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CHAPTER 1
INTRODUCTION

1.1.Motivation and Problem Statement

Every five years, the global internet traffic has been reported by Cisco [1].
Table 1.1 shows Gigabytes (GB) traffic data from 1992 to the estimated data in 2022.
In 2022, the traffic data will reach about 46600 GB per second which is a massive
amount of data compared to the traffic data in the year 2007. Furthermore, it will
reach a CAGR of 26 percent in 2022. CAGR is the compound annual growth rate, and
it is computed by taking the total number of traffic flow data at the end year to divide
the total number of traffic flow data at start year, then power to the inverse of the
length of year difference. In addition, the most attention data which takes much more
consumption of traffic flow is the video data including Ultra High Definition (UHD)
video, High Definition (HD) video, Standard Definition (SD) video, etc. The report is
indicated that the video traffic flow is increased exponentially and reached 325

Exabytes per month, as shown in Figure 1.1.

UHD video data will be increased from 3 percent to 22 percent of total video
data traffic flow, and HD video data will be increased from 46 percent to 57 percent
within five years. Additionally, the video application traffic is also reported, including
the video surveillance and real-time video transmission over multimedia, as shown in
Figure 1.2. As a result, the live video traffic can consume from 5 percent up to 17
percent throughout the period from 2017 to 2022. Suppose an uncompressed or raw
color video contains 100 frames with the resolution 1920 x 1080, and there is 8 bit for
a pixel. Then, the total bytes assigns to that uncompressed video equal to 1920 x 1080
x 3 x 100 = 622.08 MB.



Table 1.1 Historical Internet Context

Year Global internet traffic
1992 100 GB per day

1997 100 GB per day

2002 100 GB per day

2007 2000 GB per second
2017 46600 GB per second
2022 150700 GB per second

47% CAGR 350 B Ultra-High Def (UHD) Video (3%, 22%)
]
2017-2022 BRE . High Def (HD) Video (46%, 57%)

250 B Standard Def (SD) Video (50%, 21%)

Exabytes 200 el
per Month 150 -
100 [ ]

. EEENR
‘m .
2017 2018 2019 2020 2021 2022 ) )
* Figures (n) refer to 2017, 2022 traffic share

Source: Cisco VNI Global IP Traffic Forecast, 2017-2022

Figure 1.1. Global Video Traffic [1]

300
33% CAGR _ o
2017-2022 250 B Video Surveillance (2%, 3%)
Live Internet Video (5%, 17%)

200 B Long-Form Internet VoD (61%, 62%)

A
Exabytes 150 @ Short-Form Internet VoD (32%, 18%)
per Month 4,
3§
0

2017 2018 2019 2020 2021 2022
* Figures (n) refer to 2017, 2022 traffic share

Source: Cisco VNI Global IP Traffic Forecast, 2017-2022

Figure 1.2 Global Video Application Traffic [1]

Due to this massive bit consumption of raw video data storage, which is
going enormous increase in 2022 with limited bandwidth, the raw video is needed to
reduce huge bits before storing or transmitting it to the receiver. The technique to
reduce the bits of the video storage has been called the video compression technique.
There is a compression ratio to set whether the target bit is a lossless or lossy

reduction. The higher compression ratio is the minor bit consumption, but it can lead



to high video distortion. The video compression technique has been applied and
upgraded to accomplish a high compression ratio since 1990 up till now [2], [3], [4],
[5], [6], [7], and [8]. The first video compression technique, named H.261 [2], was
published by the International Telecommunication Union (ITU). H.261 was built for
the transmission over integrated services digital network (ISDN) lines on which the
data rates are multiples of 64 Kbit per second. The video compression technique,
named High-Efficiency Video Coding (HEVC) [8], has been published in 2013 to
accomplish the requirements above. There are several advanced techniques [9] which
embed in HEVC to lead the performance of compression better than the previous one,
H.264/AVC [7] about 50 percent bit deduction at the same object quality [10] and
[11].

Moreover, those video surveillance and real-time video transmission are
generally transmitted via a constant bit rate (CBR) channel. The encoder controller
known as rate control is worked as the main rule to obtain the best rate-distortion (R-
D) performance. In the HEVC reference software, the relationship between the target
bit and Lagrange multiplier A is modeled. The Lagrangian method is used to achieve
the optimal trade-off between rate and distortion on the encoder side. However, two
main difficulties are observed in [8], such as the inaccurate bit allocation for a coding
tree unit (CTU) by the first several CTUs. This inaccurate bit allocation also leads to
the inaccurate A estimation. Figure 1.3 indicates the heat map of bit allocation for
CTUs with a red hover box—the higher intensity of red means the higher bit
allocation consumption. As a result, the most high-frequency components like the
small edge locations are assigned with very high bit allocation, which is unnecessary
for visual perception. So the wrong bit allocation to CTU location can degrade the

final rate control result.



Figure 1.3 The Example of Bit Allocation in a Frame

Thus, this work proposes a novel learning-based framework to enhance the

visual quality in HEVC.

1.2.0bjectives

In this work, there are several objectives as follows:

% Investigate learning-based approach in video coding

X4

*

Enhance HEVC encoder to improve the visual quality of compressed
video

% Evaluate the performance of visual quality in the proposed algorithm

*,

with the HEVC reference encoder software

1.3.Scope of Work

% Analyze the relationship of rate control with the neural network

« Propose the learning-based approach instead of the traditional rate
control updating parameters to enhance the visual quality

s Examine the performance of visual quality in the proposed algorithm
with HEVC reference software based on PSNR



1.4.Research Procedures

L4

X/
L X4

Doing a literature review about neural network and video coding
methods

Collecting datasets of surveillance videos

Doing simulation to check the performance of default HEVC reference
software

Proposing and implementing an algorithm to enhance the visual quality
of the compressed video

Taking proposal examination

Writing a journal

Writing a thesis paper

Taking final thesis defense



CHAPTER 2
BACKGROUND AND LITERATURE REVIEW

This chapter presents four main topics to briefly describe the essential
background of video coding or compression and the related work on fast coding in
HEVC. The first introduction is about the fundamental video coding standard, and
then the high-efficiency video coding (HEVC) is presented. The third part explains
the version of rate control algorithms with its standard. The literature review is the

last part of this chapter to indicate the current work on fast coding.

2.1. Video Coding Standard Overview

A multimedia application utilizes multiple media sources like sound/audio,
text, graphics, images, and video in an application. There are numerous multimedia
applications used in our daily lives, including Digital Video Disc (DVD), television
(TV), video telephony, video games, teleconferencing, mobile phone, and computer.
Digital video is one of the multimedia sources hugely utilized in multimedia
applications, which leads to advanced video compression algorithms. Generally,
digital videos have formed in various video coding formats known as compressed
video to be utilized in multimedia applications like MPEG [3], h.261 [2], h.263 [5],
h.264 [7], etc. There are four different criteria taken into compression technique to
achieve high performance of bit saving as same as high object quality. Those criteria
are considered redundancy techniques, including spatial redundancy, temporal
redundancy, perceptual redundancy, and statistical redundancy. Spatial redundancy is
the process of pixels similarity reduction in a still image or frame known as intra-
frame coding. Contrast with the temporal redundancy is the exploration of pixels
similarity reduction in two consecutive frames with the same values in the same
position known as inter-frame coding. Apart from spatial and temporal redundancy,
some detailed information in the picture that the human visual system (eye) could not
perceive, especially the high-frequency components. Hence, the process to diminish
the number of high-frequency components in the picture is called perceptual
redundancy. The last criterion is statistical redundancy defined in the entropy coding
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to form the data into the bitstream by deducting the value of data fields based on the
probability of content. As a result, video compression targets two main objectives:
lossless compression and lossy compression. Lossless compression is a type of data
compression which is careful on original data to be precisely reconstructed from the
compressed data or the decompressed data and the original data are identical. This
technique is primarily used in graphically designed websites like the image with a
PNG extension (Portable Network Graphics) or GIF (Graphics Interchange Format).

In contrast to the lossy compression, the decompressed data is extracted to be
approximated to the original data. Lossy compression can reduce a massive amount of
data storage or a better compression ratio. For this reason, lossy compression is
commonly used in real-time communication, including streaming media and internet
telephony. It is also played in the role of capacity storage shrinking. These two
compression targets are utilized worldwide following the video coding standard
configuration. Ordinarily, the video coding standard framework is constructed based
on the block-based hybrid video codec principle, which is the successful coding tool
to achieve bitstream saving as much as possible by shorting the redundant information

from the data signal.

Pre-Processing

Prediction
(Intra/Inter
Substitution)

Macroblock /
Basic Unit

Transform & Entropy
Quantization Coding

Channel /
Storage

Post-Processing

Inverse
Transform &
Quantization

Prediction
(Intra/Inter
Addition)

Entropy

Reconstruction )
Decoding

Figure 2.1 Block-based hybrid video codec framework
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The hybrid video codec principle is built up from the idea of redundancy
properties in the video source. To sum up, this video codec has two core methods at
the encoder side, such as pre-processing and entropy coding method, as shown in
Figure 2.1. The encoder function generates the represented bitstream of the input
video, where bitstream is stored or transmitted over the channel according to the
target. Moreover, the decoder side of the video codec consists of the entropy decoding
and the post-processing method. The decoder tries to reconstruct the bitstream from
the encoder to get the approximated video of the input video (lossy compression) or
reconstruct the input identity (lossless compression).

Meanwhile, the pre-processing method contains the macroblock/coding unit
partitioning, the prediction (Intra/Inter), the transformation, and the quantization
technique. In the brief of the encoder, the input video frame is split into non-
overlapped macroblock or basic units with 16x16 pixels commonly used. The
prediction block is assigned to remove redundancy block in both still frame and
temporal frame known as Intra Coding and Inter Coding. The result of the prediction
block is passed through the transformation technique to convert the pixel domain into
the frequency domain in the reason for the signal de-correlation. This transformation
is used the discrete-cosine transform (DCT) to understand the pattern of frequency
from DC (Direct Current) component to AC (Alternative Current) components. The
DC component represents the average of the pixel value or Zero frequency
component, and the AC components represent the independence of the pixel values or
Non-Zero frequency components.

