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# # 5787515320 : MAJOR HAZARDOUS SUBSTANCE AND ENVIRONMENTAL MANAGEMENT
KEYWORDS:  PETROLEUM ~ HYDROCARBONS,  DEFINED ~ CONSORTIUM,  IMMOBILIZATION,
BIOAUGMENTATION
DUANGPORN  POLRIT: FORMULATION OF DEFINED CONSORTIA ISOLATED FROM
SEDIMENTS OF THE CHAO PHRAYA AND THA CHIN RIVERS FOR REMOVAL OF PETROLEUM
HYDROCARBONS. ADVISOR: ASSOC. PROF. ONRUTHAI PINYAKONG, Ph.D., 208 pp.

Recently, Thailand faces petroleum contamination in various environments including
Chao Phraya and Tha Chin Rivers, which are the main water transportation resulting in oil spill
events on the rivers. The oil used in cargo ship is fuel oil which is the mixtures consisting of
polycyclic aromatic hydrocarbons (PAHSs), aliphatic, asphalthene, and resin. Therefore, this study
aimed to formulate the defined bacterial consortium from the selected effective hydrocarbon-
degrading and biosurfactant-producing bacteria which having high cell surface hydrophobicity for
removal of petroleum oil. In this study, eight strains having different ability to degrade PAHs and
aliphatic compounds were obtained and then three high effective bacteria were selected.
Mycobacterium sp. J101 had ability to degrade low- and high-molecular weight PAHs and
aliphatic compounds. Rhodococcus ruber S103 degraded aliphatic compounds and had high cell
surface hydrophobicity and Mycobacterium sp. Y502 degraded high molecular weight PAHs as
well as showed potential to produce biosurfactants. These three individual strains, S103, J101,
and Y502 could degrade approximately 20% of fuel oil at 2,000 mg L in liquid cultivation within
7 days. While, the defined consortium composed of these three strains degraded fuel oil at 419%.
When this defined consortium was immobilized on bio-balls, the immobilized defined consortium
had fuel oil removal efficiency in carbon free mineral medium (CFMM) and freshwater from Chao
Phraya river by adsorption ability of bio-balls and biodegradation efficiency of defined
consortium. When the fuel oil remaining on bio-balls with and without defined consortium was
analyzed, it was found that the concentration of fuel oil on bio-ball having defined consortium
(816 mg g'1 bio-ball) was lower than the concentration of fuel oil on sterilized bio-ball (1,523 mg
g’1 bio-ball). The immobilized defined consortium was able to degrade 46% of fuel oil within 15
days, whereas no degradation was observed in the experiment without bacteria. Furthermore, the
result of 16S rRNA gene amplicon sequencing analysis and viable plate count technique found
that immobilized defined consortium could survive throughout the experimental period.
Consequently, these results indicated that the immobilized defined consortium had a potential

to apply for bioremediation of petroleum oil contaminated in the environment.
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CHAPTER |
INTRODUCTION

1.1 Statement of problem

Nowadays, petroleum hydrocarbons are widely used in transportation,
industry, and agriculture because of the rapid increasing population with
industrialization and economic development. Thailand, therefore, confronts
petroleum contamination problems in various ecosystems including the Chao Phraya
and Tha Chin Rivers, which are the country’s main water transportation. Oil spill
accidents have occurred in both rivers; for example, diesel and fuel oil spilled in
Chao Phraya estuary in 1974 and 1996 caused by a collision of tanker and container
vessel (Wattayakorn, 2012). Recently, petroleum oil has also contaminated both
rivers; for instance, in 2014, diesel fuel was spilled onto the Chao Phraya River with
the oil slick covering a radius of about 40 meters from the capsized boat (Mthai,
2012).

In general, petroleum hydrocarbon used on cargo ships is fuel oil, which
consists of 15% saturates, 62% aromatics, 15% asphaltene, and 8% resin. Because of
their physical properties and chemical composition, long-chain aliphatic and
polycyclic aromatic hydrocarbons (PAHs) are present in the residual hydrocarbons of
the petroleum products that accumulate in the sediment. PAHs, thus, are used as a
parameter in assessing the relative potential of petroleum products to cause long-
term effects (Grimwood, 2001). It is due to their toxic, mutagenic, and carcinogenic
potential. They also persist in the environment because of low solubility, high
hydrophobicity, and complex structure. In addition, there have been reported that
fuel oil is toxic to aquatic organisms such as fish embryo and the human lung (Adams
et al., 2014; Oeder et al., 2015).

There are many approaches to remediate petroleum hydrocarbon-
contaminated sites including physical, chemical, and biological treatments. One of
the popular processes for environmental treatment is bioremediation because it is

effective, simple, economic, and eco-friendly (Mao et al., 2012; Thapa et al,, 2012).
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Bioremediation is an approach to transform the pollutants to less hazardous
chemicals using microorganisms including algae, bacteria, yeast, and fungi (Ward et
al.,, 2003). This study is interested in bioaugmentation that uses selected bacteria for
removal of petroleum hydrocarbons because it is non-toxic, cheap, and suitable to
treat various contaminated sites (Semrany et al., 2012). Due to their properties, PAHs
are adsorbed strongly to particulate matter and accumulate in bottom sediments
(Isaac et al., 2013). Hence, effective hydrocarbon-degrading bacteria can be isolated
from sediments, which are the accumulation source of recalcitrant toxic pollutants.
Sediments also have a high diversity of microorganisms because they receive the
deposition of microorganisms and organic matters (Zinger et al., 2011). The examples
of hydrocarbon-degrading bacteria isolated from the sediment are Mycobacterium
sp. (Ho et al, 2000), Rhodococcus sp. (Song et al, 2011), Streptomyces sp.
(Balachandran et al., 2012), Pseudomonas sp. and Sphinecomonas sp. (Pedetta et al,,
2013).

Recently, there has been growing interest in the use of defined consortia for
the treatment of petroleum-contaminated sites. The ideal defined consortia should
provide multiple metabolic capacities and the number of catabolic pathway
available for contaminant biodegradation, ability to degrade a wider substrate and
shorter lag period in the degradation (He et al, 2013; Mikeskova et al.,, 2012). For
example, Jasmine and Mukherji (2015) selected bacteria based on their aliphatic and
aromatic hydrocarbon degradation abilities. The results demonstrated that defined
consortium (Sphingomonas sp. AS1, Ochrobacterium sp. BSW, and Burkholderia sp.
HN1) degraded 0.5% (w/v) of extracted oil at 71.5% within 30 days. According to Isaac
(2015), five strains that had the ability to degrade low and high molecular weight of
PAHs and produce biosurfactant were selected to formulate the consortia. It was
found that all consortia reached 100% efficiency in phenanthrene and naphthalene
degradation at 0.1 mM each in 48 h. They also degraded pyrene more than
monocultures; for example, defined consortium (Pseudomonas monteilii P26,
Pseudomonas sp. N3, Gordonia sp. H19, and Rhodococcus sp. F27) removed 0.1 mM
of phenanthrene and naphthalene at 100% in 2 days and of 0.1 mM of pyrene at
42% in 21 days. Whereas, individual strain P26, N3, H19 and F27 could degrade less
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than 10%. Moreover, many researchers found that PAH-degrading bacteria could
produce the biosurfactant; for instance, a new strain of Brevibacillus sp. PDM-3 was
able to degrade 93% of phenanthrene (250 mg L_1) in 144 h with the production of
the biosurfactant, which started from 60 h increased up to 144 h. The surface tension
decrease from 47 to 23 mN m’1 in 144 h (Reddy et al, 2010). These findings
suggested that biosurfactant might enhance the bioavailability of hydrophobic
compounds to bacteria and then increase biodegradation ability. Consequently, the
criteria for selection of bacteria are important to formulate defined consortia that
degrade components of petroleum oil. The properties of bacteria reconstituted
hydrocarbon-degrading defined consortia are the abilities to degrade low and high
molecular weight PAHs, degrade aliphatics as well as produce biosurfactant.
Additionally, aerobic bacteria that can degrade components of oil must have specific
genes including dioxygenase and monooxygenase encoding genes (Cébron et al,,
2008; Kohno et al., 2002). The information on genetic mechanisms of biodegradation
of oil is necessary to design efficient and predictable remediation procedures.

For environmental applications, free cell and immobilized cell have been
used for biodegradation in contaminated sites. Nevertheless, there are many research
reported that the immobilized cell has a higher efficacy of petroleum hydrocarbon
degradation than the free cell (Huang et al,, 2016, Khondee et al,, 2012; Lin et al,,
2014, Partovinia and Naeimpoor, 2014; Quek et al., 2006). Immobilization technique
provides high biomass, cell reuse and economic cost of the process. This technique
additionally provides suitable microenvironmental conditions, protection against
shear damage, improve genetic stability, high resistance to toxic substances, pH,
temperature, solvents and heavy metals, and decline of maturation time for some
products (Bayat et al, 2015). The cell immobilization has differently used forms
including adsorption, covalent binding, entrapment, and encapsulation. Moreover,
the selection of carrier is very important in immobilization such as non-toxicity, high
cell mass loading capacity, long shelf life, low cost, and the quality of being easy to
handle and regenerate. Interestingly, bio-ball or plastic pellet was used in
biodegradation of petroleum hydrocarbons because they are durable, lightweight,

capable of floating, and non-toxic. Due to its property, bio-ball is suitable for use as a
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carrier for treatment of fuel oil around the port. Nopcharoenkul et al. (2013) showed
that immobilized cell using polyethylene plastic pellets (bio-ball) as a carrier not
only tolerated higher substrate concentrations but also maintained their
biodegradation capabilities. Currently, immobilization technique mostly uses
monoculture (Lin et al.,, 2015; Satchanska et al., 2015; Tao et al,, 2010) but there are
a few mixed cultures of immobilization technique. Therefore, this study aims to
formulate defined consortia from effective petroleum hydrocarbon-degrading and
biosurfactant-producing bacteria isolated from the sediments of Chao Phraya and
Tha Chin Rivers for removal of petroleum hydrocarbons and examine the possibility
of the immobilized defined consortium for removal of fuel oil, commonly used on

cargo ships, in fresh water from Chao Phraya River.

1.2 Objectives

1.2.1 To formulate defined consortia from effective petroleum hydrocarbon-
degrading  and biosurfactant-producing bacteria isolated  from the
sediments of Chao Phraya and Tha Chin Rivers for removal of petroleum
hydrocarbons.

1.2.2 To study the possibility of immobilized defined consortium for removal

of fuel oil in fresh-water from Chao Phraya River.

1.3 Hypothesis

1.3.1 Pure cultures isolated from the sediments of Chao Phraya and Tha Chin
Rivers can degrade various substrates including PAHs, aliphatic, and oils.

1.3.2 Defined consortia composed of PAH-, alkane-, oil-degrading-, and
biosurfactant-producing bacteria can more efficiently remove
petroleum hydrocarbons than pure cultures.

1.3.3 The immobilized defined consortium had a potential to remove fuel oil

by both adsorption and biodegradation activity.
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1.4 Scope of this study
The research was divided into three phases as follows:
1.4.1 Isolation of PAH-degrading bacteria from the Chao Phraya and Tha
Chin River sediments and their biodegradation potential
PAH-degrading bacteria was isolated and examined their biodegradation in
order to obtain PAH-degrading bacteria and study their biodegradation. To determine
substrate specificity of each bacterium, different substrates (four PAHs, and two
aliphatic) were used as carbon source. Then, biosurfactant test was detected by four
different methods namely hemolytic activity, emulsification index, surface tension,
and oil displacement and hydrophobicity of bacterial cell was also tested. After that,
3 efficient hydrocarbon-degrading and biosurfactant-producing bacteria were selected
and investigated the biodegradation of petroleum oils including fuel oil, crude oil,
and diesel oil.
1.4.2 Formulation of defined consortia for petroleum degradation
To formulate the defined consortia from effectively PAH-degrading bacteria
for petroleum degradation, three strains having a potential to degrade PAH:s,
aliphatics, and oil and produce biosurfactant were formulated as defined consortia;
four consortia. Four consortia were then determined the biodegradation of fuel oil,
diesel oil, pyrene, and docosane representing complex compound, hish molecular
weight PAH, and long-chain aliphatic. The highest effective defined consortium was
chosen for further study. Additionally, genes involved in petroleum hydrocarbon
degradation were detected to confirm their function.
1.4.3 Immobilization of defined consortium after formulation
In order to apply to the contaminated site, the highest effective defined
consortium was immobilized on polyethylene plastic pellets. An immobilized
defined consortium was not only determined the appropriate immobilization time
but also examined the biodegradation of fuel oil in fresh water from the Chao Phraya
River. In addition, the immobilized defined consortium was monitored by 16S
metagenomic analysis in order to know whether the defined consortium survive in

freshwater or not.
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CHAPTER Il
BACKGROUND AND LITERATURE REVIEW

2.1 Petroleum contamination in the Chao Phraya and Tha Chin Rivers

Petroleum hydrocarbon is widely used as an energy source in most industrial
and developing country. For these reasons, it leads to oil spill accidents that enter
the aquatic environments by human activity such as extraction, transportation,
refining, storage, and utilization of petroleum (Kvenvolden and Cooper, 2003).
Thailand also faces petroleum contamination in various environments, including the
Chao Phraya and Tha Chin Rivers. Both rivers are the main water transportation
resulting in frequent oil spills. Furthermore, the Chao Phraya River flows through the
major industrial property, and the Tha Chin River passes residential and agricultural
area. There are over 200 oil spill accidents in Thai water during 1974 — 2009 as shown
in Figure 2.1. Table 2.1 shows the major accidents of the oil spill in the Gulf of
Thailand during 1974 — 2009. In addition, petroleum oil has been spilled in both
rivers; for example, gasoline spilled onto the Chao Phraya River (Mthai, 2012). In
2014, diesel fuel oil spilled into the Chao Phraya River covered a radius of 40 meters
from capsized boat (National News Bureau of Thailand, 2015). The yacht that
contained 1,500-liter diesel sank in the harbor of the Riverside Bangkok Hotel and the
oil slick was observed (Khaosod, 2015). As a consequence of frequent oil spills, the
level of petroleum contamination in Thai waters is low to medium level when
compared with more urbanized and industrialized countries. The concentration
ranges of petroleum hydrocarbons found in the water and sediments in the rivers are

shown in Table 2.2.


http://news.mthai.com/hot-news/general-news/181224.html
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Number of Spills

Figure 2.1 Frequency of oil spill events in Gulf of Thailand during 1974 — 2009
(Marine department, 2009)

Table 2.1 The major accidents of the oil spill in the Gulf of Thailand during 1974 —
2009 (Wattayakorn, 2012).

Volume
Date Oil type Location Cause
(tonnes)
10 Apr Diesel & fuel 2100 Chao Phraya Collision of tanker
1974 oil River mouth (Visahakit) and container
vessel
29 May Unknown 300 Chao Phraya Collision of tanker
1977 River mouth (Vachira) and container
vessel
1979 Fuel oil 300 Koh Sichang, Grounding due to fire
Chonburi (Sun Flower)
16 Jan Fuel oil 200 Chao Phraya Collision of container

1996 River mouth vessels
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Table 2.1 The major accidents of the oil spill in the Gulf of Thailand during 1974 -
2009 (Wattayakorn, 2012) (continued).

Volume
Date Oil type Location Cause
(tonnes)
15 Jan Diesel oil 240 Sattahip, Grounding of tanker
2002 Chonburi (Eastern Fortitude)
17 Dec Fuel oil 210 Laemchabang, Collision of container
2002 Chonburi vessel and tanker (Sky
Ace)
26 Dec Fuel oil 150 Koh Larn, Grounding of tanker
2004 Pattaya, (Dragon1)

Chonburi

Table 2.2 Concentration ranges of petroleum hydrocarbons in water and river

sediments (Wattayakorn, 2012).

Water (ug ) Water (pg U dw)
Study areas chrysene chrysene References
equivalent equivalent
Chao Phraya 287 -438 n.d. Nokyoo, 1995
estuary (12.1+10.6)
Tha Chin estuary 0.93 - 4.25 4.84 - 151.2 Sunwanich,  1991;
(2.07+0.88) (52.8+37.4) Sunwanich &

Wattayakorn, 1991,
Wattayakorn &
Sunwanich, 1992
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Table 2.2 Concentration ranges of petroleum hydrocarbons in water and river

sediments (Wattayakorn, 2012).

Water (ug U) Water (pg U dw)
Study areas References
chrysene equivalent  chrysene equivalent

Chao Phraya 0.19 - 0.80 n.d. Chartkittikulw

estuary 0.26 - 0.55 ong, 1996;

Tha Chin estuary Onodera et
al.,, 1987

Chao Phraya 0.21 -0.43 0.72 - 1.57 Makjun &

Tha Chin 0.15-0.34 0.86 - 1.18 Ponmanee,
2010

Most petroleum hydrocarbons used for cargo ships are fuel oil leading to
contamination of such oil in aquatic environments. The main route of entry to the
aquatic environment is accidental spillage during storage, transportation, and use;
therefore, the fuel oils are of special concern. The fuel oil is the mixtures that
contain polycyclic aromatic hydrocarbons (PAHs), metals, and other compounds. For
example, the composition of the fuel oil obtained from PTT Public Company
analyzed by TLC-FID analysis consists of 15% saturates, 62% aromatics, 15%
asphaltene, and 8% resin. These components of fuel oil including long-chain
aliphatic and PAHs appear in the aquatic environments through accidents, spills or

leaks because of its persistence and recalcitrance (Grimwood, 2001; Ou et al., 2004).
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2.2 Component of fuel oil

2.2.1 Aliphatic hydrocarbons

Aliphatic hydrocarbons are composed of two different types including straight
and saturated carbon chain starting from C6 - C40 that contains odd and even
carbon numbers indicating natural and anthropogenic hydrocarbon sources. However,
n-alkanes are a predominant component of the aliphatic hydrocarbon, which is a low
soluble and high hydrophobic compound. In scientific literature, n-alkane (linear
alkane) has been mentioned as short-chain (C1 to C4), medium-chain (C5 to C9),
long-chain (C10 to C17), and very long-chain n-alkanes (more than C18) (Matsui et al.,
2014). Moreover, there have been reported that these aliphatic hydrocarbons are
residual petroleum hydrocarbons and persist in the environment. Furthermore,
United Nations Environmental Program (UNEP, 1995) introduced guidelines to identify
the levels of harmful (>10 g g-l) and harmless (<10 pg g_l) aliphatic hydrocarbons in

the marine sedimentary environment.

