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SIRAPAVEE GANYAPORNGUL: AUTOMATIC AIRCRAFT SHADOW
REMOVAL FROM REMOTE SENSING IMAGES USING MASK-

SHADOWGAN. ADVISOR: ASSOC. PROF. NAGUL COOHAROJANANONE,
Ph.D. 46 pp.

The topic of the project is Automatic Aircraft Shadow Removal from Remote
Sensing Images using Mask-ShadowGAN. The objective of this research is to introduce
a new method to remove the shadow in airplane images. We use remote sensing images
in this work. The new procedure learns to remove the shadow automatically by using
shadow and shadow-free images. Unlike other algorithms, Mask-ShadowGAN requires
no identical training image set. This aspect eases the data collection process for the user.
The framework develops in a Python environment using PyTorch. We can see that the
generated shadow-free images have shadows thinned or faded out, but the airplane
shape is still intact. We then evaluate the results using Root-Mean-Square-Error with
generated shadow-free images and Jaccard Index with their binary images. The binary
images are obtained through a custom image processing technique. Our score is 0.7799,
while the Modified DSS, which is traditional CNN with post-processing and L[.2-
Normalization, the score is 0.7775, which the Mask-ShadowGAN performs better than
the Modified DSS.
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CHAPTER1
INTRODUCTION

1.1 Background and Rationale

Image classification models might poorly perform when working with objects
that have the shadow since it can make their shape different from it should be. Removing
the shadow without disturbing other detail on it can ease the image classification model
in many ways. For instance, shadow-free images can help the model correctly classified,
while all preserved detail can be used later to identify the object model or type. Also,
we can use it to train the machine learning model if you have only shadow images but
intend to use shadow-free images.

There are some proposed methods for shadow detection and removal. For
instance, A. Gatter [1] proposed an algorithm to identify a self-cast shadow of aircraft
while in airborne, which can be removed later by other procedures. Rahman et al. [2]
proposed a method to detect and remove shadows in each orthophoto component of
UAV-based orthomosaics. Then use the feature-matching technic with help from a
commercial software package to create the final orthomosaic.

In the aircraft images, the aircraft from remote sensing images consist of issues
for making classification correctly, such as background complexity, blurring, light
scattering, shadows on the body, or chromatic distortion. As we mentioned above, these
problems can cause the classification model to defectively classify the aircraft. Aircraft
shape might look unusual if the background is too complicated due to many other
objects such as stair trucks. In this work, we mainly focus on the shadow because the
shadow can make the aircraft’s shape being torn apart. The challenging issue is how can
we remove object shadow without losing the shape of the aircraft. Wei et al. [3]
proposed shadow detection and removal as part of image preprocessing by scanning an
original aircraft image to create a binary shadow mask. The mask will use to indicate a
shadow pixel location, which applies in the removal process. In the present day,
Machine Learning techniques can do many things better and faster than any others.
Many researchers use Machine Learning to remove object shadow. For instance,

Meeboonmak [4] employed Deeply Supervised Salient Object Detection with Short
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Connections (DSS) proposed by Hou et al. [5] and doing some post-processing to
remove shadows from the aircraft while still maintain aircraft shape integrity.

Generative Adversarial Network (GAN) is a popular method to generate a new
image based on its individual properties, which involved shadow removal on the image.
Many researchers proposed the shadow removal method by using GAN. For example,
Wang et al. [6] implemented Stacked Conditional Generative Adversarial Network (ST-
CGAN) to detect the shadow and then remove it. Zhang et al. [7] used GAN to inspect
residual and illumination of the image to remove the shadow.

Hu et al. [8] proposed a new way to remove the shadow by learning from
unpaired shadow and shadow-free data called Mask-ShadowGAN. This model learned
to create shadow masks from real shadow and generated shadow-free images to use as
guidance for shadow generation, which used to improve shadow-free generator to
produce precise shadow-free images.

To that aim, we adopt the Mask-ShadowGAN to our aircraft images dataset.
Then we use generated shadow-free aircraft images to find aircraft shape in a binary
manner to compare with the ground truth shape to see if a generated shadow-free image
still preserves intact aircraft shape. There are three reasons why we use this model. First,
it uses unpaired images, which suitable for data gathered from Google Earth. Second,
the model does not require the same amount of data between shadow and shadow-free
images, which is good because shadow-free images are hard to find. Finally, there is no

application of this model for aircraft images yet.

1.2 Objectives
To apply Mask-ShadowGAN to our remote sensing airplane image dataset,
which contains both shadow and shadow-free images to inspect if its capability of

aircraft shadow removal.

1.3 Scope
e An image dataset contains only an aircraft from remote sensing images from
Google Earth, which will resize to 400 by 400 pixels.
e Aircraft shadows range from a little to long shade, which is an effect from Sun

at different times.



e There is a limitation, which is ground truth images are hard to obtain. Hence, we

use photoshop to edit shadow images to remove the shadow manually, which

makes them the ground truth images.

1.4 Project Activities

Studying all aspect of related research paper

Collect images from Google Earth to create the dataset
Implementing and debugging the system

Training and Testing

A o e

Summary and making the project report

Table 1.4.1 Project Activities

2020 2021
Project Activities

Sept. | Oct. | Nov. | Dec. | Jan. | Feb.

Mar.

1. Studying all aspect of related
research paper

2. Collect images from Google
Earth to create the dataset

3. Implementing and debugging the

system

4. Training and Testing

5. Summary and making the

project report

1.5 Benefits
The benefits for student
1. To develop deep learning skills
2. To learn more deep learning framework
3. To gain the data preparation skill
4. To develop thinking and analyzing skill
The benefits for users

1. To ease their classification model
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2. To generate more artificial data for them to feed into the training process
For research purpose
1. This new technique can be improved to produce more realistic images

for the images contain the object and its shadow within.

1.6 Report Outlines

In chapter 2, we will discuss research papers that are involved in the shadow
removal task and this work.

In chapter 3, the detailed methods for removing the shadow are reviewed, along
with the code explanation.

In chapter 4, we will examine the dataset and preprocessing technique. After
that, the result evaluation will be discussed, as well as the comparison between models.

In chapter 5, there is a conclusion for what we have done in this work. We will
consider what the framework did for the good and drawback. Afterward, we will discuss

issues we faced and the solutions we used, as well as improvements.



CHAPTERII
LITERATURE REVIEW

The research papers that are involved in shadow removal and this work will be

reviewed in this chapter.

2.1 Deeply Supervised Salient Object Detection with Short Connections

Hou et al. [5] proposed a new framework for salient object detection, which
produces the series of short connections for side output from deeper to shallower under
the Holistically-nested edge detector (HED) network proposed by Xie et al. [9]. Deeper
side output has high-level features, which contain more detail out of low-level features.
Shallower has low-level features, which can locate the real salient area. A better
saliency map can be achieved by combine these two side outputs.

DSS architecture consisted of a base convolution, side-output, short connection,
and fusion layer. The base convolution layer depends on VGG16 proposed by Simonyan
et al. [10]. To extract the saliency maps, they add the side-output layers after the last
convolutional layer of each stage (convl 2, conv2 2, conv3 3, conv4 3, and conv5 3)
and the final max-pooling layer (pool5) from VGG16. After that, they use the short
connection to combine deeper side output with shallower side output. Lastly, the DSS
model then optimized by applying fusion loss, which combined from cross-entropy

function in each side output.