Furthermore, the transformation provides efficient coding by shrinking much
of the signal in the pixel domain into more minor of the signal in the frequency
domain called the coefficient values that need to encode. These coefficient values
with their frequency component types are determined by the quantization gate, which
allows or does not pass through the entropy coding to execute the statistical
redundancy and generate the bitstream output objecting to the target bit rate. The
results of that transformation and quantization are described how the perceptual
redundancy applies to the codec before the statistical redundancy performs. Aside
from the encoder side, the bitstream is recoded to reconstruct the video back by doing

the reverse process of the encoder on the decoder side.
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The video coding standard has been published several efficiency standards to
compete with the requirements of real-world multimedia applications, as described in
Table 2.1 by ITU-T, Motion Picture Experts Group (ISO/IEC MPEG) organization.
The joint collaborative team designs some video coding standards on video coding
(JCT-VC) of ITU-T and ISO/IEC MPEG organization. The following section presents
the overview algorithms in the video codec, HEVC, to comprehend this achieve codec
and the outperformance comparison with the previous standard, H.264/MPEG-4
Advanced Video Coding (AVC).

Table 2.1 Video Coding Standard and Applications

No  Years Organization Standards Applications
1 1990 ITU-T H.261 Video Conferencing
CD-ROM (video storage),
ISO/IEC ) ]
2 1993 MPEG-1 video file transfer over the
MPEG
Internet
DVD, Video broadcast
3 1995 JCT-VC H.262/MPEG-2 o o )
(digital television, satellite)
Video Conferencing,
4 1996 ITU-T H.263 )
Surveillance
Surveillance, DVD,
Interactive graphics
applications (Digital Still
ISO/IEC PP ( ] : )
5 1999 MPEG-4 Cameras, Digital Video
MPEG )
Camcorders, Cellular Media),
Interactive multimedia
(World Wide Web)
Video Conferencing,
6 1998 ITU-T H.263+
Surveillance
Video Conferencing,
7 2000 ITU-T H.263++ )
Surveillance
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No  Years Organization Standards Applications

Surveillance, Video
Conferencing, DVD,
H.264/MPEG-4 ) _
8 2003 JCT-VC AVC Satellite, DSL-based Video
On Demand, Digital Still

Cameras, Cellular Media

Mobile, HDTV, Surveillance,
H.265/HEVC Video Conferencing, DVD,
9 2013 JCT-VC (High-Efficiency Satellite, DSL-based Video
Video Coding) On Demand, Digital Still

Cameras, Cellular Media

2.2. High Efficiency Video Coding

JCT-VC published the video coding standard in 2013, known as High-
Efficiency Video Coding (HEVC), to code high-resolution and ultra-high-resolution
video applications that are ineffective in the previous standard. Consecutively, this
HEVC consumes fewer bits than the existent standard, H.264/MPEG-4 AVC, about
half of the bit consumptions for equal visual video quality. Moreover, HEVC is also
designed to achieve other goals like data loss resilience and parallel processing
architectures applications. In briefly, HEVC is built up from various vital features,
including flexible coding quadtree [12], flexible prediction modes [13], advanced
motion vector prediction (AMVP) [11], the improvement of fractional-sample
position interpolation in motion compensation [14], the improvement of the in-loop
filter, and novel sample adaptive offset (SAO) [15], and the use only of context-based
adaptive binary arithmetic coding (CABAC) [11] to accomplish the current
requirements. The framework of the HEVC encoder and its built-in decoder is
indicated in Figure 2.2, where the encoder control is the primary role in checking

whether the bit is no fluctuation or overflow.
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Mode-, Quadtree-,

) e | Encoder Control |====== Motion- and
Coding Quadtree § b L Filter Information
with i with - i = =
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/ Inter-Picture
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Figure 2.2 HEVC System Overview [11]

In the following subsections, a description of the critical features is presented

in concisely understandable.

2.2.1. Picture Partitioning

The high-level segmentation of a still frame in HEVC is performed similarly
to the previous one, H.264/MPEG-4 AVC, grounded on the slice conception. The core
concepts of slice segment are to achieve error robustness of video packet
transmission, to adapt to the maximum transmission unit network constraint, and to be
able to apply in parallel processing. HEVC offers two new tools of picture
segmentation, such as tiles and wavefront parallel processing (WPP), to overcome the
limitations of the parallelization technique engaged in the previous standard. The

picture partitioning techniques are described in the following subsections.

a. Slice
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The slice segmentation in HEVC remains the same as H.264/MPEG-4 AVC,
where each picture can be divided into slices, and these slices are independent of each
other except the cross-slice border in-loop filtering. The slice segmentation structure
comprises the independent slice segment, dependent slice segment, slice segment
boundary, and the slide boundary, as described in Figure 2.3. Slice segmentation
decreases the end-to-end delay for ultra-low delay applications; however, it would

lead to coding inefficiency if multiple slices are assigned.

Independent ol1l2131als5|l6] 718! 910
Slice Segment — =l

11112113 (14|15 )16 (17|18 19| 20| 21

Dependent
Slice Segment
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88189190 (91(192|93 |94 |95 |96 |97 |98

Figure 2.3 Slice Segmentation Structure of a Picture on CTU blocks in HEVC

b. Tile

Tile is another design of the picture partitioning mechanism which is similar
to slices. It can divide a picture into multiple non-overlapped columns or rows, as
indicated in Figure 2.4. A picture splits into nine different tile sizes following a tile-
based raster scan order of CTUs. The double red lines are marked as tile boundaries.
Tile usually offers a better coding efficiency than slice since it reduced the spatial
distances in tiles, leading to higher spatial correlations between samples within a tile.
However, if the number of tiles is enormous, it also leads the coding inefficiency as

similar to the slice technique.
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Figure 2.4 An Example of Tile Picture Partitioning

c. Wavefront Parallel Processing (WPP)

WPP is the newest picture partitioning for parallel processing, which is
enabled in HEVC. It presents many CTU rows in a picture as threads to process the
individual CTU rows. This technique proceeds two consecutive CTUs from the top
left to the bottom right corner of the picture, as illustrated in Figure 2.5. This process
is called “wavefront”. As a result, the wavefront dependencies do not let all threads
of processing CTU rows start decoding altogether. To simplify, WPP requires storing
the content of all CABAC context variables of the second CTU in each CTU row or
thread to process the CTU in the following thread. In all, WPP can achieve minor
coding efficiency loss due to the propagation of context variables at the second CTU
in each CTU row resulting small WPP bitstream compared to a nonparallel bitstream.

In general, WPP is a better technique than slice and tile because it allows a
high number of picture partitions with relatively low coding efficiency losses. It does
not need any additional pass of in-loop filtering like the other two. However, tile is
also suitable in some applications like conversational applications because tiles
combined with a tracking algorithm can adjust the size and error protection of the

region of interests (ROIS).
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Figure 2.5 Wavefront Parallel Processing Example

2.2.2. Coding Quadtree

The previous standard of video coding like H.264/MPEG-4 AVC, the still
picture is generally subdivided from 16x16 block size of luma component to 8x8
block size of luma component, where these blocks are called macroblocks. This
concept is to achieve the coding efficiency on picture patterns with different block
sizes. However, the coding of high and ultra-high-resolution video becomes
progressively essential in multimedia applications. The large coding block size is
considered better for motion-compensated prediction and transform coding to
compete for efficient coding of such high resolutions. However, the local picture
pattern is also necessary to address such details for better perceptual retrieval. This
idea leads to the proposal of hierarchical coding block partitioning, called Coding
Quadtree [12], in HEVC. The quadtree-based block partitioning is determined by the
fast optimal tree pruning in the encoder in Lagrangian rate-distortion cost to get the
best partner of hierarchical coding block partitioning. The largest coding block is
called the largest coding unit (LCU) or coding tree unit (CTU). Nevertheless, the
larger the CTU size, the more encoder/decoder delay may occur. This CTU can be
split into multiple coding units (CUs) of variable sizes, and it can vary from 64x64
block size to 8x8 block size of luma samples by using quadtree syntax as shown in

example Figure 2.6.
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Figure 2.6 Coding Tree Unit (CTU) partitioning example

The CUs procedure is referred to the processing units to which a coding
mode is given. The coding mode is the intra-picture prediction mode or motion-
compensated prediction mode called the inter-picture prediction mode. Typically, the
CUs can be further split into smaller square blocks or non-square blocks according to
the prediction modes and the transform coding to get reliable coding structure in each

depth of picture pattern.

2.2.3. Prediction Modes

The prediction mode is a signal which assigns in the bitstream to declare
whether the prediction is in intra-picture coding mode or inter-picture coding mode.
These two modes are designed in HEVC to lead the high performance of decreasing
coding redundancy on the still frame (Intra-Picture) and the temporal frames (Inter-

Picture).

a. Intra-Picture Prediction
The intra-picture prediction is proposed in HEVC to decrease spatial
redundancy to achieve high coding efficiency on a still picture. In this intra-picture
prediction mode, the CU with size N x N would be split into four square block sizes

%xgor just a single block size N x N to produce the prediction units (PUs). There
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are three main steps to observe the prediction pixel in the intra-picture prediction. The
reference sample array construction is the first step of intra-picture prediction to
generate the reference pixel in both directions, horizontal and vertical. There are two
filtering techniques to get suitable reference pixels, as illustrated in Figure 2.7. The
first filtering technique, called strong-intra smoothing filter, generates the reference
pixels by applying linear interpolation between the three corner reference samples, p[-
1][63], p[-1][-1], and p[63][-1] in case of the prediction block size is equal to 32x32.
The reference samples are observed to be sufficiently flat. Two inequalities property
is defined as Eq. (2.1) to determine the flatness of the reference sample. Otherwise,
another filtering is applied. That filter is a three-tap smoothing filter, and it is

computed as Eq. (2.2),
[p[-1]-1]+ p[2N ~1]-1]-2p[N -1]-1] <L << (b-5))  (21)

pl-1]-1]=(p[-1]0]+ 2p[-1]-1]+ p[o]-1]+2)>>2  (22)

, Where b represents the sample bit depth, N is the block size, and “<< and >>”
indicates the arithmetic left shift and right shift operation, respectively.

a (C+2Y+D)/4 b Linear interpolation
A | L
| [ [ [c]v[o] | =Bl [ [ [ | [v] [c]
e c e
Block to be '% | | Block to be
H predicted g | predicted
B L
(A+2X+B)/4 { i '; i
A gl
-
|| —A|

Figure 2.7 Reference Sample Filtering: (a) shows a strong-intra smoothing filter. (b)

shows a three-tap filtering

The second step is the sample prediction designed into two main categories
in the intra-picture prediction mode. The total of prediction modes in intra-picture

prediction is 35 modes, as demonstrated in Figure 2.8. The angular intra-prediction
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method is considered the first category, where it is modeled to predict the different
directional structures present in the pictures. It consists of 33 directional modes
provides better accuracy codec prediction than its previous standard, H.264/MPEG-4
AVC. The predicted pixel value is estimated as in Eq. (2.3) by projecting its location
to a reference row of pixels and performing interpolating the two closest reference
samples.

