Roles of WO_x on Pt/ γ -Al₂O₃ catalysts on the prevention of Pt metal sintering during hydrogenolysis of glycerol to 1,3-propanediol

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Chemical Engineering Department of Chemical Engineering FACULTY OF ENGINEERING Chulalongkorn University Academic Year 2019 Copyright of Chulalongkorn University บทบาทของทั้งสเตนออกไซด์บนตัวเร่งปฏิกิริยา Pt/γ-Al₂O₃ ในการป้องกันการเกิดซินเทอร์ของโลหะ แพลทตินัมขณะทำปฏิกิริยาไฮโดรจิโนไลซิสของกลีเซอรอลเป็น 1,3-โพรเพนไดออล

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเคมี ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2562 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	Roles of WO _x on Pt/ γ -Al ₂ O ₃ catalysts on the prevention			
	of Pt metal sintering during hydrogenolysis of glycerol			
	to 1,3-propanediol			
Ву	Miss Poonnapa Limsoonthakul			
Field of Study	Chemical Engineering			
Thesis Advisor	Professor PIYASAN PRASERTHDAM, Ph.D.			
Thesis Co Advisor	SUPAREAK PRASERTHDAM, Ph.D.			

Accepted by the FACULTY OF ENGINEERING, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master of Engineering

Dean of the FACULTY OF

ENGINEERING

(Professor SUPOT TEACHAVORASINSKUN, Ph.D.)

THESIS COMMITTEE

...... Chairman

(RUNGTHIWA METHAAPANON, Ph.D.)

(Professor PIYASAN PRASERTHDAM, Ph.D.)

(SUPAREAK PRASERTHDAM, Ph.D.)

Examiner

(Professor SUTTICHAI ASSABUMRUNGRAT, Ph.D.)

..... External Examiner

(Assistant Professor Okorn Mekasuwandumrong, Ph.D.)

ปุณณภา ลิ้มสุนทรากูล : บทบาทของทังสเตนออกไซด์บนตัวเร่งปฏิกิริยา Pt/**γ**-Al₂O₃ ในการป้องกันการเกิดซินเทอร์ของโลหะแพลทตินัมขณะทำปฏิกิริยาไฮโดรจิโนไล ซิสของกลีเซอรอลเป็น 1,3-โพรเพนไดออล. (Roles of WO_x on Pt/**γ**-Al₂O₃ catalysts on the prevention of Pt metal sintering during hydrogenolysis of glycerol to 1,3-propanediol) อ.ที่ปรึกษาหลัก : ศ. ดร.ปิยะสาร ประเสริฐธรรม, อ.ที่ปรึกษา ร่วม : ดร.ศุภฤกษ์ ประเสริฐธรรม

้ปฏิกิริยาไฮโดรจิโนไลซิสของกลีเซอรอลเป็น 1,3-โพรเพนไดออล ถือเป็นปฏิกิริยาหนึ่งที่เปลี่ยนกลีเซ ้อรอลที่มากเกินพอจากกระบวนการผลิตไบโอดีเซลให้เป็นผลิตภัณฑ์มูลค่าเพิ่มโดยเฉพาะ 1,3-โพรเพนไดออล ตัวเร่งปฏิกิริยาที่นิยมใช้สำหรับการผลิต 1,3-โพรเพนไดออล คือ ตัวเร่งปฏิกิริยาแพลทินัมบนตัวรองรับแกมมา อลูมินาที่สังเคราะห์ด้วยวิธีการเคลือบฝังแบบเปียก แม้ว่าปฏิกิริยาไฮโดรจิโนไลซิสของกลีเซอรอลจะเกิดขึ้น ภายใต้อุณหภูมิ 140 องศาเซลเซียสและความดันไฮโดรเจน 5 บาร์ แต่ก็พบการเสื่อมสภาพของตัวเร่งปฏิกิริยาที่ ไม่ผ่านการปรับสภาพ เทคนิคที่นำมาวิเคราะห์เพื่อศึกษาการเสื่อมสภาพของตัวเร่งปฏิกิริยานี้ เช่น การดูดซับทาง กายภาพด้วยไนโตรเจน อินดัคทีพลีคัพเพิลพลาสมา การเลี้ยวเบนของรังสีเอ็กซ์และเทคนิคการโปรแกรมอุณหภูมิ เพื่อทดสอบการเกิดออกซิเดชัน เป็นต้น จากการศึกษาพบการเสื่อมสภาพของตัวเร่งปฏิกิริยา คือ การหลุดออก ของโลหะ การซินเทอร์ของโลหะและการเกิดโค้กบนตัวเร่งปฏิกิริยาขณะทำปฏิกิริยาในตัวเร่งปฏิกิริยาทั้งสองชนิด ได้แก่ แพลทินัม/แกมมาอลูมินาและแพลทินัม/ทั้งสเตนออกไซด์/แกมมาอลูมินา โดยทั้งสเตนออกไซด์สามารถ ้ป้องกันการหลุดออกของโลหะแพลทินัมและลดการเกิดโค้กบนผิวของตัวเร่งปฏิกิริยา และการมีทั้งสเตนออกไซด์ บนตัวเร่งปฏิกิริยาแพลทินัม/ทั้งสเตนออกไซด์/แกมมาอลูมินายังเพิ่มประสิทธิภาพการเปลี่ยนกลีเซอรอลให้ จำเพาะกับการเกิด 1,3-โพรเพนไดออลมากกว่า 1,2-โพรเพนไดออล ทั้งยังเพิ่มความมีเสถียรภาพของตัวเร่ง ปฏิกิริยาแพลทินัม/ทั้งสเตนออกไซด์/แกมมาอลูมินาให้ดีกว่าตัวเร่งปฏิกิริยาแพลทินัม/แกมมาอลูมินา โดยระบุได้ ด้วยค่าการลดลงของการเปลี่ยนกลีเซอรอลในตัวเร่งปฏิกิริยาที่ผ่านการเร่งปฏิกิริยาไฮโดรจิโนไลซิสของกลีเซ ้อรอล ดังนั้นการเติมทั้งสเตนออกไซด์บนตัวเร่งปฏิกิริยาแพลทินัม/แกมมาอลูมินาทำให้มีประสิทธิภาพในการเร่ง ปฏิกิริยา ค่าการเลือกเกิดของ 1,3-โพรเพนไดออล และความมีเสถียรภาพที่มากกว่า

สาขาวิชา	วิศวกรรมเคมี	ลายมือชื่อนิสิต
ปีการศึกษา	2562	ลายมือชื่อ อ.ที่ปรึกษาหลัก
		ลายบือชื่อ อ ที่ปรึกษาร่วม

. . . .

6170216521 : MAJOR CHEMICAL ENGINEERING

KEYWORD:

Deactivation, Leaching, Sintering, Coking

Poonnapa Limsoonthakul : Roles of WO_x on Pt/γ -Al₂O₃ catalysts on the prevention of Pt metal sintering during hydrogenolysis of glycerol to 1,3-propanediol. Advisor: Prof. PIYASAN PRASERTHDAM, Ph.D. Co-advisor: SUPAREAK PRASERTHDAM, Ph.D.

Hydrogenolysis, Glycerol, 13-Propanediol, Platinum, Tungsten, Alumina,

Hydrogenolysis of glycerol to produce 1,3-propanediol is the most effective reaction which conversing excess glycerol from biodiesel production to high-value-add product; especially, 1,3-propanediol. A solid catalyst which generally used as selective to 1,3propanediol production is Pt-based catalyst with \mathbf{V} -Al₂O₃ supporter which was prepared by wet impregnation method in this study. Although hydrogenolysis of glycerol reaction has been carried out under mild conditions: 140 °C and 5 bar of initial H₂ pressure, the deactivation of non-reduced Pt/\mathbf{Y} -Al₂O₃ catalyst is observed. To investigate the deactivation of the catalyst, the used Pt/ γ -Al₂O₃ and Pt/WO₂/ γ -Al₂O₃ catalysts were characterized by N₂-physisorption, ICP-OES, SEM-EDX, XRD, Py-IR, TPO and FTIR. In this study, deactivations are leaching, sintering and coke formation on both $Pt/\gamma-Al_2O_3$ and $Pt/WO_*/\gamma-Al_2O_3$ catalyst during the hydrogenolysis of glycerol in liquid phase. WO_x can hinder the sintering of Pt metal and retard the coke formation on the catalyst surface. Furthermore, the existence of WO_x on Pt/WO_x/ γ -Al₂O₃ catalysts can also improve catalytic activity for glycerol conversion. Moreover, Pt/WOx/ γ -Al₂O₃ catalysts can significantly increase the selectivity of 1,3-propanediol beyond 1,2-propanediol. Nevertheless, the stability of Pt/WO_x/ γ -Al₂O₃ catalyst is better than that of Pt/ γ -Al₂O₃ catalyst indicated by lower conversion drop of the used catalyst after the first hydrogenolysis of glycerol. Consequently, the addition of WO_v on Pt/ γ -Al₂O₃ catalyst makes appropriated Ptbased catalyst performing in hydrogenolysis of glycerol in terms of higher activity, the selectivity of wanted 1,3-propanediol and stability of the catalyst.

Field of Study:Chemical EngineeringAcademic Year:2019

Student's Signature Advisor's Signature Co-advisor's Signature

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my thesis advisor, Professor Dr. Piyasan Praserthdam and Dr. Supareak Praserthdam my co-advisor to give advice, guidance, suggestion, and supported during experimentation and discussion to achieve my thesis. I am most grateful for their teaching and advice, not only the research methodologies but also many other methodologies in life.

In addition, I will also be grateful to Dr. Rungthiwa Methaapanon represented as the leader. Including, Prof. Dr. Suttichai Assabumrungrat and Asst. Prof. Dr. Okorn Mekasuwandumrong acted as the thesis committee for a good suggestion.

I would like to thank members and scientists in Center of Excellence on Catalysis and Catalytic Reaction, Faculty of Engineering, Chulalongkorn University who guide for equipment and preparation.

I gratefully thank the Government Budget for financial support. This research is funded by Chulalongkorn University.