2.2 Aircraft Segmentation from Remote Sensing Images using Modified

Deeply Supervised Salient Object Detection with Short Connection
Meeboonmak [4] adapted DSS to the aircraft dataset by adding the L2-
Normalization layer between the connection of convl 1 from VGG16 and the
shallowest side-output layer, which reduces noise in the background and produces more
salient results. Subsequently, post-process then used after obtaining the result from DSS
by using Bitwise AND operation between side outputs 5 and 6. Then create the binary

mask by thresholding. Next, make the object within the binary mask lager by using the
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Dilation procedure. Finally, the fused saliency map then combined with the dilated

mask.

2.3 Mask-ShadowGAN: Learning to Remove Shadows from Unpaired
Data

Mask-ShadowGAN [8] consisted of two parts: the first part is to learn from real
shadow images to produce shadow masks, which used as a guide for shadow generation.
The second part is to learn from shadow-free images, which use a random shadow mask
to generate shadow on shadow-free images to help training shadow-free generator.

Mask-ShadowGAN has adopted network architecture from Johnson et al. [11]
as its generator network, which contains three convolution procedures, nine residual
blocks with the stride-two convolutions, and two deconvolutions. Each convolution and
deconvolution procedures followed by instance normalization. Then used PatchGAN,
which proposed by Isola et al. [12] as the discriminator. There are two sets of each

generator and discriminator.

shadow cycle-consistency loss shadow-free cycle-consistency loss
n . ﬂ —& . ‘ l ‘
s guide
input shadow
identity loss
Is &
shadow-free
ndentnty loss
m”’ .’"
Gs
guide shadow free Sh@dOW
M, adversarial loss adversarial loss input | f

(a) Learning from shadow images (b) Learning from shadow-free images

Figure 2.3.1 Mask-ShadowGAN architecture



CHAPTER III
METHODOLOGY

The detailed procedures and the code of this framework for learning and

removing shadow are discussed in this chapter.

3.1 Learning to Remove Shadow from Unpaired Data

As we mentioned above, Mask-ShadowGAN uses two sets of each generator
and discriminator and contains two parts of the operation. There are three losses in each
part: cycle-consistency loss (blue), identity loss (green), and adversarial loss (pink). G
and Gy are generators that create shadow and shadow-free images. Whereas Dg and Dy
denote discriminators, which distinguish generated shadow or shadow-free images to

be real or not. I and I denote the actual shadow and shadow-free images. I, and It are
the generated shadow imags, 1} and f} denote the generated shadow-free images, and

M,,, M; and M, denote the shadow masks as shown in Figure 3.1.1.

shadow cycle-consistency loss ‘ shadow-free cycle-consistency loss

|
G, —> X G,
if

!np“t : |
guide I | . .

= I!

shadow
identity loss

. M ,
[ P > |
G‘ b X [l)t II. - \
guide 2 B shadow-free shadow I i
I If

M adversanal loss adversarial loss

shadow-free
identity loss

(a) ®)
Figure 3.1.1 Mask-ShadowGAN for aircraft shadow removal architecture:
(a) Learning from actual shadow images and
(b) Learning from actual shadow-free images.

First, learning from real shadow images by using a shadow-free generator to

generate a shadow-free image. Then use a shadow-free discriminator to examine that



newly generated image is real shadow-free or not. Next, use the adversarial loss to
optimize the generator and the discriminator. After that, Hu er al. use a shadow
generator to convert the generated shadow-free image back to its original and expect to
be the same. To do that, they calculate the difference between the generated shadow-
free and actual shadow image and binarizing the result to create a mask, which uses as
guidance later to preserve the consistency between the generated shadow image, and
it’s original. They formulate shadow cycle consistency loss, which stimulates shadow
generated image to be the same as its original.

For the last process of the first part, they create an image with no new shadows
added by using an all-zero values mask with a real shadow image to be input for the
shadow generator. For this reason, they can regularize the generated image to be
identical to its original by using the shadow identity loss.

So they can expect that the shadow generated image will have no new shadow
added and conserving color composition.

Second, learning from actual shadow-free images to remove shadows by using
a shadow generator to create a shadow image with guidance from the randomly selected
previously produced mask. They generate many shadow image by using a different
mask to generalize the deep model. Those images later are distinguished by the
discriminator, whether it is a real shadow image or not. Then optimize the generator and
the discriminator using an adversarial loss.

After that, they take a shadow-free generator to use a shadow generated image
to create a shadow-free image. Then optimize the network by using shadow-free cycle
consistency loss.

For the last process of this part, they put the actual shadow-free image as input
into a shadow-free generator to generate another shadow-free image and later encourage
the input to be as identical as an output image. To that aim, an identity loss will be used
as a constraint so that the shadow-free generator will learn to remove shadows without
disturbing the region that is not the shadow.

For the final loss function, they combine all loss from two parts above as a
weighted sum of the adversarial loss, cycle consistency loss, and identical loss and then
use minimax to optimize the whole of their framework.

Mask-ShadowGAN uses two sets of each generator and discriminator. For

generators, they consisted of three convolution procedures, then there are nine residual
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blocks plus the stride-two convolution and do feature map sampling by including two
deconvolution operations. After each convolution and deconvolution procedure, they
include the instance normalization operation. As mentioned above, there are two
generators in this network. The first one is a shadow generator responsible for creating
the shadow on images and requires a shadow-free image and a shadow mask to be put
in. The second is a shadow-free generator that is accountable for generating shadow-
free images by feeding three channels of shadow images. Both of these generators create
three channels of residual images that will use as the final shadow or shadow-free image
with the input image.

For the two discriminators, they use PatchGAN to determine which image

patches are valid or not for shadow-free and shadow images.

3.2 Code Explanations

Figure 3.2.1 shows the necessary imported libraries and utilities for prepare the
data and models and save progress. The  future  use for compatibility with Python
2. The argparse use to define arguments for the model. The torch library uses to do the
job related to the model and data, such as load or transform images, define loss
functions, define optimizers, load or save training states, and check GPU availability.
The PIL stands for Python Image Library, will do the image job. The Matplotlib use to
visualize the loss functions. The models guided and utils are custom-made utilities by
Hu et al.: the Mask-ShadowGAN authors for creating models, image datasets, and

masks.

S2F

Figure 3.2.1 The necessary imported libraries
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The following figure, fig. 3.2.2, showing the defined arguments for use to
initiate models, dataset, and training process. This time we also establish the argument

parser named opt.

