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The main focus of this research paper is on-media axon branching and adhesion 

investigation of neurons as stimulated by modulated potentials on micro-patterned gold 

substrate. Due to the prolonged and inefficient procedures of nerve repair, it is essential that 

we effectively incorporate different parameters and techniques as well as investigate cell-cell 

and cell-substrate interactions to explore new boundaries. This could lead to more 

operational options for nerve regeneration. 

Initially, the behavior of cell growth is first observed. 3T3 and Neuro2A cells are grown 

according to specific protocols allowing the observations of appropriate parameters needed to 
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optimize the cells' development and proliferation. After thorough examination, t�e two cell 

subjects will be grown on patterned and non-patterned gold-coated substrates. Previously, 

"Cathode Arc Sputtering" and "Magnetron Sputtering" techniques are used to coat gold 

particles on polystyrene substrates and distributions of the thin films are then analyzed. 

Different patterning techniques, such as "Stencil Patterning" and "Microcontact Printing" are 

then applied to create a number of patterns on the substrates. Furthermore, 3D patterns will 

be induced by electrical potentials to generate magnetic fields near neurons. Various 

structured patterns as �ell as the overall shapes of the magnet)c fields are speculated to 

have different effects on neural behaviors. Thus, cell-substrate adhesion interactions, 

manipulation of neuronal growth and proliferation using electrical potentials will be explored 

on pure gold substrates in this research. 

Specifically, the ambition of this research is to contribute to the development of neuron 

circuits that will allow more efficient procedures for neNe repair. This research's greatest 

hope is not only to provide current developments with extensive data for further 

improvements, but also to comprehend better the constraints restraining the breakthroughs of 

novel technologies. 

'U'Vl'W1 (Introduction) 

The neNous system consists of the brain, spinal cord, peripheral neNes, and autonomic 

neNes. It is responsible for all movements, thoughts, and sensations of the human body, 

provided by the electrochemical signals. Each electrochemical impulse is sent along the axon 

of the neuron. Minor to moderate injuries most often impair peripheral neNes, which are 

responsible for connecting the spinal cords with the limbs. Matured neNe cells have almost 

no ability to regenerate themselves because there are barely any cellular replication activities; 

therefore, the primary goal in neNe repair is to provide restoration techniques for functions of 

sensory, motor, and autonomic axons. 

Kelsy (1997) stated that peripheral neNe injury is common in both military and civil 

accidents and approximately 100,000 patients undergo peripheral neNe surgery yearly in 

Europe and the United states. In the United States alone, more than 20 million Americans are 

afflicted with peripheral neNe damage. This type of damage becomes increasingly more 

common with age. In one out of every three people with peripheral neNe damage, the 

damage comes from diabetes. In another third, the causes of the neNe damage are from 

accidents and the rest remains unknown. NeNe cells are extremely fragile and can be 

damaged by pressure, cutting, or even stretching. Nerve fibers that carry information can break 

and seize to transmit due to pressure and stretching injuries. However, when a nerve is injured 
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by a cut, both the insulation layer and the nerve itself are broken. All nerve injuries can result 

in the loss of signal transmission between the brain and the limbs causing morbidity and 

paralysis in specific areas. 

Until now, modern nerve repair technology has only provided us with three main 

options for nerve injuries; direct repair, nerve grafting, and applications of nerve conduits. 

Although these approaches are still limited in various ways, they are the best options for 

today's nerve regeneration. 

Direct repair of nerves involve direct connection of two nerve surfaces allowing 
' 

recoveries of a torn or damaged nerve. However this method is confined to a small nerve gap 

of only a few centimeters where the ends of the nerve have minimal tension. Dvali and 

Mackinnon (2003) found that for the optimal nerve regeneration to occur, nerve ends must be 

accurately aligned, tension-free and also with minimal number of sutures. There are two 

modes of direct repair, namely "End-to-End Repair" and "End-to-Side Repair". 

Nerve grafts are considered the best method for dealing with nerve injuries. Normally, a 

nerve is taken from the sural (outer part of the leg) to replace the part of the nerve that has 

been torn or damaged. This will .. most probably give the best return of nerve function, but will

cause a loss of feeling in the area of the donor site. Autografts and allografts are the two 

popular procedures used in the applications of nerve repair. 

The main influence that inspired the advancement of nerve guiding conduits is the 

disadvantage of nerve injury gap repair with autografts such as donor site morbidity and 

extended surgical intervals. Successful models of nerve conduits are able to offer appropriate 

surroundings that will promote axon and Schwann cell growth in addition with neurotrophic 

stimulation. However, this entubulation development is only limited to only the repairing of 

small nerve injuries that is no bigger than a few centimeters wide. Nerve conduits are 

separated into two categories; biological and artificial conduits. 

Artificial conduits are a subset of synthetic materials used for nerve regeneration 

processes. Synthetic materials could be made from organic or inorganic compounds as well as 

a combination of both. One popular metal which has been increasingly chosen is gold. Gold is 

chosen due to its facile methods of synthesis, high degree of control- over shape and size, 

long-term stability in a wide variety of solvents and pH conditions, and most importantly in 

the study regarding neurons, its conductive nature toward surface molecule interaction and 

modification. Currently, gold is also being tested and extensively developed as biomaterials in 

dental and drug delivery applications as well as compounds in treatments of cancer. 

Lin et al., (2008) explored the application of chitosan-gold nano-composites for nerve 

conduits. Chitosan is a natural polysaccharide with excellent bacteriostatic (inhibition of 
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bacterial growth) and hemostatic (enhancement of the stagnation of blood) properties. In 

addition, chitosan can be degraded by enzymes to absorbable oligosaccharides. However, like 

most natural polymers, chitosan exhibits low mechanical strength. Therefore, gold, as a 

material with high mechanical strength and good biocompatibility, was blended with chitosan 

to produce chi-Au nano-composites. Results from the study showed that me'chanical strength 

increased with the amount of gold in the chitosan. This trend was also observed for cell 

proliferation and gene expression but the addition of gold more than SO ppm decreased the 

stimulatory effects. Addition of gold nanoparticles changes the microstructure of chitosan and 

this was suggested as the reason why gold nanoparticles can modulate cellular response. 

However, the in vivo toxicity especially for a longer term of gold 111ano-particle remains 

unknown and was not investigated in the experiments. 

Lin et al., (2008) also inspected the influence of micro-pattern on cell alignment. 

Micro-patterning allows the control of the shape and size of cell adhesion, the control of cell 

migration, cell differentiation and interactions between different types of cells (Wen-wen et al., 

2009). In neurology, micro-patterning is widely used as a method to investigate the 

interactions of ECM proteins with neurons and glia (Corey et al., 2003). Several techniques are 

available for cell micro-patternining such as photolithography and soft lithography which 

includes "Microcontact Printing", "Microfluidic Patterning" and "Stencil Patterning". In the 

study done by Lin et al., (2008), it was observed that most of the neural stem cells appeared 

multipolar on non-patterned substrates and bipolar of microgrooved substrates. On non­

patterned substrates the NSC exhibit extended processes in a radial fashion while those on 

the micro-patterned surfaces had elongated processes oriented parallel to the grooves of the 

patterned substrates. 

Many studies have shown that an imposed electrical field can enhance and direct nerve 

growth. Both direct current and alternating current stimulation have the potential to induce 

the terminal sprouting of intact nerves into the denervated zones of the extremity. Rozman et 

al., (2000) conducted an experiment to study the effect of biphastic electric fields on nerve 

regeneration that follows injury to the radial nerve of a dog. Functional regeneration of 

damaged nerves was evaluated using electromyography. It was found that after 2 months, a 

greater functional regeneration occurred at the left stimulated radial nerve than at the right 

control (unstimulated) nerve. It is our interest to examine whether magnetic fields can induce 

similar effects on neurons. 
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bilelb�e){l (Main Body) 

-r��tli��.:ll°l (Objectives) 

1) To grow metallic glass alloys and ordinary metals on substrate to be used as bio-media.

2) Different patterning processes of bio-media and operating parameters will be explored.

3) Study of neuronal differentiation induced by electrical potentials across neuron cells and

by magnetic field around neuron cells.

16�1bti'Wn1"a1lijl:J (Materials & Methods) 

As a clarification of the overall process of the methodology of this research, the major 
, 

steps that will be taken are mentioned here. Initially, the substrates used in this research are 

obtained as polystyrene samples are coated with gold particles in the fabrication process. A 

number of substrates will be patterned using "Stencil Patterning" methods in this part of our 

methodology. After obtaining the substrates with the desired patter_12s, cells will be grown on 

the substrates and observed under the confocal microscope. Cell-cell interactions and cell­

substrate adhesion/proliferation will be investigated while the best parameter conditions will 

be chosen for the preceding parts of this research. The manipulation of cell-cell interactions, 

cell-substrate adhesion and proliferation via electrical and magnetic stimulations will then be 
;' 

examined. Overall, this research's methodology consists mainly of three parts, substrate 

fabrication, substrate characterization, and applications of electrical and magnetic 

stimulations. 

Substrate Fabrication 

Ion Beam Sputtering 

Sputtering is mainly the removal of atoms from the surface of solids through impacts of 

energetic particles; ions. This process is commonly used in the production of thin films on 

sample surfaces. Ion Sputtering is used in the substrate fabrication process of this research. 

Polystyrene substrate is coated with gold particles using Ion Sputtering before further 

characterization processes can take place. The duration of sputterir.ig will be varied. The 

advantage of this process is its speed and the fact that the conditions of the ion sputtering 

system could be controlled. However, a slight drawback is that the samples being coated with 

gold will be heated at elevated temperatures and possible damage could be done to the 

polystyrene samples. 

Substrate Characterization 

1. Secondary Electron Microscopy (SEM)

Secondary electron microscope (SEM) is used to characterize the prepared substrate 

samples. Since the samples are gold coated glass slides, they are conductive, non-volatile, 

and are thin enough for electron transmission and can hence be viewed under SEM. SEM is 
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used to examine the thickness of the gold film, the distribution of gold particles and the 

surface morphology of the sample. 