Finally, I most gratefully acknowledge my parents and my friends; especially, Dr. Tinnakorn Saelee for all their support throughout the period of this research.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Poonnapa Limsoonthakul

TABLE OF CONTENTS

Page	Э
ABSTRACT (THAI)iii	
iv	
ABSTRACT (ENGLISH)iv	
ACKNOWLEDGEMENTSv	
TABLE OF CONTENTS	
LIST OF TABLESix	
LIST OF FIGURES	
CHAPTER I	
INTRODUCTION	
1.1 Introduction	
1.2 Objective	
1.3 The Scopes of Research	
1.4 Research Methodology	
CHAPTER II	
BACKGROUND AND LITERATURE REVIEWS	
2.1 Glycerol 6	
2.2 Hydrogenolysis of glycerol to 1,3-propanediol7	
2.3 Catalysts and literature reviews10	
2.4 Sintering	
2.5 Fouling and Coking14	

4.3.2 Scanning Electron Microscopy (SEM)	25
4.3.3 X-ray Diffraction Analysis (XRD)	26
4.3.4 IR Spectra of Pyridine Adsorption (Py-IR)	29
4.3.5 Temperature-Programmed Oxidation (TPO)	32
4.3.6 Fourier-transform Infrared Spectroscopy (FTIR)	33
4.4 Effect of WO _x Existence	34
CHAPTER V	36
CONCLUSION	36
5.1 Conclusion	36
5.2 Recommendations	36
APPENDIX	37
APPENDIX A	38
APPENDIX B	41
APPENDIX C	44
REFERENCES	48
จุฬาลงกรณ์มหาวิทยาลัย VITA	53
UNULALUNGKUKN UNIVEKSIIT	

LIST OF TABLES

	Page
Table 1 Chemicals in the hydrogenolysis of glycerol	. 15
Table 2 The analysis conditions of Gas Chromatograph	. 17
Table 3 N_2 physisorption and acidity of fresh catalyst	. 20
Table 4 Conversion of glycerol and selectivity of each product in hydrogenolysis o	f
glycerol under reaction conditions: 140 $^{\circ}$ C, 5 bar of initial H ₂ pressure and 6 h of	
reaction time	.23
Table 5 The amounts of Pt and W metal leaching from the surface of catalysts in t	:he
reaction solution based on the catalyst used	. 25
Table 6 Size of Pt metal during hydrogenolysis of glycerol	. 29
Table 7 The acidity concentration of the catalysts measured by Py-IR	.31
Table 8 Amount of weight loss on used 5Pt/ γ -Al $_2O_3$ and 5Pt/WO $_x/\gamma$ -Al $_2O_3$ catalysts	; 33

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

LIST OF FIGURES

	Page
Figure 1 Country shares of biodiesel production in 2022 ^[12]	2
Figure 2 Glycerol industrial applications ^[14]	6
Figure 3 Pathway for possible glycerol derivatives ^[16]	7
Figure 4 Products and byproducts from hydrogenolysis of glycerol	8
Figure 5 Mechanisms of glycerol hydrogenolysis to produce propanediol	9
Figure 6 Proposed reaction mechanism for conversion of glycerol to propylene	
glycol	11
Figure 7 Model structures of the transition states of the hydride attack to the	
adsorbed substrate in the glycerol hydrogenolysis ^[27]	12
Figure 8 Experimental equipment for hydrogenolysis of glycerol	18
Figure 9 Pyridine adsorption of fresh 5Pt/ γ -Al ₂ O ₃ (a) and 5Pt/WO _x / γ -Al ₂ O ₃ (b) cataly	ysts
	22
Figure 10 SEM images of (a) fresh, and (b) used 5Pt/ γ -Al ₂ O ₃ catalysts, as well as (c)	
fresh, and (d), used 5Pt/WO _x / γ -Al ₂ O ₃ catalysts corresponding to SEM-EDX images o	of
(e) fresh, and (f) used 5Pt/ γ -Al $_2$ O $_3$ catalysts, as well as (g) fresh, and (h) used	
5Pt/WO _x / γ -Al ₂ O ₃ catalysts	26
Figure 11 XRD diffraction patterns of (a) γ -Al ₂ O ₃ , (b) WO _x / γ -Al ₂ O ₃ , (c and c ₁) 5Pt/ γ -	
Al $_2\text{O}_3$, and (d and d $_1$) 5Pt/WO _x / γ -Al $_2\text{O}_3$ which the subscripts demonstrate the	
diffraction patterns of used catalysts	28
Figure 12 FTIR of adsorbed pyridine of fresh (a_1) and used (a_2) on 5Pt/ γ -Al $_2$ O $_3$	
including fresh (b1) and used (b2) 5Pt/WOx/ γ -Al2O3 catalysts	31
Figure 13 TPO curves of used 5Pt/ γ -Al $_2O_3$ and 5Pt/WO $_x/\gamma$ -Al $_2O_3$ catalysts	32
Figure 14 FTIR spectra of used 5Pt/ γ -Al ₂ O ₃ and 5Pt/WOx/ γ -Al ₂ O ₃ catalysts	34

Figure 15 Calibration curve of glycerol	38
Figure 16 Calibration curve of 1,3-propanediol	39
Figure 17 Calibration curve of 1,2-propanediol	39
Figure 18 Calibration curve of 1-propanol	40
Figure 19 Calibration curve of 2-propanol	40

CHAPTER I

INTRODUCTION

1.1 Introduction

The increment of fossil fuel usage has affected the creation of pollutant emission, especially carbon dioxide (CO₂), which encourages the greenhouse effect leading to the problem of global warming nowadays^[1]. To alleviate CO₂ production, the exploration of alternative fuel source replacing the primitive fossil fuel has been needed^[2]. Recently, biomass, the product derived from a living organism, has gained more attention for employing as an alternative feedstock in many applications such as biochemical and bioenergy because the biomass is ample in agricultural products. Hence, utilizing biomass is not only produced green products without generating pollutants that directly impact to environment but also added the value of low-cost agricultural materials^[3].

In the past few decades, bioenergy means biofuels, consist of bioethanol and biodiesel, which the productions have been rapidly developed^[4]. For biodiesel which provides wider applications of the vehicle system, it can be produced from triglycerides derived from plants such as palm, peanut, sunflower, soybean, jatropha^[5], and rapeseed^[1], constituting approximately 10 wt.% of total biomass^[6]. Moreover, the triglycerides are also harvested from animal fat^[7] and waste cooking oil^[8]. Normally, triglyceride can be reached with short-chain alcohols, via transesterification reaction^[9]. To produce ester compound and glycerol as main and byproduct, respectively. After that, the produced ester compound can be purified before employed as biodiesel in the next step^[10].

In 2018, the global production of biodiesel was significantly increased by around 5%. From overall biodiesel production around the world, the top five countries accounted for 53% of global production. Most of them, Europe is the largest producer of biodiesel by region. Furthermore, the current leading country producers for biodiesel production are the United States (17%), Brazil (13%), Indonesia (10%), Germany (8%), and Argentina (5%), respectively^[11].

In the future, biodiesel production trends to continuously enhanced around 4.5% annually to reach 41 billion liters in 2022, as shown in Figure 1.

Figure 1 Country shares of biodiesel production in 2022^[12]

However, the increment of biodiesel production affects the over excess glycerol storage, which is the byproduct during biodiesel production. Over generation of glycerol byproduct leads to the low-cost of glycerol in the chemical market. However, it is well known that glycerol is an important reactant for producing other chemical precursors.

To transform glycerol to other chemicals, the hydrogenolysis reaction of glycerol is the most basic approach which a highly effective catalyst plays an important role in terms of reactivity of glycerol conversion and selectivity of wanted 1,3-propanediol production. From the many kinds of highly effective catalysts that are available in the market, Pt-based catalyst has been recently reported as the most popular catalyst due to its high reactivity on hydrogenolysis reaction. However, the improvement of selectivity of wanted 1,3-propanediol production is still a challenge.

To improve the selectivity of 1,3-propanediol on Pt-based catalyst, the addition of tungsten oxide (WO_x) has been reported as an effective dopant to increase the selectivity of 1,3-propanediol production and enhance the catalytic reactivity because the existence of WO_x assists stabilization of the secondary

carbocation which is the crucial intermediate during the transformation of glycerol to 1,3-propanediol^[13].

Although a combination of Pt and WO_x on γ -Al₂O₃ surface can improve the selectivity of 1,3-propanediol beyond 1,2-propanediol, deactivation of the catalyst by metal leaching, metal sintering, and coke formation is still difficult to avoid. Hence, understanding of deactivation on Pt/WO_x/ γ -Al₂O₃ catalyst during hydrogenolysis of glycerol needed to design a better catalytic system for hydrogenolysis of glycerol to yield 1,3-propanediol.

Thereby, deactivation of clean Pt and Pt/WO_x, which are supported by γ -Al₂O₃, are focused during the hydrogenolysis of glycerol to 1,3-propanediol. Moreover, the effect of WO_x doping to prevent deactivation on Pt-based catalyst improving the catalytic performances in terms of activity, selectivity, and stability on hydrogenolysis of glycerol. The role of additional promoters such as WO_x is also investigated.

1.2 Objective

To investigate the role of WO_x on Pt/ γ -Al₂O₃ catalyst to prevent deactivations from leaching and sintering of Pt metal as well as coke formation during hydrogenolysis of glycerol to 1,3-propanediol under low temperature and pressure (mild reaction conditions)

Chulalongkorn University

1.3 The Scopes of Research

The details of this research are shown below.

1.3.1 Studying the catalytic reaction for fresh and used catalysts through hydrogenolysis of glycerol at low temperature and pressure conditions (140 $^{\circ}$ C and 5 bar of initial H₂ pressure)

1.3.2 Studying deactivation of Pt-based catalyst during hydrogenolysis process (Pt leaching, Pt sintering, and coke formation)

1.3.3 Studying the effect of WO_{x} on preventing catalytic deactivation of Pt-based catalyst

1.3.4 Studying catalytic stability in terms of recycle catalyst in hydrogenolysis process

1.4 Research Methodology

CHAPTER II

BACKGROUND AND LITERATURE REVIEWS

The general information of glycerol and the hydrogenolysis of glycerol to 1,3propanediol and other possible chemicals are mentioned in this section. Finally, the interesting catalysts and literatures, including definitions of sintering and coking, are reviewed with this chapter.

2.1 Glycerol

Currently, there are several methods to synthesize glycerol into other useful products, such as hydrolysis, saponification, and transesterification of fatty acid or vegetable oil. The applications of glycerol are illustrated in Figure 2, for example, pharmaceutical, cosmetic, food beverage, and chemical application.

Figure 2 Glycerol industrial applications^[14]

Glycerol is a functional chemical compare with the other hydrocarbons. Accordingly, a large quantity of higher value-added products can be produced via different chemical reactions, as showed in Figure 3^[15].

Figure 3 Pathway for possible glycerol derivatives^[16]

In recent years, the interesting reaction for glycerol transformation to highervalue products is the hydrogenolysis of glycerol to propanediol. Wanted products from the hydrogenolysis of glycerol are 1,2-propanediol (1,2-PDO) and 1,3propanediol (1,3-PDO). Among them, 1,3-PDO reveals a higher value than of 1,2-PDO. Thus, the hydrogenolysis of glycerol to 1,3-PDO is gained more attention.