Figure 3.2.2 The arguments code

In fig. 3.2.3, we specify the dataset and log path using opt variable, which is
argparse, while checking for available GPU. If we wish to continue learning, we can set

the resume argument to true.

opt.dataroot
opt.log_path os.path.join( 5 r(datetime.datetime.now().strftime(

torch.cuda.is_available():
opt.cuda

opt.resume

Figure 3.2.3 The directory specification and GPU checking code

We define the models in figure 3.2.4, which are generators and discriminators.
If the GPU is available, we will assign the GPU to the models. Then we will apply the

initial weight for each model.

netG_A2B Generator_S2F(opt.input_nc, opt.output_nc)
netG_B2A Generator_F2S(opt.output_nc, opt.input_nc)
netD_A Discriminator(opt.input_nc)
netD_B Discriminator(opt.output_nc)

opt.cuda:
netG_A2B.cuda()
netG_B2A.cuda()
netD_A.cuda()
netD_B.cuda()

netG_A2B.apply(weights_init_normal)
netG_B2A.apply(weights_init_normal)
netD_A.apply(weights_init_normal)
netD_B.apply(weights_init normal)

Figure 3.2.4 The models initiation code
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Figure 3.2.5 illustrates the defined loss functions, optimizer, and LR scheduler

(for dynamic learning rate adjustment).

criterion_GAN torch.nn.MSELoss()

criterion_cycle torch.nn.L1lLoss()
criterion_identity torch.nn.L1Loss()

optimizer_G torch.optim.Adam(itertools.chain(netG_A2B.parameters(), netG_B2A.parameters()),
lr=opt.lr, betas=( ; ))

optimizer_D_A = torch.optim.Adam(netD_A.parameters(), lr=opt.lr, betas=( 5 ))

optimizer_D_B = torch.optim.Adam(netD_B.parameters(), lr=opt.lr, betas=( ’ ))

1r_scheduler_G torch.optim.1lr_scheduler.LambdalLR(optimizer G,
1r_lambda=LambdalLR(opt.n_epochs, opt.epoch, opt.decay_epoch).step)
1r_scheduler_D_A torch.optim.1lr_scheduler.LambdalLR(optimize
1r_lam LambdaLR(opt.n_epochs, opt.epoch, opt.decay_epoch).step)
1r_scheduler_D_B torch.optim.1lr_scheduler.LambdalLR(optimizer_D_B,

1r_lambda=LambdalLR(opt.n_epochs, opt.epoch, opt.decay_epoch).step)

Figure 3.2.5 The loss functions, optimizer and LR scheduler initiation code

The program will load the saved state of the model, optimizer, and LR scheduler.

If the resume argument is set to true, as showing in fig. 3.2.6.
opt.resume:

netG_A2B.load_stat t(torch.load(
netG_B2A. load t(torch.load(
netD_A.load_state_dict(torch.load(
netD_B.load_state_dict(torch.load(

optimizer_G.load state dict(torch.load(
opti _A.load _state dict(torch.load(
optimizer_D_B.load_state_dict(torch.load(

1r_scheduler_G.load_state_dict(torch.load(
1r_schedu D_A.load_state dict(torch.load(
1r_scheduler_D B.load_state_dict(torch.load(

Figure 3.2.6 The code for continue training

In fig. 3.2.7, the input images are initiated. We also do the memory allocation.

Tensor torch.cuda.FloatTenso opt.cuda
input_A = Tensor(opt.batc opt.input_nc, opt.
input_B Tensor(opt.batchSiz

iable(Tens pt.batchSize)

Variable(Tensor(opt.batchSize, 1, opt.size, opt.size).fill ( ), requires_grad

_buffer ReplayBuffer()
_buffer ReplayBuffer()

Figure 3.2.7 The input image definition and memory allocation code

We define the necessary variables and lists to hold the loss value and the

transformation routine for PIL image conversion in figure 3.2.8. Moreover, we create
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the mask queue to contain masks for use in the shadow-free to shadow generation
procedure.

plt.ioff()
curr_iter
G_losses_temp

G_losses [1]

[]

[]
to_pil transforms.ToPILImage()

mask_queue QueueMask(dataloader.
(opt.log_path, ).write( (opt)

Figure 3.2.8 The code for hold loss values

Figure 3.2.9 represents the training process of the two generators. The process
will gather the three losses then add up into the total loss while stepping up the

optimizer. The training process is described from this figure and onward.

epoch (opt.epoch, opt.n_epochs
i, batch (dataloader):

real_A = Variable(input_

real B Variable(input_|

aro_grad()

same_B netG_. 1_8B)

loss_identity. terion_identity(same_B, real_B)

same_A netG_| k_non_shadow)

loss_identity_ er dentity(same_A, real A)

netG_B2A(f
loss_cycle ABA = criteri

loss_GAN_A2B + loss_GAN_B2A + loss_cycle ABA + loss_cycle BAB

G_losses_temp += loss_G.item()

optimizer G.step()

Figure 3.2.9 The training process for the generators
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Unlike the previous figure, fig. 3.2.10 contain the training process of
discriminator A, which is the shadow discriminator. The same as discriminator B, which
is the shadow-free discriminator. The process collects the real and fake loss then adds

up into the total loss while stepping up the optimizer.

optimizer_D_A.zero_grad()

pred_real netD_A(real_A)
loss_D_real criterion_GAN(pred_real, target_real)

fake_A fake_A_buffer.push_and_pop(fake_A)
pred_fake = netD_A(fake_A.detach())

loss_D_fake criterion_GAN(pred_fake, target_fake)

loss_D_A (loss_D_real loss_D_fake)
ss_D_A.backward()

loss_D_A.item()

optimizer D_A.step()

Figure 3.2.10 The training process for the shadow generator

If the current iteration is at 500, we will write all losses and their average to the
log file while appending losses to their lists. Besides, the fake shadow and shadow-free

images are saved to the output folder, as shown in figure 3.2.11.

(i+1) % opt.iter_loss
log

(curr_iter, loss G, (loss_identity A + loss_identity B), (loss_GAN_A2B loss_GAN_B2A)
(loss_cycle ABA + loss_cycle BAB), (loss_D_A loss_D_B))

(log)

(opt.log_path, ).write(log )

G_losses.append(G_losses_temp opt.iter_loss)
.append( opt.iter_loss)
.append( opt.iter_loss)
G_losses_temp

avg_log
(opt.iter_loss, G_losses[G_losses.
[ . 0-11)
(avg_log)
(opt.log_path, ).write(avg_log )

img_fake_A (fake_A.detach().data )
img_fake A (to_pil(img_fake_A.data.squeeze(2).cpu()))
img_fake_A.save( )

img_fake_B (fake_B.detach().data )
img_fake_B (to_pil(img_fake_B.data.squeeze(2).cpu()))
img_fake_B.save( )

Figure 3.2.11 The code for logging the loss values

In figure 3.2.12, the program will update the learning rate and save the model,

optimizer, and LR schedule state



1r_scheduler_G.step()
1r_scheduler_D_A.step()
1r_scheduler_D_B.step()

torch.save(netG_A2B.state_dict(),
torch.save(netG_B2A.state_dict(),

torch.save(netD_A.state_dict(),
torch.save(netD_B.state_dict(),

torch.save(optimizer_G.state_dict(),
torch.save(optimizer D _A.state_dict(),
torch.save(optimizer_D_B.state_dict(),

torch.save(lr_scheduler_G.state_dict(),
torch.save(lr_scheduler_D_A.state_dict(),
torch.save(lr_scheduler_D_B.state_dict(),

14

Figure 3.2.12 The code for update learning rate and save the model state

For every 50 epoch, the program will save each model state denote by epoch

number. Additionally, the loss of generators and discriminators images is saved, as

shown in fig. 3.2.13.

