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Chapter 1

Introduction

1.1 Background and rationale

Although the total world production of food emulsifiers is not known exactly
due to the lack of statistical information from many countries, the estimated amount
of produced food-grade emulsifiers is about 250,000 metric tons per year. Mono- and
diglycerides, including distilled monosglycerides and their organic acid esters, are
approximately 75% of the total production of emulsifiers [1]. Applications of
monoglycerides (MGs) and diglycerides (DGs) that are widely used in various
industries (e.g., food, detergent, plasticizer, cosmetic and pharmaceutical
formulations) make them the most important chemicals based on the economic and
the functional point of view [1]. The mixture of MGs and DGs can be produced via
glycerolysis of fats/oils using a base catalyst at the reaction temperature of 250 °C.
However, this reaction requires a high reaction temperature and long reaction time
due to the less solubility of glycerol and oil [2].

Hydrolysis of triglycerides (TGs) using lipase at high temperature, a water and
free fatty acids (FFAs) are produced which is a major form of dietary lipid in fats and
oils, via the breaking of ester bonds. Apart from direct oxidation, lipid hydrolysis is
the most common cause of FFAs formation when oils reach the second stage of lipid
oxidation. Fatty acid methyl esters (FAMEs) are esters of fatty acids. The physical
characteristics of FAMEs are closer to those of fossil diesel fuels than that of pure
vegetable oils, but properties depend on the type of vegetable oil. A mixture of
different FAMEs is commonly referred to as biodiesel, which is a renewable
alternative fuel. It is also non-toxic and biodegradable [3]. As mentioned before, the
glycerolysis of oils (TGs) as the conventional MG and DG production is limited by the
solubility between glycerol and oil. Therefore, it should be interesting to use the TG
derivatives (FFAs or FAMEs), instead of TGs, as a reactant to increase the glycerol

miscibility.



Glycerolysis of FFAs is an esterifying FFAs with glycerol or hydroxyl groups
presenting in the parent reactant to produce MGs, DGs, TGs and water. From this
perspective, it is the esterification process in which glycerol acts as the alcohol to
convert FFAs into the respective glycerides, and water as a by-product. The process
is usually applied as a pretreatment step for biodiesel production when the FFAs
content is higher than 5% [4]. For glycerolysis of FAMEs is also a reversible reaction of
the methanolysis of fats, which is a major route for biodiesel production. MGs, DGs
and TGs are produced together with a by-product of methanol through this reaction,
which is carried out at the reaction temperature of 135 °C [5]. Glycerolysis of FAMEs
is an interesting route for MGs synthesis. Because using methyl esters instead of the
corresponding oils and glycerol in the preparation of MGs has several advantages. For
instance, methyl esters that are prepared from fats by energy preserving fat
methanolysis are easily purified and less corrosive. Furthermore, slycerolysis of
methyl ester occurs more rapidly than esterification of fatty acids with glycerol [6].
There are many routes to produce MGs and DGs which depends on the feedstocks,
such as oils/fats, FFAs and FAMEs.

The upstream reactions to produce FFAs and FAMEs are required as
hydrolysis of TGs and transesterification of TGs, respectively. The hydrolysis of oils
and fats is an important industrial operation: worldwide 1.6 x 10° tons of fatty acids
are produced every year by this process [7]. Oils and fats are part of a group of
compounds known as fatty esters or TGs, and their hydrolysis essentially involves
reactions with water to produce valuable FFAs and glycerol [8]. The conventional
hydrolysis process to produce FFAs (fat splitting process) is carried out reacting
vegetable oils and/or fats with superheated water (100-260 °C and 100-7000 kPa
using 0.4-1.5 %wt of water/oil ratio). This process requires a high-energy input;
breakdown of products may also occur, especially in the case of highly unsaturated
fatty acids [9]. The by-products dissolved in the water phase cause a problem in the
isolation of glycerol from this phase [7]. FAMEs or biodiesel has been considered
interesting alternative energy since it is renewable, less flammable, non-toxic, and
environmentally friendly. Biodiesel consisting of mono alkyl esters of long-chain fatty

acids is produced through a transesterification of TGs derived from vegetable oils or



animal fats. In the transesterification, TGs are reacted with low molecular weight
alcohol in a presence of catalyst, producing biodiesel and glycerol as a by-product.
For instance, the optimum reaction conditions were found to methanol to waste
cooking oil (WCO) molar ratio of 14:1, 60 °C temperature and pressure 1 atm using
calcium carbonate (CaCOs;) catalyst [10]. Transesterification of TGs process offers
advantages such as lower reaction temperature, short reaction time, and higher
conversion [11].