2. Confocal Microscopy

The two main modes of the confocal microscopy involve either reflecting light off the 

specimen or by stimulating fluorescence from dyes (fluorophores) applied to the specimen. In 

this research fluorescence confocal microscopy is utilized as it is the mode that is most 

commonly used in biological applications. Since the gold coated substrate samples are 

opaque, fluorescence c9nfocal microscopy are suitable since the technique does not require 

the transmission of light through the sample. Fluorophores can also be attached to neNe 

cells cultured on the substrates allowing the detection of labeled cells and the monitoring of 

cellular integrity. The resolution of the fluorescence confocal microscopy is about 200 nm, 

which is appropriate for viewing neurons as the soma or the central part of a neuron typically 

varies from 4 to 100 micrometers in diameter. However, the prolonged exposure of the 

focused high intensity excitation light may cause photo-damage on the specimen as well as 

causing the fluorophores to undergo photo-bleaching where they fade irreversibly. These 

limitations are taken into accout)t in this research. 

3. Atomic Force Microscopy (AFM) and Scanning Probe Microscope (SPM)

Atomic Force Microscopy (AFM) was used to determine the topographic information of 

the thin film substrates. Surface roughness and profiles were determined by the interaction 

between the tip and the sample. Specifically for AFM, tip sample forces such as friction, 

electric, magnetic, or atomic, are investigated to produce such results (M.Q.Li, 1999, Appl. 

Phys. A 68, 255-258). There have been investigations that apply SPM to biology. An 

experiment by M.Q.Li has revealed a new DNA conformation called the parallel-stranded DNA. 

However in this research, SPM was responsible for determining the thickness, surface 

topology, and roughness of the thin-film coated substrates. The machine used in this process 

was manufactured by Di Digital Instruments, Veeco Metrology Group. This AFM machine was 

provided at the Scientific and Technological Research Equipment Centre of Chulalongkorn 

University. 

Substrate Patterning 

Chemical etching can be used for patterning of gold substrates. Wet chemical etching of 

gold requires a strong oxidizer for the separation of the unpaired valence electron, as well as 

a complexing agent which suppresses the reassembly of oxidized gold atoms back into the 

crystal. Several gold etchants are available and the most suitable etchant will be determined 

and utilized in the research. Different patterned photoresist masks together with the chemical 

etching technique will be implemented to create different patterns of gold on the 
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polystyrene substrates. It is anticipated that different patterns will induce difference effects on 

the growth, proliferation, and branching of neurons. Furthermore, each pattern is expected to 

encourage different outcomes once electrical and magnetic stimuli are applied. 

Cell Culture 

Neuro2A cell lines are used in this research. The culture media consists of 4 

components: Minimum Essential Medium with Earle's Balanced Salt Solution (MEM/EBSS), 

Fetal Bovine Serum (FBS), L-glutamine and Penicillin Streptomycin. The protocol for culturing 

of Neuro2A cell lines is provided by the stem cell laboratory, Department of Medicine, 

Neurovirology Division, Faculty of Medicine, Chulalongkorn University Hospital. 

Statistical Analysis 

All data are presented as means ± standard deviation (SD). Statistical analysis is 

performed using ANOVA test. A probability value (p value) of< 0.05 is accepted as indicative 

of a statistically significant difference. 

e-rnn1<a1lijt1 (Results) 

Substrate Fabrication 

Thin film substrates were prepared by the LEYBOLD UNIVEX 300 thermal evaporator in 
-4 

vacuum condition of approximately 10 Pa. Two types of substrates were prepared on 

pretreated glass slides; gold and chromium-gold thin-films, where chromium acts as the 

adhesion layer. 

In Batch A, gold thin-film with thickness of 29.0 nm; approximately 103 mg of gold was 

used. The first trial of thermal evaporation yielded gold thin-films that have a thickness that 

allows only small amounts of light to penetrate. This caused an obstacle once the sample is 

observed under the inverted microscope. Consequently from low light penetration through 

the sample, the ability to focus a clear image is reduced, therefore obtaining images that are 

unclear or underexposed (Figure 1). 

Figure 1. Batch A: Gold thin-film; thermally evaporated onto surface modified glass substrate 
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In Batch B, gold thin-film with thickness of 12.0 nm; approximately 37.2 mg of gold was 

used. By reducing the amount of gold used to evaporate onto the glass substrates, we 

eliminate the problem of low light penetration while using the inverted microscope. This 

permits a solid and clear image of cultured cells (Figure 2). 

Figure 2. Batch B: Gold thin-films; thermally evaporated onto surface modified glass substrate 

As seen from table 1 in the following page, we are able to see the major differences in 

the values of both the coefficients of linear and volumetric thermal expansion. In 

thermodynamics, the coefficient of volumetric thermal expansion is referred to as the 

compressibility (!3), which is inversely related to the bulk modulus of a material. Although the 

coefficients of volumetric thermal expansion are able to quantitatively represent the changes 

of materials in bulk form relative to changes in temperature, they are not able to 

quantitatively represent that of thin-film materials. Since coefficients of linear thermal 

expansion (a) relates to the changes in materials' linear dimensions in response to changes in 

temperature, they significantly relate to thin-film characteristics. Therefore, it is important to 

note that the coefficients of linear thermal expansion are most significant in explaining the 

obstacle faced here. So since there were conditions in the investigations that required 

temperature changes, it is believed that the difference of the coefficients of linear thermal 

expansions of glass and gold were responsible for the peeling of gold thin-film from the glass 

substrate. To tackle this obstacle, in the following trial, we incorporate an adhesive layer 

between the glass substrate and gold thin-film. 

lnHr Thermal 

10�,c• at 20 •c 

5 

13 -15 

Coefficient of Volumetrlo Thermal 

25.5 

42 

Table 1. Coefficient of linear thermal expansion and coefficient of volumetric thermal 

expansion of glass and gold 
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In Batch C, gold thin-film with a thickness of 27.0 nm; approximately 7.38 mg of gold, 

and Chromium-gold thin-film with a thickness of 13.0 nm of chromium layer and 8.90 nm of 

gold layer; approximately 17.5 mg of chromium and 28.5 mg of gold were used. 

We incorporated a variation in the third attempt of thermal evaporation to improve the 

adhesion of gold onto the glass substrate. Chromium acts as an adhesive layer between gold 

and the glass substrate. The peeling problem of the coating layer was reduced for chromium­

gold thin-films; however observations of cells were consequently harder due to a lower 

contrast of cells and substrate which resulted from the increase in the overall thickness of the 

thin-film. 

Figure 3. Top well - peeling problem was observed for gold thin-film substrate; bottom well 

- attachment of film was improved for gold-chromium thin-film substrate

Atomic Force Microscopy 

Atomic Force Microscope (AFM) was used to determine the surface topology; specifically 

the roughness and the thickness of gold and chromium-gold thin-films after the materials 

were fabricated. From the AFM techniques Figure 4 and Figure 5 display the surface structure 

of surface treated glass substrate using the Piranha Solution. It was determined by AFM that 

the roughness of glass surface is approximately 2.415 nm. 

14 



sc.in .-.itc 
�--bu of 

lnugc OH.I 

0.11u sc•lc 

X 1.000 �/d\,.. 
Z S0.000 rn/dl 

Figure 4. AFM 3-D image of surface treated glass substrate 
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Figure 5. AFM 2-D image of surface treated glass substrate 
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Figure 6. AFM 2-D image of gold thin-film on glass substrate after coating by thermal evaporation 
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Figure 7. AFM3-D image of gold thin-film on glass substrate after coating by thermal evaporation 

Figure 6 and Figure 7 display the surface of gold thin-film after thermal evaporation. 

Figure 4 shows the surface in 3D and it was observed that gold thin-film surface had 

cylindrical or rod-like structures on its surface. The thickness of gold was measured and 

approximated to be in the range of 13-17 nm and roughness estimated to be 2 nm. 
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Figure 8. AFM 2-D image of chromium-gold thin-film after coating by thermal evaporation 
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Figure 9. AFM 3-D image of chromium-gold thin-film after coating by thermal evaporation 
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Figure 8 and Figure 9 display the surface of gold that has been adhered on the glass 

surface using chromium. The roughness of chromium-gold thin-film shows a significant 

increase once compared to glass surface and gold thin-film. The thickness of chromium was 

estimated by AFM to be in the range of 116-123 nm. The roughness and thickness of gold that 

was coated on chromium were approximately to be 10 nm and in the range of 25-28 nm, 

respectively. 

5µm 1 Oµm 20µm 

Figure 10. AFM images: Micro-patterned gold on polyimiade substrate (Left). 2-D image of 

micro-patterned gold line (20µm) achieved by litium dodecylsulfate (LOS) (Right). 

Figure 11. 3-D AFM image of micro-patterned gold on polyimide 

Figure 10 and Figure 11 are AFM images that display the overall topology of the micro­

patterned gold on polyimide substrates. It was investigated that the surface of the micro­

patterned gold on polyimide are layers of porous depositions on gold. 

Cell Culture 

Once the number of cells in the culture dish accumulated and the density seemed too 

high indicating an inappropriate condition for sustaining the proliferation and development of 
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Neuro2A cells, the dish must be sub-cultured. The objective of this process is to divide the 

total number of cells into three new culture dishes. 

Cell sub-culture procedure initiated with the removal of old media entirely and replaced 

with 5 ml of PBS. The amount of PBS is removed and 2 ml of 0.25% trypsin EDTA is added to 

the culture dish. Trypsin functions to segregate the cells into individual neuron cell. After the 

application of trypsin, the dish is kept in the incubator for 2 minutes before removing the dish 

from the incubator and then the addition of 2 ml of Neuro2A media to stop the segregation 

reaction. This is followed by micro-pipetting the entire solution out and injecting it into the 15 

ml tube. Then centrifuge the tube at 1000 rpm for 5 minutes to allow the cells to settle at 

the bottom of the tube. Once completed, pour out the media solution leaving behind the 

cell sedimentation. Re-suspension of the cell is then done after adding 1 ml of media into the 

tube. Prepare 10 ml of Neuro2A media in each cell culture dish and place equal amounts of 

resuspended cells in each culture dish. Lastly, the dishes are placed inside the incubator at 

37°C. 

Two conditions were investigated using serum-free media and 5% serum media where 

cell adhesion and cell proliferation tests were conducted. Cells were cultured on different 

substrates. Gold thin-film substrates used were obtained from batch A Observable through 

the comparison of Figure 12, the number of cell adhesion after 4 hours were higher and the 

Neuro2A on gold surfaces had relatively higher densities compared to the controlled group. 