(epoch ) opt.snapshot_epochs
torch.save(hetG_A
torch.save(netG_B2A B
torch.save(netD_A.state_dict(), (
torch.save(netD B ate dict(), (

( .format(epoch))

(epoch opt.snapshot_epochs =
})

.plot(G lo . )

t.xlabel( (opt.iter_loss))

.ylabel(
.legend()
.savefig(

figure(figsize-(

Ltitle(

.plot( X )
.plot( B )

xlabel( (opt.iter_loss
.ylabel(

legend()
.savefig(

.close(

Figure 3.2.12 The code for save model state and loss graph images by epoch

3.3 Evaluation Method

We evaluate the model performance by using aircraft shape to compute Root

Mean Square Error and Jaccard Similarity Index. The generated shadow-free airplane
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images are processed using the image processing technique to extract their shape in a
binary manner for evaluation using those criteria. We evaluate the generated shadow-
free airplane images in LAB color space using RMSE and evaluate its binary using

Jaccard Index.

3.3.1 LAB color space

This color space has three values according to the color. One is L* (perceptual
lightness), two for the position of the color, which are a* (between red and green), and
b* (between yellow and blue). These values are the coordinate of three-dimensional

space.

3.3.2 Binary Image Acquisition

To demonstrate the performance of Mask-ShadowGAN, we do custom image
processing steps to extract most of an aircraft shape in testing images. We will eliminate
unwanted objects and fill the hole in the aircraft shape. Here are the steps.

1. We do the thresholding using a thresholding value between 180, 190, 200,
210, and 220 since the images differ in light level. We look at the image and
determine which values should be used. We will obtain binary images in this
step.

2. After that, we will filter out the unwanted object in the binary image. To do
that, we are looping through the image to get the size of the white objects. By
default, the airplane shape is the largest object in the image. So we will filter
other things small than the airplane out.

3. Inthis step, we will erode or dilate the airplane to exactly match its shape from
its original image. We use a 3x3, 5x5, or 7x7 mask depends on its shape size.

We also look for the hole in the aircraft shape to fill it later.

3.3.3 Root Mean Square Error

Root Mean Square Error (RMSE) [13] is a measure of the difference between
real value and predicted value. The RMSE value is non-negative, and the lower value
indicates better performance than the higher value. The RMSE is the square root of

Mean Square Error (MSE), which is defined below.
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1ot (1)
RMSE = J;Zizo(yi—yi)z

where y; denoted predicted value (generated image), y; indicated real value (ground

truth image), and n is the total value.

numpy np
math m

(true_val, pred_val):

sum_square_dif ( ( (lambda x: (x[@]-x[ 5 (*(pred_val, true_val)))))

rmse m.sqrt(sum_square_dif (true_val))
rmse
np.random.seed(©)
true_val np.random.randint (i, , Size=59
1 pred_val np.random.randint (1, , Size=5)

(f pred_val I true_val;}')

rmse RMSE (true_val, pred_val)
(f rmse} ')

Figure 3.3.3.1 The RMSE code

e In figure 3.3.3.1, the RMSE function, which takes the list of the real and
predicted value to compute RMSE, has two variables: the sum_square diff and
rmse.

e The sum square diff uses the zip function to pack each pair of the real and
predicted value into a tuples list. For instance, [1, 2] and [3, 4] are packed into
[(1, 3), (2, 4)]. Then use map function with lambda to map each tuple to square
difference formula, which converted into a list such that [(1, 3), (2, 4)] is turned
to [4, 4].

e The sum function is used to sum all elements in that list, so [4, 4] is now 8.

o The rmse takes the sum divided by total value, which is the length of either real

or predicted value list, then uses the square root to calculate the RMSE.

Predicted value list: [10 84 22 37 88]

True value list: [45 48 65 68 68]
RMSE: 33.855575611706854

Figure 3.3.3.2 The predicted and true value lists with RMSE result
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o If we packed these two lists from figure 3.3.3.2, then compute the square
difference, we will get [1225, 1296, 1849, 961, 400]. After that, we will sum it
into 5731.

o Eventually, we divided by the total number of values, which is 5, we get 1146.2.
Then use square root to calculate RMSE, which is approximately 33.856.

3.3.4 Jaccard Index

Jaccard Index [14] is a measure of similarity between two sets. Its value is non-
negative. Unlike the RMSE, the higher value indicates better performance than the
lower value. Jaccard Index is defined by

|AnB| |A nB| @)
|A uB|  |Al+ |B|— |A nB]

J(A,B) =

where A and B denoted true value (ground truth image) and predicted value set
(generated image), respectively.

= numpy np
sklearn.metrics import jaccard_score

np.random.seed(1)

true_val np.random.randint(@, 2, size=(3, 3))

pred_val np.random.randint(@, 2, size=(3, 3))

jaccard_score jaccard_score(true_val, pred_val, average

GF pred_val} ')
(f true_val}')
(f jaccard_score}')

Figure 3.3.4.1 The Jaccard Index code

e We use the Scikit-learn to compute the Jaccard Index [15]. It calculates the
intersection by column and average by total elements in that column. After that,
it computes the weighted average using the number of true values from each

column as the weight.
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Predicted:
[[0 © 1]
[0 1 1]
[0 6 1]]

True:

[[1 1 9]
[0 1 1]
[1 1 1]]
Jaccard Similarity Score: ©.3333333333333333

Figure 3.3.4.2 The predicted and true value lists with Jaccard Index result

e We can see that the intersection of two sets has three items. We get the list of
1 2
the score of each column: [0, 3 5]'

o For each element in that list, we multiply it by weight. The weight is the number

of the true instance of each column from the true set. We get

((0x2)+(§x3)+(§x2))

7

= 0.333.



CHAPTER 1V
RESULTS

The dataset and preprocessing technique are reviewed, as well as result
evaluation. Besides, the comparison of the results between models will be shown in this

chapter.

4.1 Dataset

We gathered both shadow and shadow-free aircraft images from Google Earth,
which include 1400 and 233 aircraft for shadow and shadow-free images, respectively.

Due to outnumber for shadow-free images, we use the image augmentation
process to increase their quantity. We rotate them for 90, 180, and 270 degrees then add
them up to the shadow-free collection, which adds up to 932 images. After that, we
divide the shadow image set into 84% for training and 16% for testing. We leave no
touch for shadow-free collection because it is for training only. We then resize images
to 400x400 pixels for use in the training and testing process.

To evaluate, when we get the results from the fed testing images, there is a need
for their identical ground truth to be used to test to see if the shadow is gone or not,
which is difficult to obtain, especially when images collected from Google Earth.
Therefore, we manually remove the shadow from shadow images using Photoshop to

create ground truth images instead.

4.2 Evaluation Result
To evaluate the model's performance, we use root mean square error (RMSE)

defined by

1 m-—1 n-1 (3)
RMSE = \/%ZM ZFO [1(, ) — K@, )]?

where I and K denote the generated shadow-free images and the ground truth images.
These images are RGB images and will be converted to LAB color space later. And we

use the Jaccard index as defined in equation 2, in which A and B denote aircraft shape
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of generated shadow-free images and aircraft shape of ground truth images. Normally,
the lower RMSE, the better result produced, as opposed to the Jaccard index.