2.2 Hydrogenolysis of glycerol to 1,3-propanediol

Because glycerol has more -OH group than the propanediol products, the hydrogenolysis of glycerol aims to remove -OH group together with one H atom addition. Moreover, another approach is adding H_2 molecule following H_2O discharge^[17].

The hydrogenolysis is two steps reaction of bonds dissociation of chemical reactant following by hydrogen filling. The hydrogenolysis of C-C bond, as known as hydrocracking, which widely used in petroleum chemistry, is a reaction for shortening the carbon chain length, as shown in Eq. $1^{[18]}$. On the other hand, the hydrogenolysis

of C-O bond is a method to get rid of the content of oxygen in a substrate, particularly C-OH bond, which was extensively used to convert biomass to fuel or chemicals as shown in Eq. 2^[19].

The proposed mechanisms pathway of glycerol hydrogenolysis is illustrated in Figure 4. Firstly, C-O bond dissociation of glycerol hydrogenolysis is taken place to two products, including 1,2-PDO and 1,3-PDO. Then, the 1,2-PDO and 1,3-PDO can be over hydrogenolysis to 1-propanol (1-PrOH), 2-propanol (2-PrOH), and propane. Moreover, the products such as ethylene glycol, ethanol, methanol, ethane, and methane are produced from C-C hydrogenolysis of glycerol.

Figure 4 Products and byproducts from hydrogenolysis of glycerol

The many mechanisms of glycerol hydrogenolysis have been proposed, and the pathway that was operated depending on the system of reaction. Acidic, basic, or metal catalytic properties are parameters for a selective pathway. The mechanism of glycerol hydrogenolysis has three routes to achieve the propanediol (Figure 5), consist of dehydration-hydrogenation, dehydrogenation-dehydration-hydrogenation, and direct hydrogenolysis^[20].

Figure 5 Mechanisms of glycerol hydrogenolysis to produce propanediol

In the dehydration-hydrogenation route, the acid catalyst is used for glycerol dehydration to form intermediate. After that, the intermediate is hydrogenated to be the product. The intermediates of dehydration and hydrogenation are acetol and 3-hydroxypropionaldehyde (3-HPA), respectively. Acetal is a dehydrated intermediate which is hydrogenated to 1,2-PDO through -OH group removal at the first position of glycerol (Figure 5, Route 1). On the contrary, 1,3-PDO is formed via hydrogenation of 3-HPA intermediate, which -OH group is dehydrated at the second position of glycerol, while the dehydrogenation-dehydration-hydrogenation (Figure 5, Route 2) is

a reaction that produced the mainly 1,2-PDO under neutral water and alkali condition.

2.3 Catalysts and literature reviews

The catalysts for hydrogenolysis of glycerol have two functions of catalytic to remove the -OH group and to fill the hydrogen. First, the function that using for -OH group removal is the acidic or basic function. Second, the oxidation-reduction process is used for hydrogen adding. The catalyst components for hydrogenolysis of glycerol include metal and metal oxides, or acidic, or basic supports. The metal component used for hydrogen activation and the support used to provide acid-base performance. The catalysts for hydrogenolysis of glycerol are divided into two groups, transition, and noble metal, based on the metal types.

In 1988 and 1991, Montassier et al.^[21] studied propanediol production from hydrogenolysis of glycerol using Ru particles on charcoal (Ru/C) catalysts. As a result, the pathway of glycerol hydrogenolysis is dehydrogenation-dehydrationhydrogenation (Route 2, Figure 5). First, dehydrogenation of glycerol is generated over the metal surface, and glyceraldehyde, which is the intermediate chemical of the reaction, is produced. Second, 2-hydroxyacrolein and pyruvaldehyde are two intermediate chemicals derived from dehydration in the base condition. After that, all the intermediate chemicals are reacted through hydrogenation with high pressure H₂ gas. 1,2-PDO is a main product from the reaction. The selectivity of 1,2-PDO is higher than the selectivity of 1,3-PDO. And researchers found that the alkali condition increasing of the reaction causes the significant increase of reaction rate because the intermediate favors dehydration in the alkali condition. Lahr and Maris get similar results in 2003^[22], 2005^[23], and 2007^[24], respectively.

In 2005, Dasari *et al.*^[25] studied the hydrogenolysis of glycerol to propylene glycol using different metal-doped over carbon-based support. The results showed that the reduced Copper-chromite catalyst is identified as the most effective catalyst. The mild reaction conditions, 200 $^{\circ}$ C and 200 psi, provide high selectivity (85%) and good conversion (54.8%) more than other metal such as Ni/C, Ru/C, Pd/C, and Pt/C.

The researchers propose two steps of the reaction mechanism to convert glycerol to propylene glycol (Figure 6).

Figure 6 Proposed reaction mechanism for conversion of glycerol to propylene

glycol

In 2007, Tomishige *et al.*^[26] evaluated the catalytic performance of noblemetal supported on Al_2O_3 and SiO_2 . As a result, Rh/SiO_2 is presented higher activity and selectivity at low temperature (120 °C) than Ru/C. The highest conversion and 1,3-PDO selectivity of Rh/SiO_2 are 7.2% and 7.9%, respectively. The reaction route on Rh/SiO_2 is differenced from Ru/C via the products from hydrogenolysis of glycerol. Rh/SiO_2 catalyst promotes the propanol formation from 1,2-PDO, while Ru/C favors to proceed with the generation of propanol from 1,3-PDO.

In 2011, Tomishige *et al.*^[27] discussed the mechanism of glycerol hydrogenolysis to 1,3-PDO over the Re-added noble metal catalyst. The standard condition of the reaction is following 120 °C, 8 MPa initial pressure of H₂, and 12 h reaction time. The result showed that Ir-ReO_x/SiO₂ is selective to produce 1,3-PDO. Consequently, the mechanism of glycerol hydrogenolysis is a direct pathway to form 1,3-PDO via 2,3-dihydroxypropoxide. As shown in Figure 7, the transition state of glycerol adsorbed on Re species, firstly, the -CH₂OH group of glycerol is adsorbed on the surface of ReO_x to form alkoxide. Next, for 1,3-PDO production, the secondary C-O bond of 2,3-dihydroxypropoxide, the intermediate, is attacked by activated -OH group on Ir metal as depicted in Figure 7 (a). On the other hand, the remaining C-O bond cleavage of the intermediate is taken place by activated -OH group on Ir metal

leading to the production of 1,2-PDO (Figure 7 (b)). As Chia *et al.*^[28] the identical mechanism of glycerol hydrogenolysis over Rh-ReO_x/C catalyst is reported.

2,3-dihydroxypropoxide

(a) From glycerol to form 1,3-PD

(b) From glycerol to form 1,2-PD

1,3-dihydroxyisopropoxide

Re

HC

Figure 7 Model structures of the transition states of the hydride attack to the adsorbed substrate in the glycerol hydrogenolysis^[27]

In 2012, Liu *et al.*^[29] investigated the catalytic performance of mesoporous tungsten oxide (m-WO₃) supported Pt catalyst for hydrogenolysis of glycerol compared with commercial WO₃ under the reaction condition, 180 $^{\circ}$ C, 5.5 MPa H₂, 12 h and the mass ratio of catalyst/glycerol equal to 1:4. The evaporation-induced self-assembly method is used to synthesize the m-WO₃ using WCl₆ as a precursor. The results showed that Pt/m-WO₃ is more active and selective for hydrogenolysis of glycerol to produce a main product as 1,3-PDO than commercial cause the high dispersion of Pt and good reducibility of m-WO₃. As a result, the glycerol conversion reached 18%, and the selectivity of 1,3-PDO was 39.3%.

In 2015, Zhu *et al.*^[30] studied the effect of various WO_x contents over Pt/Al₂O₃ catalysts. The researchers found that 10 wt.% of WO_x loading over Pt/Al₂O₃ catalyst gave approximately 50 times of 1,3-PDO yield (42.4%) compared with Pt/Al₂O₃ catalyst because of the existing of Brønsted acid sites. The Brønsted acid sites promote the secondary C-O bond cleavage of glycerol to produce 1,3-PDO, while Lewis acid sites favor to form 1,2-PDO via controlling the cleavage of primary C-O bond.

In 2015, Garcia *et al.*^[31] studied the effect of bimetallic $Pt/WO_x/Al_2O_3$ catalysts to selective 1,3-PDO production from the hydrogenolysis of glycerol. The high

dispersion of polytungstate species over the catalyst surface led to the highest selectivity of 1,3-PDO due to Brønsted acidity is produced. The role of acidity and interaction between platinum and tungsten oxides are necessary for the selective hydrogenolysis of glycerol to 1,3-PDO. Pt/WO_x/Al₂O₃ catalysts were prepared by the sequential wetness impregnation method. The activity test results showed when the platinum content is increased from 1 wt.% to 9 wt.%, the conversion of glycerol and the selectivity of 1,3-PDO also increased from 25.6% to 60.3% and 16.4% to 31.2%, respectively.

In 2016, Garcia *et al.*^[13] studied the effect of WO_x to be selective for the hydrogenolysis of glycerol over Pt/WO_x/Al₂O₃ catalysts. The catalytic reaction was tested under the reaction condition, 200 $^{\circ}$ C, 90 bar of H₂, and 4 h of reaction time, using the reduced catalysts. The 9Pt8WAl catalyst is reported as a high yield of 1,3-PDO of 38.5%. The researchers found the three roles of tungsten oxide in the hydrogenolysis of glycerol, as follows: (1) strong anchoring site for primary hydroxyl group of glycerol (2) protons provider (3) stabilizer of the secondary carbocation.

In 2017, Garcia *et al.*^[32] doped bimetallic Pt-WO_x on supports, aluminium oxide, and HZSM-5, to study structure-activity relationship for hydrogenolysis of glycerol. The results showed that the important parameters to produce 1,3-PDO are tungsten surface density and the closed contact between Pt and WO_x. The density of the tungsten surface controls the type of WO_x species generated on the surface of catalyst. Polytungstate produced the weak Brønsted acidity, which is necessary to selectively produce 1,3-PDO. For Pt/WO_x/Al₂O₃ catalyst, the increase of Pt dispersion promotes the high conversion of glycerol leading to 1,2-PDO and 1,3-PDO formation. However, the increment of Pt content on catalyst surface significantly enhance the amount of 1,3-PDO production. Moreover, the assistance of WO_x and Pt metal promoted the selectivity of intermediate carbocation to 1,3-PDO.

2.4 Sintering

Sintering is a process of metal aggregating to a larger size on the surface of catalyst during high temperature, which weakens the interaction between metal and support. Hence, the surface area of used catalyst is decreased leading to loosing of

catalytic performance comparing to the fresh catalyst. To prevent the metal sintering process, increment the interaction between metal and support on the catalyst surface is an effective solution to solve this problem^[33].