Figure 12. Cell adhesion Test (Day O after 4 hours); Control (Left) and Gold (Right) 
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In serum-free media, it can be seen that the number of cells on day 2 and day 4 on 

gold substrates are comparable to that on the POL-coated substrates which is the 

experimental positive control. In 5% serum media the number of cells on gold substrates 

were even higher than that of POL-coated substrates. 

Figure 16. Differentiated Neuro2A on gold thin-film (Left), Preference of Neuro2A on gold-thin­

film (Center and Right) 

Figure 16 (Left) shows a surface of gold thin-film that has an abundance of healthy 

Neuro2A cells that have extensively adhered, proliferated, and differentiated. Figure 16 could 

be compared to Figure 16 (Center and Right) to visually portray how Neuro2A more preferably 

develops on gold thin-film in comparison to glass substrates. In Figure 16 (Center and Right), it 

is observed that a higher density of differentiated Neuro2A lies on the surface of gold thin­

films than on the glass substrate (controlled group; bright area). 

ei.n'IJ�1f.l/1lil1'HlJ (Discussion) 

The best outcomes regarding Neuro2A cell adhesion and proliferation received were 

obtained from the first trial of the experimentation using materials fabricated in Batch A Gold 

thin-film coated glass have shown a significantly higher number of cells adhered after 4 days 

compared to the negative controlled group. This illustrates the high potential of gold usage in 

nerve cell culture. The preference observation of Neuro2A for the first trial however showed 

impressive results in comparing the preferences of Neuro2A for gold thin-films than on 

controlled (glass) substrates. The team's investigation allowed simultaneous observations of 

two testing substrate conditions for a single environment; controlled (glass) and gold thin-film, 

repeated in a number of repeated 6-well plates used in the trial. These simultaneous 
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observations allowed the investigators to examine at a keener approach, therefore, obtaining 

more precise and reliable data. It was deduced that gold thin-film on substrates are potential 

candidates for nerve cell culture applications. The different results obtained in the second 

trial on the subjects of cell adhesion and cell proliferation could be accounted for by the 

different weight of gold used in the Thermal Evaporation process, which led to :1arying gold 

thinTfilm thicknesses and the different passages of Neuro2A used in the seeding process. 

The porosity of gold will significantly reduce its conductivity and therefore casted 

doubts on the suitabiljty of litium dodecylsulfate (LOS) to produce the desired micro­

patterning of gold. Therefore, it was evaluated that the process of thermal evaporation with 

the utilization of masks will fabricate micro-patterned gold on substrates that will potentially 

perform more effectively in terms of conductivity and neural development control. 

From the results analyzed from Figure 14 and Figure 15, it was deductable that although 

for 0% serum where there was not enough nutrition to sustain the development of Neuro2A 

after two days, Neuro2A still had higher preference and enhanced cell proliferation on the 

surface of gold in comparison to the controlled, negative, and positive controlled groups. It is 

assumed that by day 4, the number of cells reached a threshold amount where it became 

inappropriate to sustain further development of neuro2A cells. Therefore, Neuro2A cells 

started to die after day 4 due to declining nutrient concentrations, depleting surface area for 

adhesion and proliferation, and increasing waste concentrations. 

Originally, primitive Neuro2A cells will be circular in shape with somewhat turgid, 

continuous, and solid membrane boundaries. Differentiated Neuro2A however, will have an 

elongated body with extensions or branching of neuronal physiques. This was the main criteria 

for distinguishing one differentiated Neuro2A from one that has not. To obtain more detailed 

and highly comparable data of the preference of Neuro2A development on surface modified 

(hydrophilic) glass substrate and gold thin-film, investigations on both surfaces were made on 

the same substrate. This allowed the team to investigate keener on the preference of 

Neuro2A in a single system or environment. In Figure 16, it was revealed that Neuro2A prefers 

to adhere and proliferate on gold. thin-film compared with glass substate. In addition to 

greater adhesion and proliferation of Neuro2A, it could also be observed that the Neuro2A 

cells on gold thin-film are more extensively branched and developed that represents 

neuronal differentiation than those on the glass substrate. 

The fabrication process encountered another obstacle regarding the peeling of gold thin­

film before and during the investigations of the experiments in Batch A. The problem of gold 
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peeling off the glass substrate remains in Batch B. It is suspected that the source of this 

complication originated from the differences in the values of thermal expansion of glass and 

gold as in cell seeding experiments, variations in temperature were encountered. Otherwise, 

we are trying to· evaluate cell adhesion and proliferation with Batch B. 

For future pursuit, it is essential to alter the protocol in thin-film coating process. It is 

extrapolated that the thickness of the adhesive layer; chromium, should be· significantly 

thinner than that of gold; possibly only a few nanometers thick. As for the thickness of gold 

thin-film, the aim is to increase its thickness by several folds achieving at least 20 nm. 

th� b£16ll'Wb 'W'Vl1{1'U';i��Ml6llel{l��{l1'W1� £1

Listed below are some recommendations for future application 

- Apply electrical current to gold substrate at various voltages and examine its effects on

neural developments and differentiation

Investigate different patterning techniques to construct microgrooves for axon guiding and

neural behaviors
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Introduction 

Cortical spreading depression (CSD), an underlying 
mechanism of migraine aura, that propagates to the hip­
pocampus is believed to disrupt hippoce,mpal metaplas­
ticity owing to hippocampus-associated symptoms (e.g. 
amnesia) manifested by patients with chronic migraine. 
Our previous study showed that this aberration is 
mediated by AMPA receptors but roles of NMDA 
receptors are yet to be discovered. 

Aims 

To exhibit the alteration of NR2A/NR2B response ratio 
in terms of total numbers of individual NR2A and 
NR2B-subunits following CSD stimulation. 

Methods 

Adult Wistar rats were divided into CSD and control 
group for electrophysiological study (n = 6, each group) 
and Western blot analysis (n = 15, each group). Electro­
physiological response of both NR2A and NR2B were 
recorded in terms of field-excitatory post-synaptic poten­
tials (fEPSPs). The fEPSP of NR2A was divided by those 
of NR2B in both control and CSD groups. Western blot 
analysis was employed to quantify total numbers of hip­
pocampal NR2A and NR2B. 

Results 

NR2A/NR2B ratio of CSD group significantly increased 
in comparison with control group {p = 0.018). From 
Western blot analysis, intensity of NR2A component 

1 Physiology, Faculty of Medicine Chulalongkorn University, Bangkok, Thailand
Full list of author information is available at the end of the article 

was significantly elevated {p = 0.048) whilst that of 
NR2B.was diminished (p = 0.002). 

Conclusions 

As numerous studies demonstrated that increased hippo­
campal NR2A/NR2B ratio is linked to impaired long­
term potentiation (LTP), our research adds that increase 
in NR2A/NR2B ratio following CSD stimulation is possi­
bly due to transcriptional up/down-regulation of NR2A 
and NR2B, respectively. Combining with our previous 
study, we conclude that CSD impairs memory processes 
by disrupting both glutamate AMPA and NMDA 
receptors. 
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Abstract: Cortical spreading depression (CSD), an underlying mechanism of migraine aura, propagates to the 

hippocampus, and might explain hippocampus-associated symptoms during migraine attack. We hypothesized that 

the CSD-induced hippocampal impairment is mediated by NMDA receptors. By using a rat model, CSD was elicited 

by solid KC! for 45 minutes prio°i' to electrophysiological and quantitative analyses. The result from 

electrophysiological study showed the ratio of glutamate NMDA receptor 2A and 2B subunits (GluN2A/B). Total 

NMDA receptor response was isolated using an AMP A antagonist, prior to a GluN2B receptor antagonist. The 

GluN2A/B ratio was calculated by dividing the remaining NMDA-mediated field-excitatory synaptic potentials 

(fEPSP) with the subtracted difference ofNMDA-mediated fEPSP. Western blot analysis of the hippocampus was 

performed to confirm the quantitative change ofGluN2A/B ratio. In electrophysiological study, the GluN2A/B ratio 

of hippocampal fEPSP was significantly increased in CSD group. Western blot analysis revealed an increase in 

GluN2A subunits and a decrease in GluN2B subunits in the ipsilateral hippocampus to the CSD induction. Our 

current study demonstrated that GluN2A/B ratio was shown to be elevated following CSD stimulation by increasing 

the total number of GluN2A while reducing the total number of GluN2B subunits. GluN2A/B ratio has been 

indicated to be associated with synaptic plasticity of the hippocampus. In conclusion, we showed that CSD increased 

GluN2A/B ratio, in turn, would result in impaired synaptic plasticity. Our findings provide a probable implication on 

the correlation of migraine aura and hippocampus-associated symptoms. No COL 

Keywords: Cortical spreading depression (CSD); migraine aura; NMDA receptors; GluN2A/2B ratio; synaptic 

plasticity 

INTRODUCTION 

Various cerebral insults (e.g. epileptic crises, trauma, ischemia, haemorrhage, and migraine) were shown to produce 

a transient disturbance in cortical activity, so-called cmtical spreading depression (CSD). Cortical spreading 

depression is· caused by massive redistribution of ions, particularly potassium and hydrogen ions between 

intracellular and extracellular compartments [I] resulting in cmtical depolarisation that can spread to the adjacent 



areas. By adopting a model of migraine with aura, spreading depression (SD) in each cortical area is accountable for 

different clinical manifestations seen in the patients. For instance, CSD in the occipital cortex can cause visual 

metamorphopsia (2,3], whereas those occur in the somatosensory cortex result in paraesthesia or hemi�anaesthesia 

(4]. 

Spreading depressi?n propagated to the hippocampus is believed to cause amnesia, emotional and

behavioural changes (e.g. hyperactivity, yawning) during migraine attack [5]. In case of acute amnesia, it seems to 

be transient (4-8 hours in duration) and may impair both anterograde and retrograde memory. Long-term association 

of migraine and amnesia was also demonstrated in a retrospective coh01i study suggesting that migraine is a risk 

factor of developing transient global amnesia (TOA) (6]. For decades, Olesan and Jorgensen proposed that the 

association between migraine and TOA may be explained by presence of spreading depression in the hippocampus 

[7]. The hypothesis was later proven by groups of ex vivo and in vitro experiments showing that CSD propagated to 

the hippocampus. Limited studies were published regarding the presence of SD in the in vivo hippocampus 

following CSD except in familial hemiplegic migraine type 1 (FHMI) mutant mice [8]. Although the molecular 

mechanisms underlying the correlation of migraine and TOA are still unclear, existing evidence suggested that the 

process may involve actions of glutamatergic receptors [9]. 