WCOs are important food-chain by-products that can be used as green raw
materials for chemical synthesis. The concerning amount of WCOs available
throughout the world causes major environmental, economic, and social issues. More
than 15 million tons of WCOs are generated globally each year, with the European
Union (EU) producing close to 1 million tons [12]. WCOs are often discharged into
municipal sewers, necessitating extra maintenance and increasing water treatment
costs [12]. The main composition of WCOs are TGs and FFAs. Therefore, this research
aims to simulate techno-economic analysis of MGs and DGs production using WCO as
a feedstock via two possible routes including: 1) hydrolysis of WCOs to produce FFAs
and glycerol, and then glycerol and FFAs are esterified to produce MGs and DGs; and
2) transesterification of WCOs to produce FAMEs and glycerol, and then glycerolysis
of FAMEs to produce MGs and DGs. The simulation results will be performed in

Aspen Plus simulation software.

1.2 Research objective
To perform techno-economic analysis of MG and DG production from WCOs
via two different scenarios: transesterification of TG and glycerolysis of FAME; and

hydrolysis of TG and glycerolysis of FFA using Aspen Plus simulation software.



1.3 Research scope

1.3.1 Aspen Plus V11 will be used to comparatively study on MG and DG
production processes.

1.3.2 This study aims to perform techno-economic analysis of MG and DG
production from WCOs via four different scenarios:

Scenario I: Transesterification of TG using K/CeO, catalyst at a condition of 65
°C and 1 atm followed by glycerolysis of FAME using CH;ONa as a homogeneous
catalyst at the reaction temperature of 135 °C and 1 atm. Triolein and oleic acid are
used as a model compound of WCO for this simulation.

Scenario ll: Hydrolysis of TG using subcritical water at a condition of 350 °C
and 20 MPa followed by glycerolysis of FFA using a CHsSOs;H as a homogeneous
catalyst at the reaction temperature of 120 °C and 1 atm. Triolein and oleic acid are
used as a model compound of WCO for this simulation.

Scenario lll: Hydrolysis of TG using subcritical water at a condition of 350 °C
and 20 MPa followed by glycerolysis of FFA with the make-up glycerol using a
CH5;SO3H catalyst at the reaction temperature of 120 °C and 1 atm. Triolein and oleic
acid are used as a model compound of WCO for this simulation.

Scenario IV: Transesterification of TG using K/CeO, catalyst at a condition of
65 °C and 1 atm followed by glycerolysis of FAME using a heterogeneous catalyst of
MgO at the reaction temperature of 250 °C and 1 atm. Triolein and oleic acid are
used as a model compound of WCO for this simulation.

1.3.3 The feedstock of waste cooking oil (WCO) consisting of triglyceride 909%,
free fatty acid 6%, and water 4%. The plant capacity is set at feedstock supply of
81,457.3 keg/hr and the purity of MG product set at 90%wt.

1.3.4 The process performance will be reported in terms of product yields of
MG, energy consumption and cost analysis, respectively.

1.3.5 The cost analysis will be presented in manufacturing cost, fixed capital

investment, and sensitivity analysis of the process.



1.4 Expected benefits

1.4.1 The feasibility of the MG and DG production processes via scenario I:
transesterification of TG-glycerolysis of FAME used a homogeneous catalyst of
CH3ONa, scenario II: hydrolysis of TG-glycerolysis of FFA, scenario lll: hydrolysis of TG-
glycerolysis of FFA with adding glycerol and scenario IV: transesterification of TG-
glycerolysis of FAME used a heterogeneous catalyst of MgO can be analyzed.

1.4.2 Able to analyze and compare the energy consumption and the cost-
effectiveness for the MG and DG production process via scenario I: transesterification
of TG-glycerolysis of FAME used a homogeneous catalyst of CH;ONa, scenario II:
hydrolysis of TG-glycerolysis of FFA, scenario lll: hydrolysis of TG-glycerolysis of FFA
with adding slycerol and scenario IV: transesterification of TG-glycerolysis of FAME

used a heterogeneous catalyst of MgO.