Garcia *et al.*^[32] studied the structure of Pt-WO_x with 10 wt.% W content over Al-based supports using X-ray diffraction measurement. The result is showed that the diffraction peak of Pt metal on used 2Pt9W Al^{com} catalyst is shaper than the fresh catalyst at $2\theta = 39.9^{\circ}$. They reported that the Pt metal on the Al-based support catalyst is sintered during the reaction at high temperature and pressure (200 °C and 25 bar).

2.5 Fouling and Coking

Fouling is a physical deposition of components from the liquid phase onto catalyst surface. This process leads to activity losing of active sites due to blockage of sites and/or pores. Coking is one kind process of fouling that hydrocarbons decompose or condensate on catalyst surface^[34]. These are deactivation types of catalyst which affected to decrease of catalytic activity.

Gandarias *et al.*^[35] studied hydrogenolysis of glycerol under mild reaction conditions (493K and 45 bar of H_2 pressure) using Pt supported on amorphous silico alumina (Pt/ASA). They reported the addition of Pt metal could reduce the coke formation from 6.2% on ASA support to 5.4% on Pt/ASA catalyst because of Pt metal cleavage C-C bond.

CHAPTER III

EXPERIMENTAL

This chapter mentions the used chemicals in catalysts preparation including steps of preparing the catalysts via wet impregnation method. Next, the step by step of glycerol hydrogenolysis is referenced to imitate easily. Finally, the conditions of Gas-Chromatograph and measurements of catalysts characterization are shown in the chapter.

3.1 General of Chemicals

The list of chemicals for the hydrogenolysis of glycerol is shown in Table 1.

Chemicals	Formula	Supplier
Alumina (lab grade)	γ -Al $_2O_3$	Kemaus
Glycerol	C ₃ H ₈ O ₃	Sigma-Aldrich
Ammonium(meta)tungstate hydrate	$(NH_4)_6H_2W_{12}O_{40}\cdot xH_2O$	Sigma-Aldrich
Chloroplatinic acid hydrate	H ₂ PtCl ₆	Sigma-Aldrich

 Table 1 Chemicals in the hydrogenolysis of glycerol

ุ่ฬาลงกรณ์มหาวิทยาลัย

3.2 Catalyst Preparation

The Pt/WO_x/ γ -Al₂O₃ catalyst was prepared using wet impregnation method. And the catalyst preparation processes are as follow.

3.2.1 Pt/ γ -Al₂O₃

Pt/ γ -Al₂O₃ catalyst was prepared by wet impregnation method. First, the powder of γ -Al₂O₃ (Kemaus) was calcined in static air at 900 °C for 3 h. After that, the chloroplatinic acid hydrate (H₂Cl₆Pt.*n*H₂O, Sigma-Aldrich, 38% Pt basis) was used as a precursor. Next, 5 wt.% of H₂Cl₆Pt were dissolved in deionized water to be a completed solution and impregnated on the γ -Al₂O₃ powder by stirring at 500 rpm for 16 h. Finally, the prepared catalysts were dried overnight at 110 °C and calcined

in airflow at 300 °C for 3 h. 5Pt/ γ -Al₂O₃ catalyst where 5 is indicated 5 wt.% of Pt metal was used in the catalytic reaction.

3.2.2 WO_x/ γ -Al₂O₃

WO_x/ γ -Al₂O₃ catalyst was prepared via wet impregnation method. First, the calcined γ -Al₂O₃ powder from the previous step was impregnated with 10 wt.% of ammonium metatungstate (AMT, (NH₄)₆(H₂W₁₂O₄₀).*n*H₂O, Sigma-Aldrich, ≥99.99%) which dissolved in DI water as a solution. After that, the impregnated γ -Al₂O₃ was stirred at 500 rpm for 16 h. The WO_x/ γ -Al₂O₃ was dried overnight at 110 °C. Finally, the catalyst was calcined in airflow at 900 °C for 3 h.

3.2.3 Pt/WO_x/γ-Al₂O₃

Pt/WO_x/ γ -Al₂O₃ catalyst was prepared by wet impregnation method. First, WO_x/ γ -Al₂O₃ catalyst from the previous step was impregnated with 5 wt.% of H₂Cl₆Pt as a precursor which is dissolved in DI water. Second, the impregnated catalyst was stirred at 500 rpm for 16 h. After the impregnation was finished, the catalyst was dried overnight at 110 °C and calcined in airflow at 300 °C for 3 h. 5Pt/WO_x/ γ -Al₂O₃ catalyst where 5 is indicated 5 wt.% of Pt metal was used in the catalytic reaction.

3.3 Hydrogenolysis Reaction

The catalytic reaction of glycerol hydrogenolysis to 1,3-PDO was tested. First, 0.6 g of catalyst and 3 wt.% of aqueous glycerol solution were placed into 100 mL stainless steel autoclave, as showed in Figure 8. Second, the system was flushed three times with 5 bar of H_2 and pressurized with H_2 to reaction pressure of 5 bar. Then, the temperature of the system was heated to 140 °C and stirred at 800 rpm for 6 h. After the reaction was finished, the system was cooled down immediately to ambient temperature overnight to condense all components in gas to the liquid phase. Subsequently, 0.3 g of ethylene glycol was added as the internal standard. After that, the sample was centrifuged to separate solid catalysts from the liquid phase. And the solid catalysts were washed several times with DI water and dried at 110 °C until a weight becomes stable. Finally, the products of the liquid phase were analyzed using a Shimadzu 14B gas chromatograph with DB-WAX-UI capillary column

equipped with a flame ionization detector (30 m \times 0.32 mm \times 0.5 μ m) as the GC condition as shown in Table 2. To determine the catalyst stability, the used catalysts were recycled to the second hydrogenolysis of glycerol as the same reaction condition. The conversion of glycerol and selectivity of each liquid product was calculated using the following equations, respectively.

$$Conversion (\%) = \frac{moles of glycerol (in) - moles of glycerol (out)}{moles of glycerol (in)} \times 100$$

$$Selectivity (\%) = \frac{moles of product}{moles of glycerol (in) - moles of glycerol (out)} \times 100$$

$$C_3 \text{ Moles Balance } (\%) = \frac{\Sigma \text{ moles of product + moles of glycerol (out)}}{moles of glycerol (in)} \times 100$$

Table 2 The analysis conditions of Gas Chromatograph

Gas Chromatograph	Shimadzu GC 14-B		
Detector	FID		
Column	DB-WAX-UI capillary column		
Carrier Gas	Helium (99.99 vol. %)		
Make-up Gas	Air (99.9 vol. %)		
Column Temperature	60 °C		
Injector Temperature	250 °C		
Detector Temperature	250 °C		
Time Analysis (min)	30		

Figure 8 Experimental equipment for hydrogenolysis of glycerol

3.4 Catalysts Characterization

3.4.1 N₂ Physisorption

 N_2 physisorption was used to observe the surface area of catalysts by a single point on the N_2 adsorption isotherm method using the Micromeritics Chemisorb 2750 Pulse Chemisorption system. 50 mg of the catalysts are pretreated at 300 °C for 1 h under N_2 flow. Then, the system temperature was reduced to -196 °C for 30% of N_2 /He adsorption. Finally, the temperature of the catalysts system was heated up to room temperature for desorption. The specific surface area can be calculated by dividing the peak area with the weight of catalyst sample.

3.4.2 Inductively Coupled Plasma (ICP)

The amounts of Pt and W metal leaching from the surface of catalysts into liquid phase are determined by inductively coupled plasma optical emission spectrometer (ICP-OES) on a 2100 DV from Perkin Elmer. After the separation of solid catalyst, 1 mL of the solution is dissolved with DI water. The energy from coupled plasma is used in the measurement.

3.4.3 Scan Electron Microscope (SEM)

The chemical composition attributed to the surface of the catalysts is examined with SEM-EDX using Link Isis series 300 program SEM (JEOL model JSM-5800LV).

3.4.4 X-ray Diffraction (XRD)

Powder X-ray diffraction (XRD) measurement is used to characterize the patterns of catalysts. The diffraction patterns are collected by Bruker D8 Advance using Cu K α irradiation at 2 θ = 20° to 80° with a 0.05° s⁻¹ step size.

3.4.5 IR Spectra of Pyridine Adsorption (Py-IR)

Types of acid sites of catalysts are analyzed from the FTIR spectra of adsorbed pyridine via a Bruker Equinox 55 FT-IR spectrometer equipped with mercury cadmium telluride (MTCB) detector. The 55 mg of samples is pretreated under vacuum at 300 °C for 1 h with a ramping rate 10 °C/min. After that, the system is cool down to 50 °C to adsorbed pyridine and collected IR spectra at the same temperature.

3.4.6 Temperature-Programmed Oxidation (TPO)

To analyze the amount of carbon contents in the catalyst, temperatureprogrammed oxidation (TPO) was used to measure weight changing on the material, which was lost during reaction testing. Moreover, the catalyst was determined the chemical phenomena such as the temperature of catalyst decomposition and oxidation reaction between gas and solid. 10-20 mg of the specimen was used to operate the temperature program at 25 to 1000 °C with 10 °C/min of temperature ramping using N₂ UHP as the carrier gas.

3.4.7 Fourier-transform Infrared Spectroscopy (FTIR)

To determine chemical structure on the catalyst surface, Fourier-transform infrared spectroscopy (FTIR) was used to analyze the functional group of the catalyst using Nicolet 6700 FTIR spectrometer. 50-100 mg of catalyst were pressed to powder disk. After that, the wavenumbers of the infrared spectrum were recorded at 4000- 400 cm^{-1} .

CHAPTER IV RESULTS AND DISCUSSION

This chapter mentions the several studies and results containing the effect of a reusable catalyst on catalytic activity, the influence of tungstate oxide addition, and the effect of platinum loading on the sintering of catalyst during the glycerol hydrogenolysis to 1,3-PDO. The characterizations of catalyst specimens were investigated using the technique such as N₂-physisorption, ICP, SEM-EDX, XRD, Py-IR, TPO, and FTIR.

4.1 Catalyst Properties

4.1.1 N₂ Physisorption

The physical property of fresh catalysts is shown in Table 3. The surface area of catalyst specimens is decreased with the addition of WO_x and Pt metal on catalyst comparing bared γ -Al₂O₃ support. Diminish of the surface area of impregnated catalysts such as WO_x/ γ -Al₂O₃ and Pt/ γ -Al₂O₃ may be caused by hindrance or blockage the pores of the support. As a result, the introduction of Pt metal on WO_x/ γ -Al₂O₃ catalyst also reduces the surface area described through the same assumption^[31, 36].