Glutamatergic transmission is known to play an imp01iant role in inducing plastic change in the 

hippocampal synapse. Repetitive activation of the hippocampal synapse can result in a long-lasting change in 

synaptic activity known as long-term potentiation (LTP). This process is an important step in the registration and 

consolidation of new memories. Various classes of glutamatergic receptors are involved in LTP development, 

specifically cx-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartic acid 

(NMDA) receptors. Previously, our group showed that CSD significantly reduced L TP magnitude by decreasing 

post-synaptic AMPA receptor response [9]. However, the effect of CSD on hippocampal NMDA receptor activity 

were not demonstrated. Differential subunits ofNMDA receptors mainly detected in the hippocampus are GluN2A 

and GluN2B subunits (10]. Thus, these receptors are of our pmiicular interest. Additional studies have demonstrated 

that OluN2A/B response ratio is strongly associated with synaptic plasticity by modifying LTP induction threshold 

[11-13]. 

In this study, we aimed to demonstrate the changes in synaptic transmission of NMDA receptors. We 

identified existence of SD observed in the rat hippocampus and compared their differences in electrical properties 

with the original CSD. Sequential changes in NMDA receptor activity were reported in term of GluN2A/B response 

ratio. Quantitative assays of GluN2A and GluN2B subunits were also performed using Western blot analysis. The 

findings of this study may imply a clinical correlation between migraine and hippocampus-associated symptoms. 

METHODS 

Animals. Adult male Wistar rats (National Laboratory Animal Centre, Mahidol University, Nakorn-Pathom, 

Thailand) weighing 200-350 g were recruited in this study (N = 50). The animals were acclimatised to the housing 

facility for at least seven days prior to the experiments. The study was conducted according to the guideline for 



experimental animals suggested by the National Research Council of Thailand. The study protocol was approved by 

the Ethics Committee of the Faculty of Medicine, Chulalongkorn University. 

Animal preparations. Each rat was anaesthetised with 60 mg/kg of sodium pentobarbital (Ceva Sante Animale, 

Libourne, France) intraperitoneally. We avoided using inhaled isoflurane or IV dexmedetomidine as surgical 

anaesthetics due to their effects on suppressing CSD frequency [14]. Physiological parameters were monitored and 

only animals that were in stable condition throughout the preparation were included in the experiment. 

CSD induction. The rat's head was fitted to a stereotaxic apparatus (Narishige, Tokyo, Japan). After the right 

parietal bone had been exposed, a 2-mm craniotomy was performed at 6 mm posterior to the bregma and 2 mm 

lateral to the sagittal suture using an electric dental driller (NSK, Tokyo, Japan). Since propagation of CSD into the 

hippocampus usually occurred under hyper-excitable conditions, induced either pharmacologically or genetically, 

increased dose ofKCI was employed in our study. For CSD induction, 3 mg of solid KCI (Sigma-Aldrich, St. Louis, 

MO, USA) .was topically applied onto the dura mater for 45 minutes. In control rats, 3 mg of solid NaCl (Merck, 

Darmstadt, Germany) was used instead of solid KC!. 

In vivo cortical DC recording. For the DC recording (n 4), a 2-mm diameter craniotomy was performed in the 

right frontal bone (from bregma: anterior-posterior, +3 mm; lateral, 2 mm; and dorsal-ventral, 0.5 mm). A recording 

glass microelectrode for detecting the DC potential was inserted into the frontal neocortex to a depth of 500 µm. 

Analogue data were converted into digital format using. The data were then analysed using MPlO0 (Biopac Systems 

Inc., Goleta, CA, USA) and AcqKnowledge acquisition software (Biopac Systems Inc., Goleta, CA, USA). The 

measured variables included the area under the curve (AUC) and the amplitude of each CSD wave as well as the 

number of CSD waves that occurred within a 45-minute period. 

In vivo hippocampal DC recording. In a separated set of experiments (n = 4), the DC potential was recorded in the 

CAI region of the hippocampus instead of the neocortex (from bregma: anterior-posterior, -4 mm; lateral, 2 mm). A 

recording glass micro electrode was inse1ied with a depth of 2.2 mm with the aid of rat brain atlas [ 15] and previous 

electrophysiological study [16]. The histological position of the electrode was confirmed microscopically. 

Hippocampal slice preparation. After 45 minutes of CSD stimulation using solid KCI, the animals (n = 6, each 

grup) were decapitated and their ipsilateral hippocampal tissues were entirely dissected. These tissues were then 

quickly loaded and sectioned using a Vibratome tissue slicer (Vibratome, Richmond, IL, USA). The tissues were 

processed in cooled artificial CSF solution (119 mM NaCl, 26.2 mM NaHCO3 , 11 mM glucose, 2.5 mM KC!, 2.5 

mM CaClz, 1.3 mM MgSO4, 1.0 mM NaH2PO4, 0.1 mM picrotoxin; a GABAA receptor antagonist), bubbled with 

carbogen (95% 02, 5% CO2). Fresh slices were moved to a humidified interface-type holding chamber and 

recovered for at least 1.5 hours prior to the performance of the electrophysiological study. 

Electrophysiological recording. A continuation between the CAI and CA3 region was terminated in order to 

prevent epileptiform activity originating from the CA3 region. A bipolar tungsten-stimulating electrode was placed 

in the Schaffer collaterals to evoke a postsynaptic response by delivering a square-pulse stimulus at 0.1 Hz for 0.2 

msec. Discharges from presynaptic fibres followed by fEPSPs were recorded using a glass microelectrode. Only 



slices that produced fEPSP amplitudes of more than 1 m V and were stab le for at least 15 minutes were included in 

this study. 

Response ratio of GluN2A/B. After stable baseline fEPSPs were recorded for at least 15 minutes, NMOA receptor­

mediated fEPSPs were isolated by bath application of a potent AMPA receptor antagonist, 6-cyano-7-

nitroquinoxaline-2,3-dione; CNQX (10 µM in 0.1 % OMSO; Tocris Bioscience, Bristol, UK) to exclude signals from 

AMP A components. Ten milmtes after application of the drug, input stimulation was delivered at 0.033 Hz and its 

intensity was adjusted to evoke stable NMOA receptor-mediated fEPSPs. Ten minutes later, the GluN2A component 

of NMDA receptor-mediated fEPSPs was isolated by bath application of CNQX (10 µM) and GluN2B subunit­

selective NMDA receptor antagonist, ifenprodil (3 µM in 0.1 % OMSO; Tocris Bioscience, Bristol, UK) for 1 hour. 

Total component of NMOA receptor responses was the averaged AUC of the NMOA receptor-mediated 

fEPSPs during 10 minutes prior to ifenprodil application. The amplitude ofNMOA receptor-mediated fEPSPs was 

normalised in the range of0.5-1.5 mV. GluN2A component ofNMOA receptor responses was the averaged AUC of 

the NMOA receptor-mediated fEPSPs during 50-60 minutes after ifenprodil application (i.e., ifenprodil-insensitive 

component). GluN2B component (i.e., ifenprodil-sensitive component) was the total component ofNMOA receptor 

responses subtracted with GluN2A component. GluN2A/B ratio was then calculated by dividing GluN2A 

component with GluN2B component. 

Western blot analysis. Another set of adult male Wistar rats was divided into control and CSO group (n = 15, each 

group). Protocols for CSO stimulation using 3 mg of solid KCl for 45 minutes, combined with solid NaCl in control 

groups, were repeated. 

After 45 minutes of S.O stimulation by solid KC!, the isolated hippocampi were then homogenised in a 

solution containing RIPA buffer (lysis buffer; 150 mM NaCl, 20 mM Tris-HCI, 2 mM EOTA, 1% Triton X-100, 

0.05% SOS, 1 mM PMSF, pH 8; Cell Signaling Technology, Beverly, MA, USA) and Protease Inhibitor Cocktail 

(Cell Signaling Technology, Beverly, MA, USA). Tissue homogenates were centrifuged (Sigma-Aldrich, St. Louis, 

MO, USA) at 12,000 rpm; 4 °C for 15 minutes. 

Fifteen micrograms of protein were loaded onto a 7.5% SOS-PAGE and electroblotted onto a 

polyvinylidene difluoride (PVOF) membrane (GE Healthcare Life Sciences, Little Chalfont, UK). Membranes that 

were intended to determine the quantity of GluN2A were blocked with 5% bovine serum albumin (BSA) prior to 

incubation with the primary antibody in 5% BSA at 4°C overnight and incubated with horseradish peroxidase 

(HRP)-conjugated secondary antibody (1:10,000 dilution; anti-rabbit IgG antibody; Sigma-Aldrich, St. Louis, MO, 

USA) for 1 hour. For GluN2B detection, the membranes were blocked with 5% TBST-MLK at room temperature 

for 1 hour and incubated with a primary antibody in 5% TBST-MLK at 4°C overnight, and incubated with a HRP­

conjugated secondary antibody (1: 10,000 dilution; anti-mouse IgG antibody; Sigma-Aldrich, St. Louis, MO, USA) 

for 1 hour. The dilutions of the primary antibodies were 1 :500 for both GluN2A (rabbit monoclonal antibody; 

Millipore, Billerica, MA, USA) and GluN2B (mouse monoclonal antibody; Millipore, Billerica, MA, USA) and 

1 :2,000 for �-actin (mouse monoclonal antibody; Sigma-Aldrich, St. Louis, MO, USA). Protein bands were 



sequentially detected using enhanced chemiluminescent (ECL) reagents (GE Healthcare Life Science, Little 

Chalfont, UK) exposed onto a hyperfilm (GE Healthcare Life Science, Little Chalfont, UK). The quantity of 

GluN2A and GluN2B were eventually measured using Image J software (NIH, Bethesda, MD, USA). These signals 

were normalised against �-actin bands. 

Statistical analysis. All dat<f were reported in the format of mean ± standard error of the mean (SEM). Statistical 

analysis was performed using IBM SPSS software version 20. Independent sample t-tests was adopted in the 

analyses to establish a statistical correlation. Only probability values less than 0.05 (p < 0.05) were considered to be 

statistically significant. 