Chapter 2

Theory and literature review

This chapter presents theory and literature reviews, which include information
of feedstocks for MG and DG production, MG and DG synthesis and kinetic

parameters of the related reactions for MG and DG production.

2.1 Feedstocks for MG and DG production

WCO is an interesting feedstock to produce MGs. WCO is obtained by
immersing foods, oils or fats in the presence of oxygen, moisture, pro-oxidant, and
antioxidants of food at high temperature (150-200 °C). Generally, the composition of
WCO is 94-98% TG, 2-6% FFA, 1-3% water, and a trace amount of other compounds
[13, 14]. Composition of WCO feedstock from different country sources are

summarized in Table 1 [15].

Table 1 WCO feedstock composition from different country sources.

Source of waste Composition
cooking oil FFA Water content C16:0 C18:.0 C18:1 c18:2 Ref.
(%owt)  (%wt) (%) (%) (%) (%)
Bakery oil (Brazil) 1.5 6.2 11.6 39 255 51.9 [16]
Chinese Restaurant
1.53 1.2 6.1 1.8 64.2 19.4 [17]
(United Kingdom)
Waste frying oil
55 6 60.1 10.8 27.2 1.14 [18]
(Malaysia)
Local restaurant
1.05 0.4 17.82 5.75 40.98 28.77 [14]

(Mexico)

The different physicochemical properties of used and unused WCO are
determined by the established ASTM standard test method and shown in Table 2
[19].



Table 2 Properties of used and unused cooking oil [19].

Unused cooking oil Used cooking oil
Properties

values values
Acid value (mg KOH/g) 0.3 4.03
Calorific value (J/g) - 39658
Saponification value (mg KOH/g) 194 177.97
Peroxide value (meg/kg) <10 10
Density (gm/cm?) 0.898 0.9013
Kinematic viscosity (mm? /s) 39.994 44.956
Dynamic Viscosity (mPa.s) 35.920 40.519
Flash point (°C) 161-164 222-224
Moisture content (%wt) 0.101 0.140

Triacylglycerol or triglyceride (TG) is a major form of dietary lipid in fats and
oils, whether derived from plants or animals. Triacylelycerol is composed of three
fatty acids esterified to a glycerol molecule as presented in Fig 1. The physical
properties of the triacylglycerol are determined by the specific fatty acids esterified
to the glycerol moiety and the actual position the fatty acids occupy [20].
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Fig. 1 The structure of triglyceride [20]

Free fatty acids (FFA) are derived from triacylglycerol by cleavage of ester
bonds due to the action of lipase, high temperature, and moisture. Besides the direct

oxidation, lipid hydrolysis is the dominant reason for the generation of FFA when the



oils were entered the second stage of lipid oxidation. FFA can act as pro-oxidants in
oils by speed up the rate of hydroperoxide decomposition. Thus, high FFA content in
the oil may cause further oxidation and lead to development of offensive taste and
flavor in the oil. FFA content is one of the most important concerns in the refining of
edible oil. FFA is often used to indicate the oil quality and its suitability for edible
[21].

Fig. 2 The structure of FFA [22]

Biodiesel is a renewable, alternative diesel fuel produced from vegetable oils,
animal fats, or recycled restaurant grease. This biodiesel is non-toxic, biodegradable
liquid fuel consisting of mono alkyl esters of long chain fatty acids (also known as
fatty acid methyl esters, or FAMEs as presented in Fig 3.) and may be used alone or
blended with petroleum-based diesel fuels. The most common process for
producing biodiesel involves two steps: In the first, the transesterification, TGs (i.e.
oils or fats) are chemically reacted with an alcohol, usually methanol, in the
presence of a catalyst, like sodium or potassium hydroxide, yielding FAMEs and by-
product glycerol. In the second, the FAMEs and by-product glycerol are then
separated and purified. Biodiesel is the name given to the FAME fraction retained for

use as fuel. The glycerol fraction is sold for use in soaps and other products [23].

O

I
H,CO—C—R

Il
HyCO—C—R,
Il
H,CO—C—R;

Fig. 3 The structure of FAME [23]



Glycerol has three hydroxyl groups attached to the carbon back bone (Fig. 4)
and it is a hydrophilic molecule and hence it is decidedly less soluble in organic
solutions; for example, it is only 4-5% soluble in common fats which are
hydrophobic themselves [24]. This low solubility hinders the glycerolysis reaction and
unless the reaction is carried out with a catalyst. It takes a longer reaction time at
higher temperatures around 250 °C, where glycerol solubility is approximately 45%

[24].