หาลงกรณมหาวิทยาลัย

Catalyst	Surface area (m²/g) ^a	B/L acid ratio ^b		
γ -Al ₂ O ₃	90	N.A.		
WO_x/γ -Al ₂ O ₃	38	N.A.		
5Pt/ γ -Al ₂ O ₃ (fresh)	48	0.17		
5Pt/WO _x / γ -Al ₂ O ₃ (fresh)	33	0.26		

 Table 3 N2 physisorption and acidity of fresh catalyst

^a surface area based on gram of catalyst

^b ratio of Brønsted and Lewis acid sites from FTIR of pyridine adsorption

N.A. = non-analysis

4.1.2 IR Spectra of Pyridine Adsorption (Py-IR)

To classify acidity difference and evaluate type of acid sites (Brønsted and Lewis sites) of 5Pt/ γ -Al₂O₃ and 5Pt/WO_x/ γ -Al₂O₃ catalysts, FTIR combining to specific pyridine adsorption analysis is performed. The FTIR spectrum of pyridine adsorption on fresh 5Pt/ γ -Al₂O₃ and 5Pt/WO_x/ γ -Al₂O₃ catalysts are revealed in Figure 9.

Recently, there are several researches reporting that appearance of characteristic peak in a range of 1450 cm⁻¹ and 1614 cm⁻¹ evidence Lewis acid sites $(L)^{[30, 37]}$ whereas the occurrence of characteristic peak around 1540 cm⁻¹ and 1640 cm⁻¹ illustrates the characteristic peaks of Brønsted acid site $(B)^{[38]}$. Moreover, observation of characteristic peak, particularly at 1490 cm⁻¹, reveals the mixture of Brønsted and Lewis sites (B+L) of catalysts^[39].

The 5Pt/ γ -Al₂O₃ and 5Pt/WO_x/ γ -Al₂O₃ catalysts exhibit both of Brønsted and Lewis acid site that the signal of Lewis acid site shows higher intensity than Brønsted acid site. These results indicate Lewis acid sites on 5Pt/ γ -Al₂O₃ and 5Pt/WO_x/ γ -Al₂O₃ catalysts are dominant.

4.2 Catalytic Activity HULALONGKORN UNIVERSITY

Table 4 shows catalytic activity of fresh 5Pt/ γ -Al₂O₃ and 5Pt/WOx/ γ -Al₂O₃ catalysts in the hydrogenolysis of glycerol to 1,3-PDO using mild reaction condition: 140 °C, 5 bar of initial H₂ pressure and 6 h of reaction time. The results indicate glycerol conversion of 5Pt/ γ -Al₂O₃ catalyst is 23.2%, while glycerol conversion of 5Pt/WO_x/ γ -Al₂O₃ catalyst is 35.8%. The selectivity of wanted 1,3-PDO is 6.9% on 5Pt/ γ -Al₂O₃ catalyst. However, 1,3-PDO selectivity on 5Pt/WO_x/ γ -Al₂O₃ catalyst is 29%. Whereas, the selectivity of 1,2-PDO as a by-product in this study on 5Pt/ γ -Al₂O₃ catalyst. These can suggest that 5Pt/ γ -Al₂O₃ catalyst is selective to 1,2-PDO, while 5Pt/WO_x/ γ -Al₂O₃ catalyst is selective to 1,3-PDO production.

From this result, the introduction of WO_x on Pt-based catalyst can improve the selectivity of wanted 1,3-PDO because the acidic property on catalyst is increased with the addition of WO_x content. As showed in Table 3, the acidic ratio of Brønsted and Lewis sites on 5Pt/ γ -Al₂O₃ catalyst is 0.17, while B/L ratio of 5Pt/WO_x/ γ -Al₂O₃ catalyst is 0.26.

Table 4 Conversion of glycerol and selectivity of each product in hydrogenolysis of glycerol under reaction conditions: 140 $^{\circ}$ C, 5 bar of initial H₂ pressure and 6 h of reaction time

Catalyst	Conversion of glycerol	Product selectivity (%)				C ₃ Moles
	(%)	1,3-PDO	1,2-PDO	1-PrOH	2-PrOH	balance (%)
5Pt/ γ -Al ₂ O ₃ (fresh)	23.2	6.9	18.7	7.0	31.6	91.7
5Pt/ γ -Al ₂ O ₃ (used)	12.7	4.6	32.7	10.7	25.4	96.6
5Pt/WO _x / γ -Al ₂ O ₃ (fresh)	35.8	29.0	10.2	11.6	21.1	89.9
5Pt/WO _x / γ -Al ₂ O ₃ (used)	30.0	22.8	11.6	8.6	13.1	86.8
	4		A			

To study the stability of the catalyst, the several cycles of catalyst in hydrogenolysis of glycerol are investigated using the weight of catalyst in the second hydrogenolysis reaction, including reaction condition as same as the first time. The results of used catalyst in Table 4 show conversion of glycerol is decreased on both used catalysts; however, conversion of glycerol on 5Pt/WO_x/ γ -Al₂O₃ catalyst is slightly dropped from 35.8% to 30% while conversion of glycerol on 5Pt/ γ -Al₂O₃ catalyst is decreased from 23.2% to 12.7%. Moreover, the decrease of glycerol conversion on 5Pt/ γ -Al₂O₃ catalyst is larger than 5Pt/WO_x/ γ -Al₂O₃ catalyst (45.3% and 16.2%, respectively). In addition, the selectivity of 1,3-PDO on used 5Pt/ γ -Al₂O₃ catalyst is larger dropped than 5Pt/WO_x/ γ -Al₂O₃ catalyst (33.3% and 21.4%, respectively).

4.3 Catalyst Deactivations

4.3.1 Chemical Analysis (ICP)

Leaching of Pt and W metals from 5Pt/ γ -Al₂O₃ and 5Pt/WO_x/ γ -Al₂O₃ catalysts during the hydrogenolysis of glycerol can be observed using ICP-OES measurement which the results of each Pt and W leaching, as well as the conversion of glycerol on each fresh and used catalysts, are concluded in Table 5.

For 5Pt/ γ -Al₂O₃ catalyst, the fresh 5Pt/ γ -Al₂O₃ catalyst provides 23.2% of glycerol conversion and 22x10⁻⁴ mg of Pt leaching after the hydrogenolysis process was complete. In case of used 5Pt/ γ -Al₂O₃ catalyst, conversion of glycerol is reduced to 12.7% while leaching of Pt element was also decreased to 6.6x10⁻⁴ mg. These results suggest that catalytic activity of used 5Pt/ γ -Al₂O₃ catalyst is obviously lower than that of fresh 5Pt/ γ -Al₂O₃ catalyst due to losing the active site by Pt leaching during the hydrogenolysis process.

For 5Pt/WO_x/ γ -Al₂O₃ catalyst, the fresh 5Pt/WO_x/ γ -Al₂O₃ catalyst shows 35.8% of glycerol conversion while leaching of Pt from 5Pt/WO_x/ γ -Al₂O₃ surface is detected as 0.5x10⁻⁴ mg after the first hydrogenolysis process while leaching of W element is observed as 182x10⁻⁴ mg. For used 5Pt/WO_x/ γ -Al₂O₃ catalyst, conversion of glycerol is detected as 30.0% without Pt leaching during the second hydrogenolysis process, whereas 51x10⁻⁴ mg of WO_x leaching was found.

As the results, catalytic activity measured by conversion of glycerol relates to the amount of Pt on catalyst surface implying that the impregnated Pt metal is a real active site for this hydrogenolysis reaction. Leaching of Pt element affects losing crucial active site leading to a significant decrement of catalytic activity, which is mentioned in case of employment of used 5Pt/ γ -Al₂O₃ and 5Pt/WO_x/ γ -Al₂O₃ catalyst for the second hydrogenolysis process. Hence, the introduction of WO_x to γ -Al₂O₃ before impregnating Pt active site to WO_x/ γ -Al₂O₃ surface can improve catalytic activity by preventing Pt leaching from 5Pt/WO_x/ γ -Al₂O₃ to the liquid phase during hydrogenolysis reaction leading to few quantities of Pt metal in the liquid phase resulting higher catalytic activity comparing to 5Pt/ γ -Al₂O₃ catalyst.

	Catalytic	Chusanal	Metal leaching ^a	
Catalyst	cycle	Glycerol	(x10 ⁻⁴ mg)	
		conversion (%)	Pt	W
5Pt/γ-Al ₂ O ₃	Fresh	23.2	22.0	N.A.
	Used	12.7	6.6 ^a	N.A.
5Pt/WO _x / γ -Al ₂ O ₃	Fresh	35.8	0.5	182
	Used	30.0	0.0 ^a	51 ^a

 Table 5 The amounts of Pt and W metal leaching from the surface of catalysts in the reaction solution based on the catalyst used

^a Metal leaching of used catalysts was calculated from based-on remained metals on catalysts after the first hydrogenolysis process.

N.A. = non-analysis

4.3.2 Scanning Electron Microscopy (SEM)

The morphological properties of 5Pt/ γ -Al₂O₃ and 5Pt/WO_x/ γ -Al₂O₃ in terms of fresh and used catalysts are analyzed using SEM-EDX technique which the SEM-EDX images of 5Pt/ γ -Al₂O₃ and 5Pt/WO_x/ γ -Al₂O₃ are showed in Figure 10.

For 5Pt/ γ -Al₂O₃ catalyst, the perfect crystal of 5Pt/ γ -Al₂O₃ powder without any dropped of Pt indicates a well dispersion of Pt on γ -Al₂O₃ in microscopic scale in both fresh and used cases as provided in Figure 10 (a and b). However, the detection of strong intensity of EDX image of Pt atom after the first hydrogenolysis process, as shown in Figure 10 (e and f) may imply growing of Pt active site, which evidences diffusion of Pt during the first hydrogenolysis reaction is carried. Diffusion of dispersed Pt to form larger Pt cluster exhibits aggregation behavior of Pt active site in the second hydrogenolysis reaction of glycerol.

For 5Pt/WO_x/ γ -Al₂O₃ catalyst, good compatibility of Pt, WO_x, and γ -Al₂O₃ components also observed as a homogeneous pallet of 5Pt/WO_x/ γ -Al₂O₃ which illustrated in Figure 10 (c and d). However, diffusion of dispersed Pt to larger Pt cluster given in EDX images as depicted in Figure 10 (g and h) may suggest that Pt metal can be moved on the surface to aggregate during hydrogenolysis of glycerol.