RESULTS 

/11 vivo cortical and hippocampal DC recordings 

Our data indicated that CSD propagated and reached the CAI area of the hippocampus in an in vivo model with 

alteration of electrical prope1iies. Several parameters characterising electrical properties of CSD and SD measured at 

the hippocampus (e.g. total number of SD waves, amplitude, duration, AUC, and wave interval) are displayed in 

Table 1. In the cortical DC recording, the results showed that multiple shifts of negative DC characterised as SD 

were detected in the frontal neocortex.in all rats (n = 4) which indicated that solid KCl application consistently 

induced multiple waves ofCSD (Fig. IA). In hippocampal DC recording, we illustrated that a series of negative DC 

potentials characterised as SD was detected in the hippocampal CAI in all rats (n � 4; Fig. IB). 

Ratio of GluN2A/B response 

Analysis ofour current study revealed that GluN2A/B ratio of the CSD group significantly increased in comparison 

with the control group. After application of ifenprodil, NMDA receptor-mediated fEPSPs were reduced in both 

control and CSD slices (Fig. 2A). The reduced magnitudes ofNMDA receptor-mediated fEPSPs in CSD and control 

slices were 23.5 ± 2.1 and 34.4 ± 5.5 %, respectively (p = 0.092; independent samples two-tailed !-test). However, 

the extent of this reduction was not significantly different between the CSD and control groups. In control slices, 

ifenprodil decreased NMDA receptor-mediated fEPSPs on the hippocampal CAI by a degree comparable to other 

studies [17]. The GluN2A/B ratios in CSD and control groups were 3.376 ± 0.361 and 1.968 ± 0.346, respectively (p 

= 0.018; n = 6 each group; independent samples two-tailed t-test; Fig. 2B). This result showed that CSD altered the 

responses ofNMDA receptors in the hippocampal CAI towards greater GluN2A/B response ratio. After treatment 

with ifenprodil, we also demonstrated that isolated fEPSPs were mediated by NMDA receptors, because the 

remaining fEPSPs were abolished by the NMDA receptor antagonist, APV (25 µM). Importantly, this GluN2A/B 

ratio represents the 'response' ofGluN2A over GluN2B subunits on the neuronal plasma membrane. 

Quantitative assay of GluN2A and GluN2B receptors 

Our results obtained from Western blotting analysis showed that the total number of both ipsilateral GluN2A and 

GluN2B subunits of the NMDA receptor were significantly altered in CSD groups (n = 15; right KCl-placed 

hippocampus) compared to control groups (n = 15). We observed a significant increase in total number ofGluN2A 



subunits and a reduction of those GluN2B subunits. The averaged intensity of GluN2A protein t,and relative to �­

actin in ipsilateral CSD and control groups was 0.777 ± 0.040 and 0.655 ± 0.044, respectively � = 0.048; 

independent samples two-tailed t-test). The averaged intensity of GluN2B protein band relative to �-actin in 

ipsilateral CSD and control groups was 0.589 ± 0.027 and 0.713 ± 0.024, respectively (p = 0.002; independent 

samples two-tailed t-test; Fig. 3).

We also compared· the total number of GluN2A and GluN2B subunits of the NMDA receptor betwe1 

ipsilateral and contralateral sides of the hippocampus in CSD group. Total number of GluN2A subunits wa 

significantly increased in the ipsilateral side of the hippocampus (p = 0.042; independent samples two-tailed t-test).

The averaged values of protein intensity in both ipsilateral and contralateral side of the hippocampus were 0. 777 ± 

0.040 and 0.650 ± 0.047, respectively. In contrast, a significant reduction in the total number of GluN2B subunits 

was demonstrated with an averaged band intensity in both ipsilateral and contralateral side of 0.589 ± 0.027 and 

0.699 ± 0.031, respectively (p = 0.012; independent samples two-tailed t-test). In addition, we compared a number 

of GluN2A and GluN2B subunits in contralateral CSD-induced hippocampi with those control hippocampi. These 

results were undoubtedly insignificant for both GluN2A and GluN2B subunits (p = 0.826 for GluN2A component; p

= 0.805 for GluN2B component; independent samples two-tailed t-test). 

DISCUSSION 

Our study demonstrated that induction of CSD resulted in trains of DC shifting, compatible with 

hippocampal spreading depression. The results are consistent with previous ex vivo studies that CSD was induced by 

2M KC! microinjection [18, 19], or 3 mg solid KC! [9]. However, microinjection of 0.5M KC! was shown not to 

produce DC shifting in the hippocampus [20]. Another study revealed that single CSD induced by 300 mM KC! 

topic.al application resulted in waves of SD in in vivo hippocampus only in FHMI mutant mice, but not the wild­

type mice [8]. These evidence support that propagation of SD from the neocortex into the hippocampus is increased 

in dose-dependent fashion. 

According to the DC recordings, wave frequency and amplitude of hippocampal DC waves were 

diminished, while there were no significant changes in both duration and AUC. The duration of SD refers to how 

long ion channels remain open to enable prolongation of depolarisation. The AUC is the sum of the amplitude and 

duration. Wave frequency, which refers to the induction threshold, and amplitude were significantly diminished in 

hippocampal SD. Possible explanations may lie in anatomical difference [18,21] and conduction sensitivity of the 

two structures. 

Based on our electrophysiological studies, we observed an enhanced GluN2A/B ratio secondatily to CSD 

stimulation. Combining this information with our previous research [9], we pointed that L TP magnitude was 

significantly reduced in CSD group compared to the control group. These findings suggest that CSD may be able to 

alter hippocampa\ synaptic transmission by interfering GluN2NB response ratio. Some evidence strongly suggest 

that ratio of GluN2A/B response governs bidirectional modification of L TP induction threshold in the CAI of 



hippocampus [23,24]. An increase in GluN2A/B ratio was shown to impair LTP, in which an incr�ase ofGluN2A/B

ratio by one unit is associated with approximately 9% reduction ofLTP. [12,25] 

Findings from Western blotting analysis support our electrophysiological result of enhanced GluN2NB 

ratio. We demonstrated that the total number of GluN2A subunits of the NMDA receptor was elevated whilst those 

of GluN2B were significantly diminished in the CSD group. Because CSD was elicited for only 45 minutes, we 

hypothesised that CSD causes post-translational modifications to GluN2A and GluN2B proteins rather than 

interfering with transcriptional processes. Although little is known regarding the precise mechanism by which 

GluN2A/B ratio alters the plasticity threshold, we propose that it involves the individual properties of both GluN2A 

and GluN2B subunits. Furthermore, we also showed that CSD may not travel to the contralateral hippocampus, 

because we observed no significant changes of ipsilateral (right) and contralateral (left) in either the total number of 

individual GluN2A or GluN2B subunits. 

Evidences from molecular experiments suggest that GluN2B receptors have longer activation duration than 

GluN2A, which results in a greater Ca2+ 

influx [26]; thus, overexpression ofGluN2B led to the enhanced LTP in the 

hippocampus [27]. In addition, activation of GluN2B subunits ·.of the NMDA receptor could generate LTP in 

GluN2A-knockout mice [23,28] and hippocampal LTP was not observed in GluN2B-knockout mice [29]. 

Some limitations should be considered. First, since we used CSD as a model, the interpretation of our study 

may not only be constrained to migraine with aura, since various cerebral insults has been shown to produce CSD. 

Second, although the knowledge obtained from this study may explain hippocampus-associated symptoms during 

migraine aura, the behaviour or memory in animals were not evaluated. This, however, are being studied in our 

further research. 

Taken together, our study revealed that CSD increased GluN2A/B ratio by modifying the numbers of 

GluN2A and GluN2B subtypes. Our previous studies [9] showed that repetitive CSD resulted in a reduction of L TP 

which, in turn, is correlated to impaired memory processes. Thus, it is suggested that increased GluN2NB ratio is 

associated with reduced LTP. This physiological finding may be used to imply a temporal correlation between 

migraine with aura and hippocampus-associated symptoms. However, our study was conducted in animals, whether 

or not the possibility of our findings hold true in human remains unanswered. 
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Parameters CSD (n =4) Hippoeampal SD (n = 4) p-value

Total number of SD (waves/45 min) 9.23 ± 1.74 3.67± 0.58 0.004* 

Amplitude (mV) 34.62± 6.78 24.79±3.51 0.04* 

Wave interval (min) � 5.10 ± 1.49 10.53 ± 2.27 0.03* 

Duration (s) 69.67 ± 19.60 74.14±28.93 0.83 

AUC (mV•s) 712.35 ± 187.77 810.46±217.11 0.56 

Table 1 Comparison between CSD and Hippoeampal SD. During 45 minutes of CSD elicitation using solid KCI, 

the glass electrodes were placed in both the neocortex (from bregma: anterior-posterior, +3 mm; lateral, 2 mm; and 

dorsal-ventral, 0.5 mm) and the ipsilateral hippocampus (from br�gma: anterior-posterior, -4 mm; lateral, 2 mm). 

The measured variables included the area under the curve (AUC), the amplitude of each CSD wave as well as the 

number of CSD waves. These data were analysed using the AcqKnowledge acquisition software. Our results have 

revealed that total number of spreading depression and amplitude were significantly reduced in the hippocampus 

compared to those in the cortex. Meanwhile, wave interval has been shown to be significantly elevated in 

hippocampal SD. However, we observed no significant changes in terms of duration and AUC. p < 0.05 was 

considered to be statistically significant using independent sample two-tailed t-test.

Fig. 1 Cortical and hippocampal DC recordings. A) A representative tracing showing the DC shift in frontal 

cortex surface induced by KCI application (Scale bar: 5 min; 10 mV). B) A representative tracing showing the DC 

shift in hippocampus induced by KCI application (Scale bar: 5 min; 10 m V). These tracings illustrated that SDs 

originated from the neocortex were shown to be able to spread to the hippocampus. The waves also appeared to be 

morphologically different between CSD and hippocampal SD. Recorded parameters were previously described in 

Table 1. 

