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NOTATION

the power set of a set H

the power set of a set H excluding the empty set

the cardinality of a set H

the set of natural numbers

the set of real numbers

the set of natural numbers including 0

the absolute value of a real number x

the set of annihilators of x in an R-hypermodule M

the set of hypermodule homomorphisms f: M — M
with f(0) =0

R-hypermodules M and M’ are isomorphic

N is a subhypermodule of an R-hypermodule M

N is a direct summand of an R-hypermodule M

N is a projection invariant subhypermodule of

an R-hypermodule M

N is an essential subhypermodule of an R-hypermodule M
N is a closed subhypermodule of an R-hypermodule M

N is a t-essential subhypermodule of an R-hypermodule M
N is a t-closed subhypermodule of an R-hypermodule M
the singular subhypermodule of an R-hypermodule M

the second singular subhypermodule of an R-hypermodule M



CHAPTER 1
INTRODUCTION

Extending modules (also known as CS-modules) are an interesting topic in module
theory which has been studied for several years. Let R be a ring with identity.
According to Tercan and Yiicel [14], an R-module M is called an extending module
if every submodule of M is essential in a direct summand of M. There are many
generalizations of extending modules which have been studied by many authors;
for examples, Smith et al. [B, 12, 13], Birkenmeier et al. [3, 4] and Asgari et al.
[, 2]. One of generalizations of extending modules is Cj;-modules which have
been investigated by Smith and Tercan [12], Birkenmeier and Tercan [4]. An R-
module M is called a Ci1-module if every submodule of M has a complement in
M which is a direct summand of M; moreover, a ring R is called a Cy;-ring if R
is a C1p-module (R is viewed as an R-module). In 2011, Asgari and Haghany [1]
provided the concept of t-extending modules which is also another generalization
of extending modules. According to Asgari and Haghany [l], an R-module M is
called a t-extending module if every t-closed submodule of M is a direct sumand
of M. In the same way as Cj;-rings, a ring R is called a t-extending ring if R is
a t-extending module. Ones can observe that there are many results concerning
extending modules, C1-modules, C';-rings and t-extending rings. However, there
are few works concerning the concepts of extending modules, C;-modules, Cf;-
rings and t-extending rings by using the structures of hypermodules and hyperrings.
In this research, we extend the notions of extending modules, C};-modules, Cf;-
rings and t-extending rings to extending hypermodules, C}-hypermodules, C';-
hyperrings and t-extending hyperrings, respectively, which is the main purpose
of this research. It is well-known that there are different notions of hyperrings

and hypermodules (see [[7, 8, 11]). In this research, we focus on hyperrings and



hypermodules investigated by Siraworakun [11] in 2012. Furthermore, we would
like to mention that although most of properties in this work are similar to those in
modules, the important point is to develop tools in hypermodules and hyperrings
to prove those properties.

In Chapter I, we introduce canonical hypergroups, hyperrings and hypermod-
ules in Section 1.1, Section 1.2 and Section 1.3, respectively. In addition, their
examples are presented in this chapter.

In Chapter II, we first give the concept of direct sums and then introduce hy-
permodule homomorphisms used in order to define projection invariant subhyper-
modules. Moreover, some results concerning direct sums, hypermodule homomor-
phisms and projection invariant subhypermodules are presented in this chapter.
Especially, isomorphism theorems for hypermodules are given in Section 2.2.

In Chapter III, the notions of essential subhypermodules, complements, closed
subhypermodules, the singular subhypermodule, the second singular subhyper-
module, t-essential subhypermodules and ¢-closed subhypermodules of an R-hyper-
module are given. These subhypermodules play important roles in order to define
extending hypermodules, C};-hypermodules and t-extending hyperrings in Chap-
ter IV. In addition, some characterizations of closed subhypermodules, the singular
subhypermodule and the second singular subhypermodule are provided.

In Chapter IV, we present characterizations of extending hypermodules, C41-
hypermodules and t-extending hyperrings in Section 4.1, Section 4.2 and Sec-
tion 4.3, respectively. Moreover, we give some results concerning C';-hypermodules
in the case that they can be decomposed as a direct sum of two subhypermodules

in Section 4.2 and also provide some properties of C;-hyperrings in Section 4.3.

1.1 Canonical Hypergroups

In this section, we present the notion of canonical hypergroups (see [6]) introduced
by Mittas in 1970 which play an important role in order to define hyperrings and

hypermodules in Section 1.2 and Section 1.3, respectively.



For a nonempty set H, let P(H ) denote the power set of H, P*(H) = P(H)\{2}
and |H| the cardinality of H.

Definition 1.1.1. [6] A hyperoperation on a nonempty set H is a function from
H x H into P*(H). A hypergroupoid is a pair (H,o) of a nonempty set H and

a hyperoperation o on H.

Let (H, o) be a hypergoupoid. For nonempty subsets X and Y of H and a € H,
let
XoY:Uxoy, Xoa =Xo{a} and aoX ={a}olX.

zeX,yeYy

A hypergroupoid (H, o) is said to be commutative if
roy = yox forall z,y € H.
A hypergroupoid (H, o) is called a semihypergroup if
rxo(yoz) = (zoy)oz forall x,y,z€ H.
A semihypergroup (H, o) is called a hypergroup if
Hox = xoH = H forallze H.
Example 1.1.2. [6] Let H be a nonempty set. Define a hyperoperation on H by
xoy=H forall z,y € H.
Then (H, o) is a hypergroup. This hypergroup is called the total hypergroup.

Example 1.1.3. [0] Let G be a group. For z,y € G, define a hyperoperation o
on GG by

roy= (x,y), the subgroup of G generated by z and y.
Then (G, o) is a hypergroup.

Example 1.1.4. [6] Let N be a normal subgroup of a group G. Define a hyper-

operation o on G by



roy=xyN forall x,y € G.
Then (G, o) is a hypergroup.

Definition 1.1.5. [6] Let (H, o) be a hypergroupoid. An element a in H is called
an identity of H if x € (xoa) () (aox) for all x € H. Moreover, an element e in

H is called a scalar identity of H if rtoe =eox = {x} for all z € H.

In general, an identity of a hypergroupoid may not be unique. For a total hy-
pergroup (H, o) with |H| > 2, it can be seen that every element in H is an identity
of H. However, a scalar identity of a hypergroupoid is unique. In fact, if e and e*

are scalar identities of a hypergroupoid (H,o), then {e} = eoe* = {e*}, so e = *

Definition 1.1.6. [6] Let (H,0) be a hypergroup endowed with at least one iden-
tity. An element 2’ € H is called an inverse of x € H if there exists an identity a

of H such that a € (xoz’) N (z/ 0 x).

For a total hypergroup (H,o) with |H| > 2 and = € H, we see that all ele-
ments in H are inverses of x. This concludes that an inverse of each element in

a hypergroup may not be unique.

Definition 1.1.7. [6] Let (H, o) be a hypergroup endowed with at least one iden-
tity. Then (H, o) is said to be reversible if for any x,y,z € H with x € yo z, there

exist inverses ¢y’ of y and 2’ of z such that y € x o2’ and z € ¢/ o x.

Next, we provide the definition of canonical hypergroups which generalize
abelian groups. The role of canonical hypergroups in hyperrings and hypermodules

is similar to abelian groups in rings and modules, respectively.

Definition 1.1.8. [6] Let (H, o) be a hypergroup. Then (H, o) is called a canonical

hypergroup if it satisfies the following properties:
(i) (H,o) is commutative;

(ii) (H,o) has the scalar identity;



(iii) each element x € H has a unique inverse, denoted by z~!; and
(iv) (H,o) is reversible.

Definition 1.1.9. [6] Let (H,o) be a canonical hypergroup. For a nonempty
subset X of H, let

Xt={z71:2€ X}

Proposition 1.1.10. [10] Let (H, o) be a canonical hypergroup. Then (=1t = x
and (xoy)t =z toy™ forallz,y € H.

Proposition 1.1.11. [11] Let (H,0) be a canonical hypergroup with the scalar
identity 0. Then for all nonempty subsets A, B and C' of H,

(i) Ao B= BoA;
(i) Ao{0} = A;
(i1i)) (AoB)oC = Ao (BoC); and

(iv) (AoB)™' = A"1o B

Next, we provide some examples of canonical hypergroups used in order to
establish some examples of hyperrings and hypermodules in Section 1.2 and Sec-

tion 1.3, respectively.

Example 1.1.12. [11] Let H be a nonempty set with |H| > 2. Choose an element

in H and denote it by 0. Define a hyperoperation o on H by, for any a,b € H,

;

{a}, ifb=0,

{v}, ifa=0,

H, ifa=0+#0,

{a,b}, ifa#0b,a+#0andb#0.

aob=

\
Then (H, o) is a canonical hypergroup with 0 as the scalar identity, and the inverse

of each element in H is itself.



Example 1.1.13. [10] Let ¢ € R be such that 0 < ¢t < 1 and M = [0,¢] or

M =[0,t). Define a hyperoperation & on M by, for any z,y € M,

{max{z,y}}, ifz#y,
0, z], if z =y.

TPy =
Then (M, @) is a canonical hypergroup with 0 as the scalar identity, and the inverse
of each element in M is itself.

Proposition 1.1.14. Let (M, ®) be the canonical hypergroup defined in Ezample
and «, f € M with o < B. Then [0,a] @ [0, 5] = [0, 5].

Proof. By Proposition |l m and (ii), we obtain that [0,8] = {0} & [0,5] C
[0,a] @ [0, 5]. To show that [0,a] @ [0,5] € [0,5], let v € [0,a] @ [0,5]. Then

there exist «; € [0,a] and 81 € [0, 3] such that v € a; @ f1. If ag = fy, then
a; @ By = [0,51], so v € [0,61] C [0, B]. Suppose that «; # [;. If a1 > (i, then
a1® 0 = {max{ay, f1}} ={a1},s07 =a; € [0,a] C |0, 5] since o < 3. Moreover,
if a1 < (B, then a1 @ f; = {max{ay, f1}} = {1} which implies that v = f; €
0, B]. This shows that [0,a] @ [0, 8] C [0, 8]. Hence, [0, o] & [0, 5] = [0, 5]. O
Example 1.1.15. [10] Let a € R be such that a > 1 and R = [a,00) U {0} or

R = (a,00) U {0}. Define a hyperoperation & on R by, for any =,y € R,

([ (). if v =0,
{z}, if y =0,
RS NY BRI AENGEED,
\ {min{z,y}}, ifx#y,z#0andy#0.

Then (R, @) is a canonical hypergroup with 0 as the scalar identity, and the inverse

rPDy=

of each element in R is itself.

Example 1.1.16. [10] Let ¢ € R be such that 0 < @ < 1 and R = [—a,a] or
R = (—a,a). Define a hyperoperation @ on R by, for any =,y € R,
{z}, if y =,
(=], =]}, ify = —=,
rPy= .
{=}, if [y| < xf,
| {v) if [y| > [z,




where |z| denotes the absolute value of a real number z. Then (R, @) is a canonical

hypergroup with 0 as the scalar identity of R, and —x is the inverse of z € R.

1.2 Hyperrings

In general, there are different concepts of hyperrings (see [7]). However, we are
mainly interested in hyperrings investigated by Siraworakun [11] in this research.
In this section, we provide the concept of hyperrings and their examples. Finally,
the concept of quotient hyperrings is introduced. From now on, for a canonical
hypergroup (H, +), let 0 and —a denote the scalar identity of H and the inverse of
a € H, respectively; moreover, for any xq,xs,...,2, € H with k£ € N, let Zlea:i
denote x1 + 2o+ - - -+ 2, and for the case k =1, ‘'z € Zlexi” represents ‘'z = x”

for all z € H.

Definition 1.2.1. [11] A hyperring is a structure (R, +,e) where + and e are

hyperoperations on R satisfying the following properties:
(i) (R,+) is a canonical hypergroup;
(ii) (R, e) is a semihypergroup;

(ili) ae(b+c) C (aob)+(aec) and (b+c)ea C (bea)+(cea) for all a,b,c € R;

and

(iv) ae (=b) =

—~

—a)eb=—(aeb) for all a,b € R.

If equalities hold in (iii), then the hyperring R is said to be strongly distributive.

A hyperring (R, +, e) is said to be commutative if c @b = b e a for all a,b € R.
For convenience, we sometimes abbreviate a hyperring (R, +,e) by a hyperring
R and a e b by ab for all a,b € R; moreover, we abbreviate A @ B by AB for all
g+ A, BCR.

Example 1.2.2. [11] Let R be an abelian group with |R| > 2. Define a hyperop-
eration + on R by a+b = {ab} for all a,b € R. Moreover, define a hyperoperation



e on R by aeb = (a,b), the subgroup of R generated by the set {a,b}, for all
a,b € R. Then (R, +,e) is a hyperring,.

Example 1.2.3. [10] Let (R, +) be the canonical hypergroup defined in Exam-
ple . Then (R, +, ®) is a strongly distributive hyperring where e is the hyper-
operation on R defined by aeb = {a-b} for all a,b € R (- is the usual multiplication
on R).

Proposition 1.2.4. Let (R,+) be the canonical hypergroup defined in Ezample
where R = NU {0} := Ny. Then (Ng,+,e) is a hyperring where o is the
hyperoperation on Ny defined by a @ b = {a - b} for all a,b € Ny (- is the usual

multiplication on Npy).

Proof. 1t is easy to see that (Ny, ®) is a semihypergroup since (Np, -) is a semigroup.
Note that —r = r for all r € Ny. This implies that a ¢ (—b) = (—a) e b= —(a e b)
for all a,b € Ny. It remains to show that a e (b+ ¢) C (a e b) + (a ® ¢) and
(b+c)ea C (bea)+ (cea) for all a,b,c € Ny. Let a,b, c € Ny. First, we show that
ae(b+c)C(aeb)+ (aoc).

Case 1: b = 0 or ¢ = 0. Without loss of generality, assume that b = 0. Then
ae(b+c)=ae{c}={a-cland (aeb)+ (aec)={0}+ (aec)={a-c}.

Case 2: b# 0 and ¢ # 0.

Subcase 2.1: b =c. Then b+ ¢ = Ny. If a = 0, then

ae(b+c)=0eNy= U(Ood):{O}:{O}+{O}:(aob)+(aoc).

deNg

Suppose that a # 0. Thena-b=a-c # 0,s0 (aeb)+ (aec) = {a-b}+{a-c} = Ny.

Therefore,

ae(b+c) = aeNj = U (aed) = U {a-d} ={a-d:d e Ny} CNy= (aeb)+(aec).

deNg deNg

Subcase 2.2: b # ¢. Then b+ ¢ = {b,c}. If a =0, thena e (b+¢) =
Oe{b,c} = {0} = (aeb)+ (aec). In the case a # 0, we get a-b,a-c # 0 and



a-b+#a-c Hence,
ae(b+c)=ae{bc}={a-bja-c}={a-b}+{a-c} =(aeb)+ (aec).

This shows that a e (b + ¢) C (a e b) + (a e ¢). Since (Ny,e) is commutative,

(b+c)ea C (bea)+ (cea). Therefore, (Ng,+,e) is a hyperring. O

In the hyperring (N, +, ®) given in Proposition , one can see that
20 (2+2)=2eN) = U (2en) = U {2-n} =2-Ny,
n&eNp neNg
but

(202)+(202)={4} + {4} =N,

which means that 2 e (24 2) £ (2e2) + (2 @ 2). Hence, the hyperring (N, +, @) is

not strongly distributive.

Proposition 1.2.5. [11] Let A, B and C be nonempty subsets of a hyperring R.
The following statements hold.

(i) (~A)B = A(—=B) = —(AB).
(ii) A(B+C) C AB + AC.
(iii) (A+ B)C C AC + BC.

Definition 1.2.6. [11] Let R be a hyperring. A nonempty subset I of R is called

a subhyperring of R if I is a hyperring under the same hyperoperations on R.

Definition 1.2.7. [11] Let I be a subhyperring of a hyperring R. We say that I is
a left (right) hyperideal of R if ra C I (ar C I) for all a € I and r € R. Moreover,
I is called a hyperideal of R if I is both a left and a right hyperideal of R.

Proposition 1.2.8. [11] Let I be a nonempty subset of a hyperring R. Then I is
a left (right) hyperideal of R if and only if a —b C I and ra C I (ar C I) for all

a,be l andr € R.

Next, we give some examples of hyperideals of a hyperring.
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Proposition 1.2.9. Let (R, +, ) be the hyperring defined in Example m where
R =[1,00) U{0}. Then [a,00) U{0} is a hyperideal of R for all o > 1.

Proof. Let a > 1. Suppose that a,b € [a, 00) U{0} and r € [1,00) U{0}. Note that
—x =z for all x € [1,00) U{0}. Then a — b =a +b.

Case 1: a = 0 or b = 0. Without loss of generality, let a = 0. Then a + b =
{b} € [a, 00) U{0}.

Case 2: a #0and b # 0. If a = b, then a + b = [a,00) U {0} C [or,00) U {0}.
Assume that a # b. Then a + b = {min{a,b}} C [o,00) U {0}. This shows that
a—0bC [a,00)U{0}.