Figure 10 SEM images of (a) fresh, and (b) used 5Pt/ γ -Al₂O₃ catalysts, as well as (c) fresh, and (d), used 5Pt/WO_x/ γ -Al₂O₃ catalysts corresponding to SEM-EDX images of (e) fresh, and (f) used 5Pt/ γ -Al₂O₃ catalysts, as well as (g) fresh, and (h) used 5Pt/WO_x/ γ -Al₂O₃ catalysts

4.3.3 X-ray Diffraction Analysis (XRD)

The diffraction patterns of fresh and used catalysts for hydrogenolysis of glycerol are exhibited in Figure 11. It is well known that the characteristic diffraction peaks of clean γ -Al₂O₃ supporter have been reported at 2 θ = 37.5°, 45.4° and 67.0° ^[40] whereas special characteristic diffraction peaks of pristine Pt metal have been illustrated at 2 θ = 39.9° and 46.4°^[32]. Moreover, the monoclinic WO₃ (m-WO₃) appears the unique diffraction peaks at 2 θ = 23.6° and 33.5°^[30]. However, the characteristic diffraction peaks of Pt metal and WO_x species over γ -Al₂O₃ and WO_x/ γ -Al₂O₃ surface were not clearly observed in this study because of well dispersion of the Pt and WO_x particles on Al₂O₃ support reported by Zhu *et al.* and Feng *et al.*^[30, 41].

For 5Pt/ γ -Al₂O₃ catalyst, the combined XRD diffraction peaks of Pt and γ -Al₂O₃ supporter on fresh 5Pt/ γ -Al₂O₃, which is demonstrated in Figure 11 (c), are not obviously detected via this XRD technique due to two main reasons. One is well dispersion of Pt metal on the γ -Al₂O₃ surface^[41]; another is a very low amount of Pt metal on the γ -Al₂O₃ surface that the characteristic peaks of γ -Al₂O₃ are more dominant^[39]. However, the characteristic diffraction pattern of used 5Pt/ γ -Al₂O₃ is

changed after achievement first hydrogenolysis reaction indicates the surface transformation of used 5Pt/ γ -Al₂O₃ catalyst as depicted in Figure 11 (c₁).

Focusing on the characteristic diffraction peak of Pt metal at $2\theta = 39.9^{\circ}$, the obvious shaper diffraction peak of Pt metal on used 5Pt/ γ -Al₂O₃ catalyst than that of fresh 5Pt/ γ -Al₂O₃ catalyst implies the occurrence of Pt sintering on 5Pt/ γ -Al₂O₃ catalyst during hydrogenolysis of glycerol^[32] suffering decreasing of catalytic efficiency for glycerol conversion^[42].

For 5Pt/WO_x/ γ -Al₂O₃ catalyst, the dominance diffraction pattern of γ -Al₂O₃ without emerging of other unique XRD diffraction peaks of Pt and WO_x is also suggested there are very small amount of Pt and WO_x species on the γ -Al₂O₃ surface corresponding to good dispersion of as exhibited in Figure 11 (d and d₁). Similar to 5Pt/ γ -Al₂O₃ catalyst, the appearance of shaper characteristic diffraction peak of Pt at 2 θ = 39.9° after the first hydrogenolysis of glycerol demonstrates the occurrence of Pt sintering during the hydrogenolysis process.

Figure 11 XRD diffraction patterns of (a) γ -Al₂O₃, (b) WO_x/ γ -Al₂O₃, (c and c₁) 5Pt/ γ -Al₂O₃, and (d and d₁) 5Pt/WO_x/ γ -Al₂O₃ which the subscripts demonstrate the diffraction patterns of used catalysts

The Pt crystallites size from XRD data can calculate using Scherrer's Equation as follow:

$$D = \frac{K\lambda}{\beta\cos\theta}$$

Where D is crystallites size (nm), K is Scherrer constant using 0.9, λ is X-ray wavelength (0.15406 nm), β is full width at half maximum (FWHM, radians) and θ is a position of peak (radians).

The Pt metal sizes of Pt-based catalysts calculated from XRD results show in Table 6. For 5Pt/ γ -Al₂O₃ catalyst, Pt metal sintering is detected after the hydrogenolysis of glycerol is completed. The size of Pt metal on the used catalyst is increased from 0.12 to 0.21 nm, comparing fresh catalyst. Similarly, the size of Pt metal on used 5Pt/WO_x/ γ -Al₂O₃ catalyst is larger than fresh catalyst (0.18 and 0.10 nm, respectively). These results can suggest that the sintering of Pt metal occurs on both spent 5Pt/ γ -Al₂O₃ and 5Pt/WO_x/ γ -Al₂O₃ catalysts during the first reaction of glycerol hydrogenolysis under reaction condition.

Catalyst	Pt metal size ^a (nm)
5Pt/ γ -Al ₂ O ₃ (fresh)	0.12
5Pt/γ-Al ₂ O ₃ (used)	0.21
5Pt/WO _x / γ -Al ₂ O ₃ (fresh)	0.10
5Pt/WO _x / γ -Al ₂ O ₃ (used)	0.18

				C. C. Connal	1111-	
Table	6 Size o	of Pt meta	l during	hydrogen	olvsis o	f glycerol

^a Calculated using Scherrer Equation

4.3.4 IR Spectra of Pyridine Adsorption (Py-IR)

For fresh 5Pt/ γ -Al₂O₃ catalyst, a large difference of L and B signals illustrates low selectivity of 1,3-PDO using 5Pt/ γ -Al₂O₃, as shown in Figure 9. Moreover, the diminishing of B signal in used 5Pt/ γ -Al₂O₃, as depicted in Figure 12, reveals leaching of Pt species during the first hydrogenolysis reaction loses the crucial Brønsted acid site which is indispensable for 1,3-PDO production^[30, 32, 43-44]. Hence, the selectivity of 1,3-PDO via used 5Pt/ γ -Al₂O₃ is significantly decreased, as concluded in Table 4.

For fresh 5Pt/WO_x/ γ -Al₂O₃ catalyst, the existence of WO_x on 5Pt/WO_x/ γ -Al₂O₃ catalyst enhances the signal of both Lewis and Brønsted acid sites comparing to 5Pt/ γ -Al₂O₃ which the modified L and B signals can be observed at 1450 cm⁻¹ and 1540 cm⁻¹, respectively. Although the addition of WO_x can induce the Lewis acid site that is selective for the production of unwanted 1,2-PDO^[30], an extremely increment of Brønsted acid site enlarges selectivity of 1,3-PDO. Therefore, the selectivity of 1,3-

PDO production is obviously enlarged via 5Pt/WO_x/ γ -Al₂O₃ catalyst. Moreover, leaching of WO_x during the first hydrogenolysis reaction, which is aforementioned in Table 5, slightly damages the Brønsted acid site of 5Pt/WO_x/ γ -Al₂O₃ catalyst because the remained WO_x component can keep Brønsted acidity of used 5Pt/WO_x/ γ -Al₂O₃ catalyst. As a result, the selectivity of 1,3-PDO applying by used 5Pt/WO_x/ γ -Al₂O₃ catalyst is still high as 22.8%, as provided in Table 4.

Consequently, 1,3-PDO can be produced on both 5Pt/ γ -Al₂O₃ and 5Pt/WO_x/ γ -Al₂O₃ catalysts that the existence of Pt species affects only activity of glycerol conversion while doping of WO_x species determines the selectivity of 1,3-PDO production. These results are confirmed by previous reliable investigations^[30, 45]. For reusing of catalyst to the second hydrogenolysis cycle as showed results of acid ratio in Table 7, leaching of Pt metal from fresh 5Pt/ γ -Al₂O₃ during previous hydrogenolysis process diminish the active site which is essential for the conversion of glycerol reactant while the tiny Brønsted acidity of 5Pt/ γ -Al₂O₃ is also vanished (B/L = 0.09) resulting extremely diminution of selectivity of 1,3-PDO production. In the case of used 5Pt/WO_x/ γ -Al₂O₃ (B/L = 0.22) resulting in overall selectivity of 1,3-PDO production slightly drops. Moreover, leaching of WO_x also declines steric hindrance resulting accumulation of Pt site. Therefore, the activity of glycerol conversion on used 5Pt/WO_x/ γ -Al₂O₃ is also significantly reduced.

30

Table 7 The acidity concentration of the catalysts measured by Py-IR

Catalyst	Glycerol conversion	Selectivity (%)		Acid sites (a.u./g _{cat})		B/L ratioª
	(%)	1,3-PDO	1,2-PDO	Brønsted	Lewis	
5Pt/ γ -Al ₂ O ₃ (fresh)	23.2	6.9	18.7	0.23	1.41	0.17
5Pt/ γ -Al ₂ O ₃ (used)	12.7	4.6	32.7	0.11	1.18	0.09
5Pt/WO _x / γ -Al ₂ O ₃ (fresh)	35.8	29.0	10.2	0.52	2.02	0.26
5Pt/WO _x /γ-Al ₂ O ₃ (used)	30.0	22.8	11.6	0.76	3.40	0.22

^a A concentration proportional of Brønsted and Lewis acid sites

4.3.5 Temperature-Programmed Oxidation (TPO)

The temperature of coke removal and the amount of coke formation on used catalysts in hydrogenolysis of glycerol is determined by TPO. Figure 13 shows the TPO curves of used 5Pt/ γ -Al₂O₃ and 5Pt/WO_x/ γ -Al₂O₃ catalyst. The results give three peaks of catalyst weight changing: 30-150, 150-400, and 400-600 °C, respectively. The first peak is moisture and physical absorbents discharging, the second narrow peak can be attributed to the soft coke (high H/C ratio), and the sharp peak between 400-600 °C is reported as hard coke (low H/C ratio)^[34, 46]. The peak of soft coke represents the coke formation on the metal surface of the catalyst, and the peak of hard coke indicates the coke formation on the surface of support^[47]. From the results, coke formation on used 5Pt/ γ -Al₂O₃ catalyst is occurred on both surfaces of metal and support. But used 5Pt/WO_x/ γ -Al₂O₃ catalyst has the only deposition of coke formation on the support surface.

Figure 13 TPO curves of used 5Pt/ γ -Al₂O₃ and 5Pt/WO_x/ γ -Al₂O₃ catalysts

As the TPO results, weight transformation is detected on both used 5Pt/ γ -Al₂O₃ and 5Pt/WO_x/ γ -Al₂O₃ catalysts. Higher derivative weight can be suggested that higher carbon content, which is discharged from catalyst surface at high temperature,

is formed on catalyst^[46]. Table 8 shows the amount of weight loss on used 5Pt/ γ -Al₂O₃ and 5Pt/WO_x/ γ -Al₂O₃ catalysts based on the initial weight of the sample. The amount of coke formation in terms of weight changing on 5Pt/ γ -Al₂O₃ catalyst is 3.3%, which higher than 1.7% in 5Pt/WO_x/ γ -Al₂O₃ catalysts.