Py = ((32 —Wy)' Rio+W, R, +16)>> 5 (2:3)

, Where wy represents the weighting between the two reference samples, Rio and Ri+1,0,
corresponding to the projected subpixel location. The index i and wy are computed
based on the displacement d of projection associated with the selected prediction
direction as Eq. (2.4),

c,=(y-d)>>5
w, =(y-d)&31 (2.4)
I =X+c,

, Where & signifies a bitwise AND operation. The parameters cy and wy are

determined depending on only the coordinate y and the displacement d.

Another category is a group of DC prediction and planar prediction modes.
The DC prediction mode provides an approximation average predicted sample value
in the luminance blocks of size 16x16 and smaller. This average of the reference
samples may introduce the discontinuities along the block boundaries. So the planar
prediction mode is modeled to preserve the continuities along the block boundaries by
applying an average of two linear predictions as Eq. (2.5),

(N - y) Rx,O +y: R0,N+1
(N=%)-Ry, +X-Ry.10 (2.5)

(N+py, +p,)>> (log,(N)+1)

\
px,y

H
px,y

px,y



21

V+2V+5 V49 V+13 V+
I I N
I P Y P

S
| L~
T <
T
]
=
T <
L -
F— o
| L &
<
&
n

pan

al

St

0: planar
1:DC

6 O0F I 2 EF ¥

8

S 9 L

14

£
92+tH lgtH LIHH €HH 6tH StHE+H OH 2-H GH 6H E-H LI'H le-H  92-H

4

ZE+H

Figure 2.8 Intra-Picture Prediction Modes

The last step is post-processing for the predicted samples. The function of
post-processing is to filter the prediction value to achieve better continuities such that
a three-tap [1 2 1]/4 smoothing filter is applied on DC prediction mode.

b. Inter-Picture Prediction
Inter-picture prediction is another redundancy removal method that makes
use of the temporal correlation between consecutive frames to observe a motion-

compensated prediction (MCP), (Axand Ay ), for a based unit of image samples as

illustrated in Figure 2.9 (a). Figure 2.9 (b) indicates all subdivision modes of
prediction unit from a CU with size N xN, including those symmetric and
asymmetric blocks for inter-picture prediction mode. In total, there are eight different
modes of PUs design in HEVC to achieve better prediction on both the DC
component and the AC component comparing to H.264/MPEG-4 AVC.

In addition, the motion vector is enhanced in HEVC by applying the

advanced motion vector prediction (AMVP) to adopt the motion vector with the
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flexible block structure. The motion vector can be observed in the fractional position
of the underlying object by applying the interpolation technique to achieve more
accurately capturing the continuous motion. Hence, the interpolation filter has been
re-designed. The tap-lengths are increased in HEVC by using 7/8 tap filter kernels for
the luma channel and 4-tap filter kernels for the chroma channel of each PUs to get
high precision interpolation filtering, especially in the high-frequency range. After
interpolation, the final prediction stage is performed, known as weighted sample

prediction, by averaging two motion-compensated predictions.

At is reference picture |ndex ~ /J /L 1

T r 7

Reference Pictures / Decoded Pictures Current Picture

(a) Motion Vector Example

NxN  Nx(N/2) (N/2)xN (N/2)x(N/2) Nx(N/4) Nx(3N/4) (N/4)xN (3N/4)xN

(b) Prediction Unit of Inter-Picture Prediction

Figure 2.9 Motion Vector and Prediction Unit of Inter-Picture Prediction

2.2.4. Transform and Quantization

Before the transform and quantization procedure, the residual signal is
computed by subtracting the original picture block with the prediction block. Then,
the flexible two-dimensional transforms of various sizes from 32x32 to 4x4 are
proposed in HEVC, where those values are a finite approximation to the discrete
cosine transform (DCT). Furthermore, if the prediction block is a 4x4 luma intra-
prediction residual block, the 4x4 integer discrete sine transform (DST)
implemented. The result of the transform provides the transform coefficients (Coeff),
then subject to the quantization to obtain the quantized transform coefficients (levels)

by dividing Coeff with the quantization step size (Qstep). In the end, the entropy



23

coding encodes those levels to generate the bitstream representing the input block.
The whole procedure can be illustrated in Figure 2.10.

Input block

Intra/Inter
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transform

¢ coeff
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I
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Figure 2.10 Transform and Quantization Procedure in Encoder

2.2.5. In-Loop Filters

In general, the codec is designed to reduce the redundancies as much as
possible to achieve high-efficiency coding. The in-loop filter is one of the necessary
modules to enhance the quality of the reconstructed picture in both encoding and
decoding to minimize the residual error, where it is applied after the inverse process
of quantization. There are two sub-algorithms in the in-loop filter, including a
deblocking filter and a sample adaptive offset (SAO). HEVC introduces a deblocking
filter to attenuate the discontinuities at block boundaries and SAO to reduce the
ringing artifacts of the reconstructed picture. These two filters can better redundancy

removal in both spatial and temporal context compared to H.264/MPEG-4 AVC.

2.2.6. Entropy Coding

The entropy coding is the last part of the video codec, which uses statistical
properties to compress data. An earlier video coding standard, H.264/AVC, introduced
CABAC and context-adaptive variable length coding (CAVLC). Typically, CAVLC
provides the reducing implementation price cost of lower compression efficiency and its
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bitrate overhead relative to CABAC. Thus, CABAC became the single entropy coding
algorithm that is used in HEVC. In conclusion, the CABAC method can challenge

parallel processing architectures and provide high coding efficiency.

Table 2.2 Limit of HEVVC Profile and Level Definitions
Main Tier High Tier

Max Luma Max Luma . _ Min
. . Max Bit Max Bit .
Level  Picture Size Sample Rate Compression
Rate (1000 Rate (1000 .
(samples) (samples/s) . . Ratio
bits/s) bits/s)
1 36 864 552 960 128 - 2
2 122 880 3686 400 1500 - 2
2.1 245760 7 372 800 3000 - 2
3 552 960 16 588 800 6000 - 2
3.1 983 040 33 177 600 10 000 - 2
4 2 228 224 66 846 720 12 000 30 000 4
4.1 2 228 224 133 693 440 20 000 50 000 4
5 8912 896 267 386 880 25000 100 000 6
5.1 8 912 896 534773 760 40 000 160 000 8
5.2 8912 896 1 069 547 520 60 000 240 000 8
6 35651 584 1069 547 520 60 000 240 000 8
6.1 35651 584 2139095 040 120 000 480 000 8
6.2 35651 584 4278 190 080 240 000 800 000 6

2.2.7. The HEVC Profile and Level Definitions

HEVC is designed to fulfill advanced multimedia applications, especially for
high video definition. Three profiles are targeting different application requirements
represented the Main, Main 10, and Main Still Picture profiles. Only two
configurations, Main and Main Still Picture profiles, supports 8 bits per sample in a
video, and the other profile supports 10 bits per sample. Additionally, HEVC supports
13 video definitions of 176x144 pixels to 7680x4320 (8kx4k) pixels, and it can reach
the minimum compression ratio by 2 to 8 following the sample size. Table 2.2 shows
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the total video definitions with the maximum luma sample rate and the minimum
compression ratio. For example, if a video definition size is 176x144 pixels, then the
total sample is 25344, less than 36864 samples. So, in this case, the video definition is

in level 1, and the user can use the maximum bitrate is 128 kbit/second.

Table 2.3 The Comparison of HEVC and H.264/MPEG-4 AVC

Tool H.264/MPEG-4 AVC HEVC
Coding Unit Size | Fix 16x16 block size 64x64 to 8x8 block sizes
e Intra: Current CU size
e Intra: 3 partitioning (16x16, down into to 4x4
L 8x8, and 4x4) (symmetric)
Partitioning

e Inter: 4 partitioning (16x16, | e Inter: Current CU size
16x8, 8x16, 8x8) down into four symmetric

and four asymmetric

Intra Prediction | Nine directional modes 35 directional modes
Motion \ - Advanced Motion Vector
o Spatial Median (3 blocks) o )
Prediction Prediction Spatial + Temporal

Square Integer DCT from
Transform Integer DCT 8x8, 4x4 32x32 to 4x4 + Integer DST
Luma Intra 4x4

] e Y5 Pixel 6-tap e Y Pixel 7 or 8 tap Luma
Interpolation _ o
e Y4 Pixel bi-linear e % Pixel 4-tap Chroma

CABAC with parallel

Entropy Coding | CABAC or CAVLC )
operations

In-Loop Filter Deblocking Filter Deblocking Filter and SAO
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2.2.8. The Comparison of HEVC and H.264/MPEG-4 AVC

In summary, HEVC is the current video coding standard that was published in
2013. It introduces several advanced tool techniques, including the coding unit size
selection, partitioning, intra-picture prediction, inter-picture prediction or motion
prediction, flexible transform size, deeper fractional interpolation, and an in-loop
filter. Those advanced tools can lead the codec to improve the quality of the
reconstructed picture. It can improve the performance of redundancy removal as high
as possible compared to the previous standard. It can notify 50 percent of bit
deductions with the same quality visual picture versus H.264/MPEG-4 AVC. Table
2.3 indicates the main tool comparisons of HEVC and H.264/MPEG-4 AVC that can

aid the codec improvement in the HEVC.