We followed the Mask-ShadowGAN shadow removal evaluation by calculating
RMSE between the ground truth and the generated shadow-free image in LAB color
space [16, 17, 18]. After that, we compute the similarity score between the shape of
aircraft in the ground truth and the generated shadow-free image in a binary manner.
We extract the aircraft shape to be a binary image by following the steps from 3.3.2
Binary Image Acquisition. We compared our results with the results from the
Meeboonmak [4] algorithm. We did not compare with other methods because Hu et al.
[8] already compared and concluded that's Mask-ShadowGAN provided better results
among them.

We collect five of each highest and lowest score by Jaccard similarity from the

testing set. The results are shown in Figure 4.2.1 and Figure 4.2.2 respectively.

(@) () © @ © ®

Figure 4.2.1 The five highest score results: (a) Original image,
(b) Manually shadow removal image (ground truth),
(¢) GAN generated of (a), (d) Aircraft shape of (b),

(e) Aircraft shape of (¢), (f) Aircraft shape from Meeboonmak [4]



21

(a) (b) (©) (d) (e)

Figure 4.2.2 The five lowest score results: (a) Original image,
(b) Manually shadow removal image (ground truth),
(¢) GAN generated of (a), (d) Aircraft shape of (b),
(e) Aircraft shape of (¢)

Then we plot all Jaccard index according to the individual images into a line
graph, which represents overall performance, as shown in Figure 4.2.4. Also, we
indicate the average score of this framework as the graph title.

As we see, the highest score images from Figure 4.2.1, the generated shadow-
free may not preserve enough detail to be the same as its original, and the RMSE score
from Table 4.2.1 is not low as expected. Despite high RMSE, we can see that the Jaccard
similarity score is quite high as the model still preserves the aircraft's shape the same as
its original, which is good. Compare to ground truth shape, most of the generated
aircraft's shape is still similar to the ground truth. When compare to Meeboonmak [4],

most of the aircraft's shape is still better intact, while some of our images have a hole or
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have a torn part like a tail. If we take a look at generated images one more time, we will
see that there are some shadow left but thinned, which caused less impact than the full

shadow.

Table 4.2.1 Evaluation Score for Five Highest Score Results

Score Type
RMSE 14.16 19.30 4.66 11.29 12.30
Jaccard 0.9359 0.9349 0.9277 0.9027 0.9001
Similarity Index ’ = : ’ '

For the lowest score images from Figure 4.2.2, we can see that the generated
aircraft's shape has various issues such as torn or missing parts, bloated or thinned parts,
or merge with the background object. If we look into generated shadow-free images, we
will see that many images have the artifact, and the shadow is still present but more
faded. Despite corrupted things in fig. 4.2.3, there exists appropriate stuff. For instance,
some airplane images can regain their part back when converted into a binary image.
However, those images still do not match their binary ground truth image. The
problem mentioned above, such as the artifact will make aircraft parts look bloated.
From the score in Table 4.2.2, most images perform better when evaluate using
RMSE than images in Fig. 4.2.2, but the Jaccard similarity score is low due to their

ground truth cannot be extracted to complete the shape in some images.

Figure 4.2.3 Sample of the original image (a) and the corrupted version (b)



Table 4.2.2 Evaluation Score for Five Lowest Score Results

23

Score Type
RMSE 12.52 10.61 11.08 16.35 9.73
Jaccard 0.5460 0.5430 0.5059 0.4553 0.4426
Similarity Index ' ' ' ' '

The line graph in Fig. 4.2.4 illustrates the overall Jaccard index similarity score

of the individual image generated from 2 frameworks: Mask-ShadowGAN (blue) and

Meeboonmak [4] (orange), which indicates average scores: 0.7799 and 0.7775,

respectively. We divided a graph into three portions to show the area of the lower or

higher score of the Mask-ShadowGAN and Meeboonmak method. In the middle

portion, the Meeboonmak algorithm performs quite well. Though, in the first and last

part, Mask-ShadowGAN reaches a higher score. We can see that Mask-ShadowGAN

achieves better in the average (located above graph), nethermost, and uppermost scores.

In this case, we are only focusing on the sorted score between both frameworks.

Jaccard index

Overall score

Average score: 0.7799 (Mask-ShadowGAN), 0.7775 (DSS)

0.95 4 —— Mask-ShadowGAN
0904 —— pss

0 25 50 75 100 125
Image ranking

Figure 4.2.4 Overall score graph and average score

150 175

Figure 4.2.5 is the alternate version of figure 4.2.4, which indicates the score by

image order sorted by Mask-ShadowGAN score. We can see that the Mask-
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ShadowGAN and DSS perform better on some images. Figure 4.2.6 illustrates the
blurred image. Mask-ShadowGAN score is 0.732, and DSS score is 0, in which Mask-
ShadowGAN performs much better than DSS. Figure 4.2.7 indicates the detailed image
with light illumination on top of the plane. Mask-ShadowGAN score is 0.462, and DSS
score is 0.7572, in which DSS performs quite better than Mask-ShadowGAN.

Score comparison between Mask-ShadowGAN and DSS by image order

0.95 -
0.90 -
0.85
0801
0751 *°
0704 ,° *

0.65 - -
0.60 -
0.55 -
0.50 -
0.45 -
0.40 -
0.35 -
0.30 A
0.25 -
0.20 -
0.15 -

0.10 -
0.05 —— Mask-ShadowGAN

0.00 - D .+ Dss

Jaccard index

0 25 50 75 100 125 150 175
Image order

Figure 4.2.5 Score comparison between Mask-ShadowGAN and DSS by

image order

Figure 4.2.6 An image that Mask-ShadowGAN performs better than DSS
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Figure 4.2.7 An image that DSS performs better than Mask-ShadowGAN

Also, we are training the algorithms without data augmentation to inspect if the
framework still steady performs the task. After that, we compare the result between the
models that using and not using the augmentation. Figure 4.2.8 illustrates that the
augmentation helps improve the model score.

Score comparison with and without augmentation

Average score: 0.7799 (augmentation), 0.7730 (no augmentation)

0.95 A
0.90 A
0.85 A
0.80 A
0.75 1
0.70 -
0.65 -
0.60 -
0.55 A
0.50 A
0.45 1
0.40
0.35 1
0.30
0.25 1
0.20
0.15 1
0.10 A
0.05 A1
0.00

—_— augmentatioF
—— no augmentation -

1

Jaccard index

0 25 50 75 100 125 150 175
Image ranking

Figure 4.2.8 Overall score graph and average score between using and not

using the augmentation
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CHAPTER V
CONCLUSION

We will conclude what we did along with the advantage and the disadvantage
of this framework. Also, the problems we encountered and the solutions we used are

discussed in this chapter.

5.1 Conclusion

In this paper, we adopted the Mask-ShadowGAN and applied to our aircraft
images dataset. From the experimental result, we can see that GAN may not entirely
remove the object shadow but still makes it faded out or thinned. Although, the
experimental result shows us that generated shadow-free aircraft's detail may be blurred
out or blended in with the aircraft body but, its shape is still intact.