Fig. 2 CSD induction affected functional GluN2A/B ratio in hippocampal slices. A) Isolation of GluN2A 

component from NMDA receptor-mediated fEPSPs in the control and CSD groups. The reduction of NMDA 

receptor-mediated fEPSPs was stabilised within 40-60 minutes after ifenprodil application. GluN2A component was 

isolated by bath application of 3 µM ifenprodil, a GluN2B receptor antagonist, at time O to 60 min. Inset: 

Representative traces were recorded immediately prior to ifenprodil application and 60 minutes after ifenprodil 

application. Calibration: 50 millisecond, 0.4 mV. The traces were normalised in term of amplitude. B) Data plot of 

the GluN2AIB ratio. The ratio of GluN2A/B was calculated by dividing the averaged AUC values of ifenprodil­

insensitive component with those of ifenprodil-sensitive component at time 50 to 60 minutes. The GluN2A/B ratio 

was significantly elevated in hippocampal slices obtained from the CSD rats. n 6 each group; p < 0.05 independent 

samples two-tailed t-test. Bar and whisker plots indicate the mean± SEM. 



Fig. 3 Total number of GluN2A and GluN2B subunits of the NMDA receptor measured
. 
by Western blot 

analysis. A) The protein band intensities were exposed and normalised in association to the P-actin bands at 43 kDa. 

For both GluN2A and GluN2B, the signals derived from contralateral and ipsilateral hippocampi are depicted as 

well as those for CSD and control group. B) Proportions of protein signal intensity over the p-actin were calculated 

and demographically presented in comparison with those of CSD and control groups. In CSD group, total number 

ofGluN2A subunits of the N,MDA receptor are significantly elevated while those ofGluN2B are diminished. These 

findings are consistent with the result from our electrophysiological study towards greater GluN2A/B response ratio. 
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Abstract 

Migraines typically occur more frequently in women than men because of the effects of 
estrogen on both the frequency and severity of migraine attacks. Many women suffer from 
migraine attacks during menstruation, which are known as menstrual migraines. The 
pathophysiology of menstrual migraines can be explored by using the rat estrous cycle, which 
shows a cyclical fluctuation of estrogen levels that resembles the menstrual cycle. The aim of this 
study was to investigate whether each stage of the estrous cycle is involved in migraine 
development by comparing the susceptibility oftrigeminal ganglion (TG) neurons in each stage of 
the estrous cycle by using action potential (AP) parameter assessments. The stages of the estrous 
cycle were identified by a vaginal smear and measuring the estrogen levels in collected blood. The 
proestrus and estrus stages had higher estrogen levels compared with the diestrus and metestrus 
stages. Whole-cell patch \:lamp recordings demonstrated that TG neurons in the proestrus and 
estrus stage had lower AP thresholds, decreased rheobases, enhanced AP heights, shorter falling 
times of AP and deeper after-hyperpolarization (AHP) depth. Our results revealed that the high 
level of estrogen in the proestrus and estrus stage alters the AP properties ofTG neurons. Estrogen 
may increase membrane sensitivity and the summation of cellular responses, which alters the AP 
properties. The alterations of the AP properties in the proestrus and estrus stage are due to a 
modification of voltage-gated ion channels in TG neurons, which may be a pathogenesis for 
menstrual migraine. No COL 

Keywords: Menstrual migraine, estrous cycle, trigeminal ganglion (TG) neurons, whole-cell patch 
clamp recording, voltage-sensitive ion channels 

Introduction 

Migraine occurs more often in women than in men. More than 50% of women experience 

menstrual cycle-related migraine, particularly during adulthood [l , 2]. The menstrual cycle enhances various 

parameters ofa migraine, such as the severity, duration and frequency of painful migraine attacks. Previous 

research suggests that altered estrogen levels during the menstrual cycle can affect menstrual migraine [3]. 

The incidence of migraine attacks peaks on the days before and after the onset of menstruation [4]. Estrogen 

levels fluctuate during each stage of the menstrual cycle, which is divided into follicular and luteal phases. In 

female rats, t_he menstrual cycle is called the estrous cycle and occurs in four stages, diestrus, proestrus, 

estrus, and metestrus. Estrogen levels peak during proestrus and estrus. The rat estrous cycle is used to model 

the effects of estrogen during the menstrual cycle in women. 

Cyclical fluctuation of estrogen levels occur during estrous cycle progression. Estrogen levels 

steadily rise during the diestrus stage and peak during the proestrus stage. Subsequently, estrogen levels 

rapidly drop and then slowly rise to reach a plateau at the estrus stage. From the plateau during the estrus 

stage, the estrogen level steeply decreases during the metestrus stage and then increases during the 

progression towards the diestrus stage. Menstrual cycle activity has been implicated as a cause of migraine 

because high levels of estrogen during the proestrus and estrus stage can enhance the susceptibility of 

neurons in the trigeminal nucleus caudalis (TNC), which results in migraine attacks [5]. Furthermore, 
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estrogen exposure also increases the sensitization of the temporomandibular branch, which is innervated by 
TG neurons [6]. These results demonstrated that estrogen can affect the trigeminal system. 

In the trigeminal nociceptive system, estrogen activates the estrogen receptor (ER) on TG neurons 
via either genomic or non-genomic pathways. Estrogen modulates neuronal activity through the expression of 
ion channels or by increasing intracellular cascades, such as extracellular-signal-regulated kinase (ERK) 
signaling, which phosphorylates ion channels [7, 8]. In addition, previous research has demonstrated that 
voltage-gated Na channels [9-11] and voltage-gated K channels [12] in dorsal root ganglion Q)RG) cells are 
activated by exogenous estrogen. Activation of voltage-gated ion channels affects AP development in TG 
neurons, which is a major nociceptive signal from the periphery to higher cortical neurons. Thus, estrogen 
may induce AP by stimulating TG neurons, which activate nociceptive signals from the trigeminal system. 

Our study aims to investigate the AP properties ofTG neurons in various stages of the estrous 
cycle. The AP properties reflect the activation of voltage-gated ion channels that affect the susceptibility of 
TG neurons. Our results suggest that modulation of the trigeminal system underlies the pathophysiology of 
menstrual migra1ne. 

Materials and Methods 

Animals 

Female Sprague-Dawley rats, 6-8 weeks old, have a sufficient estrogen level for 

observing the estrous cycle [13, 14]. Animals used in all experiments were from the National 

Laboratory Animal Center, Mahidol University, Nakorn-Pathom, Thailand. Rats were housed in 

stainless cages in a ventilated room under a 12-hour dark-light cycle and were fed ad libitum. All 

of the protocols were approved by the Animal Care and Use Committee of the Faculty of 

Medicine, Chulalongkorn University, Thailand (No. 4/58). 

Immunoassay of Estrogen levels 

Immediately aft�r decapitation, we collected arterial blood from the left cardiac ventricle 

for storage in a 1.5-ml microcentrifuge tube. The collection tubes were centrifuged at 3,200 rpm 

for 10 min. Then, serum was collected and stored at -20° C. The serum concentration of estradiol 

(E2) was analyzed using the Chemiluminescent Micropmiicle Immunoassay (CMIA) method. 

Estimation of estrous cycle stages 

Using a dropper, we flushed the vagina with normal saline. Subsequently, one drop of 

vaginal fluid was placed on a slide and stained with 1 % methylene blue. In this manner, vaginal 

smears were performed under a light microscope (with a 40X objective lens). Classification of the 

estrous cycle was determined according to the staining of three cell types in the vaginal smear, 

nucleated epithelial cells (Fig. 2B), cornified epithelial cells (Fig. 2C) and leukocytes (Fig. 

2D)[ l 5]. 

Primary cultured of TG neurons 

Primary dissociated TG neurons were cultured as described previously [16-18]. Briefly, 

rats were anesthetized with an overdose intra-peritoneal injection of sodium pentobarbital before 

decapitation. Both trigeminal ganglia were removed and cultured in a 35-mm culture dish of ice­

cold Hank's Balance Salt Solution (HBSS) with penicillin/streptomycin, washed 2 times in HBSS, 

and sectioned into small pieces with a sterile razor blade in 1 ml ofHBSS. Collagenase and 

dispase were filtrated using a 0.22-µm filter and then added to the sample. Immediately following 

filtration, the sample was incubated at 37° C for 20 min. Papain was filtered and added, and then, 

the sample was incubated at 37° C for 20 min again. Afterwards, the sample was centrifuged at 

1,500 rpm for 2 min, and the supernatant was removed. The precipitate was triturated 3 times in L-

15 complete medium using a glass pipette. Next, the sample was centrifuged at 1,500 rpm for 8 

min. The precipitate was collected and washed with F-12 complete medium 2 times. Finally, 400 

µl ofF-12 complete medium was added to the sample and placed into a 35-mm Laminin/PDL dish 

for incubation in.an incubator (37° C, 5% CO2) for 3 hours. The sample was washed with F-12 2 

times for fmiher electrophysiological study [19]. 
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Electrophysiological recording 

Whole-cell patch clamp recording was used to estimate the electrophysiological 
properties of dissociated TG neurons that were maintained in primary culture for 3 hours. Plastic 
chambers containing trigeminal neurons were placed on the microscope sample stand (Olympus 
BX5 l WI microscope, Olympus, USA), after which the cells were superfused with extracellular 
solution flowing into the plastic chamber at a flow rate of 1 ml/min at room temperature. The 
extracellular solution was composed of 145 mM NaCl, 5 mM KC!, 2 mM CaCl2, 1 inM MgC12, 10 
mM D-Glucose, and 10 mM HEPES; the pH value was adjusted to 7.40 with I M  NaOH, and the 
osmolarity adjusted to 320 mOsm/kg with glucose. Glass microelectrodes with an outer diameter 
of 1.5 mm and an inner diameter of 0.86 mm (Sutter Instruments, Navato, CA, USA) were pulled 
on a microelectrode puller (Sutter Instrument) and heat polished using a microforge (Narashige, 
Tokyo, Japan) ,to a resistance of 4-5 mega-ohm. 

Next, we filled microelectrodes with an intracellular solution (composed of 140 mM K­
gluconate, l mM CaC!z, 2 mM MgClz, l 0 mM EGT A, l 0 mM HEP ES, and l O mM and ATP; 
osmolality adjusted to 280 ± 5 with glucose) and inserted the microelectrodes to the headstage of 
an Axopatch amplifier (Axon, Sunnyvale, CA, USA). We approached a TG neuron with a 
microelectrode and attached the electrode to the neuron. Then, we ruptured the cell membrane to 
establish a whole-cell patch clamp recording in the current-clamp mode and measured the resting 
membrane potential (RMP in mV) of the TG neuron. 