Next, we show that rea C [a,00) U{0}. If r =0 or a =0, then rea = {ra} =
{0} C [a,00) U {0}. If r > 1 and a # 0, then ra > a, so that r e a = {ra} C
[ra,00) U{0} C [a,00)U{0} C [a,00) U{0}. Since R is commutative, rea =aer.
By Proposition , we conclude that [a, 00) U {0} is a hyperideal of R. O

Proposition 1.2.10. Let (N, +, ) be the hyperring defined in Proposition .
Then only {0} and Ny are hyperideals of Ny.

Proof. Tt is clear that 0—0 = {0} and re0 = {0} = Oer for all r € Ny. Hence, {0}
is a hyperideal of Ny by Proposition . Moreover, assume that [ is a nonzero
hyperideal of Ny. Let 0 # a € I. Thus, Ny =a+a =a —a C I C Ny. This implies
that I = Np. O]

Proposition 1.2.11. [11] Let I and J be left (right) hyperideals of a hyperring R.
Then I 4+ J and I N J are also left (right) hyperideals of R.

Corollary 1.2.12. Let I and J be hyperideals of a hyperring R. Then I 4+ J and
I'NJ are also hyperideals of R.

Next, we provide the concept of quotient hyperrings (see [L1]) established by
Siraworakun in 2012. Let P be a hyperideal of a hyperring R. Then the relation
p on R defined as follows:

apbifand onlyifa+ P=b+P foralla,be R
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is an equivalence relation. The set of equivalence classes of elements in R is denoted
by R/P, ie., R/P = {[a], : a € R} where [a], is the equivalence class of a € R.
According to Siraworakun [11], it can be shown that R/P = {a+ P : a € R} and
a € b+ P if and only if a + P = b+ P for all a,b € R; moreover, he verified that
(R/P,®,®) is a hyperring where @ and ® are hyperoperations on R/P defined
by, for all a,b € R,

(a+P)®(b+P)={z+P:zx€a+b}and (a+P)®(b+P)={y+ P :y € ab}.

In addition, P is the scalar identity of (R/P,®), and (—r) + P is the inverse of
r 4+ P € R/P. The hyperring (R/P, ®,®) is called the quotient hyperring.

1.3 Hypermodules

It is similar to hyperrings that there are several types of hypermodules (see [§]).
However, we only focus on hypermodules investigated by Siraworakun [11] in 2012.
In this section, we introduce the definition of hypermodules and their examples;
moreover, some preliminary properties involving hypermodules are provided. Fi-

nally, the concept of quotient hypermodules are presented.

Definition 1.3.1. [11] Let (R, +, ®) be a hyperring. An R-hypermodule is a struc-
ture (M, @, ¢) such that (M, ®) is a canonical hypergroup, and ¢ is a multivalued
scalar operation, i.e., a function from R x M into P*(M), such that for all a,b € R

and 7,y € M:
(i) ao(zdy) S (aox)®(aoy);
(i) (a+b)ox C (aox)® (bo);
(iii) (aeb)oz=aoc(box); and
(iv) ao(—z) = (—a)ox = —(aox).

If equalities hold in both (i) and (ii), then the R-hypermodule is said to be strongly

distributive.
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For convenience, we sometimes abbreviate an R-hypermodule (M, ®,¢) by
an R-hypermodule M, denoted by rM, and a ¢ x by ax for all a € R and x € M.
Form now on, for an R-hypermodule M, we use the symbol + for the canoni-
cal hypergroups (R,+) and (M,+) in the hyperring R and the R-hypermodule
M, respectively; however, they are not the same unless we specify. Moreover, it
is clear that a hyperring (R, +,e) can be viewed as an R-hypermodule by con-
sidering the hyperoperation e as the multivalued scalar operation. Let M be an

R-hypermodule. For @ # ACR, @ # X C M,r € Rand y € M, let

AX = U ar, Ay=A{y} and rX ={r}X.

acAzeX

Proposition 1.3.2. [11] Let M be an R-hypermodule. Then for any nonempty
subsets A and B of R and nonempty subsets X and'Y of M :

(i) AX +Y) C AX + AY;

(i) (A+ B)X C AX + BX;

(iii) (AB)X = A(BX); and

(iv) A(—X) =(—A)X = =(AX).
Definition 1.3.3. [L1] A nonempty subset N of an R-hypermodule M is called

a subhypermodule of M, denoted by N < M, if N is an R-hypermodule under the

same hyperoperation on M and the multivalued scalar operation.

Proposition 1.3.4. [L1] Let N be a nonempty subset of an R-hypermodule M.
Then N is a subhypermodule of M if and only if vt —y C N and rx C N for all
x,y € N andr € R.

For a hyperring R, if we view R as an R-hypermodule, then subhypermodules of
R and left hyperideals of R are identical; moreover, in the case that the hyperring
R is commutative, we obtain that subhypermodules of R and hyperideals of R

coincide.
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Example 1.3.5. Let (R,+,e) be the hyperring defined in Example . If
(R, +, ) is viewed as an R-hypermodule by considering e as the multivalued scalar

operation, then only R is the subhypermodule of itself.

As the previous example, only R is the subhypermodule of gR and |R| > 1,
so {0} is not a subhypermodule of gpR. This means that {0} may not be a subhy-
permodule in general. However, we focus on hypermodules which {0} must be a
subhypermodule throughout this research. Such an R-hypermodule exists as the

following proposition.

Proposition 1.3.6. Let (R, ®, ®) be the hyperring defined in Ezample where
R = [s,00) U{0} with s > 1 and let (M,+) be the canonical hypergroup defined
in Example where M = [0,t] with 0 < t < 1. Define a multivalued scalar

operation ¢ by, for any a € R and x € M,

{0}7 @fa/::O,
0, 2], ifa#0.

aorT =

Then (M, +,0) is a strongly distributive R-hypermodule and {0} is a subhypermod-
ule of M.

Proof. Let a,b € R and z,y € M. First, we show that ao (z+y) = (aozx)+ (aoy).
If a =0, thenaoxz ={0} =aoy, so

ao(@+y)= |J (002)={0} = {0} + {0} = (aoz) + (aoy).
z€x+y
Suppose that a > s.
Case 1: x # y. Without loss of generality, assume that x < y. Then

ao(z+y) = ao{max{z,y}} = ao{y} = [0,2].

a
x

Note that — < Y. By Proposition ,
a a

(aoz)+ (aoy) = [0,§]+[0,—] —[0,%).
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Case 2: x = y. Then z + y = [0, z]. Thus,

ao(z+y)=acl0,z] = U (aoz2)= U [O,E]:[O,—].

2€[0,z] z€[0,z]

By Proposition [L.1.14, (aoz)+ (aoy) =0, E] + [0, f] = [0, E]. This shows that
a a

ao(z+y)=(avzx)+ (aoy).

Next, we show that (a ®b) oz = (aox) + (box).
Case 1: a = 0 and b = 0. Hence,

(adb)ox={0} ={0} +{0} = (aox)+ (boux).
Case 2: a =0 and b > s. In this case, we obtain
(@@b)oz={box= [0,%] :{0}+[0,%] = (aox)+ (box).

Case 3: a > s and b = 0. This case is similar to Case 2.
Case 4: a > sand b > s.

Subcase 4.1: a = b. In this case, we get a ® b = [a,00) U {0}. Hence,

(a@b)ox= ({0} Ula,00) oz ={0}U( (] (dox))

d€la,00)

By Proposition ,
(aox) + (bo) = (aox) + (aow) = [0,=]+[0, 2] = [0, =],

Subcase 4.2: a # b. Without loss of generality, assume that a < b. Then

a®b={min{a,b}} = {a}. Thus, (a®b) oz = {a} ox = [0, ~]. Note that % <Z

a a

By Proposition , (aoz)+ (box) =0, E] + [0, %] = [0, E] This shows that
a a

(adb)ox=(aox)+ (box).
Next, we show that (aeb)oxz =ao(box). If a=0o0rb=0, then (aeb)ox =
{0} = ao(box). Suppose that a > s and b > s. Then ab # 0 since s > 1. Therefore,
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(aeb)ox={ab} ox = [0,1] and

ab
x z x
ao(bor)=aol0,3]= U (@o2)= | 0.5 =1[0,—].
2€[0,7] z€[0,%]
This shows that (aeb)oxz =ao (box).
Finally, we show that a ¢ (—z) = (—a) o x = —(a ¢ x). Note that —¢ = ¢

for all c € R and —z = z for all z € M. Hence, a o (—z) = aox = (—a) o x.
Moreover, —(aox) ={—z:z2€aox} ={z:2 €aox} =aox. Thisimplies that
ao(—z)=(—a)or =—(aox).

We conclude that (M, +,¢) is a strongly distributive R-hypermodule. Note
that 0 — 0 = {0}. Moreover, for any r € R, if r = 0, then 7 ©0 = {0}. Note that

0
ro0 =[0,-] = {0} in the case r # 0. Therefore, {0} is a subhypermodule of M
T

by Proposition . [

From now on, only R-hypermodules such that {0} is a subhypermodule are

considered.

Proposition 1.3.7. All subhypermodules of the R-hypermodule M = [0, ]
(0 <t < 1) defined in Proposition are {0}, 10, z] and [0, z) for some x € (0, t].

Proof. Recall that {0} is a subhypermodule of M by Proposition . Let N be
a nonzero subhypermodule of M. Then N is nonempty and bounded above. This
implies that supN exists, say . It follows that x € (0,t] because {0} # N C [0, t].

Case 1: z € N. In this case, we claim that N = [0,z]. It is obvious that
N C [0, z]. Moreover, [0,z] =z + 2 C N. Hence, N = [0, z].

Case 2: z ¢ N. Claim that N = [0,z). Clearly, N C [0, ) since x = supN
and = ¢ N. To show that [0,z) C N, let a € [0, x). Then o < z. Thus, there exists
y € N such that o < y < x. Therefore, o € [0,y] =y +y C N since N < M. This
shows that N = [0, ).

Conversely, recall that R = [s,00) U {0} (s > 1). Let z € (0,t]. To show
that [0, z] is a subhypermodule of M, let a,b € [0,2] and r € R = [s,00) U {0}.
Without loss of generality, assume that a < 0. By Proposition , we obtain
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that [0, a] + [0, b] = [0, b]. Hence,

a—b=a+(-b)=a+bC[0,a] +1[0,b] =[0,b0] C 0, z].

If » = 0, then ra = {0} C [0, z]. Moreover, ra = [0, 2] C [0,a] € [0,2] in the
r

case r > s > 1. Therefore, [0, 2] is a subhypermodule of M by Proposition .
Similarly, [0, z) is a subhypermodule of M. [

Example 1.3.8. Let (Ny, +, ®) be the hyperring defined in Proposition . Con-
sider Ny as an Ny-hypermodule whose multivalued scalar operation is the hyperop-
eration e. By Proposition , only {0} and Ny are hyperideals of Ny. Therefore,
there are only two subhypermodules of Ny, namely {0} and N.

By considering Ny as an Ny-hypermodule in the previous example, we observe
that No2 = U,.cy, 792 = U,en, {2} = {72 : n € No} is not a subhypermodule of
Ny since only {0} and Ny are subhypermodules of Ny. Hence, for an R-hypermodule
M, m € M and a left hyperideal I of R, Im = {y € am : a € I} may not be a
subhypermodule of M; however, I'm is always a subhypermodule of M provided

that M is strongly distributive as shown in the following proposition.

Proposition 1.3.9. Let M be a strongly distributive R-hypermodule, 1 a left
hyperideal of R and m € M. Then Im is a subhypermodule of M.

Proof. Note that @ # 0m C Im, so Im # @. To show that Im < M, let x,y € Im
and r € R. Then there exist a;,as € I such that x € aym and y € asm. Since M

is strongly distributive, a;m + (—as)m = (a1 + (—az))m. Therefore,
arm — agm = aym + (—(aam)) = aym + (—az)m = (a1 + (—az))m = (a1 — az)m.
Note that a; — as C I since [ is a left hyperideal of R. Hence,

r—y Cam—aym = (a1 —ax)m C Im.

Moreover, rx C r(aym) = (ra;)m C Im. We conclude that Im < M by Proposi-

tion . ]

In order to define the singular subhypermodule in Section 3.3, the following

definition is needed.
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Definition 1.3.10. Let M be an R-hypermodule and x € M. An element r in R
is called an annihilator of x if rz = {0}. The set of all annihilators of x is denoted

by ann(zx), i.e.,
ann(z) = {r € R:rz = {0}}.

Example 1.3.11. Let (R, +,e) be the hyperring defined in Example . Con-
sider R as an R-hypermodule, and let 0 # € R. Then r ez = (r,x) # {0} for all

r € R. Hence, ann(z) = @.

In genaral, for an R-hypermodule M and x € M, we see that ann(z) may be
the empty set as in the previous example; however, if ann(x) is nonempty, then it
forms a left hyperideal of R. Note that {0} is a subhypermodule. Hence, for an
R-hypermodule M and r € R, we obtain {0} C {0} from Proposition but

r{0} # @, so r{0} = {0}.

Proposition 1.3.12. Let M be an R-hypermodule and x € M. If ann(x) is

nonempty, then ann(z) is a left hyperideal of R.

Proof. Assume that ann(z) # @. Let a,b € ann(z) and r € R. Then ax = {0} = bx.
To show that a — b C ann(z), let ¢ € a — b. Thus, cx C (a —b)x C ax — br =
{0}—{0} = {0}. This implies that cx = {0}, i.e., ¢ € ann(x). Hence, a—b C ann(z).
Next, let d € ra. Then dx C (ra)xr = r(ax) = r{0} = {0}. This forces that
dx = {0}. Thus, d € ann(z). This shows that ra C ann(z). By Proposition ,
we conclude that ann(z) is a left hyperideal of R. O]

Proposition 1.3.13. [11] Let K and N be subhypermodules of an R-hypermodule M.
Then K + N and K NN are subhypermodules of M.

Recall that for subhypermodules K and N of an R-hypermodule M,

K+N:Ux—l—y:{zEM:EIxEKEIyEN,zE:L‘—l—y}.

zeK,yeN
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Therefore, for any subhypermodules Ny, Ns, ..., Nj of an R-hypermodule M with
k € N, we can define ZleNi to be Ny + Ny + -+ + Ny, ie.,

k k
> N;=Ni+No+- 4Ny ={z € M:3ny € NyIny € Ny...3In € Ny, z € Y ny}.
i=1 i=1
Corollary 1.3.14. Let Ny, Ns, ..., N be subhypermodules of an R-hypermodule
M where k € N. Then ZleNi and ﬂleNi are subhypermodules of M.

Next, we give a proposition which is similar to the modularity condition in
module theory. The proof of this proposition is straightforward, but it is quite
important to our works because we can transform between the sum of subhyper-

modules and the intersection of subhypermodules.

Proposition 1.3.15. (Modularity Condition) Let H, K and L be subhypermodules
of an R-hypermodule M such that K C H. Then HN (K + L) =K + (HNL).

Proof. Let « € HN (K + L). Then € H and there exist k € K and [ € L such
that z € k+1. Thus, | € x—k C H. This means that l € HNL,sox € K+(HNL).
Hence, HN (K + L) C K +(HNL). Next, K+ (HNL)C H+(HNL)CH
because K C H. Clearly, K+ (HNL) C K+ L. Then K+ (HNL) C HN(K+1L).
Therefore, HN (K + L) = K + (HNL). O

Next, the concept of quotient hypermodules investigated by Siraworakun [11]
is presented.

Let N be a subhypermodule of an R-hypermodule M. Siraworakun defined
M/N to be the set {x + N : © € M} and proved that x € y + N if and only
if t4+ N = y+ N for all z,y € M. Especially, x + N = N if and only if
x € N; moreover, he proved that (M /N, H, ) is an R-hypermodule where H is
the hyperoperation on M /N and [ is the multivalued scalar operation defined by

(z+N)By+N)={t+N:tcox+ylandrB(x+N)={t+ N:terz}

for all x,y € M and r € R. The scalar identity of (M /N,H) is N (we sometimes
use the symbol 0 instead), and (—z) + N is the inverse of z + N € M/N, i.e.,



19

—(x 4+ N) = (=) + N for all z € M. The R-hypermodule (M /N,H, ) is called
the quotient R-hypermodule.
Furthermore, Siraworakun provided the form of subhypermodules of quotient

hypermodules as follows.

Proposition 1.3.16. [11] Let N be a subhypermodule of an R-hypermodule M.
Then every subhypermodule of M /N s in the form K/N, where K is a subhyper-

module of M containing N.

Next, we give a result concerning the uniqueness of subhypermodules of quo-

tient hypermodules in the previous proposition.

Proposition 1.3.17. Let N be a subhypermodule of an R-hypermodule M and K
a subhypermodule of M /N. Then there exists uniquely K < M containing N such
that K = K/N.