There are some issues when working with remote sensing images, especially
airplane images, from the internet. For instance, we cannot get enough shadow-free
images to feed into the system, so we do the augmentation instead, as we mentioned
earlier. Additionally, there are no ground truth images for evaluating shadow images.
Since the ground truth image is the shadow image itself but has no shadow. We tackle
this problem by using Photoshop to create the ground truth images manually from
shadow images.

In future work, we will improve the model that will thoroughly remove shadows
and preserve the object detail. So that the removed shadow aircraft image can be further

used for other purposed such as aircraft type classification.
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APPENDIX A
The Project Proposal of Course 2301399 Project Proposal
Academic Year 2020

Project Tittle (Thai) ~ m3awavenasesiulassaluifningdnimssesInalaeld
Mask-ShadowGAN
Project Tittle (English) Automatic Aircraft Shadow Removal from Remote Sensing

Images using Mask-ShadowGAN
Project Advisor Assoc. Prof. Dr. Nagul Cooharojananone

By 1. Sirapavee Ganyaporngul ID 6033662623
Computer Science Program,

Department of Mathematics and Computer Science
Faculty of Science, Chulalongkorn University

Background and Rationale

Image classification models might poorly perform when working with objects
that have the shadow since it can make their shape different from it should be. Removing
the shadow without disturbing other detail on it can ease the image classification model
in many ways. For instance, shadow-free images can help the model correctly classified,
while all preserved detail can be used later to identify the object model or type. Also,
we can use it to train the machine learning model if you have only shadow images but
intend to use shadow-free images.

There are some proposed methods for shadow detection and removal. For
instance, A. Gatter [1] proposed an algorithm to identify a self-cast shadow of aircraft
while in airborne, which can be removed later by other procedures. Rahman et al. [2]
proposed a method to detect and remove shadows in each orthophoto component of
UAV-based orthomosaics. Then use the feature-matching technic with help from a
commercial software package to create the final orthomosaic.

In the aircraft images, the aircraft from remote sensing images consist of issues
for making classification correctly, such as background complexity, blurring, light

scattering, shadows on the body, or chromatic distortion. As we mentioned above, these



31

problems can cause the classification model to defectively classify the aircraft. Aircraft
shape might look unusual if the background is too complicated due to many other
objects such as stair trucks. In this work, we mainly focus on the shadow because the
shadow can make the aircraft’s shape being torn apart. The challenging issue is how can
we remove object shadow without losing the shape of the aircraft. Wei et al. [3]
proposed shadow detection and removal as part of image preprocessing by scanning an
original aircraft image to create a binary shadow mask. The mask will use to indicate a
shadow pixel location, which applies in the removal process. In the present day,
Machine Learning techniques can do many things better and faster than any others.
Many researchers use Machine Learning to remove object shadow. For instance,
Meeboonmak [4] employed Deeply Supervised Salient Object Detection with Short
Connections (DSS) proposed by Hou et al. [5] and doing some post-processing to
remove shadows from the aircraft while still maintain aircraft shape integrity.

Generative Adversarial Network (GAN) is a popular method to generate a new
image based on its individual properties, which involved shadow removal on the image.
Many researchers proposed the shadow removal method by using GAN. For example,
Wang et al. [6] implemented Stacked Conditional Generative Adversarial Network (ST-
CGAN) to detect the shadow and then remove it. Zhang et al. [7] used GAN to inspect
residual and illumination of the image to remove the shadow.

Hu et al. [8] proposed a new way to remove the shadow by learning from
unpaired shadow and shadow-free data called Mask-ShadowGAN. This model learned
to create shadow masks from real shadow and generated shadow-free images to use as
guidance for shadow generation, which used to improve shadow-free generator to
produce precise shadow-free images.

To that aim, we adopt the Mask-ShadowGAN to our aircraft images dataset.
Then we use generated shadow-free aircraft images to find aircraft shape in a binary
manner to compare with the ground truth shape to see if a generated shadow-free image
still preserves intact aircraft shape. There are three reasons why we use this model. First,
it uses unpaired images, which suitable for data gathered from Google Earth. Second,
the model does not require the same amount of data between shadow and shadow-free
images, which is good because shadow-free images are hard to find. Finally, there is no

application of this model for aircraft images yet.
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Objectives
To apply Mask-ShadowGAN to our remote sensing airplane image dataset,
which contains both shadow and shadow-free images to inspect if its capability of

aircraft shadow removal.

Scope
e An image dataset contains only an aircraft from remote sensing images from
Google Earth, which will resize to 400 by 400 pixels.
e Aircraft shadows range from a little to long shade, which is an effect from Sun
at different times.
e There is a limitation, which is ground truth images are hard to obtain. Hence, we
use photoshop to edit shadow images to remove the shadow manually, which

makes them the ground truth images.

Project Activities

Study Plan
1. Studying all aspect of related research paper
2. Collect images from Google Earth to create the dataset
3. Implementing and debugging the system
4. Training and Testing
5

Summary and making the project report

Duration of study

2020 2021

Study Plan
Sept. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar.

1. Studying all aspect of related
research paper

2. Collect images from Google
Earth to create the dataset

3. Implementing and debugging the

system

4. Training and Testing
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5. Summary and making the project

report
Benefits
The benefits for student
1. To develop deep learning skills
2. To learn more deep learning framework
3. To gain the data preparation skill
4. To develop thinking and analyzing skill
The benefits for users
1. To ease their classification model
2. To generate more artificial data for them to feed into the training
process
For research purpose
1. This new technique can be improved to produce more realistic images
for the images contain the object and its shadow within.
Equipment

1. Hardware
1.1.Personal laptop
- Intel Core i7-7700HQ 2.80 GHz
- 16 GB RAM
- Nvidia GTX 1050M
2. Software
2.1.Visual Studio Code
2.2.Google Colab
2.3.Chrome Remote Desktop
3. Miscellenous

3.1.GitHub

Budget
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This project requires no budget.
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Abstract—Objects with shadow may cause a problem for image
classification. For example, it can separate one object into
many objects. It can also alter the size or shape of the object
resulting in misclassification. In this paper, we focus on
removing aircraft shadow from remote sensing images where
the shadows occur on wings, bodies, and tails. Since it is very
difficult to get shadow-free aircraft images and a shadow
aircraft image of the same type for the training part, we
adopted Mask-ShadowGAN for solving this issue. The benefit
of the Mask-ShadowGAN algorithm is that, in the training
part, the technique does not require the same images that have
both shadow and shadow-free. In the experiment, we evaluated
our proposed technique using RMSE and Jaccard similarity
index for measurement. The experimental result shows that
our technique shows promising results. We present both best
and worst result based on sorted similarity index.

Keywords—Deep Learning, Remote Sensing Image, Mask-
ShadowGAN, Shadow Removal

L INTRODUCTION

Image classification models might poorly perform when
working with objects that have the shadow since it can make
their shape different from it should be. Removing the
shadow without disturbing other detail on it can ease the
image classification model in many ways. For instance,
shadow-free images can help the model correctly classified,
while all preserved detail can be used later to identify the
object model or type. Also, we can use it to train the machine
learning model if you have only shadow images but intend to
use shadow-free images.