2.2.2 Polycyclic aromatic hydrocarbons (PAHSs)

The fuel oils contain several types of monocyclic and polycyclic aromatic
hydrocarbons, PAHs, which are composed of two or more fused benzene rings. PAHs
are ubiquitously present in residual fuels because they are less volatile and soluble
compounds, which will either adsorb to suspended solid or subsequently settle in
the sediments (Grimwood, 2001). Furthermore, they are widely distributed in the
environments including soil, sediment, air, and water (Ravindra et al., 2008; Wilcke et
al,, 2014). They are formed from any incomplete combustion of fossil fuels, coal
liquefaction and gasification process (Khalil et al., 2006; Lundstedt et al., 2007). PAHs
were additionally found in water and sediments of Chao Phraya and Tha Chin rivers
because both of rivers are the main transport routes resulting in the often oil
accidents (Wattayakorn, 2012). PAHs, which are found in Chao Phraya and Tha Chin
Rivers, are acenaphthene, fluorene, phenanthrene, fluoranthene, and pyrene
(Boonyatumanond et al., 2006). Total PAH concentrations contaminated in water and

sediments of the Chao Phraya and Tha Chin Rivers were 2.47 to 1710 ng L and 0.03
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to 10.7 mg g’1, respectively. In addition, each PAH has different properties due to
their Octanol - Water Partition Coefficient; log K, (3.4 — 7) and Octanol - Carbon
Partition Coefficient; log K. (3.11 - 6.14) (Jonsson et al., 2007). It indicates that they
are low solubility and high hydrophobicity resulting in the accumulation and
attachment of solid particle including soil and sediment (Zhang and Tao, 2009).
Moreover, Purcaro et al. (2013) reported that the European Scientific Committee on

Food (SCF) identified 15 PAHs as both carcinogenic and genotoxic (Table 2.3).
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Table 2.3 Name, structure, and molecular weight of PAHs by the Environmental

Protection Agency (EPA) and the European Union (EU) (Purcaro et al., 2013)

Compounds Abbreviation mw Formula

EPA PRIORITY

Naphthalens Na 128
Acenaphtene Ac 154 Il
Acenaphthylene Ap 152 |

Fluorene F 166 Q‘O
Phenanthrene Pa 178 OGQ
Anthracene A 178 OOO
Fluoranthene Fl 202 (:18
Pyrene P 202 %
EPAEU PRIORITY

Benz[a]anthracene BaA 228 0 O g
Chrysene Ch 228 CQ‘Q
Benzo|b]fluoranthene BbF 252 OO/.
Benzo[k]fluoranthene BkF 252 OO./Q
Benzo[a]pyrene BaP 252 q‘i" O
Dibenz[ah]anthracene DBahA 278 6
Benzo|[g h,i|perylene BghiP 276

Indeno[1,2,3-cd]pirene P 276
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Table 2.3 Name, structure, and molecular weight of PAHs by the Environmental

Protection Agency (EPA) and the European Union (EU) (Continued) (Purcaro et al,,

2013)

Compounds Abbreviation mw Formula
EU PRIORITY

‘Cyc]openta[c,d]pyrene CPp 226
|Benza[c]ﬂuarene BcF 216
S-methylchrysene 5MeCh 242
|Benzn[j]ﬂunranthene BjF 252
|Dibenm[a.l] pyrene DBalP 302
|Dibenm[a.e]pyrene DBaeP 302
|Dibenza[a.i] pyrene DBaiP 302
|Dibenm[a.h]pyrene DBahP 302

2.3 Toxicity of fuel oil and their petroleum hydrocarbon fractions

Among petrochemical products, fuel oils are of special concern because they
are widespread in aquatic ecosystems and highly toxic to aquatic organisms. The fuel
oil consists of complex and various components that result in volatile and
recalcitrant substances. The residual petroleum products accumulate in the soils and
sediments because some chemicals in petroleum oil strongly adsorb to soil and
sediment particles and have high hydrophobicity. Thus, the amounts of toxic

contaminant and their toxicity depend on the time, dispersal process, and
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weathering process. These residues have resulted in negative impacts on aquatic
ecosystem including health effects on wildlife and human.

There are several researches studying the effect of fuel oil on aquatic
organisms due to the bioaccumulation of fuel oil in the aquatic ecosystems. For
example, Alonso-Alvarez et al. (2007) studied the effect of fuel oil on wild yellow-
legged gulls that are the uppermost trophic level of the marine food chain. They fed
with heavy fuel oil from the Prestige oil spill. The result showed that heavy fuel oil
reduced glucose and inorganic phosphorus levels in plasma of gulls, as well as a
trend to significantly reduced creatinine values when compared with control gulls
fed only with vehicle (i.e. vegetable oil). The lower glucose levels in P-gulls may
suggest a decrease in food intake.

In addition, Chao et al. (2012) evaluated the toxicity of four fuel oil including
F120, F180, F380, and No.-20 by exposing the marine microalgae Chlorella spp.
(Chlorophyta) and Skeletonema coastatum (Bacillariophyta). The results from
bioassay showed that F180 water accommodated fraction (WAF) was the most toxic
to both microalgae. In addition, F120 and F380 were especially toxic to marine
diatom.

Similarly, Martin et al. (2014) found that H6303 and H6303W fuel oil was
chronically toxic to rainbow trout fish embryos followed by H7102 and MESA.
Moreover, it was found that the heavy fuel oil is toxic to fish more than crude oil.
The alkyl PAH concentrations in oil also explain the rank order of toxicity. Hence, the
heavy fuel oil to sink and spawning shoals caused a long-term risk of the fish embryo
(developing fish) because PAHs were continually released from the heavy fuel oil.

Furthermore, Oeder et al. (2015) found that fuel oil particles were directly
deposited on lung cells, changed in the cellular system, and especially induced the

transcription of primary and secondary inflammation markers (IL-8, IL-6, and IL-1).
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2.4 Bioremediation

One of the promising technologies to reclaim petroleum-contaminated sites is
bioremediation, using microorganisms against algae, bacteria, yeast and fungi to
transform or detoxify toxic pollutant to less hazardous chemicals. It is due to high
efficiency, eco-friendliness, and low cost (Das and Chandran, 2010). Bioremediation
has three main approaches (Perelo, 2010; Yu et al., 2005):

(1) Natural attenuation utilizes intrinsic degradation capacities of
the autochthonous microbial population to degrade contaminant. The advantage is
the ability to avoid damaging the ecologically sensitive habitat. Nevertheless, this
method often takes a long time to complete because population size of native
microorganism is low.

(2) Biostimulation, supplying additional nutrients, which affect the
growth of indigenous population, is a strategy to promote biodegradation.

(3) Bioaugmentation, introducing appropriate bacteria (a versatile
microorganism or an efficient consortium), is a possible mean to enhance
biodegradation of contaminants. Several papers indicate that the bioaugmentation is
a promising technique to solve toxic substrates and enhance removal efficacy
(Asquith et al.,, 2012; Wu et al,, 2008). Interestingly, it has been reported that it is
suitable to treat water and sediment contaminated by chemicals as an alternative
method (Semrany et al.,, 2012). For instance, Ruberto et al. (2003) observed the
response of the indigenous soil bacteria to the presence of gas-oil in microcosm. The
initial concentration of gas-oil was 14,380 g g-1 (dry weight). Indigenous bacteria
removed 35% of the total hydrocarbon concentration (THC) while bioaugmentation
with Acinetobacter sp. strain B2-2 caused a decrease of 65% in 51 days. The results
showed that B2-2 strain, bioaugmented bacterium, could improve the biodegradation

efficacy representing a valuable alternative tool.
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2.5 Use of defined consortia for bioremediation

In general, bacteria are isolated from contaminated areas that are the target
for treatment. Most researchers often isolate the bacteria from hydrocarbon-
contaminated sediments to obtain effective bacteria degrading those contaminants.
The bacteria are cultured in the proper condition by enrichment technique for
increasing the amount of hydrocarbon-degrading bacteria. Effective hydrocarbon-
degrading bacteria can be isolated from sediments, which are the accumulation
source of recalcitrant toxic pollutants. Sediments also have a high diversity of
microorganisms. There are many types of research on isolating hydrocarbon-

degrading bacteria from petroleum-contaminated sediment shown in Table 2.4.
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However, bioaugmentation with pure cultures often fails due to predation or
completion with the indigenous microorganisms, the presence of bacteriophages, or
the lack of acclimation the environment (Herrero and Stuckey, 2015). Specific
consortia may be thus more useful in ensuring successful bioaugmentation, even in
the presence of a single contaminant compared with a single strain (He et al., 2013;
Jacques et al., 2008). The defined consortium or mixed culture is the use of different
single strains and constructed and artificial microbial consortium by mixing several
known strains together. Mikeskova et al. (2012) explained why consortia achieve the
bioaugmentation. The ideal defined consortia should provide the multiple metabolic
pathways available for contaminant biodegradation, high diversity in a microbial
consortium, ability to degrade a wider substrate and shorter lag period in the
degradation than pure cultures, and competition to indigenous bacteria. Therefore,
the criteria for selection of single strains are important for formulation of the defined

consortia following as

2.5.1 Individual strains having the ability to degrade various substrates

The isolates capable of degrading various substances were selected to
reconstitute the effectively mixed culture because they were expected to have a
higher ability to degrade chemicals. For example, Jasmine and Mukherji (2015)
isolated pure cultures and studied their ability to degrade component of oil including
alkane and PAHs. They chose bacteria that were able to degrade both aliphatic and
PAHs. The result revealed that the defined consortia composed of 3 to 5 strains
could degrade dried oily sludge (15% w/v) up to 42% and 72%, respectively within
30 days. While the individual strains could not degrade dried oily sludge. In such
cases, compared to single isolates, these consortia showed high efficacy in
degradation of toxic compounds since they are capable of using a larger number of

PAHs and have a high degradation and mineralization rate in vitro and soil.
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2.5.2 Biosurfactant producing activity

Owing to limitation of bioavailability e.g. low aqueous solubility and high
hydrophobicity, biosurfactants, which are surface-active biomolecules produced by
microbes, are recognized for enhancement the solubility of hydrocarbon
compounds. Moreover, the biosurfactants are considered the utilization including
uptake of soluble fraction, production of surfactants for physical modification of
substrates and direct interaction of substrates (Cao et al., 2009; Obuekwe et al.,
2009).

Bacteria also play a major role in biosurfactant production. The reported
microbial communities producing biosurfactant are Acinetobacter, Arthrobacter,
Pseudomonas, Halomonas, Bacillus, Rhodococcus, and Enterobacter (Shekhar et al.,
2015). Biosurfactants have many advantages such as low toxicity, higher
biodegradability, better environmental compatibility, and wide selectivity (Kuyukina
et al,, 2005). Zhao et al. (2011) found that the addition of rhamnolipids produced by
Pseudomonas aeruginosa ATCC9027 enhanced the biodegradation of phenanthrene
(250 mg L) from 82% to 93% in 30 days.

Researchers also found that PAH-degrading bacteria have the ability to
produce biosurfactant during PAH degradation. For instance, a new isolated
Brevibacillus sp. PDM-3 was able to degrade 93% of phenanthrene (250 mg L—1) in 6
days (144 h) whereas a decrease surface tension from 47 to 23 mN min 6 days. It
can be suggested that the biosurfactant produced by microbes might enhance the

bioavailability of bacteria to toxic compounds (Reddy et al., 2010).

2.5.3 Cell hydrophobicity

In addition, bacteria, which have cell-surface hydrophobicity, directly contact
to hydrophobic hydrocarbons. The bacteria with cell-surface hydrophobicity not only
results in enhanced interaction between the organisms but also the hydrophobic
substrates. Obuekwe et al. (2009) revealed the relationship between cell surface
hydrophobicity (CSH) and the ability of such bacteria to degrade hydrocarbons.
Bacillus thuringensis which exhibited low CSH values (SAT, 2.0 M; MATH, 3.5%; PB,
0.5+0.05x10" cells mmz) degraded only 39.6% of the crude oil substrate in 28 days.
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While B. licheniformis which exhibited higher CSH values (SAT, 1.8 M; MATH, 4.1%; PB,
5.0+0.9x10° cell mm?) degraded greater amount (45.4%) of the crude oil as a
substrate within 28 days. It suggested that the extent of degradation tended to
increase if the CSH of the isolates is increased. Accordingly, cell hydrophobicity can
be criteria for selection of bacteria as defined consortia. For example, Chanaim (2015)
used the cell hydrophobicity and the biodegradation efficiency of the mixture of
PAHs as criteria to select the highest effective bacterial consortium. It was found that
two consortia, G1 and G7, had the highest capability of the biodegradation of the
PAH mixtures consisting of phenanthrene, anthracene, fluoranthene and pyrene (50
mg L of each PAH) at 68% and 63% within 14 days, respectively. The result of
biodegradation is correlated to cell surface hydrophobicity by which two consortia

had the highest hydrophobicity of bacterial cells at 66% and 68%, respectively.

2.5.4 Genes involved in petroleum degradation

Several aerobic bacteria, which degrade petroleum hydrocarbon, must have
specific genes encoding for enzymes in biodegradation pathway. Key genes involved
in petroleum degradation are monooxygenase and dioxygenase genes (Abbasian et
al., 2015; Cébron et al., 2008; Kohno et al., 2002). Monooxygenase gene is involved in
key steps in alkane degradation. Commonly, n-alkane are oxidized by an electron
carrier dependent monooxygenase system such as alkane hydroxylase. Additionally,
monooxygenase is classified into two class base on electron transport system and
microorganisms including rubredoxin-dependent enzyme containing 2FeO encoded
by the alkB gene and alkane hydroxylase-containing cytochrome P450
monooxygenase in CYP153 gene. Dioxygenase gene is involved in a key step in PAH
degradation by which the dioxygenase gene encoded aromatic ring-hydroxylating
dioxygenase enzyme. The aromatic ring-hydroxylating dioxygenase enzymes are
grouped into four classes: the toluene/biphenyl family, the naphthalene family, the
benzoate family, and finally the phthalate family. Based on above data, several
oxygenase enzymes are specific for different substrates. Therefore, biodegradation
and genetic mechanisms of microbial degradation of petroleum hydrocarbon are

necessary to design efficient and predictable remediation procedures.
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2.5.5 Metabolic pathway for petroleum hydrocarbon degradation

The petroleum hydrocarbons contaminated in the environment are removed
by bacteria because bacteria have the physiological and metabolic capabilities to
degrade pollutants. Bacteria play a role in biodegradation of petroleum hydrocarbon,
especially aerobic bacteria. The aerobic bacteria use different types of oxygenases to
insert one or two atom O, into target compounds. Each class of compound was
degraded by a specific enzyme because of the high diversity of the molecular
structures of hydrocarbons in petroleum oil. Hence, hydrocarbon compounds were
mineralized by different metabolic pathways. In the catabolic pathway, hydrocarbons
are taken up by specific microbes and then converted into simple organic
compounds. A complex mixture of hydrocarbons is the main fraction in fuel oil. Thus,
the fundamental fuel oil degradation metabolism can be described by
biodegradation pathways of each hydrocarbon type. Mostly, studies have focused on

the biodegradation pathway of alkane and PAHs.

2.5.5.1 Aerobic alkane degradation pathway
The alkane compounds are first oxidized into alcohol at the terminal or sub-
terminal alkane. A primary alcohol is produced and oxidized into an aldehyde,
subsequently transformed via oxidation into a fatty acid which is funnel into f3-
oxidation. The alkane is oxidized at sub-terminal alkane into a secondary alcohol

(Rojo, 2009). Bacterial n-alkane degradation pathways are shown in Figure 2.2.
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Figure 2.2 Alkane degradation pathways in aerobic and anaerobic bacteria. Aerobic
pathways (a, b) are shown in the left panel, while anaerobic pathways (c, d) are
shown in the right panel. Aerobic alk-like degradation pathways oxidize alkanes into
fatty acids (a). In some cases, W-hydroxylation generates a dicarboxylic acid. Sub-
terminal oxidation of n-alkanes (b) in some Rhodococcus, Mycobacterium, and
Pseudonocardia strains yields a primary alcohol two carbons shorter than the original
alkane which is further oxidized as shown in a (dotted line). Anaerobic degradation (c)
in D. oleovorans Hxd3 includes the loss of two terminal carbon atoms via an
unknown process. Anaerobic degradation in D. alkenivorans AK-01 (d) (Fuentes et al,,

2014)
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2.5.5.2 Aromatic degradation pathway
For aerobic microbial metabolism, aromatic hydrocarbons (i.e. biphenyl,
naphthalene, phenanthrene, and pyrene) are initially oxidized by a ring-hydroxylating
dioxygenase (RHD) (Peng et al,, 2013; Seo et al, 2012) as shown in Figure 2.3. The
ring-hydroxylating dioxygenase oxidizes aromatic molecules into cis-dihydrodiol.
Then, the cis-dihydrodiol are transformed into catechol by a dehydrogenase. The
dihydroxylated aromatic ring undergoes fission in meta- or ortho-position which

depends on the catabolic pathway (Peng et al., 2013).
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Figure 2.3 Bacterial aerobic aromatic hydrocarbon degradation pathways. In general,
initial aromatic ring activation yields a cis-dehydroxylated ring, which is re-aromatized
resulting in a catechol-like ortho di-hydroxylated ring. Ring cleavage at ortho
(intradiol) or meta (extradiol) position depends on the catabolic route. NDO
naphthalene dioxygenase, DHD dihydrodiol dehydrogenase, EXDO extradiol
dioxygenase, INDO intradiol dioxygenase; IS isomerase, HA hydratase aldolase, ALD
aldehyde dehydrogenase, HX hydroxylase, PAH-RHD PAH ring-hydroxylating
dioxygenase, DC decarboxylase, RHD ring-hydroxylating dioxygenase, BDO biphenyl

dioxygenase, XM xylene monooxygenase, HL hydrolase (Fuentes et al., 2014).
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2.5.6 Defined consortium

Recently, many studies have employed the individual degradation capacities
of different bacterial genera to improve the efficiency of biodegradation of toxic
pollutants (Barsing et al, 2011; Cyplik et al, 2011; Gojgic-Cvijovic et al,, 2012;
Seneviratne et al,, 2008; Simarro et al., 2011). Each research studied on the removal
of toxic pollutants by the mixed cultures selected by different criteria to reconstitute
the effectively defined consortia shown in Table 2.5. Consequently, the capabilities
of  hydrocarbon-degrading  bacteria, biosurfactant  producing ability and
hydrophobicity of bacterial cell were used as criteria to select effective bacteria for

formulation of defined consortia in this study.
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2.6 Application of cell immobilization

For environmental applications, free cell, and immobilized cell have been
used as an inoculum in biodegradation in contaminated sites. However, the
enhancement of bicaugmentation may also be achieved by delivering suitable
microorganisms immobilized on various carriers (Mrozik and Piotrowska-Seget, 2010).
There are reported that immobilized cell has a higher efficacy of petroleum
degradation than that of a free cell. The immobilized cell provides high biomass, cell
recycles, elimination of washout problems at high dilution rate, genetic stability, high
resistance, and reduction of maturation time for some products.

In general cell immobilization was defined as “the physical confinement or
incapable of movement of intact cells to a certain region of space with preservation
of some desired catalytic activity” (Kourkoutas et al.,, 2004). The immobilization can
be divided into four major types (Adsorption, Covalent binding, Entrapment, and
Encapsulation) based on the employed physical mechanism shown in Figure 2.4
(Bayat et al., 2015). This study interested a physical adsorption due to quick and
simple preparation, low cost, and unnecessary for chemical additives. The adsorption
accomplished cell immobilization based on the physical mechanism between the
microbe and surface of water-insoluble carriers or matrix. The interaction is weak
forces including hydrogen bonds, ionic bonds, hydrophobic bonds, van der Waals
forces. Consequently, a better interaction between the substrates and immobilized
cells synergistically resulted in developing the degradation rate (Zhen-Yu et al,

2012).

e

a) Adsorption b) Covalent Binding ) Entrapment d) Encapsulation

Figure 2.4 Classification of cell immobilization (Bayat et al., 2015)
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Tao et al. (2010) investigated the biodegradation of phenanthrene in artificial
seawater by using free cell and immobilized cell of Sphingomonas sp. GY2B. The
results showed that GY2B immobilized on rice straw had a higher degradation rate in
both mineral salt medium and 80% artificial seawater than that of the free cell of
GY2B. At 32 h, immobilized strains could degrade more than 95% of phenanthrene
(100 mg L>1) whereas free cell could degrade around 80% of phenanthrene.

Banerjee and Ghoshal (2011) studied the phenol degradation by Bacillus
cereus AKG1 and AKG2 in both using free cells and alginate immobilized cells.
Various concentrations were investigated the degradation efficiency of free cells and
immobilized cells. Compared to free strains, immobilized strains had a higher
degradation efficacy at higher phenol concentration (1,500 - 2,000 mg L_l) by 53% -
89% around 26 days for immobilized AKG1 and 36 days for immobilized AKG2.
Immobilized cells, thus, have the potential of degrading higher concentrations of
toxic pollutants.

Lin et al. (2015) investigated the use of bagasse as a carrier to immobilize
Acinetobacter venetianus. The degradation of alkane by immobilized A. venetianus
was observed, and the results revealed that the immobilized cells could remove
93.3% of tetradecane (400 mg Lfl) while free cells and bagasse only removed 78%
and 24%, respectively after 36 h incubation.

Moreover, Khondee et al. (2012) demonstrated that the oil removal efficiency
of chitosan-immobilized Sphingobium sp. P2 was higher than that of free cells. The
immobilized bacteria could remove 80 - 90% of the 200 mg L™ total petroleum
hydrocarbons (TPHs) from both synthetic and car wash wastewater. It was likely due
to the number of bacterial cells both on chitosan flasks and in the wastewater,
significantly increased 10-fold (1.00x10° to 1.67x10° CFU g chitosan). On the
contrary, the efficiency of chitosan-immobilized Sphingobium P2 in carwash
wastewater was lower than that in synthetic wastewater. It probably was due to the
competition for lubricant and another nutrient between the indigenous bacteria and
P2 or other toxic contaminants in carwash wastewater.