2.3. Rate Control Algorithm

Rate control is a necessary module to control bit allocation to achieve the
given bit budget after the encoding process and minimize distortion rate to get higher
quality performance after the decoding process. In general, there are two main
objectives to discuss in rate control; they are bit allocation and quantization parameter
(QP) computation. In the bit allocation part, the bit budgets must be generated
carefully to assign to each coding level, such as group of pictures (GOP) level, picture
level, and basic unit level to control bits overflow. In addition, to achieving the target
bitrate, QP is taken into account because it has a higher correlation of assigning bits.
If QP is large, bit allocation will be less. Rate-Distortion (R-D) performance has been
considered prior knowledge to generate a function related to QP. Several rate control
algorithms are designed to adapt to the standards. The following subsections are
briefly described three intuitive rate controls [16], [17], and [18].

2.3.1. Q-Domain Rate Control

Q-domain rate control [16] is proposed for the MPEG video coding standard,
where it modeled the correlation between bit rate and quantization parameter (QP) as
Eq. (2.6). This model is also called a quadratic rate-quantizer. The R-Q curves plots

were constructed as in Figure 2.11, indicating the bit consumption comparison curves
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of the spatial frame and the temporal frames. This model can perform QP adaptively
as an indicator to reach the target bit.

R=a-Q+4-Q7 (2.6)

, Where R is the target bitrate, Q is the quantization parameter, « and g are the
coefficients related to video content.

6X 10°

0 5 10 15 20 25 80 as.
quantization parameter {Qp) :

Figure 2.11 R-Quantization Model Plot

2.3.2. Rho-Domain Rate Control

In the encoder control, the R-Q model is not yet enough to adapt the bit
allocation R with the distortion D behavior of a transform coding system. The rho-
domain rate control [17] introduces the new concepts of the characteristic R-D curve
based on DCT video coding. This novel rate control observed that the zeros play a
crucial role in transforming the images to allow the model to discriminate the zero and

non-zero coefficients. The model is determined as the Eq. (2.7).

R=6-(1-p) (2.7)
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, Where p is the percentage of the zeros among the quantized transform coefficient,
and @ is a coefficient related to the video source.

2.3.3. Lambda-Domain Rate Control

As mentioned above, QP is the detracting factor considered in the rate control
model, Q-domain rate control, and rho-domain rate control. QP is the only parameter
with higher effectiveness in picture quality performance when other parameters are
fixed. New rate control is publicized with the latest video coding standard, HEVC, to
have high flexibility in various video contents in various applications. This new rate-
control is called R-lambda rate control [18]. There are two flexible steps, computing a
model A of the relationship between picture qualities with bitrate and analyzing QP by
using A. For the first step, the Hyperbolic R-D model is defined to compute A related
to bitrate R, as in Eq. (2.9).

D(R)=C-R¥ (2.8)

1:—2—2=C-K-R“=a-Rﬂ (2.9

, Where C and K are coefficients related to the source characteristics. From Eq. (2.9),

the A can be simplified to compute correlated to bit per pixel (bpp) as Eq. (2.10).
A=a-bpp” (2.10)

Afterward, A is defined, the QP can be calculated as Eqg. (2.11).

QP =4.2005 -In(1)+13.7122 (2.11)

Subsequently, the encoding procedure in each frame or a CTU, all coefficients
need to be updated. o and g values are updated following actual generated bits, QP
value, and A value using Eq. (2.11) to (2.14).

ﬂcomp =g 'bpplfzgf (2.12)

Koy = Aoy + 50( : (In(ﬂ’real )_ In(lcomp » Qo (213)

ﬂnew = ﬁold + 5ﬁ' ’ (In(ﬂ’real )_ In(/lcomp )) In(bppreal ) (214)
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, Where bpprear is calculated from actual generated bits, aoid and foia are o and f values
used in the coded frame, . = 0.1 and s = 0.05.

The bit allocation proceeding, including the GOP level, picture level, and the
LCU level, is assigned. In GOP level bit allocation, the target bits in a GOP can be
computed by Eq. (2.15) and (2.16).

Rpiavg (N +SW)-R
TAngic — PicAvg ( codeSdW ) coded (215)
TGOP :TAngic' NGOP (2-16)

, Where Tawgpic IS the average target bit per picture, R is the average target bit per

PicAvg

picture (Rpica,q = Target_Bitrate/ framerate ), Ncoded iS the number of pictures already been

code, Rcoded IS the bit cost on the picture already been coded, Ncor is the number of
pictures in the current GOP, SW is the other number (SW = 40), and Tcor is the target
bits for current GOP. For picture level, a bit budget can be assigned in Eq. (2.17).

T.or —Coded
TCurrPic — coP “WP currpic
pri

NotCodedPictures

(2.17)

, Where Tcurrpic IS the target bit budget for the current picture, Codedcor is the bits
budgets for coded frames in the current GOP, and wpcurrpic is the weight of each
picture. The weight value depends on the position of the picture in the coding
structure. In the LCU level, suppose Bitneader IS the estimated bits of all headers,
Wpcurrcu 1S the weight of each LCU, and Codedric is the generated bits for coded
LCUs in the current picture. Hence, the target bit of each LCU is calculated as Eq.
(2.18).

_ TCurrPic B Bitheader —Coded Pic

TCUrrLCU = “WP cyrricu
2. W,

NotCodedLCUs

(2.18)
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2.4. Constrained Optimization

In  mathematical optimization, constrained optimization maximizes or
minimizes the objective function to a set of constraints for obtaining certain variables
in the presence. If f(x,y) is a nonlinear function, then the optimum values can be
determined at the boundaries or between the constraints, as shown in Figure 2.12. If
f(x,y) is a linear function, then the optimum values can be determined at only the

boundaries, as shown in Figure 2.13.
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Figure 2.12 Optimum Values of a Nonlinear Function
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Figure 2.13 Optimum Values of a Linear Function

The constrained optimization techniques can be grouped into two categories,
including gradient-based approach [19], [20], [21], [22], and non-gradient-based

approach. The sub-section below describes each approach in detail.

2.4.1. Gradient-Based Approach

In common, the constrained optimization problems are converted into
unconstrained optimization problems to define the relationship between the objective
constraint and the desired parameters. The Lagrange multiplier technique [21] is a
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popular gradient-based optimization used to solve a constrained optimization. The
technique has been proposed to determine the maximum or minimum of a
multivariable function f. Suppose g is the constraint function, x and y represent the

variable of function f and g, and /1 is the Lagrange multiplier. The Lagrangian £ can

be defined as expressed in Eqg. (2.19) to translate the constrained optimization to

unconstrained optimization in order to determine the optimum value of the function f.
L(x,y,2)=f(xy)-2-g9(xy) (2.19)

Then, the Lagrange multiplier can be extracted by setting the gradient of £

equal to the zero vector:

1l
>
—
Cp
=
Y
~
I
o

(2.20)

3
~ = A
e (x,y,4)

In summary, there are three main steps to optimize the constrained
optimization problems using the Lagrange multiplier:

e Step 1: Introduce the unconstrained function £

e Step 2: Set the gradient of equal to the zero vector
e Step 3: Choose the solution that observes f as the smallest or the highest
value according to the target.

Although the Lagrange multiplier technique can observe the solution, it is
most likely stuck at the local optima.
Figure 2.14 indicates an example of the visualization of local optima and

optimum global point of a function f in a boundary constrained function g. In
common, the gradient-based approaches are not able to handle discrete,
discontinuous, multi-model, and mixed discrete-continuous problems, as shown in
Figure 2.15. The best way to solve the above problems is to define a gradient-free

optimization algorithm. Consequently, the gradient-free techniques are designed to



32

find the optimal global solutions in many ways. The subsection below describes the
common gradient-free or non-gradient-based approaches in detail.

f(x)

Global optimum

Local optima

I /

g(x)

Figure 2.14 Local Optima and Global Optimum Point
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Figure 2.15 Gradient-Based Optimization Problems

2.4.2. Non-Gradient-Based Approach

Many non-gradient-based methods are proposed to characterize the imitation
mechanism that discovers the nature of the problem. The most commonly used
methods are evolution strategies (ES) [23], simulated annealing (SA) [24], genetic
algorithm [25], and particle swarm optimization (PSO) [26] - [27]. These non-
gradient-based methods can be called Evolution Algorithms (EAs). Additionally, PSO
is the most powerful compared to all EAs because of its simplicity and convergence
speed characteristics [28]. Besides, PSO has been successfully implemented to solve
various constrained optimization problems in [29], [30], [31], and [32]. Precisely,
PSO is known as a stochastic or population-based algorithm, which applies the
position and velocity of particles to update the state to achieve the global solution.

Initially, let us suppose X = {x1, X2, X3, ..., Xn} represents as points in n-dimensional
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space. r1 and rz are the random uniform distribution in the range [0,1], c1 is the

cognitive constant, c is the social constant, Pki represents as the best local position of

particle i, P2 represents as a swarm or the best global position of particles at iteration

k, w is the inertia constant. The velocity update of the particle is computed as in Eq.
(2.21)

Vi = WYy + Clrl(pli — Xy )"‘ C2 rz(p;? — Xy ) (2.21)
The position update of the particle is then computed as in Eq. (2.22).
Xli<+1 = Xli< +Vli<+1 (2.22)

The entire procedure of PSO, as shown in Figure 2.16, can be summarized
into five steps:
e Step 1: Define the objective functions or fitness functions f( x})
e Step 2: Initialize a set of particles positions and velocities
e Step 3: Evaluate the fitness functions f( x )
e Step 4: Update the position and velocity in Eq. (2.21) and Eq. (2.22)

e Step 5: Repeat steps 3-4 until converge to the stopping criteria
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Figure 2.16 Particle Swarm Optimization Example: (a) Initial particle and determine
the objective function, (b) Redistributed particle, (c) Solution that meet the criteria of

an objective function

2.5. Deep Learning Algorithm
2.5.1. Neural Network

The neural network (NN) or artificial neuron [33] is inspired by the biological
neuron concept, as shown in Figure 2.17, which contains neurons, dendrites
(information coming from other neurons), and synapses (information output to other
neurons). The input of neurons represents dendrites, and the output of neurons

represents synapses.
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Figure 2.17 Artificial Neurons and Biological Neurons

Inputs Neights Summation and Bias Activation Output

Figure 2.18 Forward Pass of A Neural Network

Additionally, multiple NN architectures have three main layers: the input
layer, hidden layers (containing the NN layers [34]), and the output layer, as
illustrated in Figure 2.19. NN is learned using the backpropagation technique, known
as gradient-based optimization, presented in Section 2.4.1. The parameters of NN,
called weight, are updated if the objective function does not meet the stopping

criteria.