There are some proposed methods for shadow detection
and removal. For instance, A. Gatter [1] proposed an
algorithm to identify a self-cast shadow of aircraft while in
airborne, which can be removed later by other procedures.
Rahman et al. [2] proposed a method to detect and remove
shadows in each orthophoto component of UAV-based
orthomosaics. Then use the feature-matching technic with
help from a commercial software package to create the final
orthomosaic.
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The aircraft from remote sensing images consist of issues
for making classification correctly, such as background
complexity, blurring, light scattering, shadows on the body,
or chromatic distortion. As we mentioned above, these
problems can cause the classification model to defectively
classify the aircraft. Aircraft shape might look unusual if the
background is too complicated due to many other objects
such as stair trucks. In this work, we mainly focus on the
shadow because the shadow can make the aircraft’s shape
being torn apart. The challenging issue is how to remove
object shadow without losing the shape of the aircraft. Wei et
al. [3] proposed shadow detection and removal as part of
image preprocessing by scanning an original aircraft image
to create a binary shadow mask. The mask will use to
indicate a shadow pixel location, which applies in the
removal process. In the present day, Machine Learning
techniques can do many things better and faster than any
others. Many researchers use Machine Learning to remove
object shadow. For instance, Meeboonmak [4] employed
Deeply Supervised Salient Object Detection with Short
Connections (DSS) proposed by Hou et al. [5] and doing
some post-processing to remove shadows from the aircraft
while still maintain aircraft shape integrity.

Generative Adversarial Network (GAN) is a popular
method to generate a new image based on its individual
properties, which involved shadow removal on the image.
Many researchers proposed the shadow removal method by
using GAN. For example, Wang et al. [6] implemented
Stacked Conditional Generative Adversarial Network (ST-
CGAN) to detect the shadow and then remove it. Zhang et al.
[7] used GAN to inspect residual and illumination of the
image to remove the shadow.

Hu et al. [8] proposed a new way to remove the shadow
by learning from unpaired shadow and shadow-free data
called Mask-ShadowGAN. This model learned to create
shadow masks from real shadow and generated shadow-free
images to use as guidance for shadow generation, which
used to improve shadow-free generator to produce precise
shadow-free images.
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Figure 1. Mask-ShadowGAN for aircraft shadow removal architecture:
(a) Learning from actual shadow images and (b) Learning from actual shadow-free images.

In this paper, we adopt the Mask-ShadowGAN to our
aircraft images dataset. Then we use generated shadow-free
aircraft images to find aircraft shape in a binary manner to
compare with the ground truth shape to see if a generated
shadow-free image still preserves intact aircraft shape. There
are three reasons why we use this model. First, it uses
unpaired images, which suitable for data gathered from
Google Earth. Second, the model does not require the same
amount of data between shadow and shadow-free images,
which is good because shadow-free images are hard to find.
Finally, there is no application of this model for aircraft
images yet.

II.  RELATED WORK

A.  Deeply Supervised Salient Object Detection with Short
Connections

Hou et al. [5] proposed a new framework for salient
object detection, which produces the series of short
connections for side output from deeper to shallower under
the Holistically-nested edge detector (HED) network
proposed by Xie et al. [9]. Deeper side output has high-level
features, which contain more detail out of low-level features.
Shallower has low-level features, which can locate the real
salient area. A better saliency map can be achieved by
combine these two side outputs.

DSS architecture consisted of a base convolution, side-
output, short connection, and fusion layer. The base
convolution layer dependent on VGGI16 proposed by
Simonyan ez al. [10]. To extract the saliency maps, they add
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the side-output layers after the last convolutional layer of
each stage (convl_2, conv2_2, conv3_3, conv4 3, and
conv5_3) and the final max-pooling layer (pool5) from
VGG16. After that, they use the short connection to combine
deeper side output with shallower side output. Lastly, the
DSS model then optimized by applying fusion loss, which
combined from cross-entropy function in each side output.

B.  Aircraft Segmentation from Remote Sensing Images
using Modified Deeply Supervised Salient Object
Detection with Short Connection
Meeboonmak [4] adapted DSS to the aircraft dataset by

adding the L2-Normalization layer between the connection

of convl_1 from VGGI16 and the shallowest side-output
layer, which reduces noise in the background and produces
more salient results. Subsequently, post-process then used
after obtaining the result from DSS by using Bitwise AND
operation between side outputs 5 and 6. Then create the
binary mask by thresholding. Next, make the object within
the binary mask lager by using the Dilation procedure.

Finally, the fused saliency map then combined with the

dilated mask.

C. Mask-ShadowGAN: Learning to Remove Shadows from
Unpaired Data

Mask-ShadowGAN consisted of two parts: the first part
is to learn from real shadow images to produce shadow
masks, which used as a guide for shadow generation. The
second part is to learn from shadow-free images, which use a
random shadow mask to generate shadow on shadow-free
images to help training shadow-free generator.
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TABLE L. EVALUATION SCORE FOR FIVE HIGHEST RESULTS
Score Type Image”
RMSE 14.16 19.30 4.66 11.29 12.30
Jaccard Similarity Index 0.9359 0.9349 0.9277 0.9027 0.9001
. Scores from lef o right side ar arranged by fop to bottom from Figure 2.
TABLE IL. EVALUATION SCORE FOR FIVE LOWEST RESULTS
Score Type Image”
RMSE 12.52 10.61 11.08 16.35 9.73
Jaccard Similarity Index 0.5460 0.5430 0.5059 0.4553 0.4426

Mask-ShadowGAN has adopted network architecture
from Johnson et al. [11] as its generator network, which
contains three convolution procedures, nine residual blocks
with the stride-two convolutions, and two deconvolutions.
Each convolution and deconvolution procedures followed by
instance normalization. Then used PatchGAN, which
proposed by Isola et al. [12] as the discriminator. There are
two sets of each generator and discriminator.

III.  METHODOLOGY

As we mentioned above, Mask-ShadowGAN uses two
sets of each generator and discriminator and contains two
parts of the operation. There are three losses in each part:
cycle-consistency loss (blue), identity loss (green), and

adversarial loss (pink). G_y and G , are generators that create

shadow and shadow-free images. Whereas D, and D, denote
discriminators, which distinguish generated shadow or
shadow-free images to be real or not. / and / s denote the

actual shadow and shadow-free images. INSand 7; are the

generated shadow images, [ and 1 ; denote the generated

M, and M, denote the

shadow masks as shown in Figure 1.

First, learning from real shadow images by using a
shadow-free generator to generate a shadow-free image.
Then use a shadow-free discriminator to examine that newly
generated image is real shadow-free or not. Next, use the
adversarial loss to optimize the generator and the
discriminator. After that, they use a shadow generator to
convert the generated shadow-free image back to its original
and expect to be the same. To do that, they calculate the
difference between the generated shadow-free and actual
shadow image and binarizing the result to create a mask,
which uses as guidance later to preserve the consistency
between the generated shadow image, and it’s original. They
formulate shadow cycle consistency loss, which stimulates
shadow generated image to be the same as its original.

For the last process of the first part, they create an image
with no new shadows added by using an all-zero values

shadow-free images, and M, |
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*. Scores from left to right side are arranged by top to bottom from Figure 3.

mask with a real shadow image to be input for the shadow
generator. For this reason, they can regularize the generated
image to be identical to its original by using the shadow
identity loss.