Above literature reviews, they concluded that the immobilization of bacterial

cells has high efficacy on the degradation of petroleum oil. Thus, this study interests
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to study the fuel oil removal efficiency by immobilized cells. Polyethylene plastic
pellets are interested in this study because this study expected to apply for in situ
bioremediation at petroleum oil contaminated-ports in Chao Phraya River. The
polyethylene plastic pellet is durable, lightweight, capable of floating, and non-toxic.
In addition, few studies are available in the literature on polyethylene plastic pellets
as carriers. Nopcharoenkul et al. (2013) immobilized Pseudoxanthomonas sp. RN402
on polyethylene plastic pellets as carriers. The immobilized cell not only removed
diesel oil by 1,050 mg L day’ but also maintained high efficacy and viability
throughout 70 cycles of bioremediation treatment of diesel-contaminated water.
Additionally, it is interesting in using immobilized bacterial consortium for
enhancement of fuel oil degradation. Recently, there have been reports studying the
immobilized bacterial consortium. For example, Shen et al. (2015) showed that the
semi-coke immoblized microbial consortium (47%) degraded 3 ¢ L of crude oil
higher than that of a free microbial consortium (26%) under environmental
conditions including 20 ¢ L NaCl, temperature of 25°C, and pH at 7.2-7.4 within 5
days. Moreover, SEM and FTIR analysis showed that the structure of semi-coke
became more porous resulting in easily adhered to the microbial consortium. It
suggested that microbial consortium immobilized might be able to apply in real oil
spill bioremediation. This research is the first report that the immobilized defined
consortium applied to fuel oil removal in freshwater from Chao Phraya. In
conclusion, this research was divided into 3 phases: isolation of hydrocarbon-
degrading bacteria from the Chao Phraya and Tha Chin Rivers sediments and their
biodegradation capability, formulation of defined consortia for petroleum
degradation, and immobilization of a defined consortium after formulation. This
study will provide the optimum formulation of defined consortia for petroleum
hydrocarbons degradation in water and effective immobilized cells of the defined

consortium for petroleum hydrocarbons removal from port water.
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2.7 Monitor of bacterial community by 16S rRNA gene amplicon sequencing
analysis by next generation sequencing

In reality, in situ bioremediation is a complex circumstance requiring more
than one contaminant and different bacterial strains concerning different metabolic
pathways. Hence, a monitor of the amount of hydrocarbon-degrading bacteria and
petroleum hydrocarbon remaining is necessary for bioremediation. It is important to
understand bacterial communities that involved in bioremediation. The use of
molecular biology has proven to be powerful tools for analyzing the structure of
total bacterial population or exogenous bacteria (added microorganisms) for
bioaugmentation such as PCR-DGGE and clone libraries. Nevertheless, these
technologies have only provided information on a few bacterial communities. The
16S rRNA gene amplicon sequencing analysis by next generation sequencing has
greatly expanded our understanding and provided more comprehensive microbial
communities information. According to Techtmann and Hazen (2016) reviewed the
metagenomic applications in the environmental monitoring and bioremediation. It
was found that 16S rRNA gene amplicon sequencing analysis was applied to monitor
bacterial communities in natural attenuation and biostimulation. The 16S rRNA gene
amplicon sequencing analysis is interesting to apply with bioaugmentation because it

is precise and convenient.
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CHAPTER IlI
METHODOLOGY

3.1 Types of equipment
1. Autoclave from Kakusan, Japan
2. Centrifuge (Model 1920) from Kubota, Japan
3. Controlled environment incubator shaker (model G-27) from New Brunswick
Scientific Co. th., USA.
4. Dynamic contact angle meter and tensiometer (Model DCAT21) from Future Digital
Scientific Corp., USA.
5. Deep freezer -20°C (model MDF-U332) from Sanyo Electric, Japan
6. Deep freezer -80°C (model ULT1786) from Forma Scientific co.th, USA
7. DNA-Thermal Cycle (model UV-160A) from Gene Technologies co.th, England
8. Flask 250 mL and 500 mL from Pyrex co.th, USA.
9. Gas chromatography (GC) equipped with 320 um x 30 m HP5 column coated with
5% of phenyl methyl ciloxane (0.25 um)
10. Gel documentation system (model Gel Doc 2909TM) from Bio-Rad co.th, USA
11. Hot air oven (model D06063) from Memmert, Germany
12. High-Performance Liquid Chromatography (HPLC) equipped with 4.6 x 150 mm
Senshu Pak Pegasil ODS column (C18), pump (model LC 10ADVP), autosampler
(model SIL-10ADVP), and UV-Visible detector (model SPD-10ADVP) from Shimadzu
Corp., Japan
13. Horiba oil content analyzer from Petro — instrument CROP., LTD.
14. Incubator 30°C (model BE800) from Memmert, Germany
15. Incubator 37°C from New Brunswick Scientific, USA
16. ISSCO laminar flow (model HT-122.5) from International Scientific Supply corp.,
USA
17. mini agarose gel electrophoresis system (model i-mupid) from Cosmo Bio, Japan
18. Oven from Contherm Scientific, New Zealand

19. pH meter (model 240) from Corning, USA.
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3.1 Types of equipment (Continued)
20. Spectrophotometer from Thermo Spectronic, USA.
21. UV-vis spectrophotometer (model nanodrop 2000) from Thermo Scientific corp.,

USA

3.2 Chemicals

1. Agarose from Research Organics, USA 34.

. Ammonium nitrate (NH;NOs) from Merk, Germany

. Arabian light crude oil from PPT group co.th., Thailand

. Bacto agar from Difco, USA

. Calcium chloride (CaCl,-2H,0) from Merk, Germany

. Cetyl-trimethyl ammonium bromide (CTAB) from Bio Basic, Canada
. Chloroform from RCI Labscan, Thailand

. Diesel oil from PPT group co.th., Thailand

O 00 ~N O U B~ WDN

. Di-potassium hydrogen phosphate (K,HPO,4) from Merk, Germany
10. Di-sodium hydrogen phosphate (Na,HPO,4-12H,0)

11. Docosane from Sigma, USA

12. Ethanol from Merck, Germany

13. Ethidium bromide from Promega, USA

14. Ethylene Di-amine tetra acetic acid (EDTA) from Sigma, USA
15. Ethyl acetate from Macron, USA

16. Ferric chloride (FeCls-H,0)

17. Fluorene from Kanto, Japan

18. Fluoranthene from Kanto, Japan

19. Fuel oil from PPT group co.th, Thailand

20. Glycerol (C3HgO3) from Research Organics, USA

21. GoTag®gPCR Master Mix from Promega, USA

22. Hexadecane from Sigma, USA 43.

23. Hexane from RC| Labscan, Thailand

24. Hydrochloric acid (HCl) from BDH Chemicals, Australia

25. Isopropanol from Merck, Germany



3.2 Chemicals (Continued)

26.
27.
28.
29.
30.
31.
32.
33,
34,
35.
36.
37.
38.
39.
40.
a1,
42,
43,
aq.
45,
a6,
a7,

Lysozyme from Bio Basic, Canada

Manganese chloride (MnCl,) from Merck, Germany
Magnesium chloride (MgCl,) from Merk, Germany
Magnesium sulfate (MgSO,-7H,0) US®W Carlo Erba, France
Methanol from Merck, Germany

Phenanthrene from Sigma, USA

Phenol from Merck, Germany

Potassium di-hydrogen phosphate (KH,PO,) from
Proteinase K from United States Biological, USA

Pyrene from Sigma, USA

RNase A from Promega, USA

Rubidium chloride (RbCl) from Sigma, USA

Standard DNA 100 bp DNA ladder from Geneaid, Taiwan
Standard DNA Lambda Hindlll from New England Biolabs, UK 33.
Sodium chloride (NaCl) from Merk, Germany

Sodium dodecyl sulfate (SDS) from NacalaiTesque, Japan
Sodium hydroxide (NaOH) Merck, Germany

Sodium sulfate (Na,SO,) Merck, Germany

Tetradecane from Fluka, Germany

Tryptone from Difco, USA

Urea (CH4N,0) from Research Organics, USA

Yeast extract from Difco, USA
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3.3 Procedure

3.3.1 Isolation and identification of hydrocarbon-degrading bacteria from

sediments

3.3.1.1 Enrichment and isolation of hydrocarbon-degrading

bacteria

Seven sediments from two rivers, Chao Phraya and Tha Chin Rivers, were
collected in the year 2012 following the method from Pollution Control Department
(PCD, 2012). The sediment samples were supported by the National Science and
Technology Development Agency under the J-RAPID program (P-1201060). The
sampling locations of seven sediments were shown in Figure 3.1, and the
physiochemical properties of the Chao Phraya and Tha Chin River sediments were
shown in Appendix E. To enrich PAH-degrading bacteria, 5 ¢ of sediments were added
into 45 mL of carbon free mineral medium (CFMM) (Appendix A) supplemented with
mixed PAH solution including fluorene, phenanthrene, fluoranthene, and pyrene (50
mg L of each PAH) (Appendix B). The culture flasks were incubated at 30°C with
agitation at 200 rpm. After 7 days of incubation, an aliquot of inoculum (5 mL) were
transferred to fresh medium containing the same amount of PAHs. After a series of
four further enrichments, 0.1 mL of inoculums having broth color change or turbidity
were spread on CFMM agar plates supplemented with individual PAH and incubated
at 30°C. The colonies surrounded by a clear zone were purified onto Luria-Bertani
(LB) agar. Those isolates were cultivated in liquid CFMM supplemented with 100 mg
L™ of individual PAH to confirm their activity. The control was CFMM containing PAH
without inoculation. All PAH-degrading isolates were identified by 16S rRNA gene

sequencing analysis.
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(a)

(b)

Figure 3.1 Sediment sampling points (a) Chao Phraya and (b) Tha Chin Rivers. The
sediments at CP1, CP4, CP5, CP11, CP12, TJ1 and TJ8 were enriched to obtain PAH-

degrading bacteria.
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3.3.2 Determination of PAH biodegradation efficiency of eight PAH-

degrading bacteria

3.3.2.1 Inoculum preparation
Isolates were cultured in 100 mL of 0.25xLuria-Bertani (0.25xLB) broth
(Appendix A) and incubated at 30°C with agitation at rpm for 1, 4 and 7 days
depending on the type of bacteria. Bacterial cells were harvested by centrifugation at
8,000 rpm, 4°C for 10 min and washed with 0.85% NaCl twice a time. Then, the
bacterial cells in 0.85% NaCl solution were measured to obtain ODgynm equal 1
(approx. 10° CFU ml__l) and shaken overnight to allow the cells used the acclimated

nutrients.

3.3.2.2 Examination of PAH biodegradation of isolated bacteria

The inoculum (0.5 ml) at final concentration 10° CFU mL" was inoculated
into 4.5 ml of CFMM supplemented with 100 mg L of individual PAH (fluorene,
phenanthrene, or pyrene) depending on the substrate used for isolation of PAH-
degrading strains in 3.3.1.1. The culture tubes were incubated at 30°C with agitation
at 200 rpm. The samples were collected at various time intervals; 3 days for
phenanthrene, 7 days for fluorene, and 14 days for pyrene to examine PAH remaining
by HPLC and compared with abiotic control (without inoculation). Biodegradation

experiments were carried out in triplicate.
3.3.2.3 PAH extraction from CFMM liquid culture

According to the method described in Klankeo et al. (2009), HCl was added to
the medium to adjust the acidity-alkalinity of the medium. Ethyl acetate (5 mL) was
then added and mixed for 1 min by votex and let stand for separation. The extract
was dried using anhydrous sodium sulfate to remove aqueous phase and

evaporated. Residual PAHs in the extract were analyzed by HPLC.
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3.3.2.4 Analysis of PAH remaining by HPLC
The dried extract was dissolved with 1 mL of methanol and vortex for 1 min.
The solution was filtrated with PTFE (0.22 um). The analysis of PAH remaining was
performed by HPLC using the following condition.

Column inertsill® ODS 4.6 diameter x 150 mm length
Column temperature 40°C

Mobile phase 80% methanol

Flow rate 1 mL min

UV wavelength 275 nm

Injection volume 10 pL

The peak area from analyzer was calculated for determination of percentage

of PAH degradation compared with control as following:

% PAH degradation = (Peak area of control - Peak area of samples) x

(Peakareaofcontrol-Peakareaofsample)x 100 Peak area of control

100

Peakareaofcontrol

3.3.3 Analysis of substrate specificity

Eight isolated strains were determined for the substrate specificity against four
PAHs (fluorene, phenanthrene, pyrene, and fluoranthene) and two aliphatics
(tetradecane and docosane). The experiments were conducted in triplicate by using
test tubes containing 4.5 mL of CFMM supplemented with individual substrates. The
hydrocarbon substrates were used at different concentrations: 100 mg L' of
fluorene, phenanthrene, pyrene, fluoranthene and docosane, and 500 mg Lf1 of
tetradecane. The abiotic control consisted of CFMM supplemented with
hydrocarbons without bacteria. The growth control was the culture without
hydrocarbons. The samples were incubated at 200 rpm, 30°C and collected for 14
days. After that, PAH remaining was extracted and analyzed by HPLC according to
3.3.2.3 and 3.3.2.4. Aliphatic remaining was extracted and analyzed by GC-FID as
described in 3.3.3.1 and 3.3.3.2.
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3.3.3.1 Aliphatic extraction
Residual aliphatic compounds were extracted from the culture with the same
amount of hexane. After vortex for 2 min, it was stored at -20°C to allow for the
freezing of the aqueous phase and separation of the extract according to previously
report (Nopcharoenkul et al,, 2013). The extract was then evaporated, dissolved in 1

mL of hexane and filtrated through PTFE filter (0.22 um).

3.3.3.2 Analysis of aliphatic remaining by GC-FID

According to Nopcharoenkul et al., 2013, the analysis of aliphatic remaining

was performed using GC-FID with the following condition.

HP-5 column 0.32 mm x 30 m, inner column was
coated with 5% of phenyl methyl
ciloxane (0.25 ym)

Column temperature initial 40 °C for 2 min, ramp-up 40°C to

320°C at 10°C min "

Carrier gas He

Flow rate of carrier gas 1.7 mL min”
Detector temperature 320°C

Mode Splitless
Injection volume 1pL

The peak area from analyzer was calculated for determination of percentage

of aliphatic degradation compared with control as following:

% aliphatic degradation = (Peak area of control — Peak area of samples) x 100
Peak area of control

3.3.4 Surface activities test
Biosurfactant activity of eight isolated strains was investicated by four
different approaches: emulsification index (E,q), surface tension measurement, oil

displacement, and hemolytic activity, as previously described by Thavasi et al. (2011).

3.3.4.1 Pre-culture
Inoculum preparation for surface activities test and cell hydrophobic study

was followed by 3.2.1. The inoculum (5 ml) at final concentration 10" CFU mL ™ was
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inoculated into 45 ml of CFMM supplemented with 2,000 mg L of diesel oil. The
samples were collected at day 7.
3.3.4.2 Emulsification index (E,,)

To check emulsification, the culture supernatant was used as biosurfactant
source. The culture supernatant (2 mL) was mixed with 2 mL of diesel oil and vortex-
shaken for 2 min. The emulsion mixture was allowed to stand for 24 h.
Subsequently, the height of emulsion layer was measured and calculated by the
following equation.

Eoq = (height emutsion/height totaL) x 100%

3.3.4.3 Surface tension measurement
The surface tension measurement of culture supernatant was determined by

tensiometer.

3.3.4.4 Oil displacement
Distilled water (20 mL) was added to a plastic Petri dish, and 20 uL of crude
oil was added to the surface of the water. Subsequently, culture supernatant (10 uL)
from each bacteria was dropped on the oil surface. If biosurfactant presents in the
culture supernatant, the oil is displaced with a clear halo on the oil surface. The
diameter of clearing zone was measured and calculated by using the following
equation:

% oil displacement = (Diameter sample/Diameter plate) x 100

3.3.4.5 Hemolytic activity
Pure culture was streaked on the sheep blood agar plates and incubated for

48 h at 37°C. The plates were visually investigated for hemolysis around the colony.

3.3.5 Cell hydrophobicity study

The cell pellets were washed and suspended in phosphate urea magnesium
sulfate (PUM) buffer. The cell suspension (4 mL) was mixed with 1 mL of hexadecane
and vortex-shaken for 1 min. After vortex-shaking, hexadecane and aqueous phases

were allowed to separate for 30 min. The OD of the aqueous phase was measured at
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400 nm in a spectrophotometer. Percentage of cell hydrophobicity was calculated
using the following equation:
% hydrophobicity = (1- (ODfa/ODiitial) X 100%

3.3.6 Examination of biodegradation of petroleum oil of selected
bacteria

After selection of three strains having the ability to degrade various substrates
and produce biosurfactants and high cell surface hydrophobicity, they were
examined the biodegradation of petroleum oil. The initial concentration of bacterial
biomass was 10° CFU mL" for diesel and crude oil biodegradation experiments and
10" CFU mL" for fuel oil biodegradation experiment. The inoculum (0.5 mL) was
added to 4.5 mL of CFMM supplemented with 2,000 mg L of fuel oil, diesel oil or
crude oil. All experiment tubes were incubated at 30°C with agitation at 200 rpm.
The abiotic control contained CFMM with petroleum oil (without inoculation). The
growth control contained inoculation without petroleum oil. The samples were
collected at 3 and 7 days, and the percentage of remaining petroleum oils was
analyzed according to the methods in previous reports (Nopcharoenkul et al., 2013).
The crude oil remaining was extracted and analyzed by GC-FID according to 3.3.6.1
and 3.3.6.2. The diesel oil remaining was extracted and analyzed by GC-FID according
to 3.3.6.1 and 3.3.6.3. The amount of fuel oil remaining was analyzed by oil analyzer

according to 3.3.6.4.

3.3.6.1 Crude oil and diesel oil extraction
Residual crude oil and diesel oil were extracted with hexane, vortex for 2
min, and stored at -20°C to allow for the freezing of the aqueous phase and
separation of the extract according to previously report (Nopcharoenkul et al., 2013).
The extract was then evaporated, dissolved in 1 mL of hexane and filtrated through

PTFE filter (0.22 pm).

3.3.6.2 Analysis of crude oil remaining by GC-FID
According to Nopcharoenkul et al., 2013, the analysis of aliphatic remaining

was performed by GC-FID with the following condition.



HP-5 column

Column temperature

Carrier gas

Flow rate of carrier gas
Detector temperature
Mode

Injection volume
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0.32 mm x 30 m, inner column was
coated with 5% of phenyl methyl
ciloxane (0.25 um)

initial 40 °C for 2 min, ramp-up 40°C to
300°C at 10°C min -

He

2.1 mL min”

320°C

Splitless

1L

The peak area from analyzer was calculated for determination of percentage

of crude oil degradation compared with control as following:

% Crude oil degradation = (Peak area of control — Peak area of samples) x 100

Peak area of control

3.3.6.3 Analysis of diesel oil remaining by GC-FID

According to Nopcharoenkul et al. (2013), the analysis of aliphatic remaining

was performed by GC-FID as following:

HP-5 column

Column temperature

Carrier gas

Flow rate of carrier gas
Detector temperature
Mode

Injection volume

0.32 mm x 30 m, inner column was
coated with 5% of phenyl methyl
ciloxane (0.25 ym)

initial 80 °C for 2 min, ramp-up 80°C to
300°C at 10°C min”

He

1.7 mL min”

320°C

Split

1L

The peak area from analyzer was calculated for determination of percentage

of diesel oil degradation compared with control as following:

% Diesel oil degradation = (Peak area of control — Peak area of samples) x 100

Peak area of control
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3.3.6.4 Fuel oil extraction analysis by oil content analyzer

Residual fuel oil was extracted with 25 mL of chloroform, shaken at 200 rpm
for 30 min and let stand for separation twice a time. The chloroform layer then was
sucked into a new flask. After that, layer with fuel oil and chloroform (500 pL) was
transferred into a new tube and evaporated. The extract was dissolved in 10 mL of
S316 solution, vortex for 1 min, and filtrated through PTFE filter (0.22 um). Finally,
the fuel oil remaining was analyzed by Horiba oil content analyzer, recorded the
results, and compared with control experiment without inoculation.