Proof. By Proposition , there exists K < M containing N such that K =
K/N. Let K’ be a subhypermodule of M containing N such that K/N = K'/N.
Suppose that k € K. Then k+ N € K/N = K’/N. Thus, there exists k' € K’ such
that k+ N =k"+ N. Then k € ¥ + N C k' + K’ = K’ Hence, K C K'. Similarly,
K’ C K. Therefore, K = K". O

Let (M /N,H, ) be the quotient hypermodule and let N’ be a subhypermodule
of M containing N. We can define a hyperoperation & on (M /N)/(N'/N) and

a multivalued scalar operation ® by
[(z+N)B(N'/N)]W[(y+N)B(N'/N)] = {({t+N)B(N'/N) : t+N € (z+N)B(y+N)},

r® ((zx+N)B(N'/N)={(t+N)B(N'/N):t+ Nerl(x+N)}

for all z,y € M and r € R. Then ((M/N)/(N'/N),d,®) is also the quotient
R-hypermodule.

In this thesis, for any subhypermodules N and N’ of an R-hypermodule M
with N < N, we use the symbols B and [J for the quotient R-hypermodule M /N
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throughout this work; moreover, the symbols W and ® are used for the quotient
R-hypermodule (M /N)/(N'/N).
We end this section with some results regarding annihilators of an element in

quotient hypermodules.

Proposition 1.3.18. Let (M /N,H,[) be the quotient R-hypermodule and x € M,
@#ICR. Then IE (z+ N)={N} if and only if [x C N. In particular,

ann(z+N) = {reR:rd(x+ N)={N}}={re R:ra C N}.

Proof. By the definition of quotient hypermodules, we obtain that

ID(m+N):UTD(x+N):U{t—i—N:ter}

rel rel
={t+N:te|Jra}={t+N:telz}.
rel
It is straightforward that {t + N : t € Iz} = {N} if and only if o C N.
]

Proposition 1.3.19. Let K and N be subhypermodules of an R-hypermodule M
such that K NN = {0}. Then ann(k + N) = ann(k), i.e., {r € R:rk C N} =
{re R:rk={0}} forallk € K.

Proof. Let k € K. If r € ann(k), then rk = {0} € N, so r € ann(k + N). This
implies that ann(k) C ann(k + N). Next, let s € ann(k + N). Then sk C N. Since
K < M, we obtain sk C K. Thus, sk C KN N = {0}. This forces that sk = {0}.
This means that s € ann(k). Hence, ann(k + N) C ann(k). We conclude that
ann(k + N) = ann(k). O



CHAPTER II
SUBHYPERMODULES AND HOMOMORPHISMS

2.1 Direct Sums and Projection Invariant Subhypermo-

dules

In this section, we first explore the concepts of direct sums of subhypermodules and
direct summands of hypermodules which lead us to define extending hypermodules,

Ch1-hypermodules and t-extending hyperrings in Chapter IV.

Definition 2.1.1. Let Ny, Ns, ..., Ny be subhypermodules of an R-hypermodule
M where k € N with £ > 2. Then M is called the direct sum of Ny, No, ..., N,
denoted by M = @F [Ny or M = Ny @ Ny @ --- @ Ny, if M = 3F N, and
N; N (Z%}Ni) — {0} for all j € {1,2,... k}.

Definition 2.1.2. Let N be a subhypermodule of an R-hypermodule M. We say
that N is a direct summand of M, denoted by N <o M, if there exists N’ < M
such that M = N & N'.

In module theory, if a module M is the direct sum of submodules Ny, Ns, ...,
Ny, then every element in M can be written uniquely as a sum of elements in
Ny, Ng, ..., Ng. In hypermodules, the uniqueness concerning elements in direct

sums is presented as follows.

Proposition 2.1.3. Let Ny, Ns, ..., Ny be subhypermodules of an R-hypermodule
M such that M = ZleNi where k € N with k > 2. The following statements are

equivalent:

(1) N;N (Z%lNz) = {0} for each j € {1,2,...,k};
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(ii) for each x € M, there exist uniquely ny € Ny,ny € Na, ..., n, € Ny such that
k
T E Y N

(iii) for any ny € Ni,my € No,...,ng € N, if 0 € Zleni, then n; = 0 for all
ie{l,2,...,k}.

Proof. (i)=-(ii) Assume that (i) holds. Let z € M. Since M = ZleNi, there exist
ny € Ni,ny € No,...,ni € Nj such that x € Zleni. Assume that there exist
my € Ni,mo € Na,...,my € N, such that z € Elemi. Let j € {1,2,...,k}.
Since x € Zleni and x € Zlemi, we can write x € n; +y and € m; + z for
some ¥y € Z%}nl and z € Z%;mz, respectively. Thus,
nj€x—yC(mj+z)—y=mi+(z=y) mer(Z%&;Ni)-

This means that n; € m; + a for some a € Z%}NZ Then a € n; —m; € N;. By
the assumption, a € N; N (Z%}NZ) = {0}, so a = 0. Hence, n; € m; + 0 = {m;},
Le., nj =m;.

(ii)=-(iii) Assume that (ii) holds. Let n; € Ny,ny € Na,...,np € Ny be such
that 0 € Zleni. Moreover, note that 0 € 0 + - - - + 0. By the assumption, n; = 0
for all : € {1,2,...,k}.

(iii)= (i) Assume that (iii) holds. Let j € {1,2,...,k} and z € N; N (z%gvi).
Then x € N; and there exist ny € Ny,...,nj_1 € Nj_1,nj11 € Njpq,...,ng ]G Ny

such that x € Z%}nz Because N; < M, it follows that —x € N;. Hence,
0€w—aCm 4 Fnj1+(—x)+njp+ -+ € X0 N,
By the assumption, —z = 0, so = = 0. Therefore, N; N (Z?;;NZ) = {0}. O
Next, some elementary properties of direct sums are provided.

Proposition 2.1.4. Let Ky, Ko, Ny and Ny be subhypermodules of an R-hyper-
module M such that K1 < Ny and Ky < Ny. If Ny N Ny = {0}, then K1 ® Ky =
(K1 @ Ny) N (N & Ko).

Proof. Assume that Ny N Ny = {0}. Then K; N Ky = {0}, K1 N N, = {0} and
Ny N Ky = {0}. Clearly, K; & Ky C (K; & Ny) N (N & K3). It remains to show
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that (K1 @& No) N (N1 @ Ks) C K1 @ Ky, Let z € (K3 & Ny) N (N; @ Ky). Then
there exist k1 € Ki,ky € Ko,ny € Ny and ny € Ny such that z € ky 4+ ny and
z€ny+ky. Thenng € z—ky C (ng+ ko) — k1 = (ny — k1) + k. Thus, ny € nf + ko
for some n} € ny — k; C Ny. Then n} € ny — ko C Ny, so nf € Ny N Ny = {0},
i.e., nf =0. Hence, ny € 0+ ky = {ko} C Ks. Then z € K; @ K5. This shows that
(K1®No)N(N1® K3) C K@ K. Therefore, K1 & Ky = (K1 & No)N (N1 Ky). O

Proposition 2.1.5. Let K1, Ky and Ny be subhypermodules of an R-hypermodule
M such that Ky N Ky = Ko NNy = {0} and let K = K1 ® Ky and N = Ky & Nj.

Proof. Assume that Ky N N = {0}. First, we show that (K; & K) N N; = {0}.
Let € (K1 ® K3) N Ny. Then x € Ny and « € ky + ky for some k; € K,
and ky € Ks. Thus, ky € © — ks € N, s0o ky € K1NN = {0}, ie., k = 0.
Then x € 0+ ky = {k2} C Ks. Hence, z € Ky N Ny = {0}, i.e., z = 0. Thus,
(K1 ® K3) NNy = {0}. Note also that (K; @ K3) ® Ny = K& N; C K + N.

It remains to show that K + N C (K; & K,) @ N;. Let y € K+ N. Then there
exist £k € K and n € N such that y € k£ + n. Since K = K; & K,, we obtain
k € ki + ko for some k; € Ky and ky € Ko. Similarly, since N = Ky @ Ny, there

exist ki, € Ky and ny € N; such that n € k) +n;. Hence,
yek+nC(ki+k)+ (ky+n) =k +(ka+E)]+nm C(KiBK)d N
This shows that K +N C (K;® K3)® Ny. Therefore, K+ N = (K1 & Ky)®N;. O
From the previous proposition, note that Ky C Ky & N; = N, so
KNN=(Ki®K))NN=Ky+(NNK;) =K, + {0} = K,

by the Modularity Condition. This concludes that K N N may not be {0}, so the
sum K + N may not be direct.
Next, we provide the definition of homomorphisms for hypermodules. More-

over, some preliminary properties of homomorphisms are given.

Definition 2.1.6. [11] Let M and M’ be R-hypermodules. A function f : M — M’

is called a (hypermodule) homomorphism if
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flety)=flz)+ fly) and  f(rz) =rf(z)
for all z,y € M and r € R.

For a hypermodule homomorphism f : M — M’ let ker(f) denote the kernel
of f defined by

ker(f) ={z € M : f(z) = 0}.

Next, we provide a result of homomorphisms concerning subsets of hyperrings

and hypermodules.

Proposition 2.1.7. Let M and M’ be R-hypermodules, and let f : M — M’ be
a homomorphism. Then f(X +Y) = f(X)+ f(Y) and f(AX) = Af(X) for all
g+ XY CMand @ # A CR.

Proof. Let @ # X, Y C M and @ # A C R. First, we show that f(X +Y) =
f(X)+ f(Y). Let 2z € X + Y. Then there exist + € X and y € Y such that
z € x+y. Thus, f(z) € f(z +y) = f(z)+ fly) € f(X)+ f(Y). Therefore,
f(X+Y) C f(X)+ f(Y). Next, let 2/ € f(X)+ f(Y). Then there exist 2’ € X and
y' € Y such that 2’ € f(2')+ f(y/). Thus, 2" € f(a)+f(v) = f(@’+y) C f(X+Y).
This means that f(X) + f(Y) C f(X +Y). Hence, f(X +Y) = f(X)+ f(Y).
Finally, we show that f(AX) = Af(X). Let t € AX. Then there exist a € A
and x € X such that ¢t € az. Thus, f(t) € f(ax) = af(x) C Af(X). This shows
that f(AX) C Af(X). Next, let ' € Af(X). Then there exist ' € A and 2’ € X
such that t' € a/ f(2'). Thus, ¢ € o' f(2') = f(d'z") C f(AX), so Af(X) C f(AX).
Therefore, f(AX) = Af(X). N

According to [[11], Siraworakun provided some elementary properties of homo-

morphisms sending 0 to 0 which concern inverses and subhypermodules.

Proposition 2.1.8. [11] Let f : M — M’ be a hypermodule homomorphism such
that f(0) = 0. The following statements hold.

(i) f(—x)=—f(z) for all z € M.
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(i) If N < M, then f(N) < M.
(iii) If N' < M', then f~Y(N') < M.

As the previous proposition, ker(f) = f~1({0}) < M and f(M) < M’ for any
hypermodule homomorphism f : M — M’ with f(0) = 0.

Proposition 2.1.9. Let f : M — M’ be a hypermodule homomorphism such that
f(0) =0. Then f is a monomorphism if and only if ker(f) = {0}.

Proof. (=) This is obvious.

(<) Assume that ker(f) = {0}. Let x,y € M be such that f(z) = f(y). By
Proposition (i),
0€ fz) = f(y) = f(2) + (=fW)) = f(2) + [(=y) = flz + (=) = f(z —y).

Then f(z) = 0 for some z € x — y. Hence, z € ker(f) = {0}, i.e., z = 0. This
means that z € z +y =0+ y = {y}, i.e., v = y. Therefore, f is injective. ]

In hypermodules, there is no conclusion to insist that homomorphisms send 0
to 0; however, we give a necessary and sufficient condition that makes a homomor-

phism sending 0 to 0 as follows.

Proposition 2.1.10. Let f : M — M’ be a hypermodule homomorphism. Then
f(0) =0 if and only if 0 € f(M).

Proof. (=) This is obvious.

(<) Assume that 0 € f(M). Then f(x) = 0 for some z € M. Note that {z} = 0+,
so f(x) € f(0+z) = f(0) + f(x). Hence, f(0) € f(z) — f(z) =0—0= {0}, i.e,
f(0) =0. O

Proposition 2.1.11. Let N be a subhypermodule of an R-hypermodule M. Define
g: M — M/N by glm) = m + N for all m € M. Then g is a surjective

homomorphism.
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Proof. 1t is clear that g is surjective. To show that ¢ is a homomorphism, let x,y €
Mandr e R. Let z € z+y. Then g(z) = 24+ N € (x+N)B(y+N) = g(z)Bg(y).
Thus, g(z+vy) C g(x)Bg(y). Let 2’ + N € g(x)Bg(y) = (r+ N)B (y+ N). Then
there exists z” € x + y such that 2’ + N = 2" + N. Thus,

2+ N=2"+N=g(") € glz+y).
This means that g(x) B g(y) C g(z + y). Therefore, g(x + y) = g(x) B g(y). Next,
let a € re. Then a + N € rd (x + N) = r H g(z). Thus, g(rz) C rHg(x). Let
a'+N € rg(x) = r@(x+N). Then there exists a” € rz such that o'+ N = a”+N.

Thus, ¢’ +N = a"+N = g(a") € g(rz). This shows that r[g(z) C g(rz). Therefore,

g(rxz) =r[g(x). We conclude that ¢ is a homomorphism. ]

The map g in Proposition is called the canonical map. Moreover, this
map always sends 0 to 0.

The following proposition is similar to the fact in module theory. However, we
require the condition that hypermodule homomorphisms map 0 to itself.

In this research, for an R-hypermodule M, let
Endo(M) ={f: M — M : f is a hypermodule homomorphism and f(0) = 0}.

Proposition 2.1.12. Let M be an R-hypermodule and f € Endo(M). If f* = f,
then M = f(M) & ker(f).

Proof. Assume that f? = f. First, we show that M = f(M) + ker(f). It suffices
to show that M C f(M) + ker(f). Let m € M. Hence,

fm—f(m)) = f

This implies that 0 € f(m — f(m)). Then there exists k € m — f(m) such that
f(k)=0,1i.e., k € ker(f). Since k € m— f(m), we obtain m € f(m)+k. This means
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that m € f(M) +ker(f). Hence, M C f(M) +ker(f). Next, if x € f(M)Nker(f),
then f(z) = 0 and f(y) = x for some y € M, so x = f(y) = f*(y) = f(x) = 0.
This means that f(M) Nker(f) = {0}. Therefore, M = f(M) & ker(f). O

Proposition 2.1.13. Let N be a subhypermodule of an R-hypermodule M and
f € Endo(M) with f? = f. If N < ker(f), then (f(M) @® N)/N is a direct
summand of M /N.

Proof. Assume that N < ker(f). Define F : M/N — M/N by F(x + N) =
f(z)+ N forall x € M. Let x,y € M be such that x4+ N = y+ N. Then x € y+ N.
Thus, there exists k € N < ker(f) such that x € y + k. Hence,

flx) e fly+k)=fly)+ flk)=fly) +0C f(y) + N.

This means that f(z) + N = f(y) + N. Therefore, F' is well-defined. Since f is
a homomorphism, f(0) = 0 and f? = f, we obtain that F' is a homomorphism,
F(0) = 0 and F? = F, respectively. By Proposition , we obtain that M /N =
F(M/N)@ker(F). Note that f(M)NN < f(M)Nker(f) = {0}, so f(M)NN = {0}.
Claim that F(M/N) = (f(M) ® N)/N.If x € M, then F(z + N) = f(z) + N €
F(M)/N C (f(M)® N)/N, so F(M/N) C (f(M)® N)/N. Finally, let y + N
(f(M)@ N)/N where y € f(M) @ N. Then there exist m € M and n € N such
that y € f(m) + n. Thus,

y+Ne(fim)+ N)B(n+N)=(f(m)+ N)BN ={f(m)+ N}

This means that y + N = f(m) + N = F(m + N). Hence, (f(M) & N)/N C
F(M/N). Therefore, (f(M)®N)/N = F(M/N) is a direct summand of M /N. [

Proposition 2.1.14. Let Ny, Ns, ..., Ny be subhypermodules of an R-hypermodule
M such that M = @leNi where k € N with k > 2. Let j € {1,2,...,k}. Define
mi M — Nj; by

mi(x) =mn; forall e YF n.