So they can expect that the shadow generated image will
have no new shadow added and conserving color
composition.

Second, learning from actual shadow-free images to
remove shadows by using a shadow generator to create a
shadow image with guidance from the randomly selected
previously produced mask. They generate many shadow
image by using a different mask to generalize the deep
model. Those images later are distinguished by the
discriminator, whether it is a real shadow image or not. Then
optimize the generator and the discriminator using an
adversarial loss.

After that, they take a shadow-free generator to use a
shadow generated image to create a shadow-free image.
Then optimize the network by using shadow-free cycle
consistency loss.

For the last process of this part, they put the actual
shadow-free image as input into a shadow-free generator to
generate another shadow-free image and later encourage the
input to be as identical as an output image. To that aim, an
identity loss will be used as a constraint so that the shadow-
free generator will learn to remove shadows without
disturbing the region that is not the shadow.

For the final loss function, they combine all loss from
two parts above as a weighted sum of the adversarial loss,
cycle consistency loss, and identical loss and then use
minimax to optimize the whole of their framework.

Mask-ShadowGAN uses two sets of each generator and
discriminator. For generators, they consisted of three
convolution procedures, then there are nine residual blocks
plus the stride-two convolution and do feature map sampling
by including two deconvolution operations. After each
convolution and deconvolution procedure, they include the
instance normalization operation. As mentioned above, there
are two generators in this network. The first one is a shadow
generator responsible for creating the shadow on images and
requires a shadow-free image and a shadow mask to be put
in. The second is a shadow-free generator that is accountable
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Figure 2. The five highest score results: (a) Original image,
(b) Manually shadow removal image (ground truth),
(¢) GAN generated of (a), (d) Aircraft shape of (b),
(e) Aircraft shape of (c), (f) Aircraft shape from Meeboonmak [4]

for generating shadow-free images by feeding three channels
of shadow images. Both of these generators create three
channels of residual images that will use as the final shadow
or shadow-free image with the input image.

For the two discriminators, they use PatchGAN to
determine which image patches are valid or not for shadow-
free and shadow images.

IV. EXPERIMENTAL RESULTS

A. Dataset

We gathered both shadow and shadow-free aircraft
images from Google Earth, which include 1400 and 233
aircraft for shadow and shadow-free images, respectively.

Due to outnumber for shadow-free images, we use the
image augmentation process to increase their quantity. We
rotate them for 90, 180, and 270 degrees then add them up to
the shadow-free collection, which adds up to 932 images.
After that, we divide the shadow image set into 84% for
training and 16% for testing. We leave no touch for shadow-
free collection because it is for training only. We then resize
images to 400x400 pixels for use in the training and testing
process.

To evaluate, when we get the results from the fed testing
images, there is a need for their identical ground truth to be
used to test to see if the shadow is gone or not, which is
difficult to obtain, especially when images collected from
Google Earth. Therefore, we manually remove the shadow
from shadow images using Photoshop to create ground truth
images instead.

B.  Evaluation Result

To evaluate the model's performance, we use root mean
square error (RMSE) defined by

(a) (b) ©) (d) (¢)

Figure 3. The five lowest score results: (a) Original image,
(b) Manually shadow removal image (ground truth),
(¢) GAN generated of (a), (d) Aircraft shape of (b),
(e) Aircraft shape of (¢)

RMSE = |- """ (1, j) - KG, )T

mn

where I and K denote the generated shadow-free images and
the ground truth images. And we use the Jaccard index
defined as

J(4,B) =408 _ |40 B| @
|AUB| |A|+|B|-|ANB|

where A and B denote aircraft shape of generated shadow-
frec images and aircraft shape of ground truth images.
Normally, the lower RMSE, the better result produced, as
opposed to the Jaccard index.

We followed the Mask-ShadowGAN shadow removal
evaluation by calculating RMSE between the ground truth
and the generated shadow-free image in LAB color space.
After that, we compute the similarity score between the
shape of aircraft in the ground truth and the generated
shadow-free image in a binary manner. We do custom
thresholding, dilation, and erosion operation to extract most
of the shape of the aircrafi. We compared our results with the
results from the Meeboonmak [4] algorithm. We did not
compare with other methods because Hu et al. (8] alrcady
compared and concluded that's Mask-ShadowGAN provided
better results among them.
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We collect five of each highest and lowest score by
Jaccard similarity from the testing set. The results are shown
in Figure 2 and Figure 3 respectively.

Overall score
Average score: 0.7799 (Mask-ShadowGAN), 0.7775 (DSS)

0.95 1 —— Mask-ShadowGAN
0901 __ pss

Jaccard index
o
2
&

0 25 50 75 100 125 150 175
Image number

Figure 4. Overall score graph and average score

Then we plot all Jaccard index according to the
individual images into a line graph, which represents overall
performance, as shown in Figure 4. Also, we indicate the
average score of this framework as the graph title.

As we see, the highest score images from Figure 2, the
generated shadow-free may not preserve enough detail to be
the same as its original, and the RMSE score from Table I is
not low as expected. Despite high RMSE, we can see that the
Jaccard similarity score is quite high as the model still
preserves the aircraft's shape the same as its original, which
is good. Compare to ground truth shape, most of the
generated aircraft's shape is still similar to the ground truth.
When compare to Meeboonmak [4], most of the aircraft's
shape is still better intact, while some of our images have a
hole or have a torn part like a tail. If we take a look at
generated images one more time, we will see that there are
some shadow left but thinned, which caused less impact than
the full shadow.

For the lowest score images from Figure 3, we can see
that the generated aircraft's shape has various issues such as
torn or missing parts, bloated or thinned parts, or merge with
the background object. If we look into generated shadow-
free images, we will see that many images have the artifact,
and the shadow is still present but more faded. Despite
corrupted things, there exists appropriate stuff like some
images can regain its part back, unlike its ground truth. The
problem mentioned above, such as the artifact will make
aircraft parts look bloated. From the score in Table II, most
images perform better when evaluate using RMSE than
images in Fig. 3, but the Jaccard similarity score is low due
to their ground truth cannot be extracted to complete the
shape in some images.

The line graph in Fig. 4 illustrates the overall Jaccard
index similarity score of the individual image generated from
2 frameworks: Mask-ShadowGAN (blue) and Meeboonmak
[4] (orange), which indicates average scores: 0.7799 and
0.7775, respectively. We divided a graph into three portions
to show the area of the lower or higher score of the Mask-
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ShadowGAN and Meeboonmak method. In the middle
portion, the Meeboonmak algorithm performs quite well.
Though, in the first and last part, Mask-ShadowGAN reaches
a higher score. We can see that Mask-ShadowGAN achieves
better in the average (located above graph), nethermost, and
uppermost scores.

V.  CONCLUSION

In this paper, we adopted the Mask-ShadowGAN and
applied to our aircraft images dataset. From the experimental
result, we can see that GAN may not entirely remove the
object shadow but still makes it faded out or thinned.
Although, the experimental result shows us that generated
shadow-free aircraft's detail may be blurred out or blended in
with the aircraft body but, its shape is still intact.

In future work, we will improve the model that will
thoroughly remove shadows and preserve the object detail.
So that the removed shadow aircraft image can be further
used for other purposed such as aircraft type classification.
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