The value from analyzer was calculated for determination of percentage of

fuel oil degradation compared with control as following:

% Fuel oil degradation = (Concentration of control (mg L )-Concentration of sample (mg L )x100

Concentration of control (mg LY

3.3.7 Detection of genes involved in petroleum hydrocarbon degradation

Twelve genes involved in petroleum hydrocarbon degradation were detected
by using 15 different primers. Alpha subunit Gram-positive RHD (GP), Alpha subunit
Gram-negative RHD (GN), phnAC, dbfA1A2, and nidA that involve in PAH degradation
were detected. alkB, alkM, alkB1, alkB2, alk-B, almA, and CYP153 that involve in
alkane degradation were detected as well. The PCR products and nucleotide
sequence of primers were shown in Table 3.1. The reaction was conducted with

DNA-Thermal Cycle as following:

RHDA-GP-641F and RHDO-GP-933R

1. initial denaturation temperature 94°C for 5 min
2. denaturation temperature 94°C for 1 min
3. annealing temperature 54°C for 1 min
4. extension temperature 72°C ~ for 1 min

5. Go to step 2, 30x
6. final extension temperature 72°C for 7 min

Note: positive control was Mycobacterium sp. PO2 (TRBC 5223).



RHDA-GN-610F and RHD O-GN-916R

1. initial denaturation
2. denaturation

3. annealing

4. extension

5. Go to step 2, 29x

6. final extension

temperature 94°C
temperature 94°C
temperature 57°C

temperature 72°C

for 5 min
for 1 min
for 1 min

for 2 min

temperature 72°C for 7 min
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Note: Positive control was Burkholderia sp. FP2-1 (Muangchinda et al., 2013)

PhnAc-F and PhnAc-R
1. initial denaturation
2. denaturation

3. annealing

4. extension

5. Go to step 2, 30x

6. final extension

temperature 94°C

temperature 94°C

temperature 57.5°C

temperature 72°C

for 5 min
for 1 min
for 1 min

for 1 min

temperature 72°C for 7 min

Note: no positive control for phnAC gene

DbfA1A2-F and DbfA1A2-R
1. initial denaturation

2. denaturation

3. annealing

4. extension

5. Go to step 2, 25x

6. final extension

Note: positive control was Terrabacter sp. DBF63 (Nojiri et al., 2002).

temperature 94°C
temperature 94°C
temperature 50°C

temperature 72°C

for 2 min
for 30 sec
for 30 sec

for 2 min

temperature 72°C for 7 min



NidA-F and NidA-R

1. initial denaturation
2. denaturation

3. annealing

4. extension

5. Go to step 2, 29x

6. final extension

temperature 94°C
temperature 94°C
temperature 55°C

temperature 72°C

for 5 min
for 1 min
for 1.30 min

for 2 min

temperature 72°C for 7 min

Note: positive control was Mycobacterium sp. PO2 (TRBC 5223).

Alk-1F, Alk-1R and Alk2F, Alk-2R and Alk3F, Alk-3R

1. initial denaturation
2. denaturation

3. annealing

4. extension

5. Go to step 2, 30x

6. final extension

temperature 94°C
temperature 94°C
temperature 40°C

temperature 72°C

for 5 min
for 1 min
for 30 sec

for 30 sec

temperature 72°C for 5 min

69

Note: positive control of alkM and alkB1 was consortium G11, which was able

to degrade crude oil (Uklam, 2015) but there was no positive control

for alkB (Alk1 primer).

AlkB-1F, AlkB-1R

1. initial denaturation
2. denaturation

3. annealing

4. extension

5. Go to step 2, 35x

6. final extension

temperature 90°C
temperature 90°C
temperature 55°C

temperature 72°C

for 5 min
for 30 sec
for 30 sec

for 1 min

temperature 72°C for 5 min

Note: Positive control was consortium G11, which was able to degrade crude

oil (Uklam, 2015).



AlkB1-F, AlkB1-R and AlkB2-F, AlkB2-R

1. initial denaturation

2. denaturation
3. annealing

4. extension

5. Go to step 2, 30x

6. final extension

temperature 94°C
temperature 94°C
temperature 60°C

temperature 72°C

for 5 min
for 1 min
for 1 min

for 1 min

temperature 72°C for 3 min

Note: positive control was consortium G11 (Uklum, 2015).

AlmAwf, AlmAwr

1. initial denaturation

2. denaturation
3. annealing

4. extension

5. Go to step 2, 30x

6. final extension

Note: no positive control

CYP153F1, CYP153R2

1. initial denaturation

2. denaturation
3. annealing

4. extension

5. Go to step 2, 35x

6. final extension

temperature 94°C
temperature 94°C
temperature 52°C

temperature 72°C

for 5 min
for 30 sec
for 30 sec

for 1 min

temperature 72°C for 7 min

temperature 95°C
temperature 94°C
temperature 54°C

temperature 72°C

for 5 min
for 45 sec
for 30 sec

for 1 min

temperature 72°C for 10 min
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Note: positive control was consortium G11, which was able to degrade crude

oil (Uklum, 2015).
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P450F, P450R

1. initial denaturation temperature 94°C  for 4 min
2. denaturation temperature 94°C  for 30 sec
3. annealing temperature 52°C  for 30 sec
4. extension temperature 72°C for 1 min

5. Go to step 2, 32x
6. final extension temperature 72°C for 10 min
Note: positive control was consortium G11, which was able to degrade crude

oil (Uklum, 2015).

P450fw, P450rv

1. initial denaturation temperature 95°C for 4 min
2. denaturation temperature 95°C for 45 sec
3. annealing temperature 58°C for 1 min
4. extension temperature 72°C for 1 min

5. Go to step 2, 25x
6. final extension temperature 72°C for 5 min
Note: positive control was consortium G11, which was able to degrade crude

oil (Uklum, 2015).

3.3.8 Examination of biodegradation of individual PAH, aliphatic, diesel
oil, and fuel oil by defined consortia

Four different defined consortia were formulated by a combination from two
up to three strains shown in Table 3.2. The defined consortia consisted the same
amount of biomass (10° CFU mL " for PAH, aliphatic and diesel oil and 10" CFU mL"
for fuel oil). The defined consortia were examined the biodegradation ability of fuel
oil, diesel oil, pyrene, and docosane. The experiments were done in 5 mL of CFMM
supplemented with 2,000 mg L™ of fuel oil and diesel oil and 100 mg L of pyrene
and docosane. All experiment tubes were incubated at 30°C with agitation at 200

rom. The abiotic control consisted of CFMM supplemented with substrates (without
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inoculation). The samples were collected at 7 days. The amount of remaining
pyrene, docosane, diesel oil and fuel oil were analyzed according to 3.3.3.2, 3.3.2.4,
3.3.3.2, 3.3.6.3 and 3.3.6.4 respectively. The defined consortium which has the
highest efficacy of biodegradation of fuel oil, diesel oil, pyrene, and docosane, was

selected for the further experiments.

Table 3.2 Formulation of defined consortia

Defined consortia bacteria

C1 Rhodococcus ruber S103 and Mycobacterium sp. Y502

C2 Rhodococcus ruber S103 and Mycobacterium sp. J101

3 Mycobacterium sp. Y502 and Mycobacterium sp. J101

c4 Rhodococcus ruber S103, Mycobacterium sp. Y502 and

Mycobacterium sp. J101

3.3.9 Immobilization of individual strains on bio-balls by adsorption

This process was conducted to find the appropriate time of immobilization of
each strain on bio-ball. The bio-ball (BCN-009 moving bed media) was available in
general and made of high density polyethylene (HDPE) shown in Figure 3.2. The
characteristic of bio-ball was shown in Table 3.3. First, the bio-balls (5 g) were added
into CFMM media and autoclaved at 121°C, 15 psi for 15 min. Each strain was
inoculated into separately flask containing bio-ball and CFMM supplemented with
600 mg L fuel oil, and the flasks were incubated on a rotary shaker (120 rpm) at
room temperature for 10 days. The bio-ball samples were collected every day to
observe the appropriate time that bacteria were able to attach on bio-balls at the
most. The immobilized cell (1 ¢) was added to 9 ml of potassium phosphate buffer
at pH 7 to enumerate a number of bacterial cells on bio-balls. Adherence cells were

separated by using an ultrasonic bath for 2 min and followed by a vortex mixer for 2
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min (this sequence was repeated twice), previously described by Nopcharoenkul et
al. (2013). Additionally, the amounts of bacteria in CFMM medium supplemented
with 600 mg L of fuel oil were analyzed by dilution and viable plate count

technique.

Figure 3.2 Bio-balls or (BCN-009 moving bed media)

Table 3.3 Description of bio-ball

Description of bio-ball

1. Specific gravity 0.95
2. Size 10 mm (wide) x 8 mm (thickness)
3. Color Black
.r 2 -3
3. Specific surface 83d m m

4. Protected surface 494 m’m’
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3.3.10 Determination of biodegradation of fuel oil by the immobilized

defined consortium on bio-balls in CFMM medium

The small-scale experiment was performed to determine the fuel oil removal
efficiency of sorbent materials and immobilized defined consortium. Each strain
immobilized on bio-balls (at each strain 1 ¢) was mixed as immobilized defined
consortium at a final concentration of immobilized defined consortia 10" CFU g_1 bio-
balls and added into CFMM medium containing 2,000 mg L of fuel oil. There were
two controls in this experiment. The first control was the sterilized CFMM broth
without immobilized cells to study the loss of fuel oil by physicals. The other one
war CFMM broth with sterilized bio-ball and supplemented with fuel oil to study the
adsorption of fuel oil by bio-balls. The samples were cultured for 7 days at 30°C with
agitation at 200 rpm The percentage of remaining fuel oil in CFMM was analyzed by
oil analyzer as previously described in 3.3.6.4. In addition, the amount of fuel oil on
bio-ball was extracted by adding 10 mL of chloroform and shaken at 200 rpm for 30
min (this process was repeated twice). The chloroform layer having the fuel oil
extracted from CFMM medium and bio-balls (500 ulL) was sucked into the new tube
and evaporated. The extraction was analyzed by oil analyzer according to 3.3.6.4.
The value from analyzer was calculated for determination of percentage of fuel oil

degradation compared with control as following:

% Fuel oil removal in CFMM = (Total oil at Day 0 - the amount of oil in CFMM QHQ@%

(Peakareaofcontrol-Peakareaofsample)x 100 Total oil at Day 0

a)
Peakareaofcontrol

% Fuel oil degradation on bio-balls

= Euel oil concentration of control at Day a — Fuel ail concentration of samples at  w 100%
Fuel oil concentration of control at Day a

Concentration of fuel oil in CFMM= value from oil analyzer x (20/100) x (1000/50) x dilution

Concentration of fuel oil on bio-balls= value from oil analyzer x (20/100) x (1000/20) x dilution

Note : Total oil = the amount of oil in CFMM + the amount of oil on bio-balls
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a : incubation time

Additionally, the bacterial community was monitored by viable plate count

technique using 0.1xLB agar, which can observe the color of colony of each strain.

3.3.11 Determination of biodegradation of fuel oil by the immobilized
defined consortium on bio-balls in freshwater

To study the possibility of immobilized defined consortia for removal of fuel
oil in fresh water from the Chao Phraya River, this experiment was set up. The fresh
water collected from Chao Phraya river was analyzed for pH, TOC, COD, BOD, TKN,
TP, TPH, heavy metal and total bacteria was used instead of CFMM medium. Each
strain immobilized on bio-balls (at each strain 1 g) was mixed as immobilized defined
consortium at a final concentration 10° CFU g-1 bio-balls and added into the
freshwater containing 2,000 mg L™ of fuel oil. The non-sterilized freshwater with fuel
oil was set up as natural attenuation and compared with abiotic control. The
sterilized bio-balls were added into the sterilized freshwater to observe the
adsorption of bio-balls. The samples were cultured for 15 days at 30°C with agitation
at 200 rpm. The samples were also collected every 5 days. The amount of remaining
fuel oil in CFMM was analyzed by oil analyzer previously described in 3.3.6.4. In
addition, the amount of fuel oil on bio-ball was extracted by adding 10 mL of
chloroform and shaken at 200 rpm for 30 min (this process was repeated twice). The
chloroform layer having the fuel oil extracted from CFMM medium and bio-balls (500
uL) was sucked into the new tube and evaporated. The extraction was analyzed by
oil analyzer according to 3.3.6.4. The bacterial community was monitored by viable
plate count technique using  0.1x LB agar and 16S rRNA gene amplicon sequencing

analysis described in 3.3.12.
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3.3.12 Monitor of bacterial community by 16S rRNA gene amplicon

sequencing analysis

This experiment was performed in order to monitor the bacterial community
of defined consortium whether they were able to survive in the system or not. The
bacterial cells on bio-balls were separated by using an ultrasonic bath for 2 min and
followed by a vortex mixer for 2 min (this sequence was repeated twice). Then, DNA
from defined consortium on bio-balls was extracted and amplified 16S rRNA gene by
515F (5’- GTG CCA GCM GCC GCG GTAA - 3’) and 806R (5’- GGA CTA CHV GGG TWT
CTA AT - 3’) (V4 region) primers (Walters et al., 2016). Then, PCR products were
purified by AMPure XP beads (Beckman Coulter, USA) to wash buffer primer and
primer dimer. The purified DNA was attached to index at the end of the sequencing
primer. The reaction of DNA, Index 1 and 2 primers, 2x KAPA HiFi HotStart ReadyMix,

and PCR Grade water were set up as following.

Volume
DNA 5L
NexteraXTIndexPrimer 1(N7xx) 5L
NexteraXTIndexPrimer 2(S5xx) 5L
2xKAPAHiFiHotStartReadyMix 25 pL
PCRGrade water 10 pL
Total 50 pL

After that, PCR clean up 2 was performed again by using AMPure XP beads in
order to wash primer-dimer remaining. The concentration of DNA was measured by

DeNovix (DeNovix, USA) and calculated using the following equation:

Concentration in nM = (Concentration in ul ) x 106

g . .
660 oL X average Ubrzgié/ size
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Finally, the 16S rRNA gene amplicons were sequenced by Miseq Illumina
sequencer (Illumina, USA) using Miseq Reagent Kit V2 (Illumina, USA). Results from
sequencer were taxonomically classified by using GreenGenes for the bacterial

community and monitored the defined consortium bioaugmented in microcosm.
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CHAPTER IV
RESULTS AND DISCUSSION

4.1 Bacterial isolates, their identification, and their characteristics

4.1.1 Identification of isolated bacteria and PAH degradation efficacy

The sediments from the Chao Phraya and Tha Chin Rivers were used
as sources for isolation of PAH-degrading bacteria because both rivers are the main
shipping routes of Thailand. Hence, they are suspected to be polluted with
petroleum oil, especially fuel oil which is used in cargo ships. The fuel oil is
composed of 15% aliphatic, 62% aromatic hydrocarbon, 15% asphaltene, and 8%
resins. There have been reported that PAHs are the main components of fuel oil
leading to cause long-term effects on human and environments (Grimwood, 2001;
Purcaro et al.,, 2013). Moreover, several bacteria having ability to degrade PAHs have
been isolated from the contaminated sites (Dias et al., 2009). According to
(Thoetkiattikul et al,, 2017), seven river sediments have different physiochemical
characteristics including sediment texture, electric conductivity, and organic carbon
content resulting in the variation in groups of inhibiting microbes with different
metabolic activities. Therefore, in this study, the collected sediments from the Chao
Phraya and Tha Chin Rivers were enriched in liquid CFMM supplemented with mixed
PAH solutions including fluorene, phenanthrene, and pyrene (50 mg L of each PAH).
After 4-5 enrichments, the culture broth having color change or turbidity was spread
on CFMM agar containing individual PAH at 100 mg L and incubated at 30°C. The
colonies with clear zone showing the capability of PAH degradation were found in all
types PAHs used. The single colonies were streak on LB agar to check their purity.
The pure culture was then inoculated in liquid CFMM containing respective
substrates including phenanthrene, fluorene, and pyrene to confirm their activity. It
was found that these isolates could degrade PAHs based on the changing the color
of cultivation medium which indicates that they utilized PAHs as carbon and energy
source and produce some intermediates (Lin et al., 2014; Pinyakong et al., 2012). As a

consequence, this study obtained eight PAH-degrading bacteria including four



79

phenanthrene-, one fluorene-, and three pyrene-degrading bacteria (Table 4.1). These
strains were deposited at Microbial Culture Collection Department of Microbiology
Faculty of Science, Chulalongkorn University (Appendix C). Four phenanthrene-
degrading bacteria strains Y101, Y401, S101, and J801 were identified as Sphingobium
(Y101 and Y401), Arthrobacter, and Pseudomonas, respectively, and they degraded
phenanthrene more than 90% of initial concentration (100 ppm) after 3 days of
incubation. S103 was identified as Rhodococcus ruber, and it completely degraded
fluorene in 7 days. Three pyrene-degrading bacteria strains J101, Y502, and Y1201
belong to genus Mycobacterium. It was noticed that Mycobacterium sp. J101 had
the highest ability to degrade pyrene at 99% (3 days) followed by Y502 (7 days) and
Y1201 (14 days), respectively.

The result indicated that sediment samples from Chao Phraya and
Tha Chin Rivers contained various PAH-degrading bacteria in various genus including
Spingobium, Arthrobacter, Pseudomonas, Rhodococcus, and Mycobacterium. There
are many reports studying on microbial community and hydrocarbon-degrading
bacteria in rivers, estuaries, and sediments. For instance, Pavlova et al. (2008) found
that predominant oil-degrading bacteria in the sediment were Bacillus spp.
(Firmicutes). Whereas, dominant oil-degrading microorganisms in the water column
were Rhodococcus (Actinobacteria), Pseudomonas (Gammaproteobacteria), and
Micrococcus (Actinobacteria). Additionally, Hilyard et al. (2008) obtained bacterial
isolates from Elizabeth River sediments by using the selective enrichment grown
solely on fluoranthene and pyrene. The bacterial strains were Pusillimonas sp.,
Alcaligenes sp., Mycobacterium sp., Pseudomonas sp., Parvibaculum sp., Stappia sp.,
and Microbacterium sp. Our study together with several reports showed that various
bacteria with ability to degrade petroleum oil and PAHs could be isolated from
sediments and these bacteria were interesting to investicate their substrate

specificity.
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4.1.2 The substrate specificity of eight isolated strains

The eight PAH-degrading bacteria were evaluated for their capability to
degrade other petroleum hydrocarbons including four PAHs (i.e. fluorene,
phenanthrene, pyrene, and fluoranthene) and two aliphatic hydrocarbons (i.e.
tetradecane and docosane). These hydrocarbon compounds represent the
components of fuel oil. The results of the hydrocarbon biodegradation by eight
strains were shown in Table 4.2. Interestingly, Mycobacterium sp. J101 had the
highest capability to degrade low molecular weight (LMW)-, high molecular weight
(HMW)-PAHs and aliphatic compounds. The strain J101 completely degraded
phenanthrene and pyrene within 3 days while Y502 and Y1201 completely degraded
LMW- and HMW-PAHs in 14 days. On the other hand, Mycobacterium sp. Y502 could
degrade pyrene at higher rate than Y1201. It was found that Rhodococcus ruber S103
degraded tetradecane and docosane better and had a short lag period than four
phenanthrene-degrading bacteria (Y101, Y401, S101, and J801). Strain S103 was able
to degrade tetradecane and docosane more than 95% within 7 days. Rhodococcus
and Mycobacterium are Actinobacteria, which are the most versatile and efficient
petroleum hydrocarbon degraders. They can utilize crude oil, n-alkane, phenol,
aromatic compounds, and PAHs (Zhang et al., 2012). Rhodococcus strains are widely
distributed in many environments and capable of degradation of various chemicals
including alkane and aromatic compound (Martinkova et al.,, 2009). For example,
Peng et al. (2013) isolated Rhodococcus sp. p52 from an oil refinery in eastern China.
It was found that strain p52 completely removed dibenzofuran within 48 h and
metabolized various aromatic compounds such as biphenyl, dibenzo-p-dioxin,
dibenzothiophene, 2,8-dichlorodibenzofuran, naphthalene, fluorene, phenanthrene,
anthracene, carbazole, indole, xanthene, phenoxathiine, xanthone, and 9-fluorenone.
In addition, Rhodococcus genus also showed the ability to degrade alkane (Sharma
and Pant, 2000). Rhodococcus sp. NCIM 5126 degraded 500 mg L of n-tridecane, n-
tetradecane, n-hexadecane, n-heptadecane, n-ecisonae, kerosene, and pristane at 80,
94, 75, 50, 5, 92, and 30% within 3 days, respectively. Le et al. (2009) also reported
that Rhodococcus ruber degraded up to 51% of pristane (0.5% v/v).
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For genus Mycobacterium, it is known as dominant bacteria in the
ecosystems such as soil, coal tar contaminated soils, activated sludge from a sewage
treatment plant, and estuarine or sediment exposed to petrogenic chemicals
(Berekaa and Steinblchel, 2000; Cheung and Kinkle, 2001; Hormisch et al., 2004).
Furthermore, Mycobacterium is of specific interest due to their potential to degrade
HMW-PAHs which are persistent contaminants and have carcinogenic properties (Kim
et al,, 2010). HMW-PAHs that Mycobacterium was able to degrade are fluoranthene
and pyrene (Kanaly and Harayama, 2000; Luan et al, 2006). For example,
Mycobacterium sp. AP1 (Vila et al.,, 2001) and Mycobacterium pyrenivorans 17A3"
(Derz et al,, 2004) could utilize phenanthrene, pyrene, and fluoranthene. Three
Mycobacterium strains isolated in this study including J101, Y502, and Y1201, had
higher efficacy and shorter period degradation of pyrene and fluoranthene than
Mycobacterium gilvum ASU-06. Strain ASU-06 could degrade to approximately 99%
of phenanthrene (100 mg L") and 100% of fluoranthene (100 mg L) within 20 and
28 days respectively (Darmawan et al.,, 2015). Tables 4.3 and 4.4 showed the PAH
degradation efficiency of Rhodococcus and Mycobacterium obtained in this study
compared to those of other reports, respectively. These results indicated that
Rhodococcus and Mycobacterium isolated in this study had a potential for
bioremediation application. .