Then 7; is a surjective homomorphism and 75 = ;.
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Proof. By Proposition (ii)7 7 is well-defined. First, we show that 7; is a homo-
morphism. Let z,y € M and r € R. Then there exist ny,n} € Ny,...,ng,n; € Ng
such that z € 2% n; and y € S5 n). Thus, m;(z) = n; and 7;(y) = n’;. Then

Tty - Zf:fni + Zf:fn; = Zf:l(ni + n;)
To show that m;(x + y) C m;(z) + 7;(y), let a € x + y. Then there exist n] €
ny+ny € Ny, ...,n{ € ng+nj, C Ny such that a € Zlen;’. Then 7;(a) = nff €
nj+n; = m;(x)+m;(y). Hence, mj(z+y) C 7;(x)+7;(y). Next, let b € m;(x)+7;(y).
Since x € Zf;lni and y € Zlen;, we can write x € n; +[ and y € n);+1’ for some

NS Z%lNz Then n; € x — [ and n); € y — I'. Thus,
i#j
bemi(x)+m(y) =n;+n; C (e -+ (y—1)=(@x+y) —(+1).
Then there exist z € v +yand 2/ € [ +1' C Z%lNZ such that b € z — 2. Since
i#£]

7 e Zf;:élNl? there exist m; € Nl,...,mj_l c Nj_l,ij S Nj+1,...,mk € N,
i#j

such that 2/ € Z%lml Note that b € 7j(x) + 7;(y) € N;. Hence,
i#]
zEz’—l—bQm1+---+mj_1+b—|—mj+1—|—--~+mk.

This means that b = 7,(2) € 7;(z +y). Therefore, 7;(x) 4+ 7,;(y) C 7;(x +y). This
shows that 7;(z +y) = m;(x) + 7;(y). To show that 7;(rz) C rm;(x), let ¢ € rz.
Note that rx C T(Zleni) a Zlerni. Then there exist t; € mqy € Ny,...,t, €
rny, € Ni such that ¢ € Y3 ¢, This implies that 7;(c) = t; € rn; = rm;(x).
Hence, 7;(rx) C rm;(z). Next, let d € rnj(z). Recall that n; € x — [ for some
I € S5 N;. Thus,

i#]

ruj(x) =rn; Cr(x—1) Cre—rl.

Then there exist p € roz and ¢ € rl such that d € p — ¢. Since Z%lNz < M,
]
we obtain g € rl C Z%gN, Then there exist ¢1 € Ni,...,qj-1 € Nj_1,qj41 €
i#]
Nji1,...,q; € Nj such that ¢ € Zé}él% Note that d € rmj(x) C N;. Therefore,
]

peEd+qCq+-+qg1+d+qgip+-+q

This means that d = m;(p) € m;(rz). Thus, rm;(z) C m;(rz). This shows that

rmj(x) = m;(rz). Therefore, m; is a homomorphism.
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Note that 7;(z;) = x; for all ; € N;. Thus, 7; is surjective. Let m € M. Then
there exist x; € Ny, ..., x, € N such that m € Zle.ri. Then 7j(m) = z;. Thus,
2

73 (m) = 7j(x;) = x; = 7;(m). We conclude that 77 = m;. O

The map 7; in Proposition is called the projection map on N;. It is clear

that projection maps always send 0 to itself.

Corollary 2.1.15. Let N be a subhypermodule of an R-hypermodule M. If N <4 M,
then there exists g € Endo(M) such that g*> = g,g(M) = N and M = N & ker(g).

Proof. This follows from Proposition and Proposition by choosing ¢
to be the projection map on N. [

Proposition 2.1.16. Let H, L and N be subhypermodules of an R-hypermodule M
such that M = H@® L and let mp, : M — L be the projection map on L. I[f HNN =
{0}, then H® N = H @ 7 (N).

Proof. Note that HNm,(N) < HNL = {0} because 71 (N) < L. Then HNw(N) =
{0}. To show that H ® N C H @ w(N), let z € H ® N. Then x € hy + ny for
some hy € H and n; € N. Since M = H & L, there exist hy € H and [ € L such
that ny € hg + [. Then 77 (ny) = [. Hence,

T e h1+n1 g h1+(h2+l) = (h1+h2)+7TL(TL1> Q H@?TLUV)
This shows that H @ N C H @ 7 (N). Next, let y € H @ 7 (N). Then there exist
h' € H and n’ € N such that y € b+ (n'). Since M = H® L, there exist b € H
and [’ € L such that n’ € h” +1'. Then w(n') =1 € n’ — h”. Thus,
yeh +m(n)Ch+n—-hn)=H—-~1)+n"CH®N.

This shows that H @ 7 (N) C H @ N. Therefore, H® N = H & 7,(N). O

Next, we give the concept of projection invariant subhypermodules whose prop-
erties concern homomorphisms investigated in Section 4.2. In addition, some basic

properties of projection invariant subhypermodules are given.
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Definition 2.1.17. Let N be a subhypermodule of an R-hypermodule M. We say
that N is a projection invariant subhypermodule of M, denoted by N <, M, if
f(N) C N for all f € Endg(M) with f2 = f.

Definition 2.1.18. Let I be a hyperideal of a hyperring R. We say that [ is a
projection invariant hyperideal of R if I is a projection invariant subhypermodule

of RR.

Proposition 2.1.19. Let K and N be projection invariant subhypermodules of an
R-hypermodule M. Then K+N and KNN are projection invariant subhypermodules
of M.

Proof. The proof is straightforward. O

Proposition 2.1.20. Let K, N and P be subhypermodules of an R-hypermodule M
such that M = K & N. If P <, M, then P = (PNK)& (PNN).

Proof. Assume that P <, M. It is clear that (PN K)N (PN N) = {0} and
(PNK)@&(PNN) C P. Hence, it suffices to show that P C (PNK)® (PNN). Let
p € P. Then p € k+n for some k € K and n € N. Recall that 7% = 7x and 73 =
7y € Endg(M). Then 7x (P) C P since P <, M. Hence, k = 1k (p) € P. Similarly,
n € P. This means that p e (PN K) @& (PN N). Thus, P C (PNK)& (PNN).
This concludes that P = (PN K) @ (PN N). O

Corollary 2.1.21. Let K, N and P be subhypermodules of an R-hypermodule M
such that M = K & N. If P <, M and PN K = {0}, then P < N.

Proof. By Proposition , we obtain that P = {0}&(PNN)=PNN < N. O

2.2 Isomorphism Theorems

In this section, we give the concept of hypermodule isomorphisms and then present

isomorphism theorems of hypermodules.
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Definition 2.2.1. Let M and M’ be R-hypermodules. We say that M is isomor-
phic to M’, denoted by M = M’ if there exists a bijective hypermodule homo-
morphism between M and M.

From the previous defintion, we observe that isomorphisms automatically send
0 to 0 by the surjectivity and Proposition .
Next, we provide isomorphism theorems of hypermodules. The proofs are

straightforward and similar to isomorphism theorems of modules.

Proposition 2.2.2. (First Isomorphism Theorem) Let f : M — M’ be a hyper-
module homomorphism such that f(0) = 0. Then M /ker(f) = f(M).

Proof. For convenience, let K = ker(f). Define f: M /K — f(M) by

flz+ K) = f(z) foral xe M.

First, we show that f is well-defined. To see this, let 2,y € M be such that
x4+ K =y+ K. Then x € y + K. Thus, there exists k£ € K such that x € y + k.
This implies that f(z) € f(y +k) = f(y) + f(k) = f(y) +0 = {f(y)}, ie,
f(z) = f(y). Hence, f is well-defined.

Next, we show that f is a homomorphism. Let 2,y € M and r € R. To show
that fl(z+ K)B(y+K)] C f(z+ K)+ fly+ K),let 2+ K € (z+ K)B (y + K).
Then there exists z; € x + y such that z + K = z; + K. Thus,

fla+ K) = f(z) € flz+y) = f(2) + fy) = flz + K) + fy + K),

but then f(z + K) = f(21 + K), so that f(z+ K) € f(z + K) + f(y + K). Hence,
fllz+K)B(y+K)] C flz+K)+ f(y+ K). Next, let 2’ € f(z+ K)+ f(y + K).
Note that f(z + K) + f(y + K) = f(z) + f(y) = f(z + y). Then there exists
21 € x 4y such that f(2}) = 2’. This implies that 2| + K € (x + K) B (y + K)
and f(z, + K) = f(#}) = 2'. This means that 2’ € f[(z + K) B (y + K)]. Thus,
fla+K)+ fly+K) C fl(z+K)B(y+ K)]. This shows that f[(z+K)B(y+K)] =
f(z+ K)+ f(y+ K). Moreover, let a+ K € r[(x+ K). Then there exists a; € rz
such that a + K = a; + K. Hence,



32

fla+K) = flar + K) = f(a1) € f(re) = rf(z) = rf(z + K).

Therefore, f(r & (z + K)) C rf(zx + K). Next, let b € rf(x + K). Note that
rf(z+K) =rf(z) = f(rz). Then there exists b; € rx such that f(b;) = b. Hence,
bi+K € rl(z+K) and f(by+K) = f(b;) = b. This means that b € f(r&(z+K)).
Thus, 7f(z+K) C f(rE(z+K)). This shows that f(rE(z+K)) = rf(z+K). We
conclude that f is a homomorphism. It is obvious that f is surjective, so f(0) = 0.
Finally, let a + K € ker(f). Then f(a) = f(a+ K) = 0. This means that a € K,
so a + K = K. This shows that ker(f) = {0}. By Proposition , f is injective.
Therefore, M /ker(f) = f(M). O

Proposition 2.2.3. (Second Isomorphism Theorem) Let K and N be subhyper-
modules of an R-hypermodule M. Then N/(NNK) = (K + N)/K.

Proof. Define f: N — (K + N)/K by f(z) =z + K for all z € N. To show that
f is a homomorphism, let z,y € N and r € R. First, we show that f(z +y) =
f(x)B f(y). Let z € v +y. Then z+ K € (x + K) B (y + K), and

fle)=z+Ke(@+K)By+K)=flz)Bf(y)

Thus, f(z +y) C f(x) B f(y). Let 2+ K € f(z) B f(y). Note that f(x)H f(y) =
(x+ K)H (y+ K). Then there exists z; € + y such that 2/ + K = z] + K. Hence,
4+ K =2+K = f(z}) € f(x+y). This means that f(z)Bf(y) C f(z+y). Hence,
flx+vy) = f(x)B f(y). Next, we show that f(rxz) =r [ f(z). Let a € rz. Note
that a+ K € rE(x+K). Thus, f(a) =a+ K € rE(x+ K) = r f(z). This shows
that f(rax) C rif(x). Next, let b+ K € r[0 f(x). Note that [0 f(z) = rH(z+ K).
Then there exists by € rx such that by + K = b+ K. Thus, b+ K = b + K =
f(br) € f(rz),sord f(z) C f(rx). Hence, f(rx) =r f(z). This shows that f is
a homomorphism. To show that f is surjective, let ¢ € K + N. Then there exists
k € K and n € N such that ¢ € k 4+ n. Thus, n € ¢+ (—k). This implies that
n+Ke(c+K)B(-k+K)=(c+K)BK ={c+K},ie,n+ K = c+ K. Thus,
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f(n) =n+ K = c+ K. Therefore, f is surjective and then f(0) = 0. Finally,

ker(f)={xeN: flz)=0}={reN:z2+ K=K}

={reN:ze€ K} =NnNnK.

By the First Isomorphism Theorem, we conclude that
N/(NNK)=(K+ N)/K.
O

Proposition 2.2.4. (Third Isomorphism Theorem) Let K and N be subhyper-
modules of an R-hypermodule M such that K < N. Then

(M/K)/(N/K)= M/N.

Proof. Define f: M/K — M/N by f(x+ K) = x+ N for all x € M. To show that
f is well-defined, let =,y € M be such that t+ K = y+ K. Thenz € y+ K Cy+ N
since K < N. Thus, x + N =y + N. Hence, f is well-defined. Next, we show that

f is a homomorphism. Let x,y € M and r € R. First, we show that

flle+ K) 8k (y + K)] = f(z + K) By f(y + K).
Let 24+ K € (z+K)Bg (y+K). Then there exists z; € +y such that z+K = 2+ K.
Hence, z; + N € (x + N) By (y + N). Moreover,
fe+EK)=flzi+K)=zn+Ne(@@+N)By(y+N)=flz+K)By fy+ K).

Hence, fl(x+ K)Bk (y+K)] C f(z+ K)By f(y+ K). To show that f(x+ K)HBy
fly+K) C fllz+K)Bg (y+ K)], let 2+ N € f(z+ K)By f(y+ K). Note that
fle+K)By fly+ K) = (r+ N) By (y + N). Then there exists 2{ € 4 y such
that 2; + N = 2/ + N. Thus, we have 21 + K € (v + K) Bk (y + K). Therefore,

4+ N=2Z+N=f(z{+K)e€ fllx+ K)Bxk (y + K)].

This shows that f(x + K)By f(y + K) C fl(x + K) Bk (y + K)]. Next, we show
that f(r O (z + K)) = rOx f(z + K). Let a + K € r Hg (z + K). Then there
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exists a; € rx such that a + K = a; + K. Thus, we get a; + N € r Oy (z + N).
Moreover,
fla+K)=flmm+K)=a1+Nery(z+N)=rly f(z+ K).

Hence, f(rHx (z+ K)) Cr8y f(x + K). Let o/ + N € r Oy f(z+ K). Note that
ry f(z+K) = rEy (x+ N). Then there exists a} € rx such that a’+ N = a} + N.
Now, we have a} + K € r g (x + K). Therefore,

ad+N=d +N=f(a) +K) € f(rOk (x + K)).

This shows that r Ly f(z 4+ K) C f(r g (z + K)). Hence, f is a homomorphism.
It is obvious that f is surjective and then f(0) = 0. In addition,

ker(f) = {t+Ke M/K: f(x+K)=N}
= {t+KeM/K:x+ N =N}
= {z+KeM/K:zeN}

= N/K.

By the First Isomorphism Theorem, we conclude that

(M/K)/(N/K)= M/N.



CHAPTER I11
SOME SPECIAL SUBHYPERMODULES

In module theory, essential submodules, complements, closed submodules, the
singular submodules and the second singular submodules are special submodules
which have been studied in many directions for several years. In 2011, Asgari and
Haghany [[l] provided the concepts of t-essential submodules and t-closed submod-
ules in order to define t-extending modules; moreover, they gave characterizations
of t-extending modules. In this research, we extend the concepts of these submod-
ules to subhypermodules consisting of essential subhypermodules, complements,
closed subhypermodules, the singular subhypermodule, the second singular subhy-
permodule, t-essential subhypermodules and t-closed subhypermodules. Moreover,
some properties of these subhypermodules are given. Especially, we present char-
acterizations of closed subhypermodules, the singular subhypermodule and the

second singular subhypermodule.

3.1 Essential Subhypermodules

We begin this chapter with the concept of essential subhypermodules.

Definition 3.1.1. A subhypermodule N of an R-hypermodule M is called an es-
sential subhypermodule of M (or essentialin M), denoted by N <. M, if L = {0}
for any L < M with NN L = {0}.

Remark 3.1.2. Let N be a subhypermodule of an R-hypermodule M. Then
N <.ss M if and only if N N L # {0} for all {0} # L < M.

Remark 3.1.3. Let M be an R-hypermodule. Then every subhypermodule of M
is always essential in itself. In particular, {0} <.,s M if and only if M = {0}.
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Example 3.1.4. Let M = [0,¢] where 0 < ¢t < 1 be the R-hypermodule defined
in Proposition . It follows from Proposition that each nonzero subhy-
permodule of M is of the form [0, x] or [0,z) for some x € (0,t]. Therefore every

nonzero subhypermodule of M is essential in M.
Next, we give some properties of essential subhypermodules.

Proposition 3.1.5. Let M and M’ be R-hypermodules. The following statements
hold.

(i) Let K < N < M. Then K <. M if and only if K <.;s N and N <.s M.

(ii) Let f : M — M' be a homomorphism such that f(0) = 0 and N' < M.
If N' <egs M, then f~Y(N') <oos M.

(iii) Let {K;}*_, and {N;}F_| be families of subhypermodules of M where k € N.
If K; <css N; fOT’ all v € {1, 2,7 %9, k}, then ﬂi-ﬂ:lKi Zess ﬂleNZ

(iv) Let Ky, Ky, Ny, Ny < M be such that K1 N Ky = {0}. If K7 <.ss N1 and
K2 Sess NQ; then Kl S¥ K2 Sess Nl > NQ-

Proof. (i) Assume that K <., M. Clearly, K <., N. If {0} # L < M, then
{0} # KNL<NNLsince K <. M. Hence, N <. M.

Conversely, assume K <., N and N <., M. Let L < M be such that KNL =
{0}. Then K N (N N L) = {0}. Now, NN L = {0} because K <., N. Since
N <.ss M, we obtain L = {0}. This shows that K <., M.

(ii) Assume that N’ <., M’. By Proposition (iii), we obtain f~H(N') < M.
Let {0} # L < M. If f(L) = {0}, then L < ker(f) < f~%(N'), so {0} # L =
f7Y(N") N L. Suppose that f(L) # {0}. Note that {0} # f(L) < M’ by Proposi-
tion (ii). Since N' < s M', we know that N'N f(L) # {0}. Then there exists
0 # [ € L such that 0 # f(I) € N’. This means that 0 # [ € f~'(N’) N L. Then
F7HN'YN L # {0}. Therefore, f~H(N') <. M.