Let define X as the input vector, W is weight parameters, and Y is the target

output. Then, the forward pass of a NN or perceptron is performed by applying a
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weighted sum and passing through the activation function f to produce the estimated

output Y , as indicated in Figure 2.18. The forward pass can be formulated as in Eq.
(2.23).

Y = f[z (w;x; )+ bias] (2.23)

Furthermore, the various activation functions have been used in the NN [35],

such as:

A linear transfer function; f(x)= x

A Heavisid function: ()= 0, ifw-x+b<0
. eaviside step function: "L ifwox+b>0
. . 7. . 1
e Sigmoid/logistic function: f(X)= =
l+e

e

X
>+
1
_sinh(x) _e*-e”

e Hyperbolic tangent function: f(x)= cosh(x)  e* +e "

e Softmax function: f(x)=

X

e Rectified linear unit (ReLU) function: f(x)=max(0,x)

leaky ReLU function: f(x)=max(0.01x,x), etc.
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Figure 2.19 Neural Network Learning Procedure

2.5.2. Convolutional Neural Network
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Convolutional Neural Networks, known as CNNSs, are based on the neural

network (NN) architecture, made up of neurons with learnable weights and biases by

learning the local patterns of inputs. Additionally, the convolution layer is the core

building block of CNN that does the most computational heavy lifting. Figure 2.21

shows the examples of feature extraction using CNNs, consisting of a set of learnable

filters to extract the representation of the input color image size 32x32. Each filter is

applied across the width and height of the input volume, and the destination pixel is

computed using dot products operation between the entries of the filter and the input

image. The convolution operation and output size of convolution can be determined

as Eq. (2.24) and Eq. (2.25), respectively.
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kxk

Vo= (W x 1o )+b; (2.24)
i=1

0 =w+1 (2.25)

, Where yc is output, w is a window with size kxKk, | represents an image with size nxn,
convolution function on c cell output of image I, and O is output size of convolution,

p is the padding, and s is the stride.

/ 32 o wo
synapse

o S
axon from a neuran ™. ] wOIn

=0 0000

autput axon

activation
function

@|

Figure 2.20 An example input 32x32x3 pass through the neurons in the Convolution

layer

For example, Figure 2.21 shows the convolution operation on the local patch
of the image with a size 8x8. Besides, the total parameters of one convolution layer
can be defined as in Eq. (2.26),

Tp =kxkxn.+1 (2.26)

, Where Tp represents the total number of parameters and nc is the total size of kernel
size. For this example, the filter kernel size is 3x3 with one filter. The convolution
layer will have weights to a 3x3x1 region in the input volume for a total of 10
parameters, including nine weights wi and one bias b.

Furthermore, the first LeNet CNN architecture [36] is proposed to implement
a feature extraction for digit classification, as shown in Figure 2.22. It contains

convolutional layers, pooling layers, fully connected layers (FCs), and the activation
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function layer using rectified linear units (ReLU). The first layer has always been the
convolutional layer in which consists of filters implemented on the input image
sequence and its size. The numbers of convolutional layers determine the complexity

of the network. The more it has, the more it is complex.

Receptive field

Y, =0Bx=D)+(0x0)+(Ix1)
+(2x=2)+(6x0)+(2x2)
.. ___.._+(2x—l)+(4x0)+(1x1)=—3

H_ *-. Destination Pixel

Convolution Kernel

-
Convolved Image
Convolution operation on a cell of image

with bias b equals 0, n=8,k=3,p=0,and s = 1.
Figure 2.21 Convolution Operation

In most cases, there are multiple convolutional layers applied in one network
for generating feature maps. Apart from the convolutional layers, a pooling layer is
essential for subsampling the spatial dimension of a feature map. A max-pooling
selects only the maximum value and helps to reduce noises from the input. After
obtaining the features from the convolutional layers, the FCs are applied to get the
classification result by flattening the output from the previous layer and then
connecting with the FCs. There is the activation function, ReLU, placed at the hidden
layers in the CNNs and used for transforming the batch data to obtain good gradient
descent for fast learning. And then, the loss function has computed the penalty
between a predicted class and a ground truth label. The standard approach for the loss
function is softmax with cross-entropy loss. Since the CNNs are sparsity, share

weights, and are not fully connected, it does not connect for every neuron but only a
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few from the previous one. Hence, the CNNs have been widely applied instead of the
NNs.

C3:f. maps 16@10x10
CA: feature maps S4: f. maps 16@5%5

INPUT 6@28x28
32x32 S2: f maps rr rr
— T
|T_

C5: layer . OUTPUT
120 I;fi layer 10

|
Full Conljlection ‘ Gaussian connections

Subsampling Convolutions ~ Subsampling Full connection

Figure 2.22 LeNet-5 architecture [36]

Convolutions

2.6. Literature Review

Based on our literal study, the visual quality enhancement in HEVC can group
into three main approaches, including the encoder rate control based [37], [38], [39],
and [40], the frame rate up-conversion [41], [42], and [43], and decoder convolution
neural network (CNN) [44], [45], and [46].

2.6.1. Encoder Rate Control Approach

The encoder rate control approach considers an algorithm defined as the
effective parameters to update or change the current rate control method in the
standard. The low-delay rate control for consistent quality using distortion-based
Lagrange multiplier is proposed in [38]. The main algorithm of this paper is to replace
the relationship between the Lagrange multiplier A and the bit rate R (R-4) into the
relationship between the Lagrange multiplier A and the distortion D (D-4). This new
relationship can be derived from the introduced hyperbolic R-D model in HEVC, as
the prove below.

D(R)=K-R™® (2.27)

~1--P_c.k.ro
R

1 C+l

< A=C-K°.D¢
& A=y-D (2.28)
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, Where C and K are the parameters related to the characteristic of the video source y

and 7 are both new coding constants, and D is the distortion measure by calculating
the mean squared error (MSE) between the original coding unit and the reconstructed
coding unit in frames. As a result, this technique can get a more accurate rate
regulation with lower video quality fluctuation, and it has been designed for the non-
hierarchical structure. They can improve by an average of 0.23 dB compared with
non-hierarchical in the low-delay P configuration of HEVC reference software.
Generally, the performance of original rate control in HEVC using hierarchical
structure is better than non-hierarchical [18], about 0.26 dB on average.
Consequently, the hierarchical structure is set as the default HEVC general test
condition in [47].

Another encoder rate control based is proposed in [39] by modifying the bit
allocation of the GOP level. The modified GOP bit allocation can be formulated as
Eqg. (2.29).

Teop (i):[RPicAvg _V—(i)JX Ngop (2.29)

N PicRem_IP

, Where i represents the i-th GOP in the current Intra period, V(i) is the encoder buffer
occupancy before encoding the i-th GOP, Ncor is the number of frames in one GOP,
Rricavg IS the average target bit per frame, and Npicrem_ip IS the number of remaining
pictures in current Intra period. The author claims the proposed algorithm is slightly
better rate-distortion than the original rate control average is 0.05% rate control
accuracy.

2.6.2. Frame Rate Up-Conversion Approach

Besides the rate control approach, the frame rate up-conversion approach is
also proposed to picture quality than the reference better [41]. A novel integration of
frame rate up-conversion and HEVC coding based on rate-distortion optimization is
proposed. The author uses the IBBBP coding structure in GOP, which is different
from those encoding rate control. The core idea in this framework is to interpolate the

frame into the original frame following joint motion estimation algorithms. The whole
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framework can be illustrated in Figure 2.23. The algorithm can achieve about 0.48 dB
picture quality improvement by analyzing the performance based on the QP is fixed
into four values (22, 27, 32, and 37). However, increasing the frame rate is not a

better solution for some applications. It can lead to a bit over-head occurred.

HFR
Bitstream

Input LFR

. o T o | Transform & | Entropy o | Standard
Video Sequence(e.g.,30fps) '\“/ "l Quantization "1 Coding "1 Decoder
- A h
: DeQuant. &
Rate-Distortion ] Distortion M ey
Optimization Model
A A b 4 e
- ; oD ey ———
To be Interpolated H RPN \ 1, 3 o
Frames : Intra/Inter |« S "'> -
i _rl v i =
'L Decoded HFR Video
i_ ——-L_-—_L___} Deblock & Filter (e.g.,60fps)
I Joint Motion Estimation :
—’: 4 4 | _é
I Feature Motion I ¥ AL
Matching || Segmentation | | Reconstructed
|_ _________ 1 LFR frames

Figure 2.23 Frame Rate Up-Conversion Approach

2.6.3. Decoder Convolution Neural Network Approach

The last approach is the decoder convolution neural network, representing the
CNN approach applying in the decoder side of the video coding standard. The CNN-
based in-loop filtering for coding efficiency improvement is proposed in [44]. Figure
2.24 shows the entire framework of the proposed framework. The author replaced the
SAO filtering in in-loop filtering with the learnable CNN network to enhance the
reconstructed picture in both encoder and decoder. The proposed framework CNN has
used the architecture of VDSR as the pre-trained network in reference software
HEVC. The proposed algorithm can get slightly better picture quality than reference
software on average 0.05 dB.
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Figure 2.24 IFCNN Framework in In-Loop Filtering [44]
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Another CNN-based approach for visual quality improvement on HEVC is
proposed in [45]. The author proposed deep CNN in only the decoder side, as shown
in Figure 2.25. The CNN model is applied after finishing the adaptive loop filter to
reduce the blocking artifacts and also the discontinuities in the frame. The proposed
can achieve about 0.07 to 0.24 dB picture quality improvement than the original
reference software HEVC.