H,C——OH
HC——OH
H,C——OH

Fig. 4 The structure of glycerol [25]

2.2 MGs and DGs: Use and synthesis

Monoglycerides (MGs), also known as monoacylglycerol, is the most
widespread and important type of glycerides. It consists of a chain of fatty acids that
bind covalently to a slycerol molecule via ester linkage. The types of MGs are
classified according to the location of the ester bonds on the glycerol as 1-
monoacylglycerols and 2-monoacylglycerols [6].

The structures of monoglyceride are shown in Fig 5. and the physical

properties of monoglyceride are presented in Table 3.

H,OH H. OCOR

HOCOR HOH

H,OH H,OH
a-monoglyceride B-monoglyceride

Fig. 5 The structures of monoglyceride [26]
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Table 3 Physical properties of monoglyceride (monoolein) [27].

Properties of MGs

Molecular formula Cy1Ha04

Density 0.914

Boiling point 417.1 [°C] at 760mmHg
Melting point 70.5 [°C]

Flash point 238.7 [°C]

Diglycerides (DGs) is a glyceride composed of two fatty acid chains that are
covalently bound to a single glycerol molecule via an ester linkage [28]. The
structure of DG is shown in Fig 6. The physical properties of diglyceride are also

presented in Table 4.

Fig. 6 The structure of diglyceride [29]

Table 4 Physical properties of diglyceride (diolein) [30].

Properties of DGs

Molecular formula C39H7,05

Density 0.934

Boiling point 678.3 [°C] at 760mmHg
Melting point 12 [°C]

Flash point 189.2 [°(C]

The conventional chemical method to produce MGs and DGs involves the
glycerolysis of fats and oils at higher temperatures (220 — 260 °C) and elevated
pressure under nitrogen atmosphere while employing inorganic alkaline catalysts [6].
In addition, there are two alternative main synthetic routes for obtaining MGs and

DGs: direct esterification of glycerol with fatty acids; and transesterification of glycerol
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with fatty acid methyl esters (FAME) as illustrated in Fig. 7. In both routes the
commercial processes use homogeneous catalysts. Former method requires an acid
catalyst such as sulfuric, phosphoric, or organic sulfonic acid [31, 32] whereas later
case is a basic catalyzed reaction with a strong base such as KOH or Ca(OH), at high

temperatures [24].

(o]
I

CH;—O—C—R CHOH: 15
R _O_ I
\ﬂ/ CH; + HO OH base | L o4 + HC—oO—C—R
lo) OH
CH,OH CH, OH
FAME
Glycerol monoester monoester
Monoglycerides
basel FAME
CHZ—O—%—R CH,—0—C—R CH,0—C—R
o]

base l '

|
HC—O0—C—R + HC—OH =—— -
0 F Frae | HC—o0—C—R + HC—OH

Il I
CH,O—C—R CH, OH CH,O—C—R

Triglycerides
o) Diglycerides

Fig. 7 MGs and DGs synthesis [6]

2.2.1 MGs and DGs synthesis from glycerolysis of oils/fats

Glycerolysis of fats and oils produces industrially important MGs and DGs.
MGs and their derivatives have many applications as surfactants and emulsifiers in a
wide range of foods, cosmetics, and pharmaceutical products [33, 34]. MGs are
commercially manufactured by the glycerolysis in which fats and oils undergo a
transesterification with glycerol. This is a physicochemical process and requires high
temperatures (210 - 260 °C) and the use of an inorganic catalyst, such as sodium
hydroxide (NaOH), potassium hydroxide (KOH), or calcium hydroxide (Ca(OH),) [24,
35]. Noureddini et al. [36] studied the transesterification of glycerol with triglyceride
at 245 °C to MGs and DGs products were obtained using an alkaline catalyst. The

main reaction steps are:

Triglyceride + Glycerol <« Diglyceride + Monoglyceride (2.1)
Diglyceride + Glycerol <«» 2 Monoglyceride (2.2)
Triglyceride + Monoglyceride <% 2 Diglyceride (2.3)



12

2.2.2 MGs and DGs synthesis from glycerolysis of FAME with homogeneous
catalyst

The main reaction steps glycerolysis of FAME using homogeneous catalyst are:

Fatty acid methyl ester + Glycerol <% Monoglyceride + Methanol (2.9)
Monoglyceride + Monoglyceride <% Diglyceride + Glycerol (2.5)
Fatty acid methyl ester + Diglyceride <« Triglyceride + Methanol (2.6)
The reaction was reported to carry out at temperature of 135 °C and the used

catalyst is sodium methoxide (1 %wt of total reactant) [5].