(iii) Assume that K; <. N; for all i € {1,2,...,k}. Let {0} # L < Nk, N;.
Since K| <., N; and {0} # L < NF_ N; < Ny, we get K; N L # {0}. Similarly,
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since Ky <. No and {0} # K; N L < Ny, we also obtain (K; N Ky) N L =
K>yN (KN L) # {0}. By repeating this process k times, (N, K;) N L # {0}. This
shows that N} K; <., NE_N;.

(iv) Assume K7 <., Ny and Ky <.z No. By (iii), we get {0} = K7 N Ky <cqs
Ni N Ny. This forces that Ny N Ny = {0} from Remark . For each i € {1, 2},
let m; : Ny @ Ny — N; be the projection map on N;. By (ii),

Wfl(K1> Sess Nl@N2 and 71-271<[(2) Sess NIEBNQ-
By (iii), we get 7, '(K1) Nyt (Ky) <ess N1 @ Ny. Next, we show that
7T;1<K1):K1@N2 and WQ_I(KQ):Nl@KQ.

Let z € 7r1_1(K1). Because x € Ny @ Ny, it follows that x € ny; 4+ ny for some
ny € Ny and ng € Ny. Thus, ny; = my(x) € K;. This implies that © € K; & Ny. Let
y € K1 @ Ny. Then there exist ky € K1 < Ny and ny € N, such that y € k; + no.
Thus, 7, (y) = ky € Ky, ie., y € 7,1 (Ky). Hence, 7, 1(K,) = K; ® N,. Similarly,
7y 1 (K3) = Ny @ K. By Proposition ,

Ki® Ky, = (K, ®N)N (N @ Ky) =77 (Ky) Ny (K) <ess N1 ® No.

This completes the proof. O

In module theory, any arbitrary intersections of essential submodules of an
R-module may not be essential in that R-module. From this conclusion, we
also conclude that arbitrary intersection of essential subhypermodules of an R-
hypermodule may not be essential in that R-hypermodule in general.

Next, we provide a characterization of essential subhypermodules of an R-

hypermodule under certain conditions.

Proposition 3.1.6. Let M be a strongly distributive R-hypermodule such that
m € Rm for allm € M and N < M. Then N <., M if and only if NN Rx # {0}
for all 0 # x € M.
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Proof. Assume that N <., M and 0 # z € M. Then Rx < M by Proposition
. Now, 0 # x € Rx. By the essentiality of N in M, we conclude that NN Rx #
{0}.

Conversely, assume N N Rz # {0} for all 0 # z € M. To show that N <., M,
let {0} # L < M. Then there exists 0 # y € L. By the assumption, we obtain that
NN Ry # {0}. Since L < M, we get Ry C L. Thus, {0} # NN Ry C NN L. This
shows that N <,., M. O

In general, R-hypermodules M might not satisfy the condition that m € Rm for

1
all m € M such as the R'-hypermodule M’ in Proposition where M’ = [0, -]

2
1 1

1
and R = {0} U [2,00) because R’§ = [0, Z_l]’ 50 3 ¢ R’E; however, if we let

R"={0} U[1,00), then

m
R// = =+ —_— —
m=Jrm={0yu(lJ [0.5])=[0,m
re{0}U[1,00) r€[1,00)
for all m € M’ so the R”-hypermodule M’ satisfies the condition that m € R"m

for all m € M".

3.2 Complements and Closed Subhypermodules

In this section, we first give the concepts of complements and closed subhyper-
modules and then provide some properties of these subhypermodules involving the

essentiality of subhypermodules.

Definition 3.2.1. Let N be a subhypermodule of an R-hypermodule M. A sub-
hypermodule K of M is called a complement of N in M if it is maximal under
inclusion in the set {L < M : LN N = {0}}, i.e., K NN = {0} and K = K’ for
any K < K' < M with K'n N = {0}.

We observe that for a subhypermodule N of an R-hypermodule M, by applying
Zorn’s Lemma to the set {L < M : LNN = {0}}, it has a maximal element under

inclusion, i.e., a complement K of N in M exists. This concludes that every
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subhypermodule of an R-hypermodule always has a complement.

Moreover, let H and N be subhypermodules of an R-hypermodule M such that
HNN = {0}, there exists a complement K of N in M such that H < K (consider
the set {L < M :LNN = {0} and H < L}).

Proposition 3.2.2. Let K and N be subhypermodules of an R-hypermodule M
such that M = K & N. Then K and N are complements of each other in M.

Proof. To show that K is a complement of N in M, let K’ < M be such that
K C K'and K'NN = {0}. Let ¥ € K'. Since M = K @ N, there exist k € K
and n € N such that ¥ € k+n. Thenn e k' =k C K',son € K'NN = {0}, i.e,
n = 0. This means that £’ € k+ 0 = {k} C K. Thus, K’ C K. This shows that
K = K'. Hence, K is a complement of N in M. Similarly, N is a complement of

K in M. U

Proposition 3.2.3. Let K and N be subhypermodules of an R-hypermodule M.
If K is a complement of N in M, then N & K <., M.

Proof. Assume that K is a complement of N in M. Let L < M be such that
(NeK)NL = {0}. Claim that NN (K +L) = {0}. To see this, let z € NN(K+L).
Thenz e Nandxz € k+lforsomekec Kandl &€ L. Thuslcx—-—kEC NODK.
This means that [ € (N @ K)N L = {0}, i.e.,l=0. Thenz € k+ 0= {k} C K,
sox € NN K = {0}, i.e., x = 0. Therefore, N N (K + L) = {0}. Since K is a
complement of N in M, we get K = K+ L. Then L< K+ L =K < N& K. This
means that L = (N @ K) N L = {0}. We conclude that N & K <. M. O

In module theory, consider Zs, as a Z-module, it can be seen that (15) & (6) =
(3) <ess Z3o, but (6) is not a complement of (15) in Zsy because (6) < (2) and
(2) N (15) = {0}. Similarly, (15) is not a complement of (6) in Zsz,. This example
asserts that the converse of the above proposition does not hold in general because
hypermodules generalize modules. However, we give a sufficient condition such

that the converse of the above proposition holds.
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Proposition 3.2.4. Let K and N be subhypermodules of an R-hypermodule M.
If K <g M and N & K <.ss M, then K is a complement of N in M.

Proof. Assume that K <g M and N & K <.,, M. Then there exists K’ < M such
that M = K & K'. Let L < M be such that K C L and LN N = {0}. By the
Modularity Condition,

Ko (LNK)=LN(K®K')=LnNM=L.

We claim that L N K’ = {0}. We first show that (N @ K) N (LN K') = {0}. To
see this, let z € (N@® K)N(LNK'). Then x € L,z € K’ and x € n + k for some
n € N and k € K. Thus, n € x — k C L. This means that n € LN N = {0}, i.e.,
n=0 Thenz € 0+k ={k} C K,s0 2 € KNK = {0}, ie., = = 0. Hence,
(N& K)n (LN K') = {0}. Therefore, L N K’ = {0} since N & K <. M. This
imples that K = L. We conclude that K is a complement of N in M. [

Proposition 3.2.5. Let H, L and N be subhypermodules of an R-hypermodule M
such that H <., L. Then N is a complement of L in M if and only if N is

a complement of H in M.

Proof. Assume that N is a complement of L in M. Clearly, N N H = {0}. Let
N’ < M be such that N C N and N'NH = {0}. Then HN (LN N’) = {0}. Since
H <. L, we get LN N’ = {0}. This implies that N = N’ since N is a complement
of L in M. Hence, N is a complement of H in M.

Conversely, assume that N is a complement of H in M. Note that HN(NNL) =
{0}. Since H <. L, we have NN L = {0}. If N” < M with N C N” and
N"N L = {0}, then N" N H = {0}, which implies that N = N” since N is
a complement of H in M. Therefore, N is a complement of L in M. O

Proposition 3.2.6. Let H, K and N be subhypermodules of an R-hypermodule M
such that K < N. If H is a complement of K in M and H NN = {0}, then
K SCSS N’

Proof. Assume that H is a complement of K in M and H NN = {0}. Let L < N
be such that K N L = {0}. We observe that HN L < HN N = {0}. Claim that
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KNn(LoH)={0}. Let x € KN(L® H). Then z € K and x € | + h for some
l e Land h € H. Thus, h € v —1 C N. This means that h € H N N = {0}, i.e,,
h = 0. It follows that z € [ +0 = {{} C L, so x € KN L = {0}, i.e., x = 0. Thus,
KN (L® H) ={0}. Since H is a complement of K in M, we obtain L & H = H.
Then L < L& H = H. Thus, L = HNL = {0}. This concludes that K <.,c N. [

Next, we give the concept of closed subhypermodules which is similar to the
concept of closed submodules in module theory. Moreover, we also give an equiv-
alent condition for closed subhypermodules concerning the essentiality of subhy-

permodules.

Definition 3.2.7. A subhypermodule K of an R-hypermodule M is called a closed
subhypermodule of M (or closedin M), denoted by K <. M, if there exists K’ < M

such that K is a complement of K’ in M.

By Proposition , we immediately obtain that every direct summand of an

R-hypermodule M is a closed subhypermodule of M.

Proposition 3.2.8. Let C' be a subhypermodule of an R-hypermodule M. Then
C <g M if and only if C = N for any N < M with C' <., N.

Proof. Assume that C' <, M. Then there exists ¢’ < M such that C is a
complement of ¢’ in M. Let N < M be such that C <., N. We see that
CN((NNC) <CnC = {0}. Now, NN C" = {0} since C <., N. Because
C' is a complement of C”" in M, we conclude that C' = N.

Conversely, assume that C = N for any N < M with C <., N. Let C’ be
a complement of C' in M. To show that C is also a complement of C’ in M, let
K < M be such that C C K and K N C" = {0}. Thus, C' <.,s K by Proposition
. By the assumption, C' = K. This shows that C' is a complement of C” in M.
Hence, C' <, M. l

Corollary 3.2.9. Let C' be a subhypermodule of an R-hypermodule M. If C <4 M,
then C <, N for any C < N < M.
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Proof. This follows form Proposition . H

Proposition 3.2.10. Let K and N be subhypermodules of an R-hypermodule M
with K < N. If K <4 N and N <, M, then K <, M.

Proof. Assume that K <, N and N <, M. We show that K <, M by applying
Proposition . Let L < M be such that K <., L. We show that K = L.
Since K <, N and N <., M, there exist K’ < N and N’ < M such that K is
a complement of K’/ in N and N is a complement of N’ in M, respectively. We
divide the details of the proof into three steps as follows.
(i) First, we show that L N (K’ 4+ N') = {0}.

Claim that K N (K" + N’) = {0}. Let x € K N (K’ + N’). Then 2 € K and
€K +n for some k' € K’ and n’ € N'. Thus n’ € x — k¥’ C N. This means that
n' € NONN' ={0},i.e,n’ =0. Thenz € ¥+0={k'} C K',sox € KNK' = {0},
i.e., x = 0. This shows that K N (K’ + N’) = {0}. Hence,

KN[LN(K'+N)]<Kn(K'+N')={0}.

Since K < . L, we obtain L N (K’ + N') = {0}.
(ii) We next show that K = N N (L + N').
First, we claim that K'N(L+ N’) = {0}. Let y € K'N(L+ N’). Then y € K’ and
there exist [ € L and n’ € N’ such that y € [+n/. Then ! € y—n' C K’'+ N’. This
implies that [ € LN (K'+ N') = {0} by (i). Thus, [ =0. Theny € 0+n’ = {n'} C
Ni,soye K'NnN < NN N = {0}, ie., y=0. Hence, K'N (L + N') = {0}. It
follows that
K'N[NN(L+ N) =K n(L+N')={0}.

We observe that K < NN (L + N'). Since K is a complement of K’ in N, this
forces that K = NN (L + N').

(iii) Finally, we show that L < N.
Claim that N’ N (N + L) < L. To see this, let z € N'N (N + L). Then z € N’
and there exist n € N and [ € L such that z € n+1{. Thus, n € 2z —1 C N’ + L.
Thenn € NN(L+ N') = K < L by (ii). Hence, z € n+ 1 C L. This shows that
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N'N (N + L) < L. We observe that
KNINN(N+ L) <NNN ={0}.

Thus, NN (N + L) = {0} because K <.z L. Since N is a complement of N’ in
M, this forces that N = N + L. Therefore, L < N 4+ L = N.
Now, L < N by (iii) and recall that K <, N and K <., L. By Proposition

, K = L. This concludes that K <, M by Proposition again. O

Proposition 3.2.11. Let M be a strongly distributive R-hypermodule such that
m € Rm for allm € M, and let K and L be closed subhypermodules of M. Then
K is a complement of L in M if and only if L is a complement of K in M.

Proof. Assume that K is a complement of L in M. Then K N L = {0}. To show
that L is a complement of K in M, let L' < M be such that L < L' and KN L' =
{0}. Claim that L <. L'. To see this, assume that 0 # = € L’. We show that
LN Rz # {0}. It follows from Proposition that K @ L <., M. This gives
(K ® L) N Rz # {0} by Proposition . Let 0 # y € (K @ L) N Rz. Then
there exist k € K,l € L and » € R such that y € k+ 1 and y € rz. Thus,
key—1Crae—1C L. This implies that k € K N L' = {0}, i.e., kK = 0. Then
ye0+1={l} C L. Hence, 0#y € LN Rx. We obtain L <., L' by Proposition
, but then L <, M, so that L = L' by Proposition . Therefore, L
is a complement of K in M. The converse can be proved in the similar way as

above. O]

We know from Remark that each subhypermodule of an R-hypermodule
is always essential in itself. Moreover, we can show that for a subhypermodule of
an R-hypermodule, there exists a closed subhypermodule such that the subhyper-

module is essential in that closed subhypermodule.

Proposition 3.2.12. Let K be a subhypermodule of an R-hypermodule M. Then
there exists N < M such that K <..s N and N <, 4 M.

Proof. Let H be a complement of K in M. Then HNK = {0}. By applying Zorn’s
Lemma to the set {L < M : HNL = {0} and K < L}, there exists a complement
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N of H in M such that K < N. Then N <, M. Note that H " N = {0}. By
Proposition , we conclude that K <., N. ]

Finally, we give some properties concerning essential subhypermodules and

closed subhypermodules of quotient R-hypermodules

Proposition 3.2.13. Let K and N be subhypermodules of an R-hypermodule M
such that K < N. The following statements hold.

() If NJK <oy MJK, then N <y M,
(i7) If N <ess M and K <4 M, then N/K <., M/K.
Proof. (i) Assume that N/K <., M /K. To show that N <., M, let L < M be
such that N N L = {0}. By the Modularity Condition,
NN(L+K)=K+(NnL)=K+{0} =K,
so (L+ K)/KNN/K ={K}. Because N/K <. M/K, it follows that
(L+K)/K ={K},ie, L+ K=K.

Thus, L < L+ K = K < N. This means that L = LN N = {0}. Hence, N <., M.

(ii) Assume that N <. M and K <, M. Let L' be a subhypermodule of M
containing K such that N/K N L'/K = {K}. Then NN L' = K. Since K <., M,
there exists K/ < M such that K is a complement of K’ in M. We see that
NN(I'NnK')=KnK"={0}. Next, L' N K" = {0} because N <., M. Since K
is a complement of K’ in M, we obtain L' = K. Therefore, N/K <., M/K. [

The results regarding closed subhypermodules reverse the results of essential

subhypermodules as above.

Proposition 3.2.14. Let K and N be subhypermodules of an R-hypermodule M
such that K < N. The following statements hold.

(i) If N <4 M, then N/K <4 M/K.

(i) If N/K <gq M/K and K <4 M, then N <, M.
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Proof. (i) Assume that N <, M. Let L be a subhypermodule of M containing K
such that N/K <. L/K. Then we get N <. L by Proposition (i), but
N <., M, so N = L by Proposition . This gives N/K = L/K. By Proposition
, we conclude that N/K <, M /K.

(ii) Assume that N/K <4 M/K and K <4, M. Let L < M be such that
N <. L. Since K <4 M and K < N, by Corollary , we get K <, L.
By Proposition (ii), we obtain N/K <. L/K. Because N/K <, M /K, it
follows that N/K = L/K, so N = L. We conclude that N <, M by Proposition
5.2.8. [

3.3 The Singular Subhypermodule and The Second
Singular Subhypermodule

Throughout this section, all hyperrings are required to be commutative. In this

section, we define the singular subhypermodule and the second singular subhyper-

module which are similar to the concepts of the singular submodule and the second

singular submodule, respectively. Some properties of these subhypermodules used

in Chapter IV are given.
For an R-hypermodule M and m € M, recall that

ann(m) = {r € R:rm = {0}};

moreover, in the case that ann(m) # &, Proposition yields that ann(m)
forms a left hyperideal of R, so it is a subhypermodule of gz R.

Proposition 3.3.1. Let M be an R-hypermodule where R is commutative. Define
Z(M)={m e M :ann(m) <., rR}.
Then Z(M) is a subhypermodule of M.