Output

. Entropy Inverse Inverse N Deblocking
Decoding Transform Cuantization Filter
F 3
h 4 $ sample
Adaptive Offset
Current Frame = Intra Prediction
h
Adaptive Loop
£ ¥ Filter
(40} .
QU Decoded Mation
_b Picture Buffer Compensation
[%]
= i
3
o
£

Figure 2.25 Deep CNN-based Approach on HEVC decoder side [45]
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Ren Yang proposes a learnable CNN on compressed video in [46]. The author
named the algorithm as a multi-frame quality enhancement (MFQE) illustrated in
Figure 2.26. The first procedure of the proposed framework is to search the frame
which has the highest picture quality in total compressed videos. Then, multi-frame
CNN is assigned to enhance the non-peak quality frame or low-quality frame to adapt
to the high-quality frame. As a result, the framework can increase picture quality by

about 0.45 dB on average comparing to reference software.

SVM-based
PQF detector
[

Quality

|
|
|
Enhancement | |
subnet -r»%??é%d >
(QE-subnet) | |
|
|
|

L:nhanced
Video [rames

Compressed
Video frames

Multi-Frame CNN (MF-CNN)

Modified DS-CNN Enhanced
______ ' PQF

Figure 2.26 Multi-Frame Quality Enhancement for Compressed Video Framework
[46]

CNN on the decoder side can help improve picture quality, but it is not a
compactable standard. In this work, the learning-based approach is proposed in only

the encoder side for visual quality enhancement on HEVC.
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CHAPTER 3
METHODOLOGY

This chapter is separated into three main parts. Firstly, the overall block
digram of the proposed framework is described. Then, the correlation between rate
control and neuron network is explained. The last part presents the detail of the

proposed method.

3.1.System Overview

Input Video

)

an Transform & .| Entropy
AN LJ Quantization | Coding
- —
Y
Bitstream
DeQuant. & v
Tnv. Transform h
HEVC
A v Decoder
o
1/

—[F/ Inter |~‘-

A

Motion
Estimation

F 3

Decoded Video

Reconstructed Frames

Figure 3.1 Learning-Based Rate Control Diagram for High Efficiency Video Coding

The proposed framework mainly focuses on the adaptive rate control
associated with the video content to improve the compressed video quality and
maintain the bit budgets at the encoder side only, as shown in Figure 3.1. Precisely,
the green boxes represent the modification rate control model using the feature
translation technique. First, the input video is fed into the convolution feature map to
extract the high dimensional feature space, which contains essential features
representing the object in the scene. Then, the proposed model is learned to translate
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the input feature space to rate control parameters to get the optimal trade between
target bit rate and distortion rate. The following section presents the correlation

between rate control and neuron network.

3.2.Rate Control and Neuron Network Correlation

The hyperbolic R-D model is performed in HEVC, where the computation of 1
related to bit rate R can re-formulate as the neural network function. Generally, the
neural architecture is constructed by applying weight sum with a bias and then pass
through the activation function to activate or deactivate the neurons. Figure 3.2 shows
the general architecture of the neural network, where xo, X1, X2, ..., xm are the inputs,
Wo, W1, Wa, ..., wm are the learnable weights, and b represents as a bias.

Inputs  Weights Net input Activation
function function

@ » Ooutput

Figure 3.2 Neural Network Architecture

The score function is defined as in Eqg. (3.1),

f(x,W,b)=W -x +b (3.1
Or

FoW)=W -x

And the loss function L can be calculated as in Eq. (3.2),

L= %Z L, +AR(W) (3.2)
‘—il—’ b
Data Loss Regularization Loss

where R(W) represents the regularization loss, it uses to prevent the overfit data
training.
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In HEVC, the Lagrange multiplier A is computed by knowing the input bit rate
Rasin Eq. (3.3),
A=a-R’ (3.3)
In(4)= In(a-Rﬁ)
n(2)=(R” )+ In(a)
In(4)=4-(R)+In(a)
= f(x,W,b)=W -x+b

Hence, the neural network can solidify the Hyperbolic R-D model as a

learnable weight to adapt to the video content.

3.3. Learning-Based Rate Control

Convolutional Feature Map Learning-Based PSO

\":7 4 : [
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converged?

(abzn o Poes );

Update
Parameters

=Neop
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Figure 3.3 Overview of proposed learning-based particle swarm optimization

This section introduces a learning-based rate control algorithm, which creates
a regression map for the R-1 parameter. The proposed architecture consists of two
main modules, including the convolution feature map and the regression map
representations for R-A parameters, as shown in Figure 3.3. The regression map is

designed as learning-based particle swarm optimization (LB-PSO). Besides, the
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parameter updating for Inter-coding is performed by taking residue information into
account. The details of each part are presented in the following subsections.

3.3.1. Convolutional Feature Map

The convolutional feature map (Fully Convolutional Networks - FCNs) is
introduced at the first stage to obtain the meaningful spatial representation of CTUs
pictures for the input of our LB-PSO model. In general, the early layers of
convolutions in the deep convolutional networks demonstrate the local or low-level
feature information of the input image. In contrast, the deeper layers of convolutions
indicate the high-level feature information that provides more global image
information [48]. Additionally, the last fully connected (FC) layer of deep nets is
designed to define the high-level feature information into object classes. Since FCNs
do not include the FC layer, a relationship between the input image and the final
feature output layer is preserved and expressed as data compression, which encodes
the raw-pixel representation of the input image to high-level information. This
information provides the global feature G representing the input image characteristic.
G is fed into our LB-PSO model to generate the R-A parameters. Precisely, a pre-
trained residual networks (ResNets) model [49] on the ImageNet dataset [50] is used
in this work without the FC layer to extract the powerful convolutional feature.
However, the original input size of ResNets is incompatible with the maximum size of
CTUs. The adaptive average pooling (AAP) is then applied to the last convolution
layers to ensure the compatibility of input and output dimensions. Figure 3.3

demonstrates the overall layout of our convolutional feature map architecture.

Suppose a t" frame contains a total K CTUs, then G'= {go,gl,-'-,gK}t. In

order to obtain G for re-feedback coding of each coding structure in HEVC, i.e., Intra

or Inter pictures, we define G as in Eq.(3.4),

t S, if IntraPicture,

9k = ‘Sﬁ _SIE—NGOP (3.4)

otherwise
tmodc
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,where ke K ,and ¢ (C > 0) is a constant to determine the frame index for re-
feedback coding on (t mod C). Ngop is total number of pictures in a GOP. S.ﬁ and
Sﬁ_NGOP represent the convolutional feature information (spatial representation) of
k"™ CcTU getting from the original frame for4 at t position and reconstruction frame

frec at t — Ngop position, respectively.
Specifically, if the encoding mode is Intra-coding, the spatial representation is
directly inputted to the LB-PSO model. Otherwise, we compute the semantic residue

information by applying the absolute difference between the current spatial

representation Sy of the original CTU and the previous spatial representation Sﬁ_NGOP

of the reconstructed CTU before feeding it to the LB-PSO model.

3.3.2. Learning-Based Particle Swarm Optimization Network
a) LB-PSO Estimator
Our LB-PSO is proposed to define the optimal mapping ¢ from the spatial-
temporal representation of CTU 0y to rate control parameters Yy, Yy = {a, ﬂ}k. We

introduce a feedforward network with one hidden layer to determine Yy . This

feedforward network can be computed as in Eq. (3.5).

, where W, provides the weights of a mapping function ¢, b,is a bias, and hy

represents the output of the hidden layer. Precisely, hy is designed by applying a
rectified linear activation function to the output of a linear transformation composed

of the weights W, and bias b, parameters to trigger a non-linear transformation.

Thus, hy can be derived as in Eq. (3.6).

hy = max O,WT g, +by | (3.6)
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From Eg. (3.5) and Eq. (3.6), our complete mapping model can be re-formulated as in
Eg. (3.37).

Yk :W¢T max {O'WhT gy + by }"‘ by (3.7)

The model parameters M = ﬁN¢ ,Wh,b¢,bh} are optimized by utilizing swarm

intelligence in order to exchange the information between particles with regard to R-D
cost function, J. On the other hand, the model parameters regulate its trajectory
concerning its best previous position and the best previous position reached by any
member of its neighborhood. The cost function J is determined by two objective
functions, including a reconstruction error (MSE) of visual quality and smooth.1 error
of bit allocation, to target the swarm intelligence rule. The cost function J can be
defined as in Eq. (3.8) and Eqg. (3.9).

2
(forgj ©Z frecj) +7smooth Ll(RT - RA) (3.8)

=z
LN

j=1
N 4
J

Il
(=)

U 2
- Ul <1,
u|- 5 otherwise

, Where N is the total number of pixels in a picture and 77 is a penalty coefficient. Rt

and Ra are the target bit and actual bit on picture level, respectively.

According to the cost function design, the model parameters are updated after
all CTUs are fully encoded. This cost function aims to model learning to achieve the
trade-off between distortion and bit allocation. The following section introduces the

complete process of parameters update.

b) Parameters Updating
In this subsection, we present the parameter update of the encoder controller
corresponding to the Intra/Inter coding mode. In addition, the Inter coding mode is

classified into two sets of coding frames, such as a core frame and a common frame.
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A core frame is encoded by activating the re-feedback coding to adjust the bit budget
at the CTU coding level. In contrast, the common frame is coded by applying the
default Lagrangian multiplier to determine the bit budget at the CTU coding level. For
both Intra coding and core frame of Inter coding, the bit budget at the CTU coding
level is computed by using Eg. (2.10) and Eq. (3.7). Additionally, the model
parameters M in equation Eq. (3.7) individually parameterize its value according to its
movement in a search space.

Let P is the total size of the population, Vi is the velocity (position change) of
i" particle, Bi is the best previous model parameters of it particle, and By is the best
model parameters in the swarm. Then the swarm is manipulated on each iteration n
according to the following two equations,

V"t =av" + o] (Bin -M in)+ Czrig(Bg -M in)' (3.10)

Min+1 — Min +Vin+l (311)

, Wherei=1, 2, ..., P and a is the inertia weight of velocity V, which is used to control
the trade-off between the global and the local exploration capabilities of the swarm. c:
and c2 are two positive acceleration constants, named the cognitive and social
parameters of PSO, respectively. ri1 and ri2 are random numbers generated from a
uniform distribution within the range [0, 1]. The performance of each model
parameters Mi in the swarm is measured according to the cost function J. The lower
cost function indicates a better Mi. After finalizing the best Mi to preserve the minimal
cost function J at CTU coding level, the CTU is encoded.