In cuiTent-clamp recording, to evaluate AP properties in response to the estrous cycle 
stage, the membrane potential was manually held at -60 m V and injected with a current of l 0 
pA/step with I 00 ms duration. The criteria for successful recording were a minimum IO min 
recording time, with a stable RMP of more negative than -40 mV; an amplitude of the action 
potential that was greater than 70 mV; and an input resistance that was higher than 100 mega-ohm. 
The protocol we followed was adapted from previous reports [20, 2 I]. The cell diameter was 
evaluated as the average of the longest and shortest axis in a BX5 l WI upright microscope 
(Olympus, Tokyo, Japan). Only cells with diameter< 38 µm were analyzed. 

Assessment of the AP properties 

The current clamp injected with brief (I 00 ms) current pulses from a holding potential at 
-60 mV is shown in Fig. IA. The threshold (mV) was the lowest membrane potential that yielded
the first depolarization phase of an AP. Rheobase (pA) was the minimal current injection that was
able to cause the depolarization phase ofan AP. The AP height (APheight; mV) was measured as the
elevation of an AP measured from the holding potential to peak amplitude of the AP. The AP
overshoot (mV) was measured as the elevation ofan AP measured from 0 mV to pel!k amplitude
of the AP. The rising time (ms) was measured as the duration of the depolarization phase, which
was measured from the threshold to peak amplitude of an AP. The falling time (ms) was measured
as the duration of the less positive phase, which was measured from a peak amplitude of an AP to
the holding potential (Fig. 1B ). The depth of after-hyperpolarization (AHP depth; m V) is the de­
escalation ofan AP measured from the holding potential to the negative peak ofan AHP. The
AHP duration (AHPduration; ms) is the duration time from the negative peak ofan AHP to 50% of
the recovery of the holding potential (Fig. 1 C).

Data analysis 

All data are presented as the mean± standard errors of the mean (SEM). Statistical 
analysis was performed using Student's t test. p < 0.05 was accepted as statistically significant. 
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Results 

After decapitation, we immediately collected blood serum to analyze the estrogen level. 
A comparison of the estrogen levels at each stage of the estrous cycle (Fig. 2A) demonstrated that 
the estrogen level at the proestrus stage ( 61.00 ± 1.41 pg/ml, n = 5) was the highest among the 
estrous cycle stages ( comparing with di estrus, 31.00 ± 2.18 pg/ml, n = 5; p < 0.05). Furthermore, 
the estrogen level at the estrus stage was significantly higher than the level at the diestrus stage 
( 46.33 ± 2.89 pg/ml, n = 5; P < 0.05), whereas the estrogen level at the metestrus stage was almost 
the same as the level at the diestrus stage (21.00 ± 2.65 pg/ml, n = 5; N.S.). 

The vaginal smear demonstrated that the cytological properties of the vaginal cells 
changed according to the estrogen level at each stage of the estrous cycle. At the diestrus stage, 
there were several more leukocytes than nucleated epithelial cells (Fig. 2E). In the proestrus stage, 
there were only clusters of round nucleated epithelial cells, which included a granular cytoplasm 
and a nucleus (Fig. 2F). In the estrus stage, there were only clusters of cornified epithelial cells 
(Fig. 2G). In the metestrus stage, there were more leukocytes than cornified epithelial cells (Fig. 
2H). However, there were no differences in the morphology ofTG neurons at each estrous cycle 
stage (Figs. 21, 2J, 2K and 2L). 

At each stage of the estrous cycle, the dissociated TG neurons in the primary culture were 
estimated using a who_le-cell patch clamp configuration, of which depolarizing current steps were 
used to stimulate TG neurons to analyze the AP prope1ties (Fig. 3). The TG neurons at each stage 
of the estrous cycle had similar RMP values (Table 1 ). The threshold at the proestrus ( -27.46 ± 
0.52 mV, n = 24) and estrus stages (-27.00 ± 2.20 mV, n = 35) was significantly lower than 
thresholds at the diestrus stage (-19.14 ± 1.76 mV, n = 52; p < 0.05, p < 0.05, respectively). The 
rheobase at the proestrus (55.63 ± 0.27 pA, n = 24) and estrus stages (49.58 ± 2.70 pA, n = 35) 
was also lower than the rheobase at the diestrus stage (73.33 ± 3.54 pA, n 52; p < 0.05,p < 0.05, 
respectively). The AP height and overshoot at the proestrus stage (AP height; 116.66 ± 1.16 mV 
and AP overshoot; 67.41,± 1.02 m V, n = 24) were significantly higher compared to the di estrus 
stage (AP height; 109.21 ± 3.35 mV and AP overshoot; 52.41 ± 2.76 mV, n = 52; p < 0.05,p <

0.05, respectively). The rising time of the AP was not significant at any stage, and the falling time 
of the AP at the proestrus (3.22 ± 0.56 ms, n = 24) and estrus stages (2.43 ± 0.31 ms, n = 35) were 
significantly shorter compared to the diestrus stage (5.21 ± 0.4 ms, n = 52; p < 0.05, p < 0.05, 
respectively). Moreover, the duration of the AP at the proestrus (4.48 ± 0.20 ms, n=24) and estrus 
stage (3.67 ± 0.31 ms, n= 35) was also significantly shorter compared to the diestrus stage (6.46 ± 
0.46 ms, n= 52; p < 0.05,p < 0.05, respectively). The depth of the AHP at the proestrus (-12.15 ± 
2.36 mV, n = 24) and estrus stages (-13.56 ± 1.00 mV, n=35) was significantly deeper compared 
to the di estrus stage (-5.10 ± 0.49 m V, n= 52; P < 0.05, P < 0.05, respectively), whereas the 
duration of the AHP was not changed at any stage (Table 1). 

Discussion 

The present study investigated the effects of the estrogen level during the estrous cycle on 
the alteration of the AP prope1ties linked to the trigeminal nociceptive system. Each stage of the 
estrous cycle was associated with differences in the morphology of the vaginal epithelium, which 
was influenced by the level of estrogen. Our findings are consistent with Goldman, et al. [16]; 
however, the morphology of the TG neurons did not change, while the properties of the AP were 
changed. 

Estrogen, which binds to ER-alpha and ER-beta receptors, acts via both genomic and 
non-genomic mechanisms to modulate the pain response, neurotransmitter systems, and other 
modulatory systems [22, 23]. For AP development in the trigeminal system, voltage-gated Na 
channels have a key role in response to depolarization, eliciting an AP in TG neurons, which leads 
to pain perception. Voltage-gated Na channels Navl.1 to 1.9 are expressed in TG neurons, 
including Navl.7 (a tetrodotoxin-sensitive Na channel; TTX-S), Navl.8 (a tetrodotoxin-resistant 
Na channel; TTX-R), and Navl .9 (TTX-R), which can be stimulated to induce an AP [24, 25]. 
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Our results demonstrated that the high levels of estrogen at the proestrus and estrus stages reduced 
the AP threshold and rheobase and increased the AP height. These findings are consistent with a 
previous study demonstrating that high estrogen levels increase the excitability oftrigeminal 
ganglion neurons by reducing the AP threshold and rheobase and that estrogen also increases the 
height of the AP [18]. In addition, estrogen has been shown to increase the expression of ERK 
[14], which phosphorylates voltage-gated Na channels in TG neurons [26]. Moreover, a previous 
study reported that exogenous estrogen can increase the specific expression ofNavl'.8 and Nav l .9 
in DRG cells of ovariectomized rat [I 1 ]. Thus, high levels of estrogen during the proestrus and 

estrus stages may increase the expression ofNavl .8 and Navl .9, as well as ERK, which enhances 
the susceptibility of AP development in TG neurons. 

Additionally, voltage-gated K channels play a key role during the less positive and 
repolarization phases. Our findings demonstrated that high estrogen levels at the proestrus and 
estrus stages reduced the falling time and increased the depth of AHP. Previous research has 
demonstrated that estrogen alters the duration of an AP via a large conductance through the 
calcium-activated K channel (BKca) and changes the depth of AHP via a small conductance 
through the calcium-activated K channel (SKc.) in the hippocampal pyramidal neurons [27]. 
Moreover, estrogen also activates L-type Ca channels to allow Ca2+ influx, which increases 
intracellular Ca2+ and activates voltage-gated K channels [25, 26]. Consequently, a high level of 
estrogen at the proestrus and estrus stages may potentiate the activation of voltage-gated K 
channels, which increases K efflux during AP development in TG neurons. 

5 



Conclusion 

The present study demonstrates that the estrogen level at each stage of the estrus cycle 
correlates with the morphology of vaginal epithelial cells, but not the morphology ofTG neurons. 
Interestingly, modification of AP development in TG neurons at each stage of the estrous cycle 
may be induced by the cyclical fluctuation of estrogen levels, which modulate the activation of 
voltage-gated ion channels. The results of this study reveal that the susceptibility of.the trigeminal
system increases during menstruation, which may be the fundamental mechanism underlying 
menstrual migraine. 
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mixed two to three times until the saline became turbid. The turbid fluid was placed on a 
glass slide. The samples were fixed with fire or air dried and stained with 1 % methylene blue 
for 5 min. The slides were rinsed in water. The resulting samples were examined under a light 
microscope. The characterization of each stage of the estrous cycle was performed by 
discriminating three types of cells in the vaginal smear (i.e., epithelial cells, cornified.cells 
and leukocytes). The stage of the estrous cycle was confirmed by measuring hormone 
concentrations in the serum. Blood ( 400 - 500 ul) was collected in clot blood tubes from the 
hearts of the rats prior to anesthesia. The blood samples were centrifuged at 3200 rpm for 10 
min, and the serum was then stored at -20 °C. The serum was analyzed for the level of
estradiol (E2) using the chemiluminescent microparticle immunoassay (CMIA) method. 