Proof. Note that RO = {0}, so ann(0) = R <.. gR. This means that 0 € Z(M).
Hence, Z(M) # @. Let z,y € Z(M) and r € R. Then ann(z),ann(y) <. rR.
Thus, ann(z) Nann(y) <., grR by Proposition (iii). Let z € x — y. To show
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that z € Z(M), we claim that ann(z) Nann(y) < ann(z). Let a € ann(z) Nann(y).
Then ax = {0} = ay. Thus,

az C a(r —y) C ar —ay = {0} — {0} = {0},

so az = {0}. This means that a € ann(z). Hence, ann(z) Nann(y) < ann(z). By
Proposition (i), we obtain ann(z) <.. gR. This shows that z € Z(M). Hence,
x—y CZ(M).

Let 2/ € rz. Claim that ann(x) < ann(z’). Let b € ann(x). Then bx = {0}. By

the commutivity of R,
bz' Cb(rz) = (br)x = (rb)x = r(bx) = r{0} = {0}.

This implies that bz’ = {0}, so that b € ann(z’). Thus, ann(z) < ann(z’). Then
ann(z’) <.s rR by Proposition (i), so z/ € Z(M). This shows that rz C
Z(M). This concludes that Z(M) < M from Proposition . O

For a module M’ over a ring R’ (commutativity is not assumed), the set
{:c € M':{s e R :sx =0} is essential in R’}
can be verified that it is a submodule of M’ and it is called the singular submodule
of M'.

However, for an R-hypermodule M, the condition that R is commutative is

important in order to illustrate that
Z(M)={m e M :ann(m) <. rR}

is a subhypermodule of M in Proposition . Hence, the commutivity of hyer-

rings in this section is necessary.

Definition 3.3.2. Let R be a commutative hyperring. The subhypermodule Z (M)
of an R-hypermodule M defined in Proposition is called the singular subhy-

permodule.

Definition 3.3.3. Let M be an R-hypermodule where R is commutative. We
say that M is a singular hypermodule if Z(M) = M, and M is a nonsingular
hypermodule if Z(M) = {0}.
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From Proposition , for a subhypermodule N of an R-hypermodule M,
we know that for each K < M /N, there exists a unique subhypermodule K of M
containing N such that K /N = K. Form this conclusion, we can define the second

singular subhypermodule as below.

Definition 3.3.4. Let M be an R-hypermodule where R is commutative. The
second singular subhypermodule of M, denoted by Z5(M), is the subhypermodule
of M containing Z (M) such that

Zy(M)/Z(M) = Z(M [ Z(M)).

Definition 3.3.5. Let R be a commutative hyperring. An R-hypermodule M is
said to be Zy-torsion if Zo(M) = M.

Remark 3.3.6. Every singular hypermodule is always Zs-torsion.

Recall that for any subhypermodules N and N’ of an R-hypermodule M with
N’ < N, we use the symbols H and [ for the quotient R-hypermodule (M /N, H, )
throughout this thesis; moreover, the symbols & and ® are used for the quotient

R-hypermodule ((M/N)/(N'/N), ¥, ®).

Proposition 3.3.7. Let M be an R-hypermodule where R is commutative. The

following statements hold.
(i) Z(M)={x € M : Iz = {0} for some I <., rR}.
(ii) Zo(M) =Lz € M : Iz C Z(M) for some I <. pR}.
(1ii) Z(M) <ess Zo(M).

Proof. For convenience, let K = {x € M : Iz = {0} for some I <., rR} and
L={xe M:Ix CZ(M) for some I <. rR}.

(i) Let x € Z(M). Then ann(z) <., rR. We see that ann(z)x = {0}. This
means that € K. Hence, Z(M) C K. Next, let y € K. Then Iy = {0} for some
I <.ss rR. This implies that I < ann(y). By Proposition (i), ann(y) <ess rR,
soy € Z(M). This shows that K C Z(M). Therefore, Z(M) = K.

(ii) Let ' € Zy(M). Then
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¥+ Z(M) e Zy(M)/Z(M)=Z(M/Z(M)).

By (i), JE (2’ + Z(M)) ={Z(M)} for some J < 55 gR. Thus, Jz' C Z(M). This
means that «’ € L. Hence, Zy(M) C L. Next, let ¢’ € L. Then J'y C Z(M) for
some J' <. gR. Thus, J'O (y + Z(M)) ={Z(M)}. By (i),

y +Z(M) e Z(M|Z(M)) = Zo(M)/Z(M).

This implies that y' € Zy(M), so L C Zy(M). Therefore, Zy(M) = L.

(iii) Let N < Zy(M) with NN Z(M) = {0}. To show that N = {0}, let x € N.
By (ii), J"z C Z(M) for some J" <., gpR. Since x € N and N < M, we get
J'x C N. Then J'x C NN Z(M) = {0}, i.e., J'x = {0}. By (i), x € Z(M), so
N < Z(M). Hence, N = NNZ(M) = {0}. This shows that Z(M) <. Z2(M). O

Corollary 3.3.8. Let M be an R-hypermodule where R is commutative. Then
Z(M) = {0} if and only if Zo(M) = {0}.

Proof. This follows from Proposition (1) and (ii). O

Corollary 3.3.9. Let N be a subhypermodule of an R-hypermodule M where R is

commutative. The following statements hold.
(i) Z(N)=Z(M)NN.

(7ii) N is a singular hypermodule if and only if N < Z(M). In particular, Z (M)

is always a singular hypermodule.

(iv) N is Zy-torsion if and only if N < Zy(M). In particular, Zs(M) is always

Zy-torsion.

Proof. (i) This follows from Proposition (1)
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(ii) We obtain from Proposition (ii) that

Zo(MYNN = {zeM:IxCZ(M) for some I <. RR}NN
= {z e N:Ilx CZ(M) for some I <. pR}

(
= {xeN:Ixe CZ(M)NN for some [ <. gR} (since N < M)
(

= {x e N:Ilx CZ(N) for some I <. rR} (by(i))
—  Z,(N).
(iii) and (iv) are directly obtained from (i) and (ii), respectively. O

Proposition 3.3.10. Let M and M’ be R-hypermodules where R is commutative.
Let f: M — M’ be a homomorphism such that f(0) = 0. Then f(Z(M)) < Z(M')
and f(Z(M)) < Zy(M").

Proof. 1t suffices to show that f(Z(M)) € Z(M') and f(Zs(M)) C Zy(M'). First,
let x € Z(M). By Proposition (i), Ix = {0} for some I <.;; rR. Hence,
I(2) = f(Iz) = £({0}) = {0}.

Then f(x) € Z(M') by Proposition (1) We conclude that f(Z(M)) C Z(M').

Finally, let y € f(Z2(M)). By Proposition (ii), we get Jy C Z(M) for
some J <., rR. Therefore,

Jfy) = f(Jy) € f(Z(M)) € Z(M').

Now, f(y) € Zo(M’) by Proposition B.3.4(ii). Hence, f(Zo(M)) C Zo(M'). O

Corollary 3.3.11. Let M and M’ be R-hypermodules where R is commutative.
The following statements hold.

(i) Let f: M — M’ be a surjective homomorphism. If M is a singular hyper-

module (Zy-torsion), then M' is also a singular hypermodule (Zy-torsion).

(ii) Let g : M' — M be an injective homomorphism such that g(0) = 0. If M is

a nonsingular hypermodule, then M’ is also a nonsingular hypermodule.
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Proof. (1) Assume that Z(M) = M. By the surjectivity of f and Proposition
, we have f(0) = 0, By Proposition ,

Z(M') < M" = f(M) = f(Z(M)) < Z(M').
Hence, Z(M') = M.

(2) Assume that Z(M) = {0}. By Proposition , ker(g) = {0}. Now,
g(Z(M")) < Z(M) = {0} by Proposition . This means that Z(M') <
ker(g) = {0}. Therefore, Z(M') = {0}. O
Corollary 3.3.12. Let N be a subhypermodule of a Zy-torsion R-hypermodule M
where R is commutative. Then N and M /N are Zy-torsion R-hypermodules.

Proof. By Corollary (iv), N is Zy-torsion. Moreover, we conclude that M /N
is Zy-torsion which follows from Corollary (1) by choosing g : M — M /N to

be the canonical map. 0

Proposition 3.3.13. Let R be a commutative hyperring. Let K and N be subhy-
permodules of an R-hypermodule M such that K < N and N/K = Z(M/K). If
M /K is Zy-torsion, then M /N is a singular hypermodule.

Proof. Assume that M /K is Zy-torsion. Then Zy(M/K) = M /K. Hence,
ZI(M/K)/Z(M[K)]| = Z,(M/K)/Z(M/K) = (M/K)/Z(M/K).
This means that (M/K)/Z(M/K) is a singular hypermodule, but then
(M/K)/(N/K) = (M/K)/Z(M/K),

so (M/K)/(N/K) is asingular hypermodule. By the Third Isomorphism Theorem,
M /N is a singular hypermodule. O

Proposition 3.3.14. Let R be a commutative hyperring. Let K and N be sub-
hypermodules of an R-hypermodule M such that M = N @ K. Then Z(M) =
Z(N)® Z(K).

Proof. By Proposition , we know that Z(M) <, M. We conclude that
Z(M)=Z(N) & Z(K) by Proposition and Corollary (1) O
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Next, we give some results involving the singularity and the nonsingularity of

strongly distributive commutative hyperrings.

Proposition 3.3.15. Let I and J be hyperideals of a strongly distributive commu-
tative hyperring R such that I < J. If I <.s J, then r(J/I) is singular.

Proof. Assume that I <. J. We show that Z(J/I) = J/I. It remains to show
that J/I C Z(J/I). Note that Z(J/I) = Z(R/I) N J/I by Corollary (1) So,
it suffices to show that J/I C Z(R/I). To see this, let a + I € J/I where a € J.
Recall that

ZR/I)={r+1:ann(r+ 1) <., rR}and ann(a+ 1) ={r € R:ra C I}.

Claim that ann(a + I) <.s gR. To see this, let K be a hyperideal of R such that
ann(a + I) N K = {0}. We show that K = {0}. Since [ is a hyperideal of R, we
obtain Ia C I. This implies that I C ann(a + ). Now, Ka C K because K is a
hyperideal of R. Then, I N Ka C ann(a + 1) N K = {0}, so I N Ka = {0}. Since
a € J and J is a hyperideal of R, we have Ka C J. Moreover, Ka < .J, this follows
from Proposition . Because I <. J, Ka < J and I N Ka = {0}, it follows
that Ka = {0} C I. This means that K C ann(a + I). Therefore,

K =amn(a+ 1) N K = {0}.
This shows that ann(a + I) <.ss rR. Then a + I € Z(R/I). This concludes that

J/I C Z(R/I). O

Corollary 3.3.16. Let I,J and K be hyperideals of a strongly distributive com-
mutative hyperring R such that I < J < K. If J/I <..x K/I, then g[(K/I)/(J/I)]

is singular.

Proof. Assume that J/I <., K/I. Then J <., K by Proposition (1) By
Proposition , r(K/J) is singular. We conclude that g[(K/I)/(J/I)] is sin-
gular by the Third Isomorphism Theorem. [

Proposition 3.3.17. Let R be a strongly distributive commutative hyperring. The

following statements hold.
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(i) Zy(R) <u rR.
(1)) r(R/Z2(R)) is nonsingular.

Proof. (i) Let J be a hyperideal of R such that Zy(R) <.ss J. Then Z(R) <.z J by
Proposition (iii) and Proposition (1) Moreover, we know that r(J/Z(R))
is singular by Proposition . We show that Zy(R) = J which suffices to
show that J C Zy(R). Let a € J. Then a + Z(R) € J/Z(R) = Z(J/Z(R)). By
Proposition (i),

KO(a+Z(R))={Z(R)} for some K <. rR.

This implies that Ka C Z(R) which gives a € Z»(R) by Proposition (ii). This
shows that J C Z5(R). Hence, Z5(R) = J. We conclude that Z»(R) <, rR by
Proposition .

(ii) By Proposition , there exists a hyperideal I of R containing Z»(R)
such that 1/Z5(R) = Z(R/Zs(R)). We show that Zy(R) = I. First, we claim that
Zy(R) <ess I. To see this, let I’ < I be such that Zy(R) NI’ = {0}. To show that

= {0}, let ¢ € I". Because I' C I, it follows that

c+ Zy(R) € I/Z5(R) = Z(R/Z>(R)).
By Proposition (i),
L (c+ Z3(R)) = {Z2(R)} for some L <. rR.

This implies that Lc C Zy(R). Since I’ is a hyperideal of R and ¢ € I’; we obtain
Le C I'. Then Le C Zy(R)NI' = {0}, so Le = {0} C Z(R). Now, we get ¢ € Z»(R)
by Proposition B - (ii). Thus, ¢ € Zy(R) N I' = {0}, i.e., ¢ = 0. This means that

= {0}. Hence, Z3(R) <.ss I. By Proposition B.2.8 - and (i), we obtain Zy(R) = 1.
Therefore, r(R/Z5(R)) is nonsingular. O

Corollary 3.3.18. Let I be a hyperideal of a strongly distributive commutative
hyperring R. The following statements hold.

(i) Zo(R/T) <a r(R/I).
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(it) r[(R/I)/(Zy(R/I))] is nonsingular.
Proof. The proofs are similar to the proofs of Proposition . O]

Proposition 3.3.19. Let I and J be hyperideals of a strongly distributive commu-
tative hyperring R such that I < J. If r(J/I) and g[(R/I)/(J/I)] are Zy-torsion,
then r(R/1) is Zy-torsion.
Proof. Assume gr(J/I) and g[(R/I)/(J/I)] are Zy-torsion. Then

Zy(J /1) = J/ T and Zo[(R/1)/(J/1)] = (R/1)/(J/T).

We show that Zy(R/I) = R/I. It suffices to show that R/I C Zy(R/I). To see
this, let r + I € R/I where r € R. Then

(r+1)B(J/1) € (R/T)/(J/I) = Zo[(R/T)/(J/T)].
By Proposition B.3.7(ii),
K®[(r+1)B(J/D] C Z|(R/1)/(J/I)] for some K <. pR.
Claim that K & (r + 1) C Zy(R/I). Let a+ I € K B (r + I). Then
(a+D)B(J/I) e (KD (r+I1)B(J/I) = K®[(r+I)B(J/I)] C Z[(R/I)/(J/I)].
By Proposition B.3.7(1),
L®[(a+1)B(J/I))={J/I} forsome L <., pR.

Thus, LE (a+1) C J/I. Since g(J/I) is Zy-torsion, by Corollary (iv), we get
J/I C Zy(R/I). Then L (a+ 1) C Zy(R/I). Therefore,

L@ [(a+1)BZ(R/1)] = {Z(R/])}.
By Proposition (1) and Corollary (ii),
(a+ 1) B Z(R/T) € Z[(R/1)/(Z2(R/1))] = {Z2(R/ 1)}

This means that a + I € Zy(R/I). This shows that K & (r + I) C Zy(R/I). Tt
follows from K [ (r+ 1) C Zy(R/I) that

K®|[(r+1)B Z(R/1)] = {Z(R/1)}.
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By Proposition (1) and Corollary (ii)7
(r+1) B Zy(R/1) € Z[(R/1)/(Zo(R/1))] = {Za(R/1)}.

Thus, r + I € Zy(R/I). This shows that R/I C Zy(R/I). Hence, Z3(R/I) = R/I.
We conclude that g(R/I) is Zy-torsion. O

3.4 t-Essential Subhypermodules and ¢-Closed

Subhypermodules

Throughout this section, all hyperrings are required to be commutative. In this
section, we use the second singular subhypermodule to define t-essential subhy-
permodules, and then the concept of t-closed subhypermodules is given by us-
ing t-essential subhypermodules. In addition, we present characterizations of ¢-
essential subhypermodules and t-closed subhypermodules; however, we only focus

on strongly distributive hyperrings by considering them as hypermodules over it-

self.

Definition 3.4.1. Let R be a commutative hyperring. A subhypermodule N of
an R-hypermodule M is called a t-essential subhypermodule of M (or t-essential in

M), denoted by N <;ess M, if L < Zy(M) for any L < M with NN L < Zy(M).

According to Corollary , for an R-hypermodule M where R is commutative,
essential subhypermodules of M and t-essential subhypermodules of M coincide

when the R-hypermodule M is a nonsingular hypermodule, i.e., Z(M) = {0}.

Definition 3.4.2. A hyperideal I of a commutative hyperring R is called a t-

essential hyperideal of R if I is a t-essential subhypermodule of g R.

Remark 3.4.3. Let N be a subhypermodule of an R-hypermodule M where R is

commutative. If N is Zs-torsion, then K <;.,, N for any K < N.

Proposition 3.4.4. Let I be a hyperideal of a strongly distributive commutative

hyperring R. The following statements are equivalent:
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(i) I <iess nR;

(ii) (I + Zo(R))/Z2(R) <eas r(R/Za(R));
(iii) T+ Z3(R) <ess nR;
(iv) r(R/I) is Zy-torsion.

Proof. (i)=(ii) Assume that I <;s rR. Claim that [ + Z5(R) <.ss rR. Let J
be a complement of I in R. Then I N J = {0} < Zy(R). Since I <55 rR, we
get J < Zy(R),s0 1 & J < I+ Zy(R). Then I @ J <. rR by Proposition .
Thus, I + Z3(R) <.ss rR by Proposition (1) By Proposition (ii) and
Proposition (i), we conclude that (I + Z2(R))/Z2(R) <ess r(R/Z2(R)).