For the picture level of Inter coding, the rate control parameters are adjusted

by considering the residue score of the semantic residue information. The probability

of residue score Q' on a picture at time t can be computed as in Eq. (3.12) and Eq.

(3.14).

Q' = ZZ?%EJ; (3.12)

keK jes, 2k
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O Ift_NGOP <O,

t(:)_ X t
Adi)= Sﬁ(j)—SﬂNGOPJ(j otherwise (3.13)

, Where U represents the rounded result. Additionally, in the GOP regarding the
Spatio-temporal information of the video sequence, the picture levels generally have
different pairs of encoder controller coefficients «, and /S, . Therefore, the rate
control parameters can be updated by Eq. (3.14) to Eq. (3.17).

If the GOPiq equals O, a pair of rate control parameters can be formulated in
Eg. (3.14) to Eq. (3.15).

@ pnew = & pold +5a '(In (ﬂr _Zc ))'apold +§Qt (3.14)
ﬁpnew 5 :Bpold +5ﬂ '(In(ﬁ“r — A )) In(bppr )+%Qt (3.15)

Otherwise, a pair of rate control parameters can be computed as Eqg. (3.16) to
Eq. (3.17).

X pnew = Xpold +4Qt (3.16)

:Bpnew = ﬂpold + %Qt (3.17)

, Where &, and J 4 are the default constant in HEVC reference software. Ar represents
as real 4 value, Ac is a computed A value from real cost bppr with the previous rate

control parameters @poq and Bpog at picture level and ¢ is residue penalty

constant.
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CHAPTER 4
EXPERIMENTAL RESULTS

To evaluate the performance of the proposed learning-based particle swarm
optimization, the experiments are conducted on various videos, including static and
dynamic scenes. The experiment setting is presented in Section 4.1, and the

experimental results and analysis are described in Section 4.2

4.1. Experiment Setting

4.1.1. Test Sequences and Parameter Setting

In the experiment, the proposed algorithm is implemented on HEVC reference
software [51] and is compared with the PS-GOP [40] and the state-of-the-art R-1 rate
control (RC-HEVC) [18]. The proposed algorithm and baseline methods are
simulated in the same reference software HM-16.10. Precisely, the experiments are
conducted under the low-delay P main profile configurations, and the encoder
parameters are set according to the standard-setting in [47] by enabling the Rate
Control as True. There are thirteen test video sequences with four video resolutions,
as shown in Figure 4.1. They are two videos of 240p (Wide Quarter Video Graphics
Array - WQVGA), three videos of 480p (Wide Video Graphics Array - WVGA), five
videos of 720p (HD), and three videos of 1080p (Full HD). Table 4.1 briefly
summarizes the characteristics of the test video sequence. In addition, the test video
sequence is encoded at four different target bit rates corresponding to the video
resolution.

Since the goal of rate control is not only to improve the visual quality of the
video for a given bit rate but also to achieve the bit rate closest to the target bit rate, so
both Peak Signal-to-Noise Ratio (PSNR) and bit rate error (BRE) are used as the
criteria for determining the performance of rate control algorithm.
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Table 4.1 Video Sequence Detail

Resolution NAMEOFMAGED FIEMEREE Bit Rate (kbps)
Sequence (fps)
ParkScene 24
1920 x 1080 Cactus 50 1000, 2000, 3000, 4000
BQTerrace 60
FourPeople 60
KristenAndSara 60
1280 x 720 Vidyol 60 384, 512, 850, 1200
Vidyo3 60
Vidyo4 60
BasketballDrill Text | 50
832 x 480 PartyScene 50 384,512, 768, 1200
BQMall 60
416 x 240 BlowingByibnics >0 256, 384, 512, 1200
BQSquare 60

4.1.2. Peak Signal to Noise Ratio

The quality of the reconstructed image or video comparing with raw image or
video is computed based on Peak signal-to-noise ratio (PSNR) measurement.
Defining PSNR has a close relationship between mean square errors (MSE) where
PSNR can be computed as Eq. (4.1).

_1oted 2V
PSNR =101log TVSE 4.1)

, Where
N-1 2

MSE=%Z(f0rgj o frecj) .

j=0
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4.1.3. Bit Rate Error

BRE is used to determine the accurate bit consumption of the proposed

method to what the target bit is assigned. BRE can be computed as Eq. (4.2).

Ry — R,

BRE =
[ Ry

j X 100% (4_2)

4.2. Experimental Results and Analysis
4.2.1. Rate-Distortion Performance and Bit Rate Accuracy

The first experiment is conducted on the low video resolution (WQVGA),
which contains two video sequences with different frame rates, including
BlowingBubbles and BQSquare. These two videos have various dynamic
characteristics, such as a moving camera, moving objects, and illumination changes.
Table 4.2 describes the PSNR and BRE performance of the proposed method
compared with the baseline methods. It is clearly shown that our learning-based
method outperforms all the baseline methods as we achieve the highest PSNR value
with the same bit rate. Specifically, the average PSNR enhancement of our method is
0.23 dB and 0.12 dB compared with RC-HEVC and PS-GOP, respectively. Our
approach also performs the maximum PSNR improvement (max) of 0.30 dB and 0.20
dB compared to RC-HEVC and PS-GOP. Figure 4.2(a) illustrates the R-D curve
performance of the BQSquare test sequence. The learning-based approach obtains
better R-D performance than that of the baselines method. In addition, the average
BRE of RC-HEVC, PS-GOP, and our methods are 0.01%, indicating that all
approaches can effectively achieve the target bit rate. However, the proposed method
has the lowest BRE at a lower target bit rate (256kbps). It is noticed that the RC-
HEVC has a poor visual quality on these WQVGA with dynamic scenes compared to
all approaches. As a result, even if the scene has dynamic properties, our algorithm
can constructively achieve the target bit rate with the good visual quality of the
WQVGA sequence.
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Table 4.2 The Performance of PSNR and BRE of Video Sequence with Resolution of
416x240

Target RC-HEVC PS-GOP Proposed Method
Bit

Name of Video

Sequence . . .
Rate BitRate | PSNR | BRE | BitRate | PSNR | BRE | BitRate | PSNR | BRE

256 256.06 29.69 | -0.02 256.08 29.79 | -0.03 256.02 29.99 -0.01

384 384.05 3114 | -0.01 | 384.00 3126 | 0.00 | 384.02 3144 | -0.01
BlowingBubbles

512 512.06 3226 | -0.01 | 512.05 3238 | -0.01 | 512.04 3251 | -0.01

1200 | 1200.18 | 35.64 | -0.02 | 1200.05 | 3571 | 0.00 | 1200.15 | 3573 | -0.01

256 256.04 3031 | -0.02 | 256.01 3042 | -0.01 | 256.02 30.60 | -0.01

384 384.03 3153 | -0.01 | 384.03 31.67 | -0.01 | 384.03 3178 | -0.01

BQSquare
512 512.03 3245 | -0.01 | 512.03 3256 | -0.01 | 512.02 3264 | 0.00
1200 1200.06 | 3520 | 0.00 | 1200.04 | 3533 | 0.00 | 1200.04 | 3537 | 0.00
Average 32.28 | -0.01 3239 | -0.01 3251 | -0.01

Next, the WWVGA sequences are tested, such as BasketballDrillText,
PartyScene, and BQMall. The scene properties are similar to the above experiments,
but these WVGA sequences are more challenging than WQVGA because they
involve multi-object movement, camera movement, and higher resolution. The
outcomes of PSNR and BRE are summarized in Table 3, where the proposed
learning-based method works much better. It reaches 0.41 dB and 0.33 dB of visual
quality better than RC-HEVC and PS-GOP, respectively. Concisely, our approach has
no error bit consumption on average and performs 0.23 dB and 0.16 dB on average
higher than RC-HEVC and PS-GOP, respectively. Our proposed method is
significantly higher on one side of the R-D curve than the competitive methods, as
shown in Figure 4.2(b). Based on the outcomes of all approaches in Table 4.2 and
Table 3, the R-A rate control and PS-GOP are not suitable for such dynamic scenes
and cameras. Consequently, it can indicate that the A adjustment and quality control

are not correctly estimated.
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Table 4.3 The Performance of PSNR and BRE of Video Sequence with Resolution of

832x480
. Target RC-HEVC PS-GOP Proposed Method
Name of Video .
Bit
Sequence . . .

Rate | BitRate | PSNR | BRE | BitRate | PSNR | BRE | BitRate | PSNR | BRE
384 384.03 30.82 | -001 | 383.99 3093 | 0.00 | 384.02 3099 | -0.01

512
BasketballDrill 512.05 31.94 | -001 | 512.00 3201 | 0.00 | 511.99 32.08 | 0.00

Text
768 768.04 3346 | -0.01 | 768.04 3352 | -0.01 | 768.05 33.60 | -0.01
1200 | 1200.10 | 3515 | -0.01 | 1200.07 | 3520 | -0.01 | 1200.07 | 3532 | -0.01
384 384.01 2640 | 0.00 | 384.00 26.49 | 0.00 | 383.97 26.80 | 0.01
512 512.02 2727 | 0.00 | 512.01 27.37 | 0.00 | 511.96 27.68 | 0.01
PartyScene
768 768.09 2861 | -001 | 768.02 28.68 | 0.00 | 768.02 29.01 | 0.00
1200 120006 | 3015 | -0.01 | 1200.02 | 30.20 | 0.0 | 1200.03 | 3053 | 0.00
384 384.01 3068 | 0.00 | 384.13 30.77 | -0.03 | 384.00 30.85 | 0.00
512 512,01 31.86 | 0.00 | 512.05 31.92 | -0.01 | 512.03 32.00 | -0.01
BQMall

768 768.01 3350 | 0.00 | 768.01 3359 | 0.00 | 768.01 33.66 | 0.00
1200 120004 | 3528 | 0.00 | 1200.03 | 3533 | 0.0 | 1200.01 | 35.39 | 0.00
Average 3126 | -0.01 3133 | -0.01 3149 | 0.00

After testing the WVGA sequences, the HD videos containing video

conferencing and online teaching test sequences are simulated. The HD videos are

FourPeople, KristenAndSara, Vidyol, Vidyo3, and Vidyo4. These videos have the

characteristics of a static camera with multiple objects moving. Figure 4.2 shows an

overall outgrowth of the R-D curve of FourPeople from the low bit rate to the high bit

rate. Although the scene is used with a static camera, the R-D performance of the

proposed method is noticeably more significant than the competitive methods.