Moreover, other criteria including the potential of biosurfactant
production and cell hydrophobicity of eight strains should be determined for

selection and construction of suitably defined consortium.
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Table 4.3 Hydrocarbon degradation efficacy of Rhodococcus

Rhodococcus Hydrocarbons % Degradation Incubation Reference
time (days) S
Rhodococcus Phenanthrene 23 14 This
ruber S103 (100 me L) study
Fluorene 100 7
(100 mg L)
Tetradecane 100 7
(500 mg L)
Docosane 95 7
(500 mg L)
Rhodococcus Tetradecane 94 3 Sharma
sp. NCIM5126 (500 mg L) and Pant
(2000)
Rhodococcus Phenanthrene 43 30 Song et
sp. P14 (50 me L) al. (2011)
Pyrene 34 30
(50 mg L)
Rhodococcus ~ Tetradecane 86 2 Yang et

sp. p52 (200 mg L) al. (2014)
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Table 4.4 Hydrocarbon degradation efficacy of Mycobacteria

Mycobacterium Hydrocarbons % Degradation Incubation References
time (days)
Mycobacterium Phenanthrene 100 3 This study
sp. J101 (100 mg L)
Fluorene 100 7
(100 mg L)
Pyrene 99 3
(100 mg L)
Fluoranthene 100 7
(100 mg L)
Mycobacterium Phenanthrene 100 14 Zeng et al
sp. NJS-1 (100 mg L) (2010)
Pyrene 88 14
(100 mg L)
Fluoranthene 62 14
(100 mg L)

4.1.3 Biosurfactant activity and hydrophobicity of bacterial cell
Biosurfactant production activity of eight isolated strains was
investigated by four different approaches namely emulsification index (E,q), surface
tension measurement, oil displacement, and hemolytic activity. The hydrophobicity
of bacterial cell was also tested. The results showed that eight strains reduced the
surface tension ranged from 30 — 46 mN m' compared to control (55 mN m’) as
shown in Table 4.5. The result of oil displacement revealed that Rhodococcus ruber

S103, Mycobacterium sp. Y502, and Mycobacterium sp. Y1201 showed a higher
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percentage of oil displacement which ranged from 16 — 20% than others. However,
the biosurfactant production activity as detected by an emulsification index was not
observed with diesel oil among eight strains. The results further showed that most of
the isolated bacteria had high cell surface hydrophobicity and strain S103 had the
highest hydrophobicity at 98% (Table 4.5).

It has been indicated that the biosurfactant production activity and
cell surface hydrophobicity are critical characteristics in the biodegradation process
(Banat et al.,, 2010; Mukherjee et al., 2006; Pacwa-Ptociniczak et al., 2011; Wentzel et
al,, 2007). Biosurfactants synthesized by several microorganisms including bacteria,
yeast and fungi could enhance the hydrocarbon degradation efficiency by facilitating
adhesion, decreasing interfacial tension, and dispersing hydrophobic compounds
(Martinkova et al,, 2009; Souza et al, 2014). The cell surface hydrophobicity is
important because it is involved in the first step in the process of removing
pollutants and it enhances the bioavailability of hydrophobicity compounds to
microbes (Obuekwe et al., 2009). Both Rhodococcus and Mycobacterium have been
reported that they produced trehalose lipid biosurfactant (Franzetti et al.,, 2010). For
example, Rhodococcus ruber Z25 was used to produce biosurfactant for improving
the physical properties of crude oil and oil mobility (Zheng et al.,, 2012). The results
demonstrated that Z25 had a high emulsification and could reduce the interfacial
tension approximately to 1.0 mN m . Rhodococcus sp. CN6 having high cell surface
hydrophobicity could degrade p-nitrophenol (PNP) up to 300 mg L (Zhang et al,,
2009). It was suggested that the biodegradation rate of contaminants by the high
hydrophobic bacteria was higher than that of the low hydrophobic bacteria.

Consequently, Rhodococcus ruber S103, Mycobacterium spp. Y502
J101 were selected to formulate the defined consortia because they had the high
ability to degrade various chemicals and had a potential to produce biosurfactant
and they also had high cell surface hydrophobicity. Rhodococcus ruber S103
represented aliphatic-degrading bacteria and had high cell surface hydrophobicity.
Mycobacterium sp. Y502 served as HMW-PAH-degrading and biosurfactant-producing

bacterium due to a shorter lag period in pyrene degradation and lower surface
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tension. Mycobacterium sp. J101 could be used as LMW- and HMW-PAH and

aliphatic-degrading bacteria.

Table 4.5 The ability to produce biosurfactant and hydrophobicity of bacterial cell

No. Bacteria Eo % oil Surface % cell Hemolytic
displacement tension activity
(/m) hydrophobicit
Yy

1. Shingobium sp. N.D.  5.04+0.67 41.00+£1.29 82.86+2.29 +
Y101

2. Shingobium sp. N.D.  8.33+2.62 32.24+0.62 87.52+0.85 +
Y401

3. Arthrobacter N.D. 3.88+0.67 48.58+1.56 31.84+3.39 -
sp. 5101

4. Pseudomonas N.D.  5.81+0.00 36.55+1.74 N.D. +
sp. J801

5. Rhodococcus N.D. 16.28+3.49 39.23+4.28 98.05+0.45 -
ruber S103

6.  Mycobacteriu N.D. 2.91+0.82 36.14+0.49 75.81+0.74 -
m sp. J101

7. Mycobacteriu N.D. 15.89+0.67 33.86+0.95 71.35+6.20 +
m sp. Y502

8. Mycobacteriu N.D.  20.35+3.08 30.80+0.12 74.65+0.28 -

m sp. Y1201

Control: Surface tension value of CFMM broth is 54.94+2.98.

N.D.: Not detected; +: positive;-: negative
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4.2 Genes involved in petroleum hydrocarbon degradation of the selected
strains

The genes involved in petroleum hydrocarbon degradation in three selected
strains (5103, J101, and Y502) were detected using the primers shown in Table 3.1.
The results revealed the presence of different genes involved in hydrocarbon
degradation in each bacterium as shown in Table 4.6. The genes detected was
correlated with the hydrocarbon biodegradation efficiency of each strain. For
example, dbfA1A2, alkB1, and alkB2 were found in Rhodococcus ruber S103
corresponding to fluorene, tetradecane, and docosane degradation, respectively.
Similar results were found in previous research that Rhodococcus ruber strain SoB
contained alkB gene (Quatrini et al,, 2008). The alkB gene is responded for
hydroxylation of medium-chain-length alkane (C;;-Ci4) (Nie et al,, 2014). Moreover,
two dibenzofuran dioxygenase genes, dbfA and dfdA which are involved in
dibenzofuran degradation were found in Rhodococcus sp. strain p52 (Peng et al,,
2013). The dbfA and dfdA are genes encoding angular dioxygenase that are
distributed among dibenzofuran-degrading actinomycetes strains Rhodococcus,
Mycobacterium, and Terrabacter (lida et al., 2002). Aly et al. (2008) reported that
Rhodococcus sp. HAO1 harbored dbfA1AZ2 gene cluster. The dbfAl and dbfA2 have
been reported to encode the large and small subunits of terminal oxygenase (Nojiri
et al,, 2002). Furthermore, alpha subunit of Gram-positive RHD and nidA genes were
detected in the isolated Mycobacterium spp. Y502 and J101 while alkB1 was found
in J101. Alpha subunit of Gram-positive RHD is the PAH-dioxygenase gene (alpha
subunit of terminal oxygenase), which was detected in various Gram-positive bacteria
including Mycobacterium vanbaalnii PYR-1, Mycobacterium sp. 6PY1, Rhodococcus
opacus R7, and Rhodococcus sp. NCIMB 12038 (Cébron et al., 2008). The nidA gene is
a crucial gene for initial hydroxylation of the aromatic ring of pyrene by
Mycobacterium strains (Brezna et al., 2003; Guo et al, 2010; Hall et al,, 2005).
Moreover, the CYP153 gene, alkane hydroxylase gene, was found in Mycobacterium
sp. Y502. Thus these three strains S103, J101, and Y502 were expected to be able to

degrade petroleum oil since they possess the genes involved in the degradation of
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petroleum oil components. Their activity on petroleum oil degradation was then

examined in a further experiment.

Table 4.6 Genes involved in PAH and aliphatic degradation of three selected strains

Bacteria
Primers Genes Rhodococcus — Mycobacterium — Mycobacterium
ruber S103 sp. J101

GN Alpha subunit -

Gram-negative

RHD
GP Alpha subunit +

Gram-positive

RHD
dbfA1A2 dbfA1A2 -
phnAc phnAc -
nidA nidA +
Alk1 alkB -
Alk2 alkM -
Alk3 alkB, +
AlkB1 alkB1 -
AlkB2 alkB2 -
AlkB-1 alk-B -
CYP153 CYP153 -
almAW almA -
P450 CYP153 -
P450fwl&P4  CYP153 -

50rv3
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4.3 Biodegradation of petroleum oils by three selected bacteria

Due to a large variety of petroleum oil contamination in the environments,
this study investigated the biodegradation of petroleum oils including fuel oil, crude
oil, and diesel oil by a defined consortium consisting of three bacteria having ability
to degrade various hydrocarbons and to produce biosurfactants. These oils were
mostly used on cargo ships for transportation. The oil degradation activity by
individual strain was firstly examined. As a result, the change of oil slick in cultivation
medium was different in each experiment as shown in Figures 4.1 — 4.3. Each strain
was able to degrade petroleum oils differently as shown in Figure 4.4. After 7 days of
incubation, Rhodococcus ruber S103 and Mycobacterium sp. J101 reached 86%
efficiency in crude oil and diesel oil degradation; however, they removed fuel oil
around 20%. In contrast, Mycobacterium sp. Y502 degraded petroleum oil lower than
that of S103 and J101. All of these bacteria were able to degrade crude oil and
diesel oil higher than fuel oil because crude oil and diesel oil mainly consist of
saturated hydrocarbons more than 70%; while, fuel oil composes of aromatic
hydrocarbons such as PAHs that are recalcitrant compounds and are slowly degraded
by microorganisms. Additionally, fuel oil has high asphaltene which known to be
more resistant to biodegradation by microorganisms (Okerentugba and Ezeronye,
2003). Another reason is that single strain may inefficient to degrade the mixture
compounds due to a limited enzyme (Jasmine and Mukherji, 2015; Yuan et al., 2000).
There have been reported that bacteria in genera Rhodococcus and Mycobacterium
could degrade crude oil and diesel oil. For example, Rhodococcus sp. JZX-01
isolated from oil contaminated soil was able to degrade 65% of crude oil (5% v/v)
after 9 days of incubation (Li et al,, 2013). Mycobacterium hyalinum decomposed
21% of 10,000-ppmv diesel within 5 days (Liu and Liu, 2011). Nevertheless, there
have never been reports on the biodegradation of fuel oil. This study is the first
report showing the ability of bacteria on fuel oil biodegradation. These strains, thus,
were expected to formulate the defined consortia for removal of fuel oil and

enhance the efficiency of fuel oil biodegradation potentially.
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(a) (b)

@)

Figure 4.1 The oil slick change in the cultivation medium supplemented with 2,000
mg L of fuel oil (a), crude oil (b), and diesel oil (c) of Rhodococcus ruber S103.
Controls of each experiment were placed in the first three tubes. The samples were

incubated for 7 days.

(@

Figure 4.2 The oil slick in the cultivation medium supplemented with 2,000 mg L of
fuel oil (a), crude oil (b), and diesel oil (c) of Mycobacterium sp. J101. Controls of
each experiment were placed in the first three tubes. The samples were incubated

for 7 days.
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Figure 4.3 The oil slick in the cultivation medium supplemented with 2,000 mg L of

fuel oil (a), crude oil (b), and diesel oil (c) of Mycobacterium sp. Y502. Controls of

each experiment were placed in the first three tubes. The samples were incubated

for 7 days.
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% Oil degradation
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~ == Crude oil

#H Diesel oil

- B
J101 Y502
Strains

Figure 4.4 The result of petroleum oil biodegradation by three efficient bacteria after

7 days of incubation. The concentration of each petroleum oil type was 2,000 mg L
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4.4 Biodegradation of fuel oil, diesel oil, pyrene, and docosane by four bacterial
consortia

Three hydrocarbon-degrading and biosurfactant-producing bacteria, S103,
Y502, and J101, were constituted as four defined consortia. Consortium1 (C1) was
comprised of Rhodococcus ruber S103 and Mycobacterium sp. Y502. Consortium2
(C2) was formed using Rhodococcus ruber S103 and Mycobacterium sp. J101.
Consortium3 (C3) was composed of Mycobacterium sp. Y502 and Mycobacterium sp.
J101. The last consortium was a consortium4 (C4) consisting of Rhodococcus ruber
S103, Mycobacterium sp. Y502, and Mycobacterium sp. J101. This study examined
the biodegradation of fuel oil (2,000 mg I__l), diesel oil (2,000 mg L_l), pyrene (100 mg
I__l), and docosane (100 mg L>1) by four consortia. This examination was conducted to
select the highest effective defined consortium for further application use. The
results demonstrated that C4 has the most efficiency on fuel oil biodegradation
among 4 consortia in which it could degrade fuel oil up to 41% in 7 days (Figure 4.5).
In addition, it was noticed that the consortia containing strain Y502 had fuel oil
degradation efficiency more than those without Y502 (C2). Qil displacement (with
fuel oil) was determined to clarify the tendency on the biosurfactant production of
Y502 for enhancing fuel oil bioavailability. The result illustrated that Y502 had higher
fuel oil dispersion (11%) than S103 and J101 (2% and 4%). This result indicated that
Y502 might produce biosurfactant to enhance the bioavailability of bacterial strains
to fuel oil. Furthermore, the results obviously demonstrated that bacterial
consortium could degrade fuel oil and diesel oil better and with shorter time than
individual strains as shown in Figure 4.5 and 4.6. It is due to a microbial consortium
had synergistic metabolisms, and one strain may utilize the intermediates generated

by other strains (Jasmine and Mukherji, 2015; Mikeskova et al., 2012).
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Figure 4.5 Biodegradation efficiency of fuel oil by single strains and bacterial

consortia.
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Figure 4.6 Biodegradation efficiency of diesel oil by single strains and bacterial

consortia.

Note: * No data of biodegradation of diesel oil by strain Y502 at 3 days.
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The result also revealed that the consortia maintained the ability to degrade
pyrene and docosane as showed in Figures 4.7 — 4.8. These results demonstrated
that a cooperation of different microbes did not inhibit the biodegradation of single
chemical. Moreover, bacterial communities of each microbial consortium were
monitored by viable plate count based on a different color of three strains as shown
in Figure 4.9. The results of viable plate count showed that bacteria still grew and
changed in number during degradation of each substance (Tables 4.7 - 4.10).
Consequently, C4, defined consortium was chosen for the further experiment

because it has higher activity to degrade fuel oil compared with other consortia

potentially.
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10 - é

O *I , é I |

S103  J101 Y502 ct @, c3 ca
Bacteria

Figure 4.7 Biodegradation efficiency of pyrene by single strains and bacterial
consortia.

Note: * No data of biodegradation of pyrene by strains S103 and Y502 at 3 days
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Figure 4.8 Biodegradation efficiency of docosane by single strains and bacterial
consortia.

Note: * No data of biodegradation of docosane by Y502 at 3 day.

a) (b) ()

Figure 4.9 The characteristic of Rhodococcus ruber S103 (a), Mycobacterium sp. J101
(b), and Mycobacterium sp. Y502 (c).
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Table 4.7 Biodegradation of fuel oil by four consortia and their bacterial growth

compared with pure cultures

Bacteria/Consortia

Bacterial number (CFU mL ")

Day 0 Day 3 Day 7

Cl1  Rhodococcus ruber — 1.27+024x10"  1.82+0.24x10"  1.28+0.21x10’
5103
Mycobacterium sp. 1.56+0.49x10°  3.73x0.64x10'  5.33+0.76x10’
Y502

C2  Rhodococcus ruber — 1.29+0.06x10"  1.15x0.11x10"  3.50+0.44x10"
5103
Mycobacterium sp. 1.54+0.12x10°  1.44+0.18x10'  6.13+1.90x10°
J101

C3  Mycobacterium sp. 4.33+0.45x10"  4.60+0.69x10"  3.15+0.24x10’
Y502
Mycobacterium sp. 183+0.22x10"  4.87+1.95x10°  3.93+0.57x10°
J101

ca Rhodococcus ruber 1.1310.20><107 6.5311.27><1O6 2.57J_r0.20><107
5103
Mycobacterium sp. 1.36:0.33x10"  5.00£1.66x10°  2.02+0.36x10"

Y502

Mycobacterium sp.