Catalyst	Weight loss (%) ^a
5Pt/ γ -Al ₂ O ₃	3.3
5Pt/WO _x / γ -Al ₂ O ₃	1.7

Table 8 Amount of weight loss on used 5Pt/ γ -Al₂O₃ and 5Pt/WO₄/ γ -Al₂O₃ catalysts

^a Base on weight changing of catalyst at a temperature of soft and hard coke formation

4.3.6 Fourier-transform Infrared Spectroscopy (FTIR)

FTIR technique is used to determined functional groups on catalyst surface; especially, polymeric coke formation. To confirm types of functional groups on the catalyst surface, Figure 14 shows the FTIR spectra of used 5Pt/ γ -Al₂O₃ and 5Pt/WO_x/ γ -Al₂O₃ catalysts at wavenumber 1800-1400 cm⁻¹. At wavenumber range 1700-1600 cm⁻¹ implies C=C bond stretching^[48]. The small peak at 1630 cm⁻¹ indicates the vibration of the C=C bond in the aromatic ring represents hard coke formation^[46]. This result is good agreement with adsorption of aromatic coke on the metal surface of used 5Pt/ γ -Al₂O₃ catalyst, which is detected by the TPO technique^[49-50]. As TPO and FTIR results, this can be suggested that coke formation affects to glycerol conversion in hydrogenolysis reaction^[51] as reported in Table 4.

Figure 14 FTIR spectra of used 5Pt/ γ -Al₂O₃ and 5Pt/WOx/ γ -Al₂O₃ catalysts

4.4 Effect of WO_x Existence

Although the deactivation of a solid catalyst such as metal leaching, metal sintering, and coke formation are occurred, the introduction of WO_x can improve both catalytic performances and stability of catalysts.

For catalytic performance, the selectivity of wanted 1,3-PDO on 5Pt/WO_x/ γ -Al₂O₃ catalyst is increase beyond 1,2-PDO when WO_x is added on Pt-based catalyst^[31-32]. Although 1,3-PDO selectivity on both used catalysts is decreased in the second hydrogenolysis reaction, 1,3-PDO selectivity on used 5Pt/WO_x/ γ -Al₂O₃ catalyst is still higher than 5Pt/ γ -Al₂O₃ catalyst.

For stability of deactivated catalyst by coking formation and metal leaching, the catalytic activity of used 5Pt/WO_{*}/ γ -Al₂O₃ is slightly declined, which can be determined by a slight decrement of glycerol conversion utilizing used 5Pt/WO_{*}/ γ -Al₂O₃ catalyst for the second hydrogenolysis compared with 5Pt/ γ -Al₂O₃ catalyst.

From ICP results, these can indicate that the important role of WO_x on 5Pt/WO_x/ γ -Al₂O₃ surface can reduce the leaching of Pt metal to the liquid phase. Moreover, the introduction of WO_x on catalysts can reduced coke formation during the hydrogenolysis of glycerol to 1,3-PDO confirmed by TPO and FTIR results.

However, SEM-EDX and XRD results show aggregation of Pt metal to form a larger cluster on both spent 5Pt/ γ -Al₂O₃ and 5Pt/WO_x/ γ -Al₂O₃ catalysts.

CHAPTER V CONCLUSION

5.1 Conclusion

The deactivations of solid Pt-based catalysts are leaching, sintering, and coke formation during hydrogenolysis of glycerol in the liquid phase under mild reaction conditions: 140 °C, 5 bar of initial H₂ pressure and 6 h of reaction time. WO_x on Pt/ γ -Al₂O₃ catalyst is not only increase activity, selectivity, and stability of the catalyst, but it is also decrease Pt leaching and coke formation during the hydrogenolysis process.

5.2 Recommendations

5.2.1 Dispersion of Pt metal should be investigated by CO chemisorption to confirm that Pt metal can be moved on catalyst surface during the hydrogenolysis of glycerol.

5.2.2 Py-IR of γ -Al₂O₃ and WO_x/ γ -Al₂O₃ catalysts should be studied.

APPENDIX A CALIBRATION CURVES

Calibration curves of chemicals such as glycerol, 1,3-PDO, 1,2-PDO, 1-PrOH and 2-PrOH, are done with GC-FID using operating program as reported in Table 2. The mole ratio of chemicals and ethylene glycol as internal standard are prepared and analyzed. Calibration curves of each chemical are plotted between area ratio and mol ratio. Figure 15 – Figure 19 are presented calibration curves of glycerol, 1,3-PDO, 1,2-PDO, 1-PrOH and 2-PrOH, respectively.

Figure 15 Calibration curve of glycerol

Figure 17 Calibration curve of 1,2-propanediol

Figure 19 Calibration curve of 2-propanol

APPENDIX B

CALCULATIONS

B.1 Calculation of 5 wt.% Pt metal loading on $\gamma\text{-Al}_2\text{O}_3$ support

Data for calculation:

Pt • xH ₂ O) = 409.81 g/mole (38% Pt
basis)
= 195.084 g/mole
s of catalyst are follows:
= 5 g
= 100 g - 5 g
= 95 g
= (5/95) × 2
$= 0.1053 \text{ g}_{Pt}$
= 409.81 × (38/100)
= 155.7278 g _{Pt}
= (409.81 g _{pre} / 155.7278 g _{Pt}) x 0.1053 g _{Pt}
$= 0.277 g_{pre}$

0.277 g of Pt precursor is dissolved in DI water to obtain precursor solution for wet impregnation on $\gamma\text{-Al}_2\text{O}_3$ support.

B.2 Calculation of 10 wt.% WO_x loading on $\gamma\text{-Al}_2\text{O}_3$ support

Data for calculation:

Sample: $10WO_x/\gamma$ -Al₂O₃ Precursor: Ammonium (Meta) tungstate (AMT, (NH₄)₆H₂W₁₂O₄₀ • xH₂O) = 2956.3 g/mole (99.99%) Mw of Tungsten = 183.84 g/mole

Preparation of $10WO_x/\gamma$ -Al₂O₃ catalyst

Based on 100 g of catalyst, the compositions of catalyst are follows:

Tungsten metal	= 10 g
γ -Al ₂ O ₃ support	= 100 g - 10 g
	= 90 g
For 2 g of γ -Al ₂ O ₃ support	
Tungsten metal required	= (10/90) × 2
1 Alexandrews	= 0.222 g _W
Tungsten metal in AMT (99.99%)	= 183.84 × 12 × 0.9999
	= 2205.86 g _W
AMT required	= (2956.3 g_{pre} / 2205.86 g_W) × 0.222 g_W
จุฬาสงกรณมหา	= 0.298 g _{pre}
	UNIVERSITY

0.298 g of AMT is dissolved in DI water to obtain precursor solution for wet impregnation on γ -Al₂O₃ support.

B.3 Calculation of 5 wt.% Pt metal loading on 10WO_x/ $\gamma\text{-Al}_2\text{O}_3$ support

Data for calculation:	
Sample: 5Pt/WO _x / γ -Al $_2$ O $_3$	
Precursor: Chloroplatinic acid hydrate (H_2Cl_6	Pt•xH ₂ O) = 409.81 g/mole (38% Pt
	basis)
Mw of Platinum metal	= 195.084 g/mole
Preparation of 5Pt/WO _x / γ -Al ₂ O ₃ catalyst	I de la construction de la const
Based on 100 g of catalyst, the composition	s of catalyst are follows:
Platinum metal	= 5 g
10WO _x / γ -Al ₂ O ₃ support	= 100 g - 5 g
	= 95 g
For 2 g of 10WO _x / γ -Al ₂ O ₃ support	
Platinum metal required	= (5/95) × 2
(Incore Barrow)	= 0.1053 g _{Pt}
Platinum metal in precursor (38% Pt basis)	= 409.81 × (38/100)
	= 155.7278 g _{Pt}
Precursor (focusing on Pt metal) required	= (409.81 g _{pre} / 155.7278 g _{Pt}) x 0.1053 g _{Pt}
จัพ.เยวบระหาน.	= 0.277 g _{pre}
	UNIVERSITY

0.277 g of Pt precursor is dissolved in DI water to obtain precursor solution for wet impregnation on 10WO_x/ γ -Al₂O₃ support.

APPENDIX C

METAL LEACHING CALCULATION

Metal leaching on catalyst surface into liquid phase of sample from catalytic reaction is investigated using ICP technique. Amount of metal can determine based on the weight of impregnated metal on support.

Data for calculation:

Glycerol 0.36 g	$= 0.36 \text{ g}_{\text{Gly}} / (1.11 \text{ g}_{\text{Gly}} \text{ mL}^{-1})$	= 0.324 mL
DI water 11.64 g	= 11.64 $g_{water} / (1 g_{water} mL^{-1})$	= 11.64 mL
Sample solution	= 0.324 + 11.64	= 11.964 mL

C.1 Metal leaching of fresh 5Pt/WO_x/ γ -Al₂O₃ catalyst

Data for calculation:

Amount of Pt metal = 5 wt.%

Amount of W metal = 10 wt.%

Basis:100 g of catalyst:Pt metal 5 g, W metal 10 g, support 85 gBased on 0.6 g of catalyst in reactionW metal= $(10/100) \times 0.6$ = 0.06 gPt metal= $(5/100) \times 0.6$ = 0.03 g

Amount of W metal from ICP = 1.519 mg/L Amount of Pt metal from ICP = 0.004 mg/L

Based on: 11.964 mL of sample solution

W metal in sample solution	= (1.519 mg _W / 1000 mL _{sol}) x 11.964 mL _{sol}
	= 0.0182 mg _W
W metal leached	= (0.0182 mg _W / 60 mg _W) x 100%
	= 0.03 %

Pt metal in sample solution	= (0.004 mg _{Pt} / 1000 mL _{sol}) x 11.964 mL _{sol}
	$= 4.79 \times 10^{-5} \text{ mg}_{\text{Pt}}$
Pt metal leached	= $(4.79 \times 10^{-5} \text{ mg}_{\text{Pt}} / 30 \text{ mg}_{\text{W}}) \times 100\%$
	= 0.0002 %

C.2 Metal leaching of used 5Pt/WO_x/ γ -Al_2O_3 catalyst

Data for calculation:

W metal remaining	$= 60 - 0.0182 \text{ mg}_{W}$
	= 59.9818 mg _w
Pt metal remaining	$= 30 - 4.79 \times 10^{-5} \text{ mg}_{Pt}$
	= 29.9999 mg _{Pt}

