574
Final Lift Final Place Initial Lift Initial Place
Predicted Class

Figure 24 The confusion chart of the state classifier
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Chapter 4.4: Performance evaluation of a knee device

To evaluate the performance of the control system and knee device,
the real device needed to be validated when applying different percent of
support. For this purpose, the electromyography (EMG) sensors were
attached to the wearer's leg at the Rectus Femoris, Biceps Femoris, and
Lateral Gastrocnemius muscle, as illustrated in Figure 25.

The experiment was designed to record in various conditions as
walking without the device, walking with 0% assistance from the device,
two trials of 10%, 20%, and 30% assistance from the device, and the
maximal voluntary contraction (MVC) of each muscle for verifying the
amount of the EMG signal when enforcing maximize exertion. The
sample is a Thai male, 171 cm in height and 59.0 kg in weight, walking at
a speed of 1.5 m/s. The maximum level of assistance in the experiment
was 30% due to the limitation of the motor and safety. The EMG sensor
used in the experiment is the COMETA wave plus wireless EMG system
with mini wave waterproof unit with a sampling frequency 0f 2000Hz.

The muscle's maximum voluntary contraction (MVC) data was
recorded, filtered using the banpass function in MATLAB to limit the raw
data within the recommended frequency range of 10-1000 Hz [85], and
sampled for 3 seconds. The plot of the MVC data can be seen in Figure
26.

e

Biceps Femoris

Rectus Femoris

o

Lateral Gastrocnemius

———————
——eial.

Figure 25 The positions where the EMG sensors were attached.
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MVC: Rectus Femoris
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Figure 26 Plot of the maximal voluntary contraction (MVC) data of Rectus Femoris,
Biceps Femoris, and Lateral Gastrocnemius muscle from the EMG sensors

The results of the EMG recordings from the experiments were
processed by filtering within the frequency range of 10-1000 Hz and
smoothing using the moving mean sample points, taking the absolute
value, and sampling for 10 seconds. The plots of all the EMG walking
data can be seen in Figure 27. The duration in each gait cycle is
sometimes not the same, but as observed, it is around 1.1 seconds, which
can be seen in each subfigure. For mapping to a gait cycle, the biceps
femoris muscle shows a short period of activation right before the heel
strike and once again during heel-off. Likewise, the lateral gastrocnemius
muscle demonstrates a brief period of low-amplitude muscle activity
immediately after the heel strike, followed by increased EMG activity
towards the end of the stance phase [85].
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The amplitude of all three muscles during the walk with 0% assist
condition tends to be higher than the normal walk, as observed in figure
27(a) and (b). This is because the device has weight and sometimes
moves relatively to the leg due to deformable muscle at the attachment
parts. The weight and friction of the device cause load to the muscle, and
the muscle power is enlarged for walking with these burdens.

In the case of the walk with 10% assist condition, the peak
amplitude of the rectus femoris is quite similar in both trials. However,
some differences can be observed between each trial at the biceps femoris
and lateral gastrocnemius. In trial 2, the peak amplitude tends to be lower
than in trial 1. Additionally, the amplitude of the base band at the biceps
femoris in trial 2 seems to be higher, while the amplitude of the base band
at the lateral gastrocnemius is quite similar in both trials.

For the walk with 20% assist condition, the peak amplitudes at the
lateral gastrocnemius in trial 2 are clearly observed to be higher than in
trial 1. The peak amplitude at the rectus femoris and biceps femoris in
trial 2 is also higher than in trial 1. However, the base shape is quite the
same at all three muscles.

Similarly, in the case of the walk with 30% assist condition, the
peak amplitudes at the lateral gastrocnemius in trial 2 are clearly
observed to be higher than in trial 1. The signal shape at the rectus
femoris and biceps femoris is quite similar, but some high peak
amplitudes can be observed in trial 2.

It should be noted that these observations provide a skim
description of the signal characteristics, and all the signals require
additional processing before comparison with each other. One effective
method for easy comparison is to use the root mean square (RMS)
equation for all signals and compare their performance using the RMS
value.
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Chapter 4.5: Performance Results and Discussion

The knee device prototype was validated using EMG sensors to
measure its performance. The MVC data of the participant's Rectus
Femoris, Biceps Femoris, and Lateral Gastrocnemius muscles were
recorded, and their root mean square (rms) values were 99.0, 136.8, and
158.4, respectively. Table 4 shows a comparison of the rms values in
different conditions. "Normal walking" is the rms value during walking
without wearing the device. "Power 0%" is the rms value when wearing
the device with 0% support. The rms values for 10%, 20%, and 30%
supported by the device are displayed as "Power 10%", "Power 20%",
and "Power 30%", respectively, and each condition was tested twice. All
data are also compared as a percentage of MVC as seen in “%MVC” row.