J101

1.2240.05x10"

0.27+1.02x10°

2.70+0.10x10°

Rhodococcus ruber S103

1.10+0.17x10"

1.27+0.06x10"

1.7040.17x10"

Mycobacterium sp. J101

1.83+0.06x10"

533+1.15x10

3.00+0.58x10°

Mycobacterium sp. Y502

1.93+0.40x10"

1.0040.00x10°

6.50+3.00x10"
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Table 4.8 Biodegradation of diesel oil by four consortia and their bacterial growth

compared with pure cultures

Bacteria/Consortia

Bacterial number (CFU mL ™)

Day 0 Day 3 Day 7

Cl  Rhodococcus ruber  7.23:0.93x10°  2.40+0.40x10°  3.370.32x10°
5103
Mycobacterium sp.  4.00+0.30x10°  1.07+0.06x10°  8.23+0.57x10°
Y502

C2  Rhodococcus ruber  5.93+0.81x10°  8.55+0.64x10°  9.00+0.50x10°
5103
Mycobacterium sp. 1.78+0.17x10°  4.90+1.41x10°  3.57+0.15x10°
J101

C3  Mycobacterium sp. ~ 6.87+0.31x10°  1.38+0.07x10"  8.37++0.85x10°
Y502
Mycobacterium sp.  1.86£0.07x10°  4.70£0.70x10°  1.27+0.09x10°
J101

C4  Rhodococcus ruber  5.73+0.25x10°  8.430.15x10°  7.70+0.36x10°
5103
Mycobacterium sp.  4.97+0.35x10°  3.73+1.23x10°  4.00+0.56x10°

Y502

Mycobacterium sp. 1.7940.06x10°  845+0.21x10°  4.23+0.11x10°
J101
Rhodococcus ruber 103 7.00+2.00x10°  3.67+0.58x10°  4.67+1.53x10°
Mycobacterium sp. J101 9.00£0.00x10°  3.00£0.00x10°  5.50+0.71x10"
Mycobacterium sp. Y502 2.00+0.00x10° No data 1.25+0.07x10°
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Table 4.9 Biodegradation of pyrene by four consortia and their bacterial growth

compared with pure cultures

Bacteria/Consortia

Bacterial number (CFU mL ™)

Day 0 Day 3 Day 7

Cl  Rhodococcus ruber — 7.23+0.93x10°  1.2140.23x10'  1.45:0.31x10°
5103
Mycobacterium sp. 4.0040.30x10°  5.03+9.24x10°  1.10+0.02x10"
Y502

C2  Rhodococcus ruber  593+0.81x10°  3.90+0.81x10"  3.63+0.40x10°
5103
Mycobacterium sp. 1.78+0.17x10°  7.65+0.17x10"  4.80+1.44x10°
J101

C3  Mycobacterium sp. 4.87+0.31x10°  4.87+031x10°  8.03+1.01x10°
Y502
Mycobacterium sp. 1.86:0.07x10°  1.30£0.07x10"  2.46+1.02x10°
J101

C4  Rhodococcus ruber 5.7?>J_r0.25><106 9.17J_r1.42><106 7.5710.15><105

5103

Mycobacterium sp.

Y502

1.97+0.35x10°

1.26+0.0ax10°

1.62+0.21x10

Mycobacterium sp. 1.79+0.06x10°  8.33+0.31x10°  5.10+0.17x10°
J101
Rhodococcus ruber S103 7.OO¢2.OO><1O6 No data 1.8710.40><1O7
Mycobacterium sp. J101 9.00£0.00x10°  1.80+0.14x10°  2.00+0.45x10"
Mycobacterium sp. Y502 2.00+0.00x10° No data 2.5320.21x10"
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Table 4.10 Biodegradation of docosane by four consortia and their bacterial growth

compared with pure cultures

Bacteria/Consortia

Bacterial number (CFU mL ™)

Day 0 Day 3 Day 7

c1 Rhodococcus ruber 7.23+0.93x10° 2.9942.09x10"  2.78+0.83x10"
5103
Mycobacterium sp. 4.0040.30x10°  3.13+0.25x10°  5.10+0.87x10°
Y502

C2  Rhodococcus ruber  593+0.81x10°  2.57+0.05x10"  4.78+2.81x10’
5103
Mycobacterium sp. 1.78+0.17x10°  1.04+0.10x10°  4.00+0.95x10°
J101

C3  Mycobacterium sp. 4.87+0.31x10°  4.40+1.68x10°  4.20+0.85x10°
Y502
Mycobacterium sp. 1.86:0.07x10°  5.80+1.73x10°  1.07+0.03x10’
J101

C4  Rhodococcus ruber  573:0.25x10°  3.70£0.61x10°  1.68+0.50x10’

5103

Mycobacterium sp.

Y502

1.97+0.35x10°

1.2+0.04x10°

1.4120.08x10°

Mycobacterium sp.

J101

1.79+0.06x10°

1.37+0.32x10"

4.20+0.79x10°

Rhodococcus ruber 5103 7.00+2.00x10°  6.33+1.15x10°  7.00+1.00x10°
Mycobacterium sp. J101 9.00£0.00x10°  8.50+0.71x10°  4.00+1.00x10°
Mycobacterium sp. Y502 2.00+0.00x10° No data 8.00+1.00x10°
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In previous studies, defined consortia or mixed cultures have an ability to
degrade organic pollutants including PAHs, polychlorinated biphenyls (PCBs),
synthetic dyes, and others and exhibit better performance than monocultures
(Bacosa et al., 2010; Ghanem et al,, 2011; Hudcova et al,, 2011; Li and Li, 2011). It is
possible that a microbial consortium has the wider activities and metabolic networks
than a single strain. For instance, the mixed bacterial consortium was able to degrade
77% of crude oil (1% v/v) when compared with single strains of Pseudomonas sp.
BPS1-8, Bacillus sp. I0S1-7, Pseudomonas sp. HPS2-5, and Corynebacterium sp. BPS2-
6 which degraded 69, 64, 45, and 41%, respectively (Sathishkumar et al., 2008).

Interestingly, this is the first report using the defined consortia for degrading
the fuel oil as shown in Table 4.11. Moreover, this finding showed that these defined

consortia had a potential for application use.
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4.5 Fuel oil biodegradation efficacy by immobilized defined consortium

4.5.1 Immobilization of defined consortium

To enhance the efficiency of fuel oil removal and for application use,
the cell immobilization was set up in this experiment. Based on results of fuel oil
biodegradation by defined consortia, C4 composed of Rhodococcus sp. S103,
Mycobacterium sp. J101, and Mycobacterium sp. Y502 could be a good candidate for
bioremediation of fuel oil contaminated area. Each strain was immobilized on bio-
ball and the optimization of immobilization time was investigated. Bacterial
immobilization was successfully performed using inoculum 10" CFU mL" in CFMM
containing sterilized plastic pellets and 600 mg L™ of fuel oil. Figure 4.10 showed the
turbidity of culture medium of immobilized system after 6 days of incubation. Cells
of S103, J101, and Y502 attached to the surface of the plastic pellets after incubation
on a rotary shaker. As shown in Figure 4.11, the number of bacteria on plastic pellets
reached a steady state after 5 days of incubation. Therefore, immobilized cells that
reached steady state conditions after 6-day incubations were selected for further
determination of the oil removal ability. The preparation method for immobilization
in this study was correlated with Nopcharoenkul et al. (2013) that
Pseudoxanthomonas sp. RN402 was immobilized on plastic pellets within 6 days. In
contrast, this study required a shorter incubation period of cell immobilization than
Mycobacterium sp. Spyrl, which required 10 days for immobilization on ¢lass beads

in MOMM medium supplemented with pyrene (Karabika et al., 2009).
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(a) (b) ()

Figure 4.10 The Immobilization of Rhodococcus ruber S103 (a), Mycobacterium sp.

J101 (b), and Mycobacterium sp. Y502 (c) after 6 days of incubation time.
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Figure 4.11 Bacterial counted per gram of dried plastic pellets. S103 (a), J101 (b), and
Y502 (c) were immobilized with an initial cell concentration of 10" CFU mL " in CFMM
with 5 ¢ of plastic pellets and 600 mg L of fuel oil and followed by incubation on

rotary shaker 120 rpm at room temperature for 10 days.
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4.5.2 Removal of fuel oil by immobilized defined consortium

in CFMM medium

The removal of fuel oil by the immobilized defined consortium in
CFMM supplemented with fuel oil (2,000 mg L) was investigated. It was observed
that there are little the oil slicks in the experiment with bio-balls at day 3 (Figure
4.12b and Figure 4.12¢) and day 7 (Figure 4.12e and Figure 4.12f) when compared to

control without inoculum as shown in Figure 4.12a and Figure 4.12d.

(a) (b)

(e) ()

Figure 4.12 The oil slick in the cultivation medium supplemented with 2,000 mg L
of fuel oil at day 3 (a-c) and day 7 (d-f). (a) and (d) were controls without inoculum at
day 3 and day 7, respectively. (b) and (e) were controls with sterilized bio-balls at
day 3 and day 7, respectively. (c) and (f) were immobilized defined consortium at day

3 and day 7, respectively.
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It was found that the fuel oil in CFMM was removed by bio-balls and
immobilized defined consortium at day 0 (Figure 4.13). At day 0, the concentration of
fuel oil in CFMM having the bio-balls remained at 1,396.67+23.44 mg L and the
concentration of fuel oil in CFMM having immobilized defined consortium remained
at 1,624.67+110.15 mg Lfl. After 7 days of incubation, the concentration of fuel oil in
CFMM having the bio-balls remained at 514.00+49.15 mg L and the concentration of
fuel oil in CFMM having immobilized defined consortium remained at 682.67+12.86
mg L. In contrast, the concentration of fuel oil in CFMM having free defined
consortium remained at 2,136.67+52.85 mg L in 7 days. The result showed that fuel
oil in an experiment with bio-balls was removed from CFMM medium higher than the

experiment without bio-balls based on adsorption.

3500 -
3000 T
2500 —&— Abiotic control

2000
—a— Free defined consortium

(mg/L)

1500

—©— Sterilized bio-balls
1000

500 —l— Immobilized defined

Concentration of feul oil remaining in CFMM

consortium

Incubation time (days)

Figure 4.13 The concentration of fuel oil remaining in after 7 days of incubation time
and the initial concentration of fuel oil was 2,000 mg L_l. The initial inoculation
arounts 10" CFU g_1 bio-balls for the immobilized defined consortium and 10" CFU

mL’1 for the free bacterial consortium.
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Due to causing the adsorption of bio-balls, the remaining of fuel oil on
bio-balls with and without defined consortium was determined. It was found that the
amount of fuel oil on bio-balls with and without defined consortium was different.
After 7 days of incubation, the concentration of fuel oil remaining on bio-balls
sterilized was 1,330.22+112.07 mg g—l bio-ball, whereas the concentration of fuel oil
remaining on bio-ball was 997.33+123.12 mg g_l bio-ball (Figure 4.14). In addition, it
was found that the fuel oil on bio-balls was degraded around 25% in 3 and 7 days
shown in Figure 4.15.Nonetheless, the immobilized defined consortium had less fuel
oil degradation efficiency than free defined consortium which degraded fuel oil at
41% in 7 days. It is due to the presence of fuel oil on bio-ball may decrease uptake

of substrates and metabolites (Quek et al., 2006).
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Figure 4.14 The concentration of fuel oil remaining on bio-balls after 7 days of
incubation time. The concentration of fuel oil was 2,000 mg Lfl. The initial
concentration of free cell and immobilized defined consortium was 1O7 CRU mL’1

and 10 CFU ¢ bio-balls.



109

. 100 -
0

0

c 80 -
o

C

Re] 60 -
-

3 »

g =
g,,_g 40 -
o

3 20 -
K]

=)

[T O |
N

0 3 7

Incubation time (days)

Figure 4.15 % Fuel oil degradation on bio-balls by immobilized defined consortium

(CFMM experiment).

On the other hand, there are many types of research showing that the
immobilized bacterial consortia have a higher efficacy of xenobiotic compounds
biodegradation than free microbial consortia. For example, the immobilized bacterial
consortium on sodium alginate-diatomite beads significantly degraded 20 mg L of
crude oil at 88%. Conversely, the free bacterial consortium composed of
Microbacterium foliorum, Gordonia alkanivorans, and Mesorhizobiu degraded 78% of
crude oil in 14 days (Zhen-Yu et al,, 2012). Similarly, Partovinia and Naeimpoor (2014)
demonstrated that immobilized mixed culture had a higher phenanthrene
degradation efficacy than a free cell at high concentration (500 mg LY. The
immobilized microbial consortium removed 80% of phenanthrene while free cells
removed phenanthrene at 62% within 7 days. Our finding showed that the
immobilized defined consortium had potential to remove fuel oil; consequently, it

was investigated the removal of fuel oil in freshwater.
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4.5.3 Removal of fuel oil by immobilized defined consortium in

freshwater from Chao Phraya River

This experiment was performed to study the possibility of
immobilized defined consortia for removal of fuel oil in freshwater from the Chao
Phraya River. The Chao Phraya River was used instead of CFMM, and the immobilized
defined consortium was inoculated in freshwater supplemented 2,000 mg L of fuel
oil. The collected freshwater from the Chao Phraya River was yellow, slightly turbid
and odorless. The chemical properties of freshwater are as followings; pH 6.97, 0.7%
salinity, COD 64 mg L, BOD 53 mg L, total oreanic carbon 4.74 mg L, total
nitrogen 0.9 me L, total phosphorus 1.53 mg L™, total potassium 106.2 mg L™, iron
0.76 mg L, and mercury 0.0005 mg L. From the results, it was found that the
cultivation medium having immobilized defined consortium had turbidity at day 5 as
shown in Figure 4.16. It was also observed the oil residual and more turbidity in the
cultivation medium having immobilized defined consortium at day 10 (Figure 4.17d)
and 15 (Figure 4.18d). Whereas, there were oil slicks in cultivation medium of natural
attenuation experiment. Additionally, it was observed that there was no oil slick in

the controls with sterilized bio-balls.

(a)

(@ (d)
Figure 4.16 The cultivation medium change of control without inoculation (a),
control with sterilized bio-balls (b), natural attenuation (c), and the immobilized

defined consortium (d) at day 5.
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(©) (d)

Figure 4.17 The cultivation medium change of control without inoculation (a),
control with sterilized bio-balls (b), natural attenuation (c), and the immobilized

defined consortium (d) at day 10.

(a)

() (d)

Figure 4.18 The cultivation medium change of control without inoculation (a),
control with sterilized bio-balls (b), natural attenuation (c), and the immobilized

defined consortium (d) at day 15.
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It was found that the concentration of fuel oil in freshwater having
bio-balls and immobilized defined consortium was lower than that of freshwater
having indigenous microorganisms, which remained at 2,441.33+30.55 mg L n
contrast, the concentration of fuel oil in freshwater having immobilized defined
consortium remained at 604.00+28.84 mg L™ within 15 days. At the same time, the
concentration of fuel oil having sterilized bio-balls remained at 643.33+6.11 mg L
which was equal to the fuel oil removal efficiency of the immobilized defined
consortium as shown in Figure 4.19. Thus, the fuel oil on bio-balls in both control
with sterilized bio-balls and the immobilized defined consortium was determined to
confirm that the defined consortium could degrade fuel oil. The results
demonstrated that the amount of fuel oil extracted from bio-balls with and without
bacteria was clearly different. The concentration of fuel oil remaining on bio-ball
having the immobilized defined consortium was 816.00+11.39 mg g_l bio-ball,
whereas the concentration of fuel oil remaining on sterilized bio-balls was
1,523.11+£149.25 mg g_l bio-ball in 15 days as shown in Figure 4.20. Additionally, it
was found that the defined consortium slightly degraded fuel oil on bio-balls every 5
days. After 15 days of incubation time, the defined consortium could degrade 46% of
fuel oil as shown in Figure 4.21. It was possible that the immobilized defined
consortium adapted and mineralized the complex compounds to less complex
chemicals promoting other bacteria in freshwater to degrade those intermediate (He

et al.,, 2013).
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Figure 4.19 The concentration of fuel oil remaining in freshwater from the Chao
Phraya River by immobilized defined consortium after 7 days of incubation time. The
concentration of fuel oil was 2,000 mg L-l. The initial concentration of free cell and

immobilized defined consortiurmn was 10" CFU mL " and 10" CFU g_l bio-balls.
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Figure 4.20 The remaining of fuel oil on bio-balls after 7 days of incubation time. The
concentration of fuel oil was 2,000 mg Lfl. The initial concentration of free cell and

immobilized defined consortiurmn was 10" CFU mL " and 10" CFU gf1 bio-balls.
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Figure 4.21 % Fuel oil degradation on bio-balls by immobilized defined consortium

(freshwater experiment).

Additionally, the amount of immobilized defined consortium could be
monitored using the viable plate count technique based on the morphology color of
the immobilized strains as shown in Figure 4.22. The result found that the
immobilized defined consortium was able to survive throughout the experimental
period as shown in Figure 4.23. It indicated that the defined consortium plays a role
in the removal of fuel oil in freshwater from the Chao Phraya River. Whereas, bacteria
in the natural attenuation experiment grew on the fresh water containing 2,000 mg L
' of fuel oil. The fuel oil was removed only 13% despite an increase of bacteria
ranged from 10° to 10° CFU mL . Consequently, the findings demonstrated that the
immobilized defined consortium could adapt in the environment and had potential
to remove fuel oil. These results are similar to that of Mishra et al. (2001), which
evaluated the efficacy of inoculum addition to stimulating in situ bioremediation of
oily-sludge-contaminated soil at an oil refinery. The microbial consortium was
immobilized on corncob powder, and the initial concentration was 10" CFU g_1
material carriers. It was found that the amount of petroleum hydrocarbon was
reduced by 92% and the bacterial consortium was able to survive in 1 year
demonstrating that the immobilized bacterial consortium was able to adapt and

survive in the environment.
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Figure 4.22 The morphology of strains in (a) defined consortium and (b) indigenous

bacteria in fresh water from the Chao Phraya River.
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Figure 4.23 The amount of defined consortium on bio-balls in fresh water from the

Chao Phraya River
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Moreover, this study monitored the immobilized defined consortium
by using 16S rRNA gene amplicon sequencing analysis. The results demonstrated that
the immobilized defined consortium composed of Rhodococcus ruber S103,
Mycobacterium sp. J101 and Mycobacterium sp. Y502 still survived and significantly
increased in the system. In addition, it was found that the bacterial community
changed during experiment as shown in Figure 4.24. There are few types of research
monitoring the augmented bacteria by using 16S rRNA gene amplicon sequencing
analysis. For example, Exiguobacterium sp. AO-11 capable of degrading of crude oil
was augmented into sandy soil microcosm with 4% (w/w) and monitored it by using
16S metagenomic analysis. The finding showed that strain AO-11 was able to degrade
4% (w/w) crude oil at 75% within 100 days and could be monitored by 16S
metagenomic analysis. Subsequently, strain AO-11 was detected in the sandy soil
contaminated by crude oil only at day 20 (Srisuvanakan, 2016). It was possible that
strain AO-11 played role in the biodegradation of medium- and long-chain alkane in
first 20 days resulting in the enhancement of other crude oil-degrading bacteria
growth.