Additionally, the PSNR and BRE evaluations of these HD video sequences are

recorded in Table 4.4. The average PSNR enhancement value of our method is
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approximately 0.17 dB (max = 0.30 dB) and 0.08 dB (max = 0.21 dB) in comparison
with the RC-HEVC and PS-GOP.

Table 4.4 The Performance of PSNR and BRE of Video Sequence with Resolution of
1280x720

. Target RC-HEVC PS-GOP Proposed Method
Name of Video )
Bit
Sequence . . .
Rate Bit Rate PSNR | BRE | BitRate PSNR | BRE | BitRate PSNR BRE
384 383.97 37.02 0.01 383.99 37.12 0.00 383.99 37.32 0.00
512 511.97 38.10 0.01 512.00 38.24 0.00 511.99 38.38 0.00
FourPeople
850 849.98 39.84 0.00 849.99 39.94 0.00 849.98 40.06 0.00
1200 1200.08 40.81 -0.01 | 1199.96 40.87 0.00 1200.05 40.97 0.00
384 384.06 39.17 -0.02 384.08 39.32 | -0.02 384.12 39.37 -0.03
512 512.07 40.03 | -0.01 512.09 40.17 | -0.02 512.11 40.20 -0.02
KristenAndSara

850 850.12 41.31 -0.01 850.09 4143 | -0.01 850.12 41.47 -0.01
1200 1200.18 42.04 | -0.01 | 1200.16 4212 | -0.01 | 1200.16 42.16 -0.01
384 384.00 38.95 0.00 383.98 39.06 0.01 384.00 39.11 0.00
512 512.01 39.86 0.00 511.93 39.95 0.01 511.99 40.01 0.00

Vidyol
850 849.96 41.19 0.00 849.88 41.26 0.01 850.01 41.32 0.00
1200 1200.00 41.93 0.00 1199.96 42.00 0.00 1200.01 42.07 0.00
384 384.01 37.85 0.00 384.00 38.00 0.00 384.02 38.01 -0.01
512 512.02 38.82 0.00 512.01 38.95 0.00 512.01 38.97 0.00

Vidyo3
850 850.01 40.22 0.00 850.01 40.33 0.00 850.01 40.37 0.00
1200 1200.02 41.00 0.00 1200.03 41.08 0.00 1200.00 41.12 0.00
384 384.01 38.68 0.00 384.01 38.73 0.00 384.01 38.86 0.00
512 512.02 39.47 0.00 512.01 39.53 0.00 512.02 39.67 0.00

Vidyo4
850 850.02 40.67 0.00 850.01 40.74 0.00 850.02 40.86 0.00
1200 1200.02 41.39 0.00 1200.05 41.45 0.00 1200.02 41.54 0.00
Average 39.92 0.00 40.02 0.00 40.09 0.00
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Figure 4.2 Rate-Distortion curves: (a) BQSquare, (b) PartyScene, (c) FourPeople, (d)
ParkScene

The last experiment is applied on full HD video test sequences, including,
ParkScene, Cactus, and BQTerrace. This last test contains all types of scenarios.
ParkScene video has a moving camera and multiple object motions, while BQTerrace
video stacks the camera motion with a static camera. Besides, Cactus video consists
of a static camera and the rotation of the objects. According to Table 4.5, the overall
PSNR evaluation of the proposed method on the BQTerrace sequence at a low bit rate
is the highest compared to the others sequences. In contrast, the ParkScene sequence
has the highest PSNR at a high bit rate. The reason is that the scenes containing a

dynamic camera have large movement changes; thus, the state-of-the-art R-A rate
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control cannot update the encoding controller correctly. In addition, PS-GOP uses
parameter sharing in GOP, which is not enough to adapt to encoder parameters
following frame characteristics. Reasoning from this fact, our method establishes a
novel mapping between frame features and R-A coefficient parameters. We provide a
computationally feasible solution using LB-PSO to optimal R-D for good visual
quality and maintain the target bit rate. Figure 4.2 shows the overall R-D curve on
different video resolutions. Consequently, our method has achieved the highest
outcomes of all competitive methods. From Table 4.2 to Table 4.5, the average PSNR
improvement is 0.19 dB (max = 0.41 dB) and 0.10 dB (max = 0.33 dB) compared
with RC-HEVC and PS-GOP, respectively.

Table 4.5 The Performance of PSNR and BRE of Video Sequence with Resolution of
1920x1080

. Target RC-HEVC PS-GOP Proposed Method
Name of Video )
Bit
Sequence . \ .
Rate Bit Rate PSNR | BRE | BitRate PSNR | BRE | BitRate PSNR BRE
1000 999.96 33.20 0.00 999.84 33.21 0.02 999.86 33.32 0.01
2000 2000.01 35.30 0.00 1999.89 35.41 0.01 2000.10 35.49 0.00
ParkScene
3000 2999.95 36.60 0.00 2999.91 36.68 0.00 2999.98 36.76 0.00
4000 4000.11 37.52 0.00 4000.09 37.57 0.00 4000.11 37.66 0.00
1000 1000.01 31.62 0.00 1000.02 31.74 0.00 1000.02 31.75 0.00
2000 2000.04 33.77 0.00 2000.03 33.85 0.00 2000.03 33.87 0.00
Cactus
3000 3000.09 34.96 0.00 3000.03 35.01 0.00 3000.03 35.04 0.00
4000 4000.06 35.70 0.00 3999.95 35.77 0.00 4000.07 35.81 0.00
1000 1000.05 31.62 -0.01 | 1000.01 31.73 0.00 1000.17 31.97 -0.02
2000 2000.13 33.03 | -0.01 | 2000.02 33.11 0.00 2000.04 33.25 0.00
BQTerrace
3000 3000.15 33.67 0.00 3000.01 33.78 0.00 3000.08 33.82 0.00
4000 4000.53 34.10 | -0.01 | 4000.05 34.20 0.00 4000.11 34.15 0.00
Average 34.26 0.00 34.34 0.00 34.41 0.00
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4.2.2. Bit Heatmaps and Visual Quality

To indicate the performance of bit allocation at the CTU level, the heatmap
visualization and the subjective of the reconstructed frame are illustrated in Figure 4.3
and Figure 4.4. Since there is no modification on intra coding of PS-GOP, Figure 4.3
shows only the comparison between state-of-the-art RC-HEVC with our proposed
learning-based approach. The bit consumption is highlighted by red color intensity on
each CTU, while the blue act as a mask to cover the frame. If the red intensity is low,
it means that the allocated bits are consumed less. The patch image is extracted from
the frame to clearly illustrate the most different bit consumption at the CTU level of
RC-HEVC and our proposed method. Figure 4.3(b) and Figure 4.3(c) reveal that the
bit allocation performance of RC-HEVC on the plane space CTU is slightly high,
which leads to less bit budget for necessary spatial CTU.

On the contrary, our proposed method is to obtain smoother bit allocation on
non-important spatial images (low-frequency components), providing more budget to
important CTU features. Additionally, the visualization of the human face of the
proposed learning-based approach on the intra-picture shows more details with a
smoother look than that of RC-HEVC, as shown in the green box of Figure 4.3(b) and
Figure 4.3(c). According to these results, our LB-PSO can obtain better bit allocation
by using the information from the mapping encoder control parameters with the input
convolution feature map of each spatial CTU instead of the fixed initialization of R-A
rate control.

For inter coding, the PS-GOP is added in comparison. Similarly, the color
representation is defined the same as the intra coding. Figure 4.4(b) shows that RC-
HEVC has a problem with bit allocation on the essential features in terms of bitmaps.
Due to hand movement, RC-HEVC should provide higher bit allocation in these
necessary parts; on the contrary, it allocates fewer bits to these blocks. Besides, PS-
GOP attempts to allocate the amount of bit budget to the hand movement area to keep
the visual quality of the action consistent. However, the bit budget on large hand

motion blocks is still small, as shown in Figure 4.4(c). With regard to residual
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semantic information, our proposed method can regulate the bit budget correctly
responding to the motion in the scene, as illustrated in Figure 4.4(d).

On the other hand, our proposed method obtains the accurate bit allocation of
each CTU corresponding to its spatial-temporal characteristics. Furthermore, the
visual quality visualization of this hand movement is shown in Figure 4.4(e) to Figure
4.4(g). In particular, RC-HEVC has a considerable distortion in this hand movement
area, while PS-GOP is slightly better than RC-HEVC. Although PS-GOP is better
than RC-HEVC, PS-GOP still has higher distortion compared with our proposed
method. As a result, the proposed method achieves better hand and cup shapes
compared to the competitive methods. According to our experimental results, we can
conclude that the proposed learning-based R-A parameter outperforms other
competing methods by achieving the highest PSNR with maintaining the target bit
rate.

Figure 4.3 Bit Heatmaps and Reconstructed Frame of Intra Coding at 384 kbps: (a)
Original Frame, (b)&(d) RC-HEVC, (c)&(e) Proposed Method



64

Figure 4.4 Bit Heatmaps and Reconstructed Frame of Inter Coding at 384 kbps: (a)
Original Frame, (b)&(e) RC-HEVC, (c)&(f) PS-GOP, (d)&(g) Proposed Method
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CHAPTER 5
CONCLUSION

In this work, we proposed novel learning-based R-lambda parameters for
HEVC. The proposed framework is embedded with a deep convolution neural
network feature map and LB-PSO, which brings advantages to rate control parameters
estimation corresponding to spatial-temporal CTU. LB-PSO is designed to obtain the
feasible solution of rate control coefficient parameters to optimize the R-D
relationship. Experimental results clearly show that our proposed learning-based
approach obtains an accurate target bit rate with the 0.19 dB on average to 0.41 dB
and 0.10 dB on average to 0.33 dB maximum PSNR improvement than the state-of-
the-art RC-HEVC and PS-GOP, accordingly. Due to the bit allocation, our algorithm
can achieve an operational bit distribution to each CTU on both Intra and inter coding.
In other words, our method is effective and robust for determining the bit budget for
the CTU of the frame. For future work, CTU partitioning will be considered together

with R-lambda parameters to increase coding efficiency.
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