2.2.3 MGs and DGs synthesis from glycerolysis of FAME with heterogeneous
catalyst

The main reaction steps glycerolysis of FAME with heterogeneous catalyst are:

Fatty acid methyl ester + Glycerol —» Monoglyceride + Methanol (2.7)
Monoglyceride + Fatty acid methyl ester —» Diglyceride + Methanol (2.8)
The reaction was reported to carry out at temperature of 250 °C and the used
catalyst is Magnesium oxide (30 g/mol of mole FAME). Moreover, TGs did not

observed at any reaction time using this heterogeneously catalyzed conditions [37].

2.2.4 MGs synthesis from glycerolysis of FFA

The main reaction of glycerolysis of FFAs are shown as follows:

Glycerol + Fatty fatty acid <%  Monoglyceride + Water (2.9)
Monoglyceride + Fatty fatty acid <% Diglyceride + Water (2.10)
Diglyceride + Fatty fatty acid <«»  Triglyceride + Water (2.11)

The temperature reaction condition is 120 °C using methanesulfonic acid

(MSA) as a homogeneous catalyst [38].
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2.3 Kinetic parameters of the related reactions for MGs and DGs
production

2.3.1 Glycerolysis of FFAs

Maquirriain et al. [38] proposed esterification of glycerol by FFAs using
homogeneous catalysts. Three catalysts: p-toluene sulfonic acid (PTSA), methane
sulfonic acid (MSA), and sulfuric acid (SA) were compared. The product distribution in
Fig. 8 shows the evolution of MG, DG, TG, FFA, glycerol (GOH) and water (W) as a

function of time obtained with a catalyst concentration of 0.35 equiv/ks.

] A B sl o 4 - S
% B oW o = @ )
E ,. “L i |
—=2f-® pgp h N /
é %= MG g : B
®-DG R
© ' 1+ ] |
§ - A TG } o
§4=con S8 Tw - o {
s P e sy [T e Shuaran W FORBEEES S ST
Rl IS o x e SRR = . L
J . ,"‘- oo IR L speag e e oSS o n o R | oy e &-=m=sr=rosnenm=r 4
0 100 200 0 20 40 60 80 100 O 20 40 60 80 100
Time(min) Time(min) Time(min)

Fig. 8 Product distribution obtained with: (A) SA; (B) MSA; (C) PTSA, at 120°C, molar
ratio FFA:GOH = 1:1, catalyst concentration 0.35 equiv/kg [38]

Fig. 8 provides evidence that the sulfuric acid (SA) has a more stable state in

the bulk of the glycerol phase. In this part, there is a high surface tension resulting in
low reaction rate. Due to the well-known function of these compounds acting as
emulsifiers, MGs reduce surface tension. Therefore, the interfacial area increases and
consequently the reaction rate increases generating the induction period. In the case
of the catalysts of methane sulfonic acid (MSA) and p-toluene sulfonic acid (PTSA),
they tend to active because they have a non-polar head which reduces the surface
tension. It is important that although all three acids have similar strengths, the
activity increases when the surface tension of the glycerol-catalyst of the system

decreases. The curves shown in Fig. 8 was used to determine the kinetic model.
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The reaction rate constants of Egs. (2.9) - (2.11) are presented in Table 5.
Similar behaviors could be observed when reaction rate constants are compared the
reaction of DG formation and TG formation. The reaction rate constants of the

glycerol esterification with FFA are results in high conversion and low residence time.

Table 5 Kinetic constants of the glycerol esterification with FFA at 120 °C [38].