As a consequence, the immobilized defined consortium achieved the
removal of fuel oil in the fresh water from the Chao Phraya River. Moreover, it
showed that use of the immobilized defined consortium might help in the failure in
bioaugmentation with exogenous bacteria. Interestingly, this is the first report of

fuel oil removal by the immobilized defined consortium.
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CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Nowadays, there are petroleum oil contamination into the rivers including
Chao Phraya and Tha Chin Rivers. It is because of both rivers are the main water
transportation. The petroleum oil used for cargo ships is the fuel oil which is the
mixtures composed of PAHSs, aliphatics, asphaltene, and resin. The Fuel oil is less
biodegradation, persists in the aquatic environments and affects the aquatic
organisms and human. Therefore, this study aimed to formulate the defined bacterial
consortium from the selected effective hydrocarbon-degrading and biosurfactant-
producing bacteria having high cell surface hydrophobicity. The hydrocarbon-
degrading bacteria were isolated by using the mixture of PAHs consisting of
phenanthrene, fluoranthene, and pyrene as a model because PAHs are the main
component of fuel oil and are recalcitrant. Then eight strains were obtained and
were further examined for the ability to degrade various types of PAHs and aliphatic
compounds and to produce biosurfactants. Among these eight strains, three effective
hydrocarbon-degrading and biosurfactant-producing bacteria were selected for
formulating four defined consortia to degrade petroleum hydrocarbons.
Mycobacterium sp. J101 was capable of degrading LMW-PAHs, HMW-PAHs, and
aliphatics. Rhodococcus ruber S103 degraded aliphatic efficiently when compared to
other strains. Mycobacterium sp. Y502 degraded HMW-PAHs as well as reduced the
surface tension of CFMM broth from 55 to 33 mN m . The consortium & (Ca)
composed of S103, J101, and Y502 degraded 2,000 mg L’1 of fuel oil at 41% within 7
days and completely degraded 2,000 mg L of diesel oil within 3 days. Moreover, it
obviously showed a higher fuel oil and diesel oil degradation efficacy than a single
strain and also maintained the capability to degrade pyrene and docosane. It was
possible that C4 had synergistic metabolisms. Subsequently, C4 was chosen for
immobilization on bio-balls and removal of fuel oil. The results showed that the

experiment with bio-balls had a higher efficiency of fuel oil removal from water than
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that of the experiment without bio-balls indicating that bio-balls could adsorb the
fuel oil. In CFMM experiment, there was nearly as much fuel oil concentration in
CFMM having bio-balls (514.00+49.15 mg L) as immobilized defined consortium
(682.67+12.86 mg Lfl) within 7 days. Similarly, the concentration of fuel oil in
freshwater having immobilized defined consortium remained at 604.00+28.84 mg L
and the concentration of fuel oil having sterilized bio-balls remained at 643.33+6.11
mg L within 15 days. Therefore, the fuel oil on bio-balls with and without defined
consortium was determined. It was found that the amount of fuel oil on bio-balls
was obviously different. In CFMM experiment, the concentration of fuel oil on bio-
balls with bacteria remained at 997.23+123.12 mg g_l bio-ball, while the
concentration of fuel oil on sterilized bio-balls remained at 1,330.22+112.07 mg g_l
bio-ball. In freshwater experiment, the concentration of fuel oil on bio-balls with
bacteria remained at 816.00+11.39 mg g_l bio-ball. Meanwhile, the concentration of
fuel oil on sterilized bio-balls remained at 1,523.11+149.25 mg g_l bio-ball. The
results thus showed that the fuel oil on bio-balls was degraded by defined
consortium. In addition, the defined consortium on bio-ball during biodegradation
experiments was detected by using viable plate count technique and 16S rRNA gene
amplicon sequencing analysis. The results indicated that the immobilized defined
consortium could survive throughout the experimental period when it applied to
freshwater. This finding demonstrated that the immobilized defined consortium was
able to remove the fuel oil from both adsorption and biodegradation activities.
Interestingly, this is the first report that uses defined consortium for fuel oil removal.
Consequently, the immobilized defined consortium in this study may be applied to
remove petroleum oil contaminating around the ports by adding the immobilized
defined consortium into the net and tired of around the ports. These results
suggested that the immobilized defined consortium had a potential to remediate

petroleum contaminated aquatic environments.
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5.2 Recommendations for future work

1. Semi-continuous experiment should be performed in order to prove that

immobilized cell had higher performance on fuel oil removal than a free cell.

2. The adhesion and viability of the defined consortium biofilm should be monitored

by scanning electron microscope (SEM) as well

3. The environmental factors including the concentration of fuel oil, pH, temperature,

and salinity should be studied for further application in real environments.

4. The immobilized defined consortium should be studied for its shelf life. The
suitable storage condition of immobilized defined consortium, such as

temperature, should be investigated.

5. The immobilized defined consortium should be applied to in-situ bioremediation
of petroleum oil contaminated in aquatic environments. For example, the
immobilized defined consortium will be added into the net and tired of around

the ports contaminated by petroleum.
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Appendix A

Culture medium preparation

Luria-Bertani (LB broth)

Yeast extract 5¢
Tryptone 10 ¢
NaCl 5¢

Dissolve in 1,000 ml of distilled water, adjust to pH 7.0 with 5M NaCl, and autoclave

at 15 pound per square inch, 121°C for 15 min.

Luria-Bertani (LB agar)

Use the chemicals like LB broth, add 20 ¢ of agar, and autoclave at 15 pound

per square inch, 121°C for 15 min.

Carbon free mineral medium (CFMM)

Solution 1

NH,NO; 3¢
KH,PO, 22¢
Na,HPO,4-12H,0 08¢

Adjust the final volume to 1,000 ml and autoclave at 15 pound per square
inch, 121°C for 15 min
Prepare CFMM agar by dissolving the bacto-agar in 100 ml of culture medium

and autoclaved
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Solution 2

FeCl;-6H,0 0.05 ¢/mL
CaCl,-H,0 0.05 g¢/mL
MgSOy-7H,0 0.1 g/mL

Sterilize the solution by using 0.22 um of CA membrane and added the solution 2 (1

mL each of solution was added into solution 1 (1,000 mL)
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Appendix B

Solution Preparation

PAH solution at final concentration 10,000 mg L_1 (for addition in CFMM broth)

PAH 500 mg
Dimethylformamide 50 mL
PAH was dissolved in dimethylformamide, filtrated by 0.2 um PTFE and kept

at -20°C.

5M NaOH
NaOH 20 mg
Deionized water 100 mL

0.85% NaCl
NaCl 85¢
Distilled water 1,000 mL

The solution was autocalved at 15 pound/square inch, 121°C for 15 min.
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Appendix C

Standard curves

C 1 Standard curve of PAHs analysed by HPLC
PAHs including phenanthrene, fluorene, pyrene, and fluoranthene was
dissolved in methanol at final concentration (5,000 mg L_l). Then, each PAH was
diluted to at final concentration 10, 50, 100, 150, and 200 mg L_l. The solution was
filtrated through 0.22 um PTFE into HPLC vial. Finally, PAHs were analysed by HPLC
using 80% methanol as mobile phase. The calculation to determine concentration of
PAH in sample is follow:
Peak area = slope x the amount of PAH (mg/L)
Phenanthrene standard curve
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Figure C.1 Standard curve of phenanthrene from HPLC.
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Figure C.2 Standard curve of fluorene from HPLC.

Pyrene standard curve
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Figure C.3 Standard curve of pyrene from HPLC.
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Figure C.4 Standard curve of fluoranthene from HPLC.
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C 2 Standard curve of tetradecane and docosane analysed by GC
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Tetradecane and docosane was dissolved in hexane at final concentration

(5,000 mg Lfl). Then, tetradecane was diluted to at final concentration 100, 250, 500,

750, and 1,000 mg L_l. Docosane was diluted to at final concentration 10, 50, 100,

150, and 200 mg L The solution was filtrated through 0.22 pym PTFE into GC vial.

Finally, aliphatics were analysed by GC using helium as carrier gas. The calculation to

determine concentration of aliphatic in sample is follow:

Peak area = slope x the amount of aliphatic (mg/L)



Tetradecane standard curve
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Figure C.5 Standard curve of tetradecane from GC.
Docosane standard curve
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Figure C.6 Standard curve of docosane from GC.
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C 3 Standard curve of crude oil and diesel oil analysed by GC

Crude oil and diesel oil was prepared dissolved in hexane at final
concentration 500, 1,000, 2,000, 4,000, and 8,000 mg L_l. The solution was filtrated
through 0.22 pym PTFE into GC vial. Finally, oils were analysed by GC using helium as
carrier gas. The calculation to determine concentration of oil in sample is follow:

Peak area = slope x the amount of oil (mg/L)

Crude oil standard curve
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Figure C.7 Standard curve of crude oil from GC.



144

Diesel oil standard curve
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Figure C.8 Standard curve of diesel oil from GC.

C 4 16S rDNA sequencing of 8 strains

16S rDNA sequencing of Sphingobium sp. Y101

ACTTCACCCCAGTCGCTAAACCCACTGTGGTCGCCTGCCTCCCTTGCGGEGETTAGCTCAACGCCT
TCGAGTGAATCCAACTCCCATGGTGTGACGGGCGGTGTGTACAAGGCCTGGGAACGTATTCACC
GCGGCATGCTGATCCGCGATTACTAGCGATTCCGCCTTCATGCTCTCGAGTTGCAGAGAACAAT
CCGAACTGAGACGACTTTTGGAGATTAGCTTCCACTCGCATGGTCGCTGCCCACTGTAGTCGCC
ATTGTAGCACGTGTGTAGCCCAACGCGTAAGGGCCATGAGGACTTGACGTCATCCCCACCTTCC
TCCGGCTTATCACCGGCGGETTCCTTTAGAGTACCCAACTAAATGATGGCAACTAAAGGCGAGGG
TTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAGCCATGCAGCAC
CTGTCACCTATCCAGCCGAACTGAAGGAAAGTGTCTCCACTAACCGCGATAGGGATGTCAAACG
TTGGTAAGGTTCTGCGCGTTGCTTCGAATTAAACCACATGCTCCACCGCTTGTGCAGGCCCLCCG

TCAATTCCTTTGAGTTTTAATCTTGCGACCGTACTCCCCAGGCGGATAACTTAATGCGTTAGCTG
CGCCACTGAAATGCCATGCACCCCAGCAGCTAGTTATCATCGTTTACGGCGTGGACTACCAGGG
TATCTAATCCTGTTTGCTCCCCACGCTTTCGCACCTCAGCGTCAACAATCGTCCAGTGAGCCGC

CTTCGCCACTGGTGTTCTTCCGAATATCTACGAATTTCACCTCTACACTCGGAATTCCACTCACC
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TCTCCGATGTTCAAGCAATCCAGTCTCAAAGGCTATTCCGGGGTTGAGCCCCGGGCTTTCACCT
CTGACTTAAATCGCCGCCTACGTGCGCTTTACGCCCAGTAATTCCGAACAACGCTAGCCCCCTC
CGTATTACCGCGGCTGCTGGCACGGAGTTAGCCGGGGCTTATTCTCCCGGTACTGTCATTATCA
TCCCGGGTAAAAGAGCTTTACAACCCTAAGGCCTTCATCACTCACGCGGCATTGCTGGATCAGG
GTTGCCCCCATTGTCCAATATTCCCTACTGCTGCCTCCCGTAGGAGTCTGGGCCGTGTCTCAGT
CCCAGTGTGGCTGATCATCCTCTCAGACCAGCTAAGGATCGTCGCCTTGGTCAGCCTTTACCCA
ACCAACTAGCTAATCCTACGCGGGCTCATCCCTGGGCGATAAATCTTTGGACTTACGTCATCAT
CCGGTATTAGCGTCAGTTTCCCGACGTTATTCCGAACCCAAGGGCAGATTCCCACGCGTTACGC
ACCCGTGCGCCACTATCTCCGAAGAGATCGTTCGACTTGCATGTATTAGGCATGCCGCCAGCGT
TCGTTCTG

16S rDNA sequencing of Sphingobium sp. Y401

CTTCGGGTGAAACCAACTCCCATGGTGTGACGGGCGGTGTGTACAAGGCCTGGGAACGTATTCA
CCGCGGCATGCTGATCCGCGATTACTAGCGATTCCGCCTTCATGCTCTCGAGTTGCAGAGAACA
ATCCGAACTGAGACGACTTTTGGAGATTAGCTTCCACTCGCATGGTCGCTGCCCACTGTAGTCG
CCATTGTAGCACGTGTGTAGCCCAACGCGTAAGGGCCATGAGGACTTGACGTCATCCCCACCTT
CCTCCGGCTTATCACCGGCGEGTTCCTTTAGAGTACCCAACTAAATGATGGCAACTAAAGGCGAG
GGTTGCGCTCGETTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAGCCATGCAGC
ACCTGTCACTCATCCAGCCGAACTGAAGAAATCCATCTCTGGAAATCGCGATGAGGATGTCAAA
CGTTGGTAAGGTTCTGCGCGTTGCTTCGAATTAAACCACATGCTCCACCGCTTGTGCAGGCCCC
CGTCAATTCCTTTGAGTTTTAATCTTGCGACCGTACTCCCCAGGCGGATAACTTAATGCGETTAG
CTGCGCCACCGAAACTCCATGAGCCCCAGCAGCTAGTTATCATCGTTTACGGCGTGGACTACCA
GGGTATCTAATCCTGTTTGCTCCCCACGCTTTCGCACCTCAGCGTCAACAATCGTCCAGTGAGC
CGCCTTCGCCACTGGTGTTCTTCCGAATATCTACGAATTTCACCTCTACACTCGGAATTCCACTC
ACCTCTCCGATGTTCAAGCAATCCAGTCTCAAAGGCTATTCCGGGGTTGAGCCCCGGGCTTTCA
CCTCTGACTTAAATCGCCGCCTACGTGCGCTTTACGCCCAGTAATTCCGAACAACGCTAGCCCC
CTCCGTATTACCGCGGCTGCTGGCACGGAGT TAGCCGGGGCTTATTCTCCCGGTACTGTCATTA
TCATCCCGGGTAAAAGAGCT TTACAACCCTAAGGCCTTCATCACTCACGCGGCATTGCTGGATC
AGGGTTGCCCCCATTGTCCAATATTCCCTACTGCTGCCTCCCGTAGGAGTCTGGGCCETGETCTC
AGTCCCAGTGTGGCTGATCATCCTCTCAGACCAGCTAAGGATCGTCGCCTTGGTGAGCCTTTAC
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CTCACCAACTAGCTAATCCTACGCGGGCTCATCCCTGGGCGATAAATCTTTGGACTTTCGTCAT

CATCCGGTATTAGCGTCCGTTTCCAGACGTTATTCCGAACCCAAGGGCAGATTCCCACGCGTTA
CGCACCCGTGCGCCACTAGCCCCGAAAGGCTCGTTCGACTTGCATGTATTAGGCATGCCGCCAG
CGTTCGTTCTGAGC

16S rDNA sequencing of Arthrobacter sp. S101

CTTAGTCCCAATCGCCAGTCCCACCTTCGACAGCTCCCTCCCACAAGGGGTTAGGCCACCGGCT
TCGGGTGTTACCAACTTTCGTGACTTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACC
GCAGCGTTGCTGATCTGCGATTACTAGCGACTCCGACT TCATGGGGTCGAGTTGCAGACCCCAA
TCCGAACTGAGACCGGCTTTTTGGGATTAGCTCCACCTCACAGTATCGCAACCCTTTGTACCGG
CCATTGTAGCATGCGTGAAGCCCAAGACATAAGGGGCATGATGATTTGACGTCGTCCCCACCTT
CCTCCGAGTTGACCCCGGCAGTCTCCTATGAGTCCCCACCATCACGTGCTGGCAACATAGAACG
AGGGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAACCATGCA
CCACCTGTAAACCGACCGCAAGCGGGGCACCTGTTTCCAGGCGTTACCGGTTCATGTCAAGCCT
TGGTAAGGT TCTTCGCGTTGCATCGAATTAATCCGCATGCTCCGCCGCTTGTGCGGGCCCCCET
CAATTCCTTTGAGTTTTAGCCTTGCGGCCGTACTCCCCAGGCGGGGCACTTAATGCGTTAGCTA
CGGCGCGGAAAACGTGGAATGTCCCCCACACCTAGTGCCCAACGTTTACGGCATGGACTACCAG
GGTATCTAATCCTGTTCGCTCCCCATGCTTTCGCTCCTCAGCGTCAGTTAATGCCCAGAGACCT
GCCTTCGCCATCGGTGTTCCTCCTGATATCTGCGCATTTCACCGCTACACCAGGAATTCCAGTC
TCCCCTACATCACTCTAGTCTGCCCGTACCCACCGCAGATCCGGAGTTGAGCCCCGGACTTTCA
CGGCAGACGCGACAAACCGCCTACGAGCTCTTTACGCCCAATAATTCCGGATAACGCTTGCGCC
CTACGTATTACCGCGGCTGCTGGCACGTAGTTAGCCGGCGCTTCTTCTGCAGGTACCGTCACTT
TCGCTTCTTCCCTACTGAAAGAGGTTTACAACCCGAAGGCCGTCATCCCTCACGCGGCETCGCT
GCATCAGGCTTGCGCCCATTGTGCAATATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGGCCET
GTCTCAGTCCCAGTGTGGCCGGTCACCCTCTCAGGCCGGCTACCCGTCGTCGCCTTGGTAGGCC
ATTACCCCACCAACAAGCTGATAGGCCGCGAGTCCATCCAAAACCACAAAAGCT TTCCACCAAC
CACCATGCGATGGAAGGTCATATCCGGTATTAGACCCAGTTTCCCAGGCTTATCCCAGAGTCAA
GGGCAGGTTACTCACGTGTTACTCACCCGTTCGCCACTAATCCACCAGCAAGCTGGCATCATCG
TTCGACTTGCATGTGTTAAGCACGCCGCCAGCGTTCATCCTGA
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16S rDNA sequencing of Pseudomonas sp. J801