(ii)=>(iii) This follows from Proposition (1)

(iii)=-(iv) Assume that I + Z5(R) <.ss rR. Then g(R/(I + Z3(R))) is singular
by Proposition ; moreover, it is Zs-torsion by Remark . By the Third
Isomorphism Theorem, g[(R/I)/((I + Z2(R))/I)] is also Zs-torsion. Recall that
Z5(R) is Zy-torsion. By Corollary , Zy(R)/(I N Zy(R)) is also Zy-torsion.
Therefore, (I 4+ Z2(R))/I is Zy-torsion by the Second Isomorphism Theorem. Now,

r[(B/D)/((I + Z5(R))/1)] and (I + Z>(R))/1

are Zo-torsion. We conclude that gr(R/I) is Zs-torsion by Proposition .
(iv)=(i) Assume that g(R/I) is Zs-torsion. Let I’ be a hyperideal of R contain-
ing I such that I'/I = Z(R/I). Thus, r(R/I") is singular by Proposition .
To show that I <, rR, let J be a hyperideal of R such that I NJ < Zy(R). We
show that J < Z3(R). Let a € J. Then a+I' € R/I' = Z(R/I') since g(R/I') is
singular. By Proposition (i),
LE(a+1I"y={I'} for some L <. rR.

Then La C I'. Claim that La C Zy(R). Let t € La. Then t+1 € I'/I = Z(R/I).
By Proposition (i),
KO({t+1)={I} forsome K <. gR.

Hence, Kt C I. Because J is a hyperideal of R and a € J, it follows that
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Kt C K(La) = (KL)a C J.
This implies that Kt C I N J C Zy(R). Thus, K [ (t + Z2(R)) = {Z2(R)} By
Proposition (1) and Proposition (ii),
t+ Zy(R) € Z(R/Z2(R)) = {Z2(R)}.
Thus, t € Z3(R). This shows that La C Zy(R). Hence, LB (a+ Z3(R)) = {Z2(R)}.
By Proposition (1) and Proposition (ii),
a+ Zy(R) € Z(R/Zy(R)) = {Z:(R)}.

Thus, a € Z3(R). This shows that J < Z5(R). Therefore, I <;.ss rR. O

For an essential hyperideal I of a strongly distributive commutative hyper-
ring R, r(R/I) is singular from Proposition , and it is Zy-torsion from Re-
mark M which implies that [ is a t-essential hyperideal of R by Proposition
. This conculdes that every essential hyperideal of a strongly distributive
commutative hyperring R is a t-essential hyperideal of R, and they coincide when
rR is nonsingular; moreover, by Proposition and Proposition , we can
conclude that every complement of Zy(R) in R is a t-essential hyperideal of R.

Definition 3.4.5. Let R be a commutative hyperring. A subhypermodule K of
an R-hypermodule M is called a t-closed subhypermodule of M (or t-closed in M),
denoted by K <,y M, if K = K' for any K’ < M with K <;.,s K.

Definition 3.4.6. A hyperideal I of a commutative hyperring R is called a t-closed
hyperideal of R if I is a t-closed subhypermodule of pR.

For a strongly distributive commutative hyperring R, every essential hyperideal
of R is a t-essential hyperideal of R by Proposition , and from this reason,
we can conclude that every t-closed hyperideal of R is a closed hyperideal of R;

moreover, they are identical when rR is nonsingular.

Proposition 3.4.7. Let J be a hyperideal of a strongly distributive commutative

hyperring R. The following statements are equivalent:
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(i) J <ia rR;

(ii) J contains Zy(R) and J/Zs(R) <4 r(R/Z3(R));
(7ii) J contains Zy(R) and J <. rR;

(iv) r(R/J) is nonsingular.

Proof. (i)=-(ii) Assume that J <;; rR. By Proposition (iv), we know that
Zy(R) is Zy-torsion. Then J N Zy(R) and Z3(R)/(J N Zy(R)) are Zs-torsion by
Corollary . Hence, (J + Z3(R))/J is Zy-torsion by the Second Isomorphism
Theorem. In addition, by Proposition , we obtain J <. J + Z3(R), but then
J < &R, 50 J + Zs(R) = J. It follows that Zo(R) < J + Zs(R) = J.

Next, we show that J/Zy(R) <4 r(R/Z>(R)). Let J' be a hyperideal of R
containing Zy(R) such that J/Zy(R) <.ss J'/Z2(R). Note that J 4+ Zy(R) = J

since Zy(R) < J. Thus, we can view
(J + Za(R))/ Zo(R) <ess '/ Z2(R).

By Proposition , J <iess J'. Because J <;y; grR, it follows that J = J', so
J/Zy(R) = J'/ Zs(R). Therefore, J/Z2(R) <. r(R/Z>(R)) by Proposition .

(ii)=-(iii) This follows from Proposition (ii) and Proposition (1)

(iii)=(iv) Assume that J contains Z(R) and J <., rR. Let J’ be a hyperideal
of R containing J such that Z(R/J) = J'/J. We show that J' = J. Since J <, gR,
by Proposition , it suffices to show that J <. J'. Let I’ < J’ be such that
I'nJ ={0}. To show that I’ = {0},let a € I'. Thena+ J € J'/J = Z(R/J). By
Proposition (i),

KH(a+J)={J} forsome K <. rR.

Thus, Ka C J. Since I’ is a hyperideal of R and a € I’, we get Ka C I'. This
implies that Ka C I' N J = {0}, i.e., Ka = {0}. By Proposition (i), we have
a € Z(R) < Zy(R) < J. This implies that a € I' N J = {0}, i.e., a = 0. Thus,
I' = {0}. This shows that J <. J'. Then J" = J. Hence, Z(R/J) = {J}. We

conclude that r(R/J) is nonsingular.
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(iv)=-(i) Assume that gr(R/J) is nonsingular. Then Z(R/J) = {J}. Thus,
Zy(R/J) = {J} by Corollary . To show that J <,y rR, let J' be a hyperideal
of R such that J <., J'. By Proposition , we obtain J'/J is Zy-torsion.
Hence,

J')J = Zy(J')J) < Zo(R)J) = {J}.

This forces that J'/J = {J}, i.e., J' = J. Therefore, J <,y rR. O



CHAPTER IV
EXTENDING HYPERMODULES,
C1i-HYPERMODULES AND #t-EXTENDING
HYPERRINGS

In this chapter, we give the concepts of extending hypermodules, C;-hypermodules
and t-extending hypermodules which generalize extending modules, C1;-modules
and t-extending modules, respectively. The main purpose of this chapter is to
present characterizations of extending hypermodules, C};-hypermodules and t-
extending hyperrings. Moreover, decompositions of C1-hypermodules are investi-

gated.

4.1 Extending Hypermodules

Let us start with the concept of extending hypermodules which concerns direct

summands and essential subhypermodules.

Definition 4.1.1. An R-hypermodule M is called an extending hypermodule if for
each N < M, there exists D <5 M such that N <., D.

Definition 4.1.2. A hyperring R is called an extending hyperring if gR is an

extending hypermodule.

First, characterizations of extending hypermodules involving closed subhyper-
modules and essentiality of direct sums of two subhypermodules are given. In ad-
dition, we characterize strongly distributive extending hypermodules M satisfying
the condition that m € Rm for all m € M by using the lifting of homomorphisms

from some subhypermodules of M into M itself.
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Theorem 4.1.3. Let M be an R-hypermodule. The following statements are

equivalent:

(i) M is an extending hypermodule;
(ii) every closed subhypermodule of M is a direct summand of M;

(ii7) for any K, L < M with KN L = {0}, there exists a direct summand D of M
such that L < D and D & K <., M.

Proof. (i)=-(ii) Assume that M is an extending hypermodule. Let C' <, M. Then
there exists €' <q M such that C' <., C'. By Proposition , Cc="C.

(ii)=(iii) Assume (ii) holds. Let K,L < M be such that K N L = {0}. By
applying Zorn’s lemma to the set {H < M : KN H = {0} and L < H}, there
exists D < M such that D is a complement of K in M and L < D. Then D <, M.
By the assumption and Proposition , we obtain D <o M and D ® K <., M,
respectively.

(iii)=(i) Assume (iii) holds. Suppose that L < M. Let K be a complement of
L in M. Then K N L = {0}. By the assumption, there exists D <g M such that
L <Dand D® K <.s M. By Proposition ., we conclude that L <., D.
Therefore, M is an extending hypermodule. 0

We already know that every direct summand is a closed subhypermodule, but
the converse does not hold in general. However, by Theorem , we can sum-
marize that direct summands and closed subhypermodules of an R-hypermodule

are identical provided that the R-hypermodule is an extending hypermodule.

Proposition 4.1.4. Let M be a strongly distributive R-hypermodule such that
m € Rm for all m € M. Then M is an extending hypermodule if and only if
for every closed subhypermodule K of M there exists a complement L of K in M
such that every homomorphism f: K ® L — M with f(0) =0 can be extended to
a homomorphism f: M — M.

Proof. Assume that M is an extending hypermodule. Let K <., M. Then K <5 M
by Theorem , so M = K ® L for some L < M. Thus, L is a complement of K



61

in M by Proposition and the result regarding homomorphisms is clear.
Conversely, let C' <, M. By the assumption, there exists a complement D of C'
in M such that every homomorphism f : C' @& D — M with f(0) = 0 can be lifted
to a homomorphism f : M — M. We show that C <o M. Let 7¢ : C & D — M
be the projection map on C. Then 7¢ is a homomorphism with 7¢(0) = 0. Thus
there exists a homomorphism 7¢ : M — M such that 7¢(a) = me(a) for all
a € C @ D. Especially, 7¢(c) = ¢ for all ¢ € C' and 7¢(d) = 0 for all d € D. Note
that C' < (M) and D < ker(7¢). Claim that C' <. 7o (M). To see this, assume
0 # z € me(M). Then 7e(y) = z for some y € M. We observe that y ¢ ker(7¢)
since z # 0. Thus, y ¢ D. By the assumption, y € Ry < D+ Ry. This implies that
D C D+ Ry. Thus, CN (D + Ry) # {0} since D is a complement of C'in M. Let
0# 20 € CN(D+ Ry). Then there exist d € D and yy € Ry such that 2y € d+ yo.

Since yo € Ry, there exists r € R such that yo € ry. Therefore,

20 = 7c(20) € Te(d + yo) = To(d) + 7o(yo) € 0+ 7 (ry)

= 7o(ry) = rac(y) = rz.

This means that zg € Rz. Hence, 0 # 2y € CNRz. This implies that C' <., 7 (M)
by Proposition , but C' <, M, so C'= 7c(M) by Proposition . Moreover,
if m € M, then 7g(m) € C, so 74(m) = 7cg(m). This means that 72 = 7¢. By
Proposition , we can write M = 7o (M) @ker(7c). This shows that C' <g M.
Therefore, M is an extending hypermodule by Theorem . [

In modules, a submodule of an extending module may not be extending. It fol-
lows that a subhypermodule of an extending hypermodule may not be an extending
hypermodule in general. However, it can be shown that every closed subhyper-
module of an extending hypermodule is also an extending hypermodule which is

similar to the result in modules.

Proposition 4.1.5. Every closed subhypermodule of an extending hypermodule is

also an extending hypermodule.
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Proof. Let C be a closed subhypermodule of an extending hypermodule M. Let
K <, C. Then K <, M by Proposition . This implies that K <4 M by
Theorem . Then M = K & K’ for some K’ < M. Note that we can write
C=K& (K'NnC) because C' < K. This means that K <g C. By Theorem ,

we conclude that C' is an extending hypermodule. O

4.2 (Cp1-Hypermodules

According to [4, 14], Cy;-modules can be characterized in many way, and there
are several results of C'j;-modules concerning their submodules. In this section, we
characterize C}1-hypermodules. In addition, projection invariant subhypermodules

of Ci1-hypermodules are investigated.

Definition 4.2.1. An R-hypermodule M is called a Cii-hypermodule if for each
N < M, there exists a complement K of N in M such that K <4 M.

Definition 4.2.2. A hyperring R is called a Cy; -hyperring if g R is a C11-hypermodule.

Note that every subhypermodule of an R-hypermodule always has a comple-
ment which is also a closed subhypermodule. By Theorem , we can conclude
that every extending hypermodule is always a C';-hypermodule, but the converse
does not hold.

Next, we give characterizations of Cy;-hypermodules regarding closed subhy-

permodules and essentiality of direct sums of subhypermodules.

Theorem 4.2.3. Let M be an R-hypermodule. The following statements are

equivalent:
(i) M is a Cyi-hypermodule;

(ii) for every closed subhypermodule C' of M, there exists a direct summand D

of M such that D is a complement of C in M;

(iii) for every closed subhypermodule C' of M, there exists a direct summand D

of M such that D @ C <. M;
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(iv) for every subhypermodule N of M, there exists a direct summand D of M
such that D & N <.4s M.

Proof. (i)=-(ii) This follows directly from the definition of Ci;-hypermodules.

(ii)=>(iii) This is obtained from Proposition .

(iii)=(iv) Assume that (iii) holds. Let N < M. Then there exists C' < M such
that N <., C and C <4 M by Proposition . By the assumption, there
exists D <g M such that D @& C <., M. Thus, D is a complement of C' in M by
Proposition . Moreover, D is a complement of N in M by Proposition .
By Proposition , we conclude that D @& N <., M.

(iv)=-(i) This follows from Proposition . O

Next, we show that any direct sums of two C}i-hypermodules must be a ;-

hypermodule.

Proposition 4.2.4. Let K; and Ky be subhypermodules of an R-hypermodule M
such that M = K, @& K. If K1 and Ky are Ciy-hypermodules, then M is a Ci;-

hypermodule.

Proof. Assume that K; and K5 are Cii-hypermodules. Let N < M. Since K is
a C'11-hypermodule, by Theorem , there exists Dy <g K; such that Dy @& (NN
K1) <ess K. By the Modularity Condition,

Klﬂ(Dl@N) :Dl@(NmKl) Sess Kl-

Since K is a Cy-hypermodule and (D; & N) N Ky < K», by Theorem again,
there exists Dy <g Ky such that Dy @ [(D1 ® N) N K3] <55 Ko. By the Modularity

Condition,
KQm[D2@<D1®N)] :DQ@[(DI@N)mKﬂ §653K2~

Let D = Dy @ D;y. Since M = Ky @& Ky, D1 <g K; and Dy <5 K, it follows
that D <g M. In addition, Ko N (D & N) <. K. Note that K3 N (D1 & N) <
K1 N (D D N), but then K1 N (Dl D N) Sess Kl, SO K1 N (D D N) Sess Kl by

Proposition (1) Hence,
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[KiN(DEN)| @ [KoN(D®N)] <ess K1 B Ko =M
by Proposition (iv). Moreover,
[Kin(DeN)|@[KeN(DeN)] < (K1dK)N(DE&N)=MN(D®&N)=D®N.

Thus, D® N <., M by Proposition (1) By Theorem , we conclude that
M is a C'j1-hypermodule. O

According to Smith and Tercan [13], a direct summand of a C;-module may not
be a C'j;-module. This implies that a direct summand of a C'j;-hypermodule may
not be a C;-hypermodule. In this research, we show that if a C'j;-hypermodule can
be decomposed as a direct sum of two subhypermodules, then the subhypermodules
are also C}j-hypermodules when at least one of them is a projection invariant

subhypermodule. To illustrate this statement, the next proposition is needed.

Proposition 4.2.5. Every projection invariant subhypermodule of a C41-hyperm-

odule is also a Ci1-hypermodule.

Proof. Let P be a projection invariant subhypermodule of a C;-hypermodule M.
To show that P is a C;-hypermodule, let N < P. Since M is a C;-hypermodule,
there exists D <5 M such that D is a complement of N in M. Then M = D & D'
for some D' < M. Thus, P = (PN D) & (PN D) by Proposition , SO
PND <4 P. Moreover, N & D <., M by Proposition . By the Modularity

Condition,
No(PND)=PN(N@D) <. P.
By Theorem , we conclude that P is a C;-hypermodule. 0

Proposition 4.2.6. Let K; and Ky be subhypermodules of a Ch1-hypermodule M
such that M = K; © K. If K1 <, M, then both K and K, are Ci1-hypermodules.