Reaction ki FFA/GL = 1:1
MSA
(2.9) ki 2.06e-02
k4 1.53e-04
(2.10) ko 6.87e-02
ko 2.59e-04
(2.11) Ks 1.23e-02
ks 9.86e-05

2.3.2 Glycerolysis of FAME with homogeneous catalyst

Negi et al. [5] investigated the glycerolysis of FAMEs. This work aims to
develop and test a kinetic model that can be used reliably simulate different
alternative processes for this reaction. To definition of conversion, the ester phase
was analyzed without methanol and glycerol. The ester molar conversion based on
the methyl ester, X, at time t was calculated as shown in Eq (2.12):

x=1— X'FAME (2 12)
(x'raME+TX MG +2X DG +3%'16) '

where x’ are the mole fractions calculated on a glycerol- and methanol-free basis.

Thermodynamic models of UNIFAC and UNIFAC-Dortmund were reported to
qualitatively predict that the concentration of glycerol in the ester phase increases
with increasing monoglyceride concentrations [39]. The values of the rate constant

for Egs. (2.4) - (2.6) are shown in Table 6.
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Table 6 Parameters used in the kinetic model [5].

Parameter Value
kyf 0.074 kg.mol™! min™*
Kb 0.645 kg.mol™! min™*
Ko 0.348 kg.mol™! min™!
Ko 0.717 kg.mol™* min™?
kst 0.004 kg.mol™! min™*
K, 0.227 kg.mol™! min™*

233 Glycerolysis of FAME with heterogeneous catalyst obtained from
Ferretti et al. [37]. They proposed the synthesis of monoglycerides by glycerolysis of
fatty acid methyl ester using strongly basic high surface area MgO. The effect of the
reaction temperature is investigated by carrying out the catalytic tests on MgO at 473,

483, 493, and 523 K as shown in Fig. 9.
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Fig. 9 Effect of the reaction temperature on FAME conversion and MG and DG yields

Fig. 9 provides FAME conversion significantly increased with the reaction
temperature so that complete conversion is achieved in 2 hr at 523 K in contrast to
51% reached in 2 hr at 493 K, 23% at 483 K, and 4% at 473 K. That MG yield is
enhanced by increasing the reaction temperature. This is due not only to the
increasing conversion but also to the fact that the selectivity to MG improved at
higher reaction temperatures at the expense of DG selectivity when compared at
similar FAME conversion levels. The activation energy and pre-exponential factor are

computed. Table 7 lists the kinetic parameters of A; (pre-exponential factor of Eq
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2.7), A, (pre-exponential factor of Eq 2.8), Ea; (activation energy of Eq 2.7) and Ea,

(activation energy of Eq 2.8), respectively.

Table 7 The kinetic parameters of glycerolysis of FAME with heterogeneous catalyst
[37].

Ay A
Pre-exponential factor (h™)

7.4 1.36

Eal Ea2
Activation energy (kJ/mol)

26 19

2.3.4 Transesterification of WCOs

Roy et al. [40] proposed the biodiesel production from waste material using
heterogeneous to achieve a sustainable source of fuel. Heterogeneous base-
catalyzed transesterification attracts more attention as it overcomes the flaws
regarding homogeneous catalysis

The effect of oil to methanol molar ratio on FAME conversion is investigated
by two sets of batch reactions using two feedstocks of WCO and castor oil as shown
in Fig. 10. The catalyst weight percentage predominantly influences the
transesterification process as the optimum catalyst amount ensures access of active
sites for reactants. The impact of catalyst dose on FAME conversion (%) is examined

by differing catalyst amount from 0.5 to 3 wt% (w/w) with 0.5 wt% steady increment
as shown in Fig. 11. The influence of temperature in FAME conversion has been

shown in Fig. 12.
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Fig. 11 Optimization of catalyst loading (wt%) [40]
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Fig. 12 Optimization of reaction temperature (°C) [40]

Fig. 10 illustrates the highest conversions of 99.09% was corresponding 1:14
WCO to methanol molar ratio. Fig. 11 has depicted that increasing catalyst loading

enhanced the conversion till the optimum catalyst loading of 1.5 wt% in the
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corresponding methyl ester formation. Fig. 12 shows that the FAME conversion was

accelerated with increasing temperature. Maximum conversion of WCO was obtained

at 65 °C quite near to boiling temperature of methanol. The overall reaction is as

follows:

Transesterification of TG:

Triglyceride + 3 Methanol —» 3 Fatty acid methyl ester + Glycerol (2.12)

The activation energy and pre-exponential factor are computed. Table 8 lists

the kinetic parameters.