Table 4 Comparison of the rms in each condition

. . . Lateral
Rectu(sul\:/e)morls Blcepzlll:\(;;norls Gastrocnemius
(%)
MVC 99.0 136.8 158.4
%MVC 100% 100% 100%
Normal walking 44.3 30.0 53.1
%MVC 44.7% 21.9% 33.5%
Power 0% 53.5 36.1 62.8
%MVC 54.0% 26.4% 39.6%
Power 10%
Trial 1 57.1 40.0 72.4
Trial 2 50.0 43.0 58.4
Average 53.6 41.5 65.4
%MVC 54.1% 30.3% 41.3%
Power 20%
Trial 1 50.5 40.7 50.3
Trial 2 52.9 42.2 65.8
Average 51.7 414 58.0
%MVC 52.2% 30.3% 36.6%
Power 30%
Trial 1 57.9 42.3 66.6
Trial 2 60.7 45.4 73.5
Average 59.3 43.8 70.0
%MVC 59.9% 32.0% 44.2%
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The table indicates that the %MVC increases in all positions after
wearing the device due to its weight and friction between the wearer's leg
and the device. The %MVC of the Rectus Femoris is almost the same at
10% support, decreases at 20%, but increases at 30% support. The
%MVC of the Biceps Femoris is consistently higher than the Power 0%
condition, indicating no assistance from the device. The device assists the
Lateral Gastrocnemius muscle only at 20% support but assimilates at
10% and 30%. However, factors such as imperfect gait cycles,
communication delays, and misalignment may affect the device's
performance. Therefore, the wearer needs to get accustomed to the device
and understand its effects on supporting knee moments during walking.
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Chapter 5: Conclusions

The aim of this study was to develop a knee assistive device that
would provide support during walking. The device was constructed in
two parts: a control algorithm and a device prototype. The success of the
device was contingent upon an effective control system and a prototype
that would be comfortable for the user. Data on the position of the hip,
knee, ankle, finger, and ground reaction force (GRF) were collected from
three adult Thai participants with an average age of 23, a height of 171-
172 cm, and a weight of 51.9-61.8 kg, walking at a speed of 1.5 m/s. The
data were used to calculate ankle and knee angle, angular velocity, and
angular acceleration, which were then used to determine knee moment
required for walking.

The Machine Learning and Artificial Stiffness Control Strategy
(MLASCS) was used to command the proper amount of support moment
needed to assist with walking. The MLASCS comprised a trained
machine learning model and the instantaneous artificial stiffness per body
mass (IASPB) equations. The trained model classified the state of a gait
cycle by using knee angle and omega, with an accuracy of approximately
99.9%. The IASPB equations mapped the amount of stiffness required to
support the knee moment based on the knee angle and state. The user
could adjust the percentage of support (n) to select the amount of
assistance needed. Validation of the MLASCS with nine trial datasets
showed that it could reduce the total effort over a gait cycle by up to
63.4% when the n was 0.7 by simulation.

Using the MLASCS as a basis, a posterior-support device was
designed using 3D printing filament. The device was tested for durability
and was found to have a safety factor greater than 15 when applying 40
Nm, indicating that it would not break during operation. The control
system used an actuator that was replicated from an MIT mini-cheetah
servo motor, which could command position, velocity, torque, joint
stiffness, and joint damping coefficient, and provide feedback on current
position, velocity, and torque. While the MLASCS could predict up to
165 observers per second, the latency time increased significantly when
connecting the microcontroller to the device. As a result, the if-else
method was selected as the classifier instead of the MLASCS. The
walking data in knee angle and angular velocity had to be re-recorded to
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obtain the actual angle and velocity from the motor, which were required
to build a classifier. The state classifier was created using knee angle,
knee angular velocity, and the latest predicted state as inputs to classify
the state. The predicted state and knee angle were then used to determine
the amount of stiffness required to support the knee moment, as in the
simulation section.

The performance of the knee device was conducted using
electromyography (EMG) sensors attached to the Rectus Femoris, Biceps
Femoris, and Lateral Gastrocnemius muscles. The test was conducted
under various conditions, including the maximal voluntary contraction
(MVC) of each muscle, normal walking without the device, walking with
0% assistance from the device, and two trials of 10%, 20%, and 30%
assistance from the device. The root mean square (rms) results showed
that the data when the device assisted the knee moment was mixed
between increased and decreased muscle activity, indicating that the
device was sometimes helpful and sometimes not helpful. This may be
due to an imperfect gait cycle, motor command delays, and misalignment
of the device. Further data collection and validation with more samples,
including an increasing amount of support, are necessary to verify the
usefulness of the device.



Appendix A: Plot of CG velocity
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Appendix B: Data used for calculation.
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Figure B.1 Position of Marker

*The data shown in all tables start from Heel Strike position.
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Appendix C: Motor Specification of GIM8008

Table C.1: Specification of MIT mini cheetah servo motor

Power Supply Voltage 24 VDC £10%
Current 7A

Weight 600 g

Gear Rate 6:1
Maximum Torque 15 Nm

Output Maximum Speed 2000 RPM
Maximum Power 200 W

Cooling Mode Natural Cooling

Protection Locked-rotor warning

Communication Interface

Smart CAN (CAN protocol, Rate 1M Hz)

Ambient Temperature

0-40°C
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