Proof. Assume that K; <, M. By Proposition , we obtain that K; is a Cq-
hypermodule. It remains to show that K5 is a Cj;-hypermodule. To see this, let
Ny < K,. Since M is a C1-hypermodule, by Theorem , there exists D <o M
such that D @ (K7 @& Ny) <.ss M. Then M = D & D’ for some D" < M. Thus,
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K, = (KiND)® (K,ND') by Proposition . Since K1 N D = {0}, we obtain
Ky, = KynN D', so Ky < D' Thus, we can write D' = K; & (Ko N D’). Then
M=D® K, ® (KynD"). Let my : K1 & K5 — K3 be the projection map on K.
Note that K, N D = {0}. By Proposition R.1.16, K, @ D = K, @ m(D). Hence,

M=Dad K & (K;ND')=K &m(D)d (KN D).
Since my(D) <g M and my(D) < K5, we obtain my(D) <4 K,. Note that
K, ®m(D) &Ny =K ®D® Ny g5 M.
Then Ky N (K7 @ ma(D) @ Ny) <55 Kz. By the Modularity Condition,
KyN (K @ me(D)® Ny) = (ma(D) & No) @ (KN Kq) = ma(D) & Na.
Thus, m3(D) & Ny <.s K3. By Theorem , K, is a C1-hypermodule. L]

Proposition yields that projection invariant subhypermodules of a C';-
hypermodule M are also C};-hypermodules; moreover, if they are also closed sub-

hypermodules of M, then they are direct summands of M.

Proposition 4.2.7. Let C' be a subhypermodule of a Cii-hypermodule M. If
C <, M and C <4 M, then C <g M.

Proof. Since M is a Ch1-hypermodule, there exists D <4 M such that D is a com-
plement of C'in M. Then M = D & D’ for some D" < M. By Proposition ,
C® D <. M. This implies that D'N(C@® D) <.ss D'. Thus, C < D’ by Corollary

. By the Modularity Condition,
C=Ca®(DND)=D'N(C® D) <es D,
but C <., M which concludes that C = D" <4 M by Proposition . O

Proposition 4.2.8. Let M be a Cy1-hypermodule. Then for each X <, M, there
exist K1, Ko < M such that X <.s Ky and M = K; & K.

Proof. Let X <, M. Since M is a Cy;-hypermodule, there exists K; <g M such
that K4 is a complement of X in M. Then M = K; & K5 for some Ky < M. Let
m @ Ki ® Ky — K, be the projection map on K;. Then 77 = m; € Endo(M),
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m (M) = K; and ker(m;) = Kj. Claim that X < K. To see this, let 2 € X. Since
X <, M, we obtain m(z) € X. Thus, m;(z) € K;NX = {0}. This implies that z €
ker(m) = Kj. Hence, X < Ks. By Proposition , we obtain X <..s Ks. O

4.3 t-Extending Hyperrings and C{;-Hyperrings

Throughout this section, all hyperrings are required to be commutative. First,
we give the concept of t-extending hypermodules defined from ¢-closed subhyper-
modules given in Section 3.4. Unfortunately, there is a property concerning the
essentiality and the singularity (Proposition ) which cannot be proved on any
hypermodules. However, the problem can be solved on any strongly distributive
hyperrings by considering them as hypermodules over itself. Hence, we only focus
on t-extending hyperrings throughout this work. In this section, we give character-
izations of t-extending hyperrings; moreover, we are interested in C};-hyperrings.
Finally, some properties of C}1-hyperrings R involving the second singular subhy-

permodule of R are investigated.

Definition 4.3.1. Let R be a commutative hyperring. An R-hypermodule M is
called a t-extending hypermodule it every t-closed subhypermodule of M is a direct

summand of M.

Definition 4.3.2. A commutative hyperring R is called a t-extending hyperring if
rR is a t-extending hypermodule.

Theorem 4.3.3. Let R be a strongly distributive commutative hyperring. The

following statements are equivalent:
i is a t-extendin, erring;
/) R is a t-extending hyperring

(ii) there exists a hyperideal I of R such that R = Zy(R)® I and I is an extending
hyperring;

(iii) every hyperideal of R containing Zs(R) is essential in a direct summand of R;

(iv) every hyperideal of R is t-essential in a direct summand of R.
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Proof. (i)=-(ii) Assume that R is a t-extending hyperring. By Proposition (1)
and Proposition , we obtain Zs(R) <;q rR. Thus, Z3(R) <4 R since R is t-
extending. Then there exists a hyperideal I of R such that R = Zy(R) & 1.

Next, we show that I is extending. Let J <, I. We show that J <g I.
First, claim that I/J is nonsingular. By Proposition , we can write Z(R) =
Z(Z5(R))®Z(I). Note that Z(Z3(R)) = Z(R) by Proposition (1) This implies
that Z(I) = {0}, so J <y I since J <, I. Therefore, I/.J is nonsingular from
Proposition . The claim is proved. Next, we show that Zy(R) @ J <;q rR.
By proposition , it suffices to show that r[R/(Z5(R) @ J)| is nonsingular, i.e.,

ZIR/(Zo(R) ® J)] = {Za(R) @ J}.
Recall that
ZIR/(Zo(R) & J)]) = {& + (Z2(R) @ J) : ann(z + (Zo(R) ® J)) <ess rRR} and
for each = € R,
ann(z + (Zo(R) ® J)) = {2 € R: 22 C Zy(R) @ J}.

Let r + (Za(R) ® J) € Z|R/(Zy(R) & J)]. Then ann(r + (Z2(R) & J)) <ess rR.
Since R = Zy(R) @ I, there exist z € Zy(R) and a € I such that r € z4a. We show
that ann(a + J) = ann(r + (Z2(R) @ J)). Let s € ann(a + J). Then sa C J. Thus,
srCs(z+4a) C sz+ sa C Zy(R) @& J. This means that s € ann(r + (Z3(R) & J)).
Therefore, ann(a+ J) C ann(r + (Z2(R) @ J)). Let t € ann(r + (Z2(R) @ J)). Then

tr C Zy(R) @ J. Since r € z + a, we can write a € r — z. Hence,
ta Ctlr—2z)Ctr—tz C Zy(R) B J.

Since a € I and [ is a hyperideal of R, it follows that ta C I. By the Modularity

Condition,
taCIN(Zy(R)DJ)=J @ (INZyR)) = J.

This means that ¢t € ann(a + J), so ann(r + (Z2(R) ¢ J)) C ann(a + J). Thus,
ann(a + J) = ann(r + (Zo(R) ® J)) <ess R, soa+J € Z(1/J) = {J} since I/J
is nonsingular by the claim. This means that a € J, sor € z+a C Zy(R) @ J.
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Therefore, r(R/(Z2(R) @ J)) is nonsingular. Thus, Z3(R) & J <;4 rR by propo-
sition . Since rR is t-extending, Z5(R) ® J <4 R. Then there exists a hy-
perideal J" of R such that R = (Z3(R) @ J) & J'. Since J < I, we can write
I = [(Zy(R) ® J') N I] ® J. This shows that J <z I. By Proposition {l.1.3, we
conclude that [ is an extending hyperring.

(ii)=-(iii) Assume that there exists a hyperideal I of R such that I is an extend-
ing hyperring and R = Zy(R) @ I. Let J be a hyperideal of R such that Zy(R) < J.
Then J = Zy(R) @ (I N J). Since [ is extending, there exists a hyperideal I’ of R
such that I N J <., I’ and I’ <4 I. By Proposition (iv),

J=Zo(R) B (INJ) Sess Zo(R) B I,

Claim that I’ <5 R. Since I' <4 I, there exists I” < [ such that [ = I' @ I".

Hence,
R=7R)yel=(Z(R)aI")a !

This implies that Z(R) & I' <4 R.

(iii)=-(iv) Assume that (iii) holds. Let I be a hyperideal of R. Note that
I + Z5(R) contains Zs(R). By the assumption, there exists a hyperideal J of R
such that I + Z3(R) <. J and J <g R. By Proposition , we conclude that
I <tess J.

(iv)=-(i) Assume that (iv) holds. Let I be a t-closed hyperideal of R. By the
assumption, there exists a hyperideal J of R such that I <;.,; J and J <g R. Since
I <iq rR, we get [ = J. Hence, I <5 R. We conclude that R is a t-extending

hyperring. [

Proposition 4.3.4. Let I be a projection invariant hyperideal of a commutative

Ci1-hyperring R with Z[gr(R/I)] = {I}. Then r(R/I) is also a Cy1-hypermodule.

Proof. Let J < R/I. Then there exists a hyperideal J of R containing I such
that J = J/I. Since R is a Cy;-hyperring, there exists J' <g R such that J’ is
a complement of J in R. By Proposition , there exists f2 = f € Endg(R)
such that f(R) = J’. We divide the details of the proof into two steps as follows.
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(1) We show that (J' @ I)/I <4 R/I.
Note that f(R)NI = J'NI < J'NJ = {0},s0 f(R)NI = {0}. Then f(I) C I since
I is a projection invariant hyperideal of R. Hence, f(I) C f(R) NI = {0}. This
means that f(I) = {0}, i.e., I C ker(f). Thus, (J' @& I)/I <4 R/I by Proposition
AT

(2) Claim that [(J' & I)/I] @ [J/1I] <ess r(R/T).
In this step, we divide the details of the proof into two steps.

(2.1) First, we claim that (J' @ J)/I <css r(R/I).
To show that (J'@®.J) /I <. R/I,let K < R/I besuch that (J'@®.J)/I)NK = {I}.
Then there exists a hyperideal K of R containing I such that K = K /I. We show
that K = I. It suffices to show that K C I. To see this, let &k € K. Since J @& J
is a hyperideal of R, we get (J' @ J)k C J' @ J. Similarly, (J' & J)k C K since
K is a hyperideal of R and k € K. Moreover, if a € (J' @& J)k, then a + 1 €
(J'o J)/INK/I ={I}, soa e [. This implies that (J' & J)k C I. Recall that
ann(k+1) = {r € R:rk C I}. Hence, J'®J C ann(k+1). Since J' is a complement
of J in R, by Proposition , J' @ J <es rR. Thus, ann(k + I) <., rR by
Proposition (1) This implies that & + 1 € Z[r(R/I)] = {I}, so k € I.
Therefore, K C I. This shows that (J' @© J)/I <.ss r(R/I).
(2.2) Finally, [((J'@ I)/II® [J/I| = (J' @ J)/I.

The proof of this step is straightforward.
From step (1) and step (2), by Proposition 3.2.4, we obtain that (J o I)/I is
a complement of J = .J/I in R/I. Hence, z(R/I) is a Cy;-hypermodule. O]

Proposition 4.3.5. Let R be a strongly distributive commutative Ch1-hyperring.
Then Zy(R) is also a Cy1-hyperring and it is a direct summand of R.

Proof. By Proposition and Proposition 3.3.17, we obtain Zy(R) <, R and
Zs(R) <u R, respectively. Hence, Z5(R) is a Cy1-hyperring by Proposition .
Moreover, Z5(R) is a direct summand of R by Proposition . O

Corollary 4.3.6. Let R be a strongly distributive commutative Ciq-hyperring.
Then there ezists a hyperideal J of R such that R = Zy(R) ® J and J is a Cy;-
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hyperring.

Proof. By Proposition , there exists a hyperideal J of R with R = Z(R) & J.
Note that Z3(R) <, R by Proposition . Hence, J is a Cji-hyperring by

Proposition . [

Lemma 4.3.7. Let R be a strongly distributive commutative hyperring and f* =
f € Endo(R). If there exists a hyperideal K of R such that K <, R and K <.
F(R), then f(R) + Z(R) <, R.

Proof. Assume that K is a hyperideal of R satisfying K <, R and K <. f(R).
By Proposition , r(f(R)/K) is singular. Moreover, R = f(R) @ ker(f) by
Proposition . Let mer() be the projection map on ker(f).

First, claim that (me(pgf)(R) C Z(R) for all ¢*> = g € Endy(R). Let r € R
and g2 = g € Endy(R). By the singularity of f(R)/K,

fr)+K € f(R)/K = Z[r(f(R)/K)].
By Proposition (i),
HE(f(r)+ K)={K} for some H <. grR.

Then, H f(r) C K. This implies that f(Hr) C K. Recall that K <, R. Hence,

H{(mer(19f) ()] = (Tker(1) 9L )(HT) C (Ther()9)(K) C Tieer(p) (K) € K C f(R).

Note that H[(mer(p)9f)(1)] = (Tker(r)9.f) (Hr) C ker(f). This means that
H((Ter(19.f)(r)] € f(R) Nker(f) = {0}.

Thus, H[(mker(s)9.f)(r)] = {0}. By Proposition B.3.1(0). (Mker(p)9.f)(r) € Z(R).
Hence, the claim is proved.

Finally, we show that f(R)+ Z(R) <, R. Suppose that h? = h € Endg(R) and
x € f(R)+Z(R). Then there exist a € Rand z € Z(R) such that € f(a)+z. Since
R = f(R)@ker(f), there exist b € R and k € ker(f) such that h(f(a)) € f(b) + k.
Thus,

(Tker(5) P S ) (@) € Tier(p) (f (D) + k) = Tier() (F (D)) + Tren(p) (k) = 0+ k = {k}.
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Thus, k = (Tke(s)hf)(a) € Z(R) by the claim. Note that Z(R) <, R by Proposi-

tion . Therefore,
h(z) € h(f(a)+ z) = h(f(a)) + h(z) C f(b) + k+ h(z) C f(R) + Z(R).
This shows that h(f(R) + Z(R)) C f(R) + Z(R). Hence, f(R) + Z(R) <, R. O

Theorem 4.3.8. Let I be a projection invariant hyperideal of a strongly distributive
commutative Cy1-hyperring R. Then there exist hyperideals J, and Jo of R such
that I <.45 Jo and R = J, & Jy. Moreover,

(i) if Zo(Jv) is a Ci1-hyperring, then Ji is also a Cyi-hyperring;
(ii) if Zs(Jo) is a Chy-hyperring, then Jy is also a Cy1-hyperring.

Proof. By Proposition , there exist hyperideals J; and J; of R such that
I <. Joand R = J; ® Jo. In case I = Js, by Proposition , we immediately
obtain that J; and J, are C;-hyperrings. There is nothing to prove. Hence, we
are interested in the case that I # J,. Since Z3(R) <, R, by Proposition ,
we can write

Zy(R) = (Z2(R) N 1) @ (Z2(R) N Ja),

but then Zy(R) N Jy = Zs(Ji) and Zo(R) M Jo = Zs(Js) by Corollary B.3.9
Therefore, Zy(R) = Zy(J1) @ Z2(Jz). By Corollary , there exists a hyperideal
J of R such that R = Zy(R) ® J and J is a Cyy-hyperring. Thus, we can write
R =75(J1) ® Za(Js) @ J. Since Zy(J1) < Jy and Zy(J) < Jo , we obtain

J1 = Zo(J1) ® [(Za(Jo) @ J) N Jy| and  Jy = Zo(Jo) @ [(Zo(J1) @ J) N Jo,
respectively. For convenience, let
J = (Za(J)®J)NJy and  J) = (Zy(Jy) & J) N Js.
Hence,
Ji=2Zy(J) @ J] and  Jy = Zy(Je) @ Ji.

Recall that Zy(R) = Za(J1) @ Za(Jy). We see that Zy(J;) N Jy < Jp N Jy = {0}, so
Zs(J1) N Jy = {0}. By Proposition ,
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Zo(R) + Jy = Zs(J1) ® Zs(Jo) @ 5.
This implies that
Let f : (Za(R) + J2) @ J — Zs(R) + Jy be the projection map on Z3(R) + Jo.
Then f2 = f € Endg(R) and f(R) = Zy(R) + Jo. Since I <.. Jo = Za(Jo) & Jj,
by Proposition (iv),
Zg(Jl) @ [ Sess ZQ(Jl) GB Zg(JQ) @ Jé — ZQ(R) + JQ.
Note that Zs(J1) @I < Z3(R) + I. This implies that Za(R) 4+ I <4 Z2(R) + Jo =
F(R). Since Zy(R) <, R and I <, R, we obtain Zs(R) + I <, R. By Lemma [1.3.7,
f(R)+ Z(R) <, R. Moreover, Z(R) < Zy(R) < Z3(R) + J, = f(R). Hence,
Zy(R) +J2 = f(R) = f(R) + Z(R) <, R.
By applying Proposition to R = (Za(R)+ J2) & Ji, we obtain that Zy(R)+ Jo
and J; are Cjj-hyperrings. Recall that J; = Zy(J;) @ Ji. If Zy(Jy) is a Chs-
hyperring, then J; is a C;-hyperring by Proposition . Thus, the proof of (i)
is complete. Now, we know that Z(R) + J is a Cy1-hyperring. Note that
This means that Z»(R) @ J) is a Cjy-hyperring. We see that
Zy(R) = Zy(R) N (Z2(R) @ J3) = Z2(Z2(R) @ J3) <p Z2(R) & J3.

By applying Proposition again to Zy(R) @ J}, we conclude that J) is a C;-
hyperring. Recall that Jo = Z5(J2) & Ji,. The proof of (ii) follows from Proposi-
tion which is similar to (i). O

From theorem , for a strongly distributive commutative C};-hyperring R
and [ <, R, there exist two hyperideals J; and J; of R such that I <. J, and
R = J, & Js, but there is no conclusion to assert that J; and J, are C;-hyperrings

in the case I # Jy, although R is a Cji-hyperring; however, the condition that
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Zy(J1) is a Cyi-hyperring guarantees that J; is a C;-hyperring, and the case of Js

is similar to Jj.
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