TTCACCCCAGTCATGAATCACACCGTGGTAACCGTCCTCCCGAAGGTTAGACTAGCTACTTCTG
GTGCAACCCACTCCCATGGTGTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCG
ACATTCTGATTCGCGATTACTAGCGATTCCGACTTCACGCAGTCGAGTTGCAGACTGCGATCCG
GACTACGATCGGTTTTGTGAGATTAGCTCCACCTCGCGGCTTGGCAACCCTCTGTACCGACCAT
TGTAGCACGTGTGTAGCCCAGGCCGTAAGGGCCATGATGACTTGACGTCATCCCCACCTTCCTC
CGGTTTGTCACCGGCAGTCTCCTTAGAGTGCCCACCATAACGTGCTGGTAACTAAGGACAAGGG
TTGCGCTCGTTACGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAGCCATGCAGCAC
CTGTGTCAGAGTTCCCGAAGGCACCAATCCATCTCTGGAAAGT TCTCTGCATGTCAAGGCCTGG
TAAGGT TCTTCGCGTTGCTTCGAATTAAACCACATGCTCCACCGCTTGTGCGGGCCCCCGETCAA
TTCATTTGAGTTTTAACCTTGCGGCCGTACTCCCCAGGCGGTCAACTTAATGCGTTAGCTGCGC
CACTAAAATCTCAAGGATTCCAACGGCTAGTTGACATCGTTTACGGCGTGGACTACCAGGGTAT
CTAATCCTGTTTGCTCCCCACGCTTTCGCACCTCAGTGTCAGTATCAGTCCAGGTGGTCGCCTT
CGCCACTGGTGTTCCTTCCTATATCTACGCATTTCACCGCTACACAGGAAATTCCACCACCCTC
TACCGTACTCTAGCTCGCCAGTTTTGGATGCAGTTCCCAGGTTGAGCCCGGGGCTTTCACATCC
AACTTAACGAACCACCTACGCGCGCTTTACGCCCAGTAATTCCGATTAACGCTTGCACCCTCTG
TATTACCGCGGCTGCTGGCACAGAGT TAGCCGGTGCT TATTCTGTCGGTAACGTCAAAACAGCA
AGGTATTAGCTTACTGCCCTTCCTCCCAACTTAAAGTGCTTTACAATCCGAAGACCTTCTTCACA
CACGCGGCATGGCTGGATCAGGCTTTCGCCCATTGTCCAATATTCCCCACTGCTGCCTCCCGTA
GGAGTCTGGACCGTGTCTCAGTTCCAGTGTGACTGATCATCCTCTCAGACCAGTTACGGATCGT
CGCCTTGGTGAGCCATTACCTCACCAACTAGCTAATCCGACCTAGGCTCATCTGATAGCGCAAG
GCCCGAAGGTCCCCTGCTTTCTCCCGTAGGACGTATGCGGTATTAGCGTTCCTTTCGAAACGTT
GTCCCCCACTACCAGGCAGATTCCTAGGCATTACTCACCCGTCCGCCGCTGAATCAAGGAGCAA
GCTCCCGTCATCCGCTCGACTTGCATGTGTTAGGCCTGCCGCCAGCGTTCAATCTGA
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16S rDNA sequencing of Rhodococcus ruber S103
CTCAGGACGAACGCTGGCGGCGTGCTTAACACATGCAAGTCGAACGATGAAGCCCAGCTTGCTG
GGTGGATTAGTGGCGAACGGGTGAGTAACACGTGGGTGATCTGCCCTGCACTTCGGGATAAGC
CTGGGAAACTGGGTCTAATACCGGATAGGACCTCGGGATGCATGTTCCGGGGTGGAAAGGTTTT
CCGGTGCAGGATGGGCCCGCGGCCTATCAGCTTGTTGGTGGGGTAACGGCCCACCAAGGCGAC
GACGGGTAGCCGGCCTGAGAGGGCGACCGGCCACACTGGGACTGAGACACGGCCCAGACTCCT
ACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCGACGCCGCGTG
AGGGATGACGGCCTTCGGGTTGTAAACCTCTTTCAGTACCGACGAAGCGCAAGTGACGGTAGGT
ACAGAAGAAGCACCGGCCAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCGAGCGTTG
TCCGGAATTACTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCGCGTCGTCTGTGAAAACCCGCAG
CTCAACTGCGGGCTTGCAGGCGATACGGGCAGACTTGAGTACTGCAGGGGAGACTGGAATTCC
TGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGGTCTCTGGG
CAGTAACTGACGCTGAGGAGCGAAAGCGTGGGTAGCGAACAGGATTAGATACCCTGGTAGTCC
ACGCCGTAAACGGTGGGCGCTAGGTGTGGGTTTCCTTCCACGGGATCCGTGCCGTAGCTAACG
CATTAAGCGCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGC
CCGCACAAGCGGCGGAGCATGTGGATTAATTCGATGCAACGCGAAGAACCTTACCTGGGTTTGA
CATACACCGGACCGCCCCAGAGATGGGGTTTCCCTTGTGGTCGGTGTACAGGTGGTGCATGGCT
GTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCCTGTG
TTGCCAGCACGTAATGGTGGGGACTCGCAGGAGACTGCCGGGGTCAACTCGGAGGAAGGTGGG
GACGACGTCAAGTCATCATGCCCCTTATGTCCAGGGCTTCACACATGCTACAATGGCCGGTACA
GAGGGCTGCGATACCGCGAGGTGGAGCGAATCCCTTAAAGCCGGTCTCAGTTCGGATCGGGGT
CTGCAACTCGACCCCGTGAAGTCGGAGTCGCTAGTAATCGCAGATCAGCAACGCTGCGGTGAAT
ACGTTCCCGGGCCTTGTACACACCGCCCGTCACGTCATGAAAGTCGGTAACACCCGAAGCCGGT
GGCCTAACCCCCTCGTGGGAAGGG
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16S rDNA sequencing of Mycobacterium sp. J101
CACCGGCTTCGGGTGTTACCGACTTTCATGACGTGACGGGCGGTGTGTACAAGGCCCGGGAAC
GTATTCACCGCAGCGTTGCTGATCTGCGATTACTAGCGACTCCGACTTCACGGGGTCGAGTTGC
AGACCCCGATCCGAACTGAGACCGGCTTTGAAAGGATTCGCTCCACCTCACGGCATCGCAGCCC
TTTGTACCGGCCATTGTAGCATGTGTGAAGCCCTGGACATAAGGGGCATGATGACTTGACGTCA
TCCCCACCTTCCTCCGAGTTGACCCCGGCAGTCTCTCACGAGTCCCCACCATAACGTGCTGGCA
ACATGAGACAAGGGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGA
CAGCCATGCACCACCTGCACACAGGCCACAAGGGAACCGACATCTCTGCCGGCGTCCTGTGCAT
GTCAAACCCAGGTAAGGTTCTTCGCGTTGCATCGAATTAATCCACATGCTCCGCCGCTTGTGCG
GGCCCCCGTCAATTCCTTTGAGTTTTAGCCTTGCGGCCAAAAAGTAGCTCCCCAGGCGGGGTAC
TTAATGCGTTAGCTACGGCACGGATCCCAAGGAAGGAAACCCACACCTAGTACCCACAGTAGTA
GCGGCGTGGACTACCAGGGTATCTAATCCTGTTCGCTCCCCACGCTTTCGCTCCTCAGCGTCAG
TTACTGCCCAGAGACCCGCCTTCGCCACCGGTGTTCCTCCTGATATCTGCGCATTCCACCGCTA
CACCAGGAATTCCAGTCTCCCCTGCAGTACTCCAGTCTGCCCGTATCGCCCGCACGCCCACAGT
TAAGCTGTGAGTTTTCACGAACAACGCGACAAACCACCTACGAGCTCTTTACGCCCAGTAATTC
CGGACAACGCTCGCACCCTACGTATTACCGCGGCTGCTGGCACGTAGTTGGCCGGTGCTTCTTC
TCCAGGTACCGTCACTTGCGCTTCGTCCCTGGCGAAAGAGGTTTACAACCCGAAGGCCGTCATC
CCTCACGCGGCGTCGCTGCATCAGGCTTGCGCCCATTGTGCAATATTCCCCACTGCTGCCTCCC
GTAGGAGTCTGGGCCGTATCTCAGTCCCAGTGTGGCCGGACACCCTCTCAGGCCGGCTACCCGT
CGTCGCCTTGGTAGGCCATTACCCCACCAACAAGCTGATAGGCCGCGGGCCCATCCCACACCGC
AAAAGCTTTCCACCACCGACCATGAAGCCGATGATCATATTCGGTATTAGACCCAGTTTCCCAG
GCTTATCCCAAAGTGCAGGGCAGATCA
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16S rDNA sequencing of Mycobacterium sp. Y502
GCCCCCCCCATCCCCTTCGACGGCTCCCTCCCACAAGGGGTTAGGCCACCGGCTTCGGGTGTTA
CCGACTTTCATGACGTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCAGCGTTG
CTGATCTGCGATTACTAGCGACTCCGACTTCACGGGGTCGAGTTGCAGACCCCGATCCGAACTG
AGACCGGCTTTGAAAGGATTCGCTCCACCTCACGGCATCGCAGCCCTTTGTACCGGCCATTGTA
GCATGTGTGAAGCCCTGGACATAAGGGGCATGATGACTTGACGTCATCCCCACCTTCCTCCGAG
TTGACCCCGGCAGTCTCTCACGAGTCCCCGCCATTACGCGCTGGCAACATAAGATAAGGGTTGC
GCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAGCCATGCACCACCTGC
ACACAGGCCACAAGGGAATACCTATCTCTAGGCACGTCCTGTGCATGTCAAACCCAGGTAAGGT
TCTTCGCGTTGCATCGAATTAATCCACATGCTCCGCCGCTTGTGCGGGCCCCCGTCAATTTCTT
TGAGTTTTAGCCTTGCGGCCGTACTCCCCAGGCGGGGTACTTAATGCGTTAGCTACGGCACGGA
TCCCAAGGAAGGAAACCCACACCTAGTACCCACCGTTTACGGCGTGGACTACCAGGGTATCTAA
TCCTGTTCGCTCCCCACGCTTTCGCTCCTCAGCGTCAGTTACTGCCCAGAGACCCGCCTTCGCC
ACCGGTGTTCCTCCTGATATCTGCGCATTCCACCGCTACACCAGGAATTCCAGTCTCCCCTGCA
GTACTCCAGTCTGCCCGTATCGCCCGCACGCCCACAGTTGAGCTGTGAGTTTTCACGAACAACG
CGACAAACCACCTACGAGCTCTTTACGCCCAGTAATTCCGGACAACGCTCGGACCCTACGTATT
ACCGCGGCTGCTGGCACGTAGTTGGCCGGTCCTTCTTCTCCAGGTACCGTCACTTGCGCTTCGT
CCCTGGCGAAAGAGGTTTACAACCCGAAGGCCGTCATCCCTCACGCGGCGTCGCTGCATCAGG
CTTGCGCCCATTGTGCAATATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGGCCGTATCTCAGT
CCCAGTGTGGCCGGTCACCCTCTCAGGCCGGCTACCCGTCCTCCCCTTGGTGAACCGTAACCTC
ACCAAAAAGCTGATAGGCCGCGGGCCCATCCCAACCGGAAAAGCTTTCCCCAACAAACCTGCAC
CCAAAGGGGTATTCGGTTTAAACCCGTTTCCCAGGTTATCCAAATGGGGGGGAATACCCCCCGT
GATCACCCGTTCCCCTTAGAACCCAAAGGGCTTTCCTTTACTCTAGGTTAAACCGCCCCTTCCT
TCGGTCCGTGAGAACACTACATAAAAAGGGAGTTATTTTAATTAATTTATATTT
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16S rDNA sequencing of Mycobacterium sp. Y1201
TGTTACCGACTTTCATGACGTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCAGC
GTTGCTGATCTGCGATTACTAGCGACTCCGACTTCACGGGGTCGAGTTGCAGACCCCGATCCGA
ACTGAGACCGGCTTTGAAAGGATTCGCTCCACCTCACGGCATCGCAGCCCTTTGTACCGGCCAT
TGTAGCATGTGTGAAGCCCTGGACATAAGGGGCATGATGACTTGACGTCATCCCCACCTTCCTC
CGAGTTGACCCCGGCAGTCTCTCACGAGTCCCCACCATAACGTGCTGGCAACATGAGACAAGGG
TTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAGCCATGCACCAC
CTGCACACAGGCCACAAGGGAACCGACATCTCTGCCGGCGTCCTGTGCATGTCAAACCCAGGTA
AGGTTCTTCGCGTTGCATCGAATTAATCCACATGCTCCGCCGCTTGTGCGGGCCCCCGTCAATT
TCTTTGAGTTTTAGCCTTGCGGCCGTACTCCCCAGGCGGGGTACTTAATGCGTTAGCTACGGCA
CGGATCCCAAGGAAGGAAACCCACACCTAGTACCCACCGTTTACGGCGTGGACTACCAGGGTAT
CTAATCCTGTTCGCTCCCCACGCTTTCGCTCCTCAGCGTCAGTTACTGCCCAGAGACCCGLCTT
CGCCACCGGTGTTCCTCCTGATATCTGCGCATTCCACCGCTACACCAGGAATTCCAGTCTCCCC
TGCAGTACTCAAGTCTGCCCGTATCGCCCGCACGCCCACAGTTAAGCTGTGAGTTTTCACGAAC
AACGCGACAAACCACCTACGAGCTCTTTACGCCCAGTAATTCCGGACAACGCTCGGACCCTACG
TATTACCGCGGCTGCTGGCACGTAGTTGGCCGGTCCTTCTTCTCCAGGTACCGTCACTTGCGCT
TCGTCCCTGGCGAAAGAGGTTTACAACCCGAAGGCCGTCATCCCTCACGCGGCGTCGCTGCATC
AGGCTTGCGCCCATTGTGCAATATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGGCCGTATCTC
AGTCCCAGTGTGGCCGGTCACCCTCTCAGGCCGGCTACCCGTCGTCGCCTTGGTAAGCCATTAC
CTCACCAACAAGCTGATAGGCCGCGGGCCCATCCCACACCGCAAAAGCTTTCCAC
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Figure C.9 Chromatograph of phenanthrene degradation by strain Y101, Y401, S101,

and J801 at day 3.
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Figure C.11 Chromatograph of fluorene degradation by Y101, Y401, S101, and J801 at

day 7.
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Figure C.16 Chromatograph of fluoranthene degradation by S103, J101, Y502, and

Y1201 at day 7.
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Table C 1 Deposition of microbial cultures at Microbial Culture Collection

Department of Microbiology Faculty of Science, Chulalongkorn University and in the

GenBank database

Bacteria MSCU no. GenBank accession
no.
Sphingobium sp. Y101 MSCU 0799 MF281995
Sphingobium sp. Y401 MSCU 0800 MF281996
Arthrobacter sp. S101 MSCU 0801 KR869686
Pseudomonas sp. J801 MSCU 0802 MF281997
Rhodococcus ruber S103 MSCU 0934 KX375409
Mycobacterium sp. J101 MSCU 0806 MF281998
Mycobacterium sp. Y502 MSCU 0935 MF281999
Mycobacterium sp. Y1201 MSCU 0805 MF282000
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Table C.11 Biosurfactant activities and hydrophobicity of bacterial cell of
Sphingobium sp. Y101 and Y401 and Arthrobacter sp. S101

Triplicates
Strains Methods Average
1 2 3
Y101 | % Oil displacement 5.81 4.65 4.65 5.04+0.67
Surface tension 39.9 40.3 42.81 41.00+1.29
(mN/m)
% Hydrophobicity 80.72 82.59 85.26 82.86+2.29
Y401 | % Oil displacement 5.81 8.14 11.05 8.33+2.62
Surface tension 31.47 33.00 32.24 32.24+0.62
(MmN/m)
% Hydrophobicity 86.55 88.13 87.89 87.52+0.85
S101 | % QOil displacement 4.65 3.49 3.49 3.88+0.67
Surface tension 47.58 50.79 47.38 48.58+1.56
(MmN/m)
% Hydrophobicity 33.92 33.68 27.93 31.84+3.39

Control: Surface tension value of CFMM broth is 54.94+2.98.
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Table C.12 Biosurfactant activities and hydrophobicity of bacterial cell of
Psudomonas sp. 1801, Rhodococcus ruber S103, and Mycobacterium sp. J101

Triplicates
Strains Methods Average
1 2 3
J801 % Oil displacement 5.81 5.81 5.81 5.81+0.00
Surface tension 38.56 35.64 35.46 36.55+1.74
(mN/m)
% Hydrophobicity 0.00 0.00 0.00 0.00+0.00
S103 | % Oil displacement 19.78 16.28 12.79 16.28+3.49
Surface tension 44.59 39.18 34.11 39.23+4.28
(MmN/m)
% Hydrophobicity 97.53 98.38 98.23 98.05+0.45
J101 % Qil displacement 2.33 3.49 * 2.91+0.82
Surface tension 36.83 35.84 35.74 36.14+0.49
(MmN/m)
% Hydrophobicity 75.00 75.98 76.45 75.81+0.74

Control: Surface tension value of CFMM broth is 54.94+2.98.

Note: * The high error analysis was not calculated.



Table C.13 Biosurfactant activities and hydrophobicity
Mycobacterium sp. Y502 and Y1201
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of bacterial cell of

Triplicates
Strains Methods Average
1 2 3
Y502 | % Oil displacement 16.28 15.28 16.28 15.89+0.67
Surface tension 35.10 32.81 33.66 33.86+0.95
(mN/m)
% Hydrophobicity 73.14 64.46 76.46 71.35+6.20
Y1201 | % Oil displacement 23.84 19.87 18.02 20.35+3.08
Surface tension 30.69 30.96 30.75 30.80+0.12
(MmN/m)
% Hydrophobicity 74.65 74.36 74.39 74.65+0.28

Control: Surface tension value of CFMM broth is 54.94+2.98.
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Table C.14 The petroleum oil biodegradation by three efficient bacteria after 7 days

of incubation time. The concentration of each petroleum oil type is 2,000 mg L

%Degradation

Petroleum
Bacteria Average

oil Triplicate 1 | Triplicate 2 | Triplicate 3
Rhodococcus Fuel oil 20.88 18.15 * 19.52+1.93
ruber S103

Crude oil 91.91 88.75 89.90 90.19+1.60

Diesel 91.66 86.60 80.01 86.09+5.85
Mycobacterium | Fuel oil 17.31 * 28.78 23.05+8.11
sp. J101

Crude oil O 2T 88.75 89.90 89.97+1.26

Diesel 91.45 86.50 79.97 85.99+5.78
Mycobacterium | Fuel oil 11.84 * 11.22 11.53+0.44
sp. Y502

Crude oil 36.66 38.51 39.09 37.58+1.31

Diesel * 33.01 25.80 29.40+5.10

Note: * The high error analysis was not calculated.
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Appendix D

Gel electrophoresis

Primer: RHDO-GP-641F, RHDO-GP-933R
PCR product size: 292 bp

M: 100 bp marker

P: Positive control; Mycobacterium sp. PO2
N: Negative control

292 b p 1: Rhodococcus ruber S103

2: Mycobacterium sp. Y502

3: Mycobacterium sp. J101

Figure D 1 PCR product by RHDO-GP primer of three isolate strains

M P N 1 2 3

Primer: RHDA-GN-610F, RHD O-GN-916R

PCR product size: 306 bp
306 bp M: 100 bp marker

P: Positive control; Burkholderia sp. FP2-1
N: Negative control

1: Rhodococcus ruber S103

2: Mycobacterium sp. Y502

3: Mycobacterium sp. J101

Figure D 2 PCR product by RHDO-GN primer of three isolate strains
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M P N 1 2 3

primer: DbfA1A2-F, DbfA1A2-R

PCR product size: 392 bp
M: 100 bp marker

392 bp P: Positive control; Terrabacter sp. DBF63
N: Negative control

1: Rhodococcus ruber S103

2: Mycobacterium sp. Y502

3: Mycobacterium sp. J101

Figure D 3 PCR product by DbfA1A2-F, DbfA1A2-R primer of three isolate strains

M P N 1 2 3

Primer: NidA-F, NidA-R
PCR product size: 508 bp
508 bp M: 100 bp marker

P: Positive control; Mycobacterium sp. PO2
N: Negative control

1: Rhodococcus ruber S103

2: Mycobacterium sp. Y502

3: Mycobacterium sp. J101

Figure D 4 PCR product by NidA-F, NidA-R primer of three isolate strains



M P N 1 2 3

Primer: ALK-1F, ALK-1R

PCR product size: 185 bp

M: 100 bp marker

P: Positive control; no positive
185 bp N: Negative control

1: Rhodococcus ruber S103
2: Mycobacterium sp. Y502

3: Mycobacterium sp. J101

Figure D 5 PCR product by ALK-1F, ALK-1R primer of three isolate strains

Primer: ALK-2F, ALK-2R

PCR product size: 271 bp

M: 100 bp marker

P: Positive control; Consortium G1
N: Negative control

1: Rhodococcus ruber S103

211 bp 2: Mycobacterium sp. Y502

3: Mycobacterium sp. J101

Figure D 6 PCR product by ALK-2F, ALK-2R primer of three isolate strains
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M P N1 2 3

Primer: ALK-3 F, ALK-3R

PCR product size: 330 bp

M: 100 bp marker

P: Positive control; Consortium G11
230 bp N: Negative control

1: Rhodococcus ruber S103
2: Mycobacterium sp. Y502

3: Mycobacterium sp. J101

Figure D 7 PCR product by ALK-2F, ALK-2R primer of three isolate strains

Primer: AlkB-1F, AlkB-1R

PCR product size: 550 bp

M: 100 bp marker

P: Positive control; Consortium G11
N: Negative control

550 bp 1: Rhodococcus ruber S103
2: Mycobacterium sp. Y502

3: Mycobacterium sp. J101

Figure D 7 PCR product by AlkB-1F, AlkB-1R primer of three isolate strains
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primer: AlkB1-F, AlkB1-R

PCR product size: 629 bp

M: 100 bp marker

P: Positive control; Consortium G11
629 bp N: Negative control

1: Rhodococcus ruber S103
2: Mycobacterium sp. Y502

3: Mycobacterium sp. J101

Figure D 8 PCR product by AlkB1-F, AlkB1-R primer of three isolate strains

M P N1 2 3

Primer: AlkB2-F, AlkB2-R

PCR product size: 552 bp

M: 100 bp marker

P: Positive control; Consortium G11
552 bp N: Negative control

1: Rhodococcus ruber S103
2: Mycobacterium sp. Y502

3: Mycobacterium sp. J101

Figure D 9 PCR product by AlkB2-F, AlkB2-R primer of three isolate strains
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Primer: CYP153-F, CYP153-R

PCR product size: 552 bp

M: 100 bp marker

P: Positive control; Consortium G11
820 bp N: Negative control

1: Rhodococcus ruber S103
2: Mycobacterium sp. Y502

3: Mycobacterium sp. J101

Primer: P45OF, P450R

PCR product size: 800 bp

M: 100 bp marker

P: Positive control; Consortium G11
800 bp N: Negative control

1: Rhodococcus ruber S103
2: Mycobacterium sp. Y502

3: Mycobacterium sp. J101

Figure D 11 PCR product by P450F, P450R primer of three isolate strains
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Primer: AlmAvvf, AlmAwr

PCR product size: 1100 bp
M: 100 bp marker

1131 bp P: Positive control; No positive
N: Negative control

1: Rhodococcus ruber 5103

2: Mycobacterium sp. Y502

3: Mycobacterium sp. J101

Figure D 12 PCR product by AlmAwf, AlmAwr primer of three isolate strains

Primer: P450fw1, P450rv3

PCR product size: 339 bp

M: 100 bp marker

P: Positive control; Consortium G11
N: Negative control

1: Rhodococcus ruber S103

2: Mycobacterium sp. Y502

339 bp
3: Mycobacterium sp. J101

Figure D 13 PCR product by P450fw1, P450rv3 primer of three isolate strains
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