The primary cell culture process was modified from a dissociated primary sensory 
neuron protocol. The rats were examined in each estrous stage with vaginal smears. The rats 
were anesthetized with intra-peritoneal injection overdoses of sodium pentobarbital prior to 
decapitation. Both of the trigeminal ganglia were removed and cultured in a 35-mm culture 
dish with ice-cold Hank's balanced salt solution (HBSS) with penicillin/streptomycin. Next, 
the trigeminal ganglia were washed 2 times in HBSS �1:1-d cut into small pieces with a blade in 
1 ml ofHBSS. Collagenase and dispase were filtrated through a 0.22-um filter and added to 
the sample, and the sample was then immediately incubated at 37°C for 20 min. Papain was

.. 

filtrated through a 0.22-um filter and added to the sample, and the sample was then 
immediately incubated at 37°C for 20 min. Next, the sample was centrifuged at RCF 400 g
for 2 min, and the supernatant was removed. The first precipitate was ground in L-15 
complete medium using a glass pipette 3 times and was then centrifuged at RCF 400 g for 8 
min. The second precipitate was collected and washed with F-12 complete medium twice. 
Finally, 400 µl F-12 completed medium was added into the sample, and the sample was 
placed in a 35-mm laminin/PDL dish. The sample was incubated in an incubator (37°C, 5%
CO2) for 3 hr. For further electrophysiological studies, the sample was washed in F12 twice. 

The patch-clamp recordings were performed at room temperature (26 ± 0.5°C) using
TG neurons that had been maintained in primary culture for 3 h after isolation. The patch­
clamp recordings were performed on an Axopatch 200B amplifier (Axon Instruments, Foster 
City, CA, USA) and recorded in a computer for data analysis with pClampfit 10.2 software 
(Axon instruments, Foster City, CA, USA). The output signal was filtered at 2 kHz, and the 
sampling rate was j kHz. The glass pipettes were 1.5 mm in outer diameter and 0.86 mm in 
inner diameter (Sutter Instruments, Navato, CA, USA). The glass pipettes were pulled with a 
Flaming/Brown micropipette puller (P-97; Sutter Instruments, Navato, CA, USA) with a 
resistance of 3-5 Mn<7, 

8
) and filled with internal solution. The internal solution was prepared

with nuclease-free water that contained the following (in mM): 144 potassium gluconate, 3 
MgCh, 10 HEPES, 0.2 EGTA, 2 K2-ATP and 0.3 Na3-GTP (pH 7.2 and 285-295 mOsm). 
The plastic chamber that included the primary-cultured TG neurons was placed on the sample 
stand of upright microscope (Olympus BX51 WI microscope, Olympus, USA). Next, the 
extracellular superfusion solution was added to the plastic chamber ( composition in mM: 1 M 
CaCl, IM MgCl, D-gluta and 10% HEPES; adjusted to a pH of7.40 with 1 M NaOH and an 





diestrus stage and estrus stage -39.99 ± 0.71 mV; P < 0.005 compared with the diestrus 
stage). However, the threshold of the TG neurons in the metestrus stage was not significantly 
different from that in the diestrus stage (-27.57 ± 2.18 mV; P = 0.50). The rheobase values in 
each stage of the estrous cycle paralleled the thresholds of the TG neurons. The rheobase of 
the TG neurons in the diestrus stage was 45.33 ± 2.45 pA. Although the rheobases in the 
proestrus and estrus stages were significantly lower than that in the diestrus stage (16.00 ± 
0.11 pA, 19.33 ± 1.62 pA; P < 0.005, P < 0.005, respectively), the rheobase in the metestrus 
stage was not significantly different from that in the diestrus stage (45.33 ± 4.89; P = 1.00). 
Additionally, the summations of peripheral sensitization as indicated by the total spikes of the 
TG neurons varied according to the stage of the estrous cycle. The total spikes over the 11 
stimulation steps were 6.13 ± 0.78. Peripheral sensitizations were observed as enhancements 
in the total numbers of spikes in the proestrus and estrus stages compared with the diestrus 
stage (111.00 ± 7.43, 81.80 ± 8.14; P < 0.005, P < 0.005, respectively); however, there was 
no change in the total number of spikes in the metestrus stage compared with the diestrus 
stage (6.53 ± 0.91; P = 0.51). 

Discussion 

In the present study, we showed that the stages '.of the estrous cycle could be 
determined via cytological examinations of the vaginal epithelium cells that are influenced by 
the lev1/l of estrogen. The high systemic estrogen level conditions of the proestrus and estrus 
stages increases the numbers of nucleated epithelium cells and comified epithelium cells, 
whereas there were many leukocytes in the diestrus and metestrus stages during which 
estrogen is stable at the baseline level. The change of vaginal cytology in our study is 
consistent with previous studies00, 11). The estrogen level had no effect on the morphologies
of the TG neurons, but the electrophysiological properties of the TG neurons were altered 
according to the fluctuations in the estrogen levels across the estrous cycle. The TG neurons 
exhibited increased excitability in the proestrus and estrus stages during which the estrogen 
levels were high. These alterations in TG neuron excitability may be related to peripheral 
sensitization in the trigeminal nociceptive system. 

Following exposure to estrogen, cells are activated by the process of protein 
expression. Estrogen binds to the ER-alpha and ER-beta receptors, which function via both 
genomic and non-genomic mechanisms<12

). Systemic high estrogen levels activate the ER
receptors in vaginal cells, which results in the proliferation of nucleated epithelium cells and 
comified epithelium cells. Estrogen receptors are also expressed in TG neurons<13)_ Our
results revealed that the high estrogen levels of the proestrus and estrus stages reduced the 
thresholds and rheobases of stimulation required to evoke action potentials in TG neurons. 
The thresholds and rheobases reflect the neuronal excitability of TG neurons, which are 
modulated by various neurotransmitters and neuropeptides. It has been demonstrated that the 
administration of estrogen decreases trigeminal pain thresholds in female rats and also 
increases the excitability of TG neurons04). Estrogen increases peripheral sensitization in the
trigeminal system by enhancing bradykinin signaling in TG neurons<15, 16). In addition,
estrogen also augments endothelial NOS (eNOS) levels, and these levels directly modify 
peripheral sensitization (I 
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Because estrogen increases calcitonin gene-related peptide (CGRP) and serotonin (5-
HT) that are known to have important roles in pain perception in the trigeminal system, 
estrogen is thought to be a modulatory factor in menstrual migraines<4, I&)_ Other s�udies have
reported enhanced effects of estrogen in CGRP synthesis due to nerve growth factor (NGF)­
mediated mechanisms and activation of the transient receptor potential cation channel Vl 
(TRPVl) in dorsal root ganglia< 19)_ The chronic administration of estrogen increases CGRP
levels in dorsal root ganglii20). Estrogen also modulates nociceptive responses through its 
effects on other neuropeptides, such as galanin and neuropeptide y<21J. Thus, it is highly 
possible that fluctuation o"f estrogen level during estrus cycle induces the alteration of 
neurotransmitters, which results in the peripheral sensitization in our study. 

Additionally, our results also revealed that the total numbers of spikes during the 
proestrus and estrus stages increased. These findings indicate_ that estrogen may modulate the 
activation of several voltage-gated ion channels. Estrogen has been found to increase the 
activity of Ca2+-dependent K+ channels and induce augmented depolarization in dorsal root
ganglion cells<22

, 23)_ Estrogen increases the activation of mitogen-activated protein (MAP)
kinase and extracellular signal-regulated kinase (ERK), which result in the phosphorylation 
of voltage-gated sodium channels and voltage-gated potassium channels<6). These effects are
involved in the regulation of neuronal exci_tability<24)_ Thus, the fluctuations of estrogen levels
during the estrous cycle are correlated with neuronal excitability and peripheral sensitization 
in the trigeminal system. Our find111gs suggest the possible adverse effect of estrous cycle in 
causing peripheral sensitization of TG neurons that may be the fundamental mechanism 
underlying menstrual migraine in human. 

Conclusion 

Our results revealed that the fluctuations in estrogen levels during the various stages 
of the estrous cycle are related to the cytology of vaginal epithelial cells; however, the estrous 
cycle did not affect the morphologies of TG neurons. Interestingly, the high estrogen levels of 
the proestrus and estrus stages induced peripheral sensitization by lowering the thresholds 
and rheobases of stimulation and by increasing the total spikes numbers in the TG neurons. 
We conclude that the estrous cycle induces peripheral sensitization, which is an animal model 
of menstrual migraine. 
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Figure 1. Electrophysiological parameters. A: The 1st to 7th current steps; the currents were 

incremented 10 pA per step. 1 = threshold, 2 = spikes (2 total spikes), 3 = rheobase. 
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Figure 2. Evaluation of the estrous cycles of female rats. (A-D) Representative morphologies 

of primary cultured TG neurons at each stage of the estrous cycle. (A) Diestrus stage, (B) 

proestrus stage, (C) estrus stage, and (D) metestrus stage. (E-H) Representative cytologies of 

the vaginal cells in each stage of the estrous cycle. (E) Diestrus stage, (F) proestrus stage, (G) 

estrus stage, and (H) metestrus stage. (I-K) Representative vaginal cell types. (I) Nucleated 

epithelial cells, (J) cornified epithelial cells, and (K) leukocytes. (L) The concentrations of 

estrogen at each stage of the estrous cycle (N = 8 per stage).* P < 0.05, ** P < 0.005 

compared with the diestrus stage. 
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Figure 3. Neuronal excitabilities of the TO neurons at each stage of the estrous cycle. A: In 

the diestrus stage, the rheobase of 40 pA induced the first response. B: In the proestrus stage, 

the rheobase of 20 pA induced the first response. C: In the estrus stage, the rheobase of 30 pA 

induced the first response. D: In the metestrus stage, the rheobase of 50 pA induced the first 

response. 

Table 1 Electrophysiological properties of the TO neurons in each stage of the estrous cycle. 

The values are presented as the means± the SEMs. * P < 0.05 compared with the diestrus 

stage. 

Diestrus (N = 15) Proestrus (N = 15) Estrus (N = 15) Metestrus (N = 15) 

RMP(mV) -48.93 ± 0.68 -47.90 ± 1.83 -48.35 ± 1.03 -44.32 ± 1.53

Threshold (m V) -29 .31 ± 0.69 -43.85 ± 0.04* -39.99 ± 0.71 * -27.57 ± 2.18*

Rheobase (pA) 45.33 ±2.45 16.00±0.11* 19.33 ± 1.62* 45.33 ± 4.89

Total spikes 6.13 ± 0.78 111.00 ± 7.43* 81.80 ± 8.14* 6.53 ± 0.91 
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