Amount of W metal from ICP = 0.424 mg/L Amount of Pt metal from ICP = 0 mg/L

Based on: 11.964 mL of sample solutionW metal in sample solution= $(0.424 \text{ mg}_W / 1000 \text{ mL}_{sol}) \times 11.964 \text{ mL}_{sol}$ W metal leached= 0.0051 mg_W = $(0.0051 \text{ mg}_W / 59.9818 \text{ mg}_W) \times 100\%$ = 0.0085 %

C.3 Metal leaching of fresh 5Pt/ γ -Al₂O₃ catalyst

Data for calculation:

Amount of Pt metal = 5 wt.%

Basis: 100 g of catalyst: Pt metal 5 g, support 95 g

Based on 0.6 g of catalyst in reaction

Pt metal = (5/100) x 0.6 = 0.03 g

Amount of Pt metal from ICP = 0.181 mg/L

Based on: 11.964 mL of sample solution

Pt metal in sample solution	= (0.181 mg_{Pt} / 1000 mL_{sol}) x 11.964 mL_{sol}
	= 0.0022 mg _{Pt}
Pt metal leached	= (0.0022 mg _{Pt} / 30 mg _W) x 100%
	= 0.0072 %

C.4 Metal leaching of used 5Pt/ γ -Al₂O₃ catalyst

Data for calculation:

Pt metal remaining

= 29.9978 mg_{Pt}

 $= 30 - 0.0022 \text{ mg}_{Pt}$

 $= 6.58 \times 10^{-4} \text{ mg}_{\text{Pt}}$

= 0.0022 %

Amount of Pt metal from ICP = 0.055 mg/L

Based on: 11.964 mL of sample solution

Pt metal in sample solution = (0.055 mg_{Pt} / 1000 mL_{sol}) x 11.964 mL_{sol}

Pt metal leached

= (6.58 × 10⁻⁴ mg_{Pt} / 29.9978 mg_W) × 100%

จุหาลงกรณมหาวทยาลย

CHULALONGKORN UNIVERSITY

REFERENCES

[1] L. Bournay, D. Casanave, B. Delfort, G. Hillion, J. A. Chodorge, *Catalysis Today* **2005**, *106*, 190-192.

[2] A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert,
W. J. Frederick, J. P. Hallett, D. J. Leak, C. L. Liotta, J. R. Mielenz, R. Murphy, R. Templer,
T. Tschaplinski, *Science* 2006, *311*, 484.

[3] D. Sun, Y. Yamada, S. Sato, W. Ueda, *Applied Catalysis B: Environmental* **2016**, *193*, 75-92.

[4] C. A. G. Quispe, C. J. R. Coronado, J. A. Carvalho Jr, *Renewable and Sustainable Energy Reviews* **2013**, *27*, 475-493.

[5] P. André Cremonez, M. Feroldi, W. Cézar Nadaleti, E. de Rossi, A. Feiden, M. P. de Camargo, F. E. Cremonez, F. F. Klajn, *Renewable and Sustainable Energy Reviews* **2015**, *42*, 415-428.

[6] J. ten Dam, U. Hanefeld, *ChemSusChem* **2011**, *4*, 1017-1034.

[7] S. L. Stattman, O. Hospes, A. P. J. Mol, *Energy Policy* **2013**, *61*, 22-30.

[8] H. Zhang, U. Aytun Ozturk, Q. Wang, Z. Zhao, *Renewable and Sustainable Energy Reviews* **2014**, *38*, 677-685.

[9] Y. Nakagawa, K. Tomishige, Catalysis Science and Technology 2011, 1, 179-190.

[10] M. A. Dasari, M. J. Goff, G. J. Suppes, *Journal of the American Oil Chemists'* Society **2003**, 80, 189-192.

[11] R.-R. E. P. N. f. t. s. Century, **2019**.

[12] OECD, OECD, Paris, **2013**.

[13] S. García-Fernández, I. Gandarias, J. Requies, F. Soulimani, P. L. Arias, B. M. Weckhuysen, *Applied Catalysis B: Environmental* **2017**, *204*, 260-272.

[14] H. W. Tan, A. R. Abdul Aziz, M. K. Aroua, *Renewable and Sustainable Energy Reviews* **2013**, *27*, 118-127.

[15] A. Brandner, K. Lehnert, A. Bienholz, M. Lucas, P. Claus, *Topics in Catalysis* 2009, *52*, 278-287.

[16] M. R. Monteiro, C. L. Kugelmeier, R. S. Pinheiro, M. O. Batalha, A. da Silva César, *Renewable and Sustainable Energy Reviews* **2018**, *88*, 109-122.

[17] M. Schlaf, Dalton Transactions 2006, 4645-4653.

[18] J. Weitkamp, *ChemCatChem* **2012**, *4*, 292-306.

[19] A. M. Ruppert, K. Weinberg, R. Palkovits, *Angewandte Chemie International Edition* **2012**, *51*, 2564-2601.

[20] Y. Wang, J. Zhou, X. Guo, RSC Advances 2015, 5, 74611-74628.

[21] C. Montassier, D. Giraud, J. Barbier, in *Studies in Surface Science and Catalysis, Vol. 41* (Eds.: M. Guisnet, J. Barrault, C. Bouchoule, D. Duprez, C. Montassier, G. Pérot), Elsevier, **1988**, pp. 165-170.

[22] D. G. Lahr, B. H. Shanks, *Industrial & Engineering Chemistry Research* 2003, *42*, 5467-5472.

[23] D. G. Lahr, B. H. Shanks, Journal of Catalysis 2005, 232, 386-394.

[24] E. P. Maris, W. C. Ketchie, M. Murayama, R. J. Davis, *Journal of Catalysis* 2007, *251*, 281-294.

[25] M. A. Dasari, P.-P. Kiatsimkul, W. R. Sutterlin, G. J. Suppes, *Applied Catalysis A:* General **2005**, 281, 225-231.

[26] I. Furikado, T. Miyazawa, S. Koso, A. Shimao, K. Kunimori, K. Tomishige, *Green Chemistry* **2007**, *9*, 582-588.

[27] Y. Amada, Y. Shinmi, S. Koso, T. Kubota, Y. Nakagawa, K. Tomishige, *Applied Catalysis B: Environmental* **2011**, *105*, 117-127.

[28] M. Chia, Y. J. Pagán-Torres, D. Hibbitts, Q. Tan, H. N. Pham, A. K. Datye, M. Neurock, R. J. Davis, J. A. Dumesic, *Journal of the American Chemical Society* **2011**, *133*, 12675-12689.

[29] L. Liu, Y. Zhang, A. Wang, T. Zhang, *Chinese Journal of Catalysis* 2012, *33*, 1257-1261.

[30] S. Zhu, X. Gao, Y. Zhu, Y. Li, *Journal of Molecular Catalysis A: Chemical* **2015**, *398*, 391-398.

[31] S. García-Fernández, I. Gandarias, J. Requies, M. B. Güemez, S. Bennici, A. Auroux,P. L. Arias, *Journal of Catalysis* 2015, *323*, 65-75.

[32] S. García-Fernández, I. Gandarias, Y. Tejido-Núñez, J. Requies, P. L. Arias,

ChemCatChem 2017, 9, 4508-4519.

[33] N. A. K. Aramouni, J. G. Touma, B. A. Tarboush, J. Zeaiter, M. N. Ahmad, *Renewable and Sustainable Energy Reviews* **2018**, *82*, 2570-2585.

[34] C. H. Bartholomew, Applied Catalysis A: General 2001, 212, 17-60.

[35] I. Gandarias, P. L. Arias, J. Requies, M. B. Güemez, J. L. G. Fierro, *Applied Catalysis B: Environmental* **2010**, *97*, 248-256.

[36] R. Arundhathi, T. Mizugaki, T. Mitsudome, K. Jitsukawa, K. Kaneda, *ChemSusChem* **2013**, *6*, 1345-1347.

[37] E. P. PARRY, Journal of Catalysis 1963, 2, 371-379.

[38] H. Knözinger, Handbook of Heterogeneous Catalysis 2008, 1135-1163.

[39] S. S. Priya, V. P. Kumar, M. L. Kantam, S. K. Bhargava, A. Srikanth, K. V. R. Chary, Industrial & Engineering Chemistry Research **2015**, *54*, 9104-9115.

[40] M. Edake, M. Dalil, M. J. Darabi Mahboub, J.-L. Dubois, G. S. Patience, *RSC Advances* **2017**, *7*, 3853-3860.

[41] S. Feng, B. Zhao, L. Liu, J. Dong, *Industrial & Engineering Chemistry Research* 2017, *56*, 11065-11074.

[42] J. ten Dam, K. Djanashvili, F. Kapteijn, U. Hanefeld, *ChemCatChem* **2013**, *5*, 497-505.

[43] S. Feng, B. Zhao, Y. Liang, L. Liu, J. Dong, *Industrial & Engineering Chemistry Research* 2019, *58*, 2661-2671.

[44] W. Zhou, J. Luo, Y. Wang, J. Liu, Y. Zhao, S. Wang, X. Ma, *Applied Catalysis B:* Environmental **2019**, *242*, 410-421.

[45] T. Aihara, H. Kobayashi, S. Feng, H. Miura, T. Shishido, *Chemistry Letters* **2017**, *46*, 1497-1500.

[46] H. Zhang, S. Shao, R. Xiao, D. Shen, J. Zeng, *Energy & Fuels* **2014**, *28*, 52-57.

[47] C.-L. L. Octavio Novaro, and Jin-An Wang, in *Catalytic Naphtha Reforming, Revised and Expanded, Vol. 2* (Ed.: f. M. f. George J. fintos), **2004**, pp. 391-431.

[48] Merck, <u>https://www.sigmaaldrich.com/</u>, **2020**.

[49] S. M. Augustine, G. N. Alameddin, W. M. H. Sachtler, *Journal of Catalysis* **1989**, *115*, 217-232.

[50] J. N. Beltramini, T. J. Wessel, R. Datta, in *Studies in Surface Science and*

Catalysis, Vol. 68 (Eds.: C. H. Bartholomew, J. B. Butt), Elsevier, **1991**, pp. 119-126.
[51] M. Wolf, N. Raman, N. Taccardi, M. Haumann, P. Wasserscheid, *ChemCatChem* **2020**, *12*, 1085-1094.

Chulalongkorn University

VITA

NAME	Poonnapa Limsoonthakul
DATE OF BIRTH	16 April 1996
PLACE OF BIRTH	Songkhla, Thailand
INSTITUTIONS ATTENDED	Bachelor's Degrees in Chemical Engineering
	Faculty of Engineering, Prince of Songkla University
HOME ADDRESS	191 Thumnoonvithi Road, Hatyai Subdistrict, Hatyai
	District, Songkhla Province, Thailand 90110
4	

CHULALONGKORN UNIVERSITY