Table 8 Parameters for the transesterification of WCOs [40].

Parameter Values
Pre-exponential factor (A) (min™) 3.54%10°
Activation energy (E,) (kJ/mol) 50.10

2.3.5 Hydrolysis of WCOs

Alenezi et al. [41] investigated the hydrolysis of sunflower oil under subcritical
water. Number of hydrolysis experiments was carried out in a tubular reactor at 20
MPa, temperature range of 270-350°C. They reported that the water also acts as a
solvent, the concentration of water is sufficient to affect the hydrolysis of the oil to
produce >90 %wt fatty acid (FA). The reaction is a pseudo-homogenous first-order
reversible reaction with an excess of one reactant, mainly water, in an oily phase.
The hydrolysis reaction consists of three stepwise reactions represented by Egs.
(2.13), (2.14), and (2.15). In the first step, TG is hydrolyzed to DG, which is converted
to MG in the second step. In the final step, the produced MG is hydrolyzed to
glycerol, while in each step FFA is also generated. The amount of collected FFA
product is equivalent to the sum of three times the moles of TG reacted, two times

the moles of DG reacted, and one times the mole of MG, or equivalent to the total
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moles of consumed water. FFA can act as an acid catalyst in the hydrolysis in the
subcritical water and yield up to 90% conversion.

Hydrolysis is a crucial reaction in the chemical industry's processing of oils
and fats. Using superheated steam, this reaction can be carried out thermally as a
liquid-liquid or gas-liquid reaction [42]. A mass transfer regulated chemical reaction
in which water combines with oil (TG) to generate FFA and glycerol may be
characterized as hydrolysing oil with water. FFA and glycerol are important
intermediate raw ingredients with a wide range of applications, including biodiesel,
soap, synthetic detergents, greases, and cosmetics [43]. Lascaray [44] reported that
the degree of hydrolysis in water and oil at equilibrium is unaffected by reaction
temperature. Some studies have discovered that employing pressures more than 20
MPa and temperatures greater than 250 °C can remove the need for acidic or
alkaline catalysts. A kinetic study for the continuous flow thermal hydrolysis of
sunflower oil in subcritical water at 20 MPa, between 270 and 350 °C [41]. The
influence of temperature on the kinetic parameters was determined based on the
Arrhenius equation to the optimum evaluated rate constants. The energy of
activation was found to be highest in the first-step hydrolysis reaction (TG). It is
evident that the Ea; value for first reaction of TG conversion to DG is higher than the
Ea, and Eas values. This is because the hydrolysis needs higher energy to start the
reaction. Since reactions of organic compounds involve the making and breaking of
chemical bonds. The strength of bonds becomes an important consideration. A high
value of Eas is required in the third reaction, but it is smaller activation energy as
compared to the start of the reaction. The activation energy required in the second
step of the hydrolysis reaction (converting from DG to MG) was observed to be
almost half of the Ea; indicating the forward driving force for the progression of
reaction. The kinetic parameters of hydrolysis are listed in Table 9 as obtained from

the previous report [41]. The reaction of hydrolysis of TG is:

Triglyceride + Water —»  Diglyceride + Free fatty acid (2.13)
Diglyceride + Water —» Monoglyceride + Free fatty acid (2.14)
Monoglyceride + Water —» Glycerol + Free fatty acid (2.15)



Table 9 The kinetic parameters of hydrolysis [41].

20

Aq A As
Pre-exponential factor (min™)
5.2x10° 1.1x10’ 2.8x10°
Ea, Ea, Eas
Activation energy (kJ/mol)
98 68 90
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Chapter 3

Experimental design

3.1 Process modeling and simulation

The comparative process simulation is performed using Aspen Plus software
by defining appropriate thermodynamic model and specifying operating conditions.
Four different process scenarios of MG and DG production from WCO are examined
and compared in terms of performance analysis including required feed MG and DG
productivities energy consumption, cost analysis and sensitivity analysis. In the first
scenario, MG and DG are synthesized via two combined reactions of
transesterification of TG with methanol and sglycerolysis of FAME. In the second
scenario, MG and DG are synthesized via hydrolysis of TG and glycerolysis of FFA. In
the third scenario, MG and DG are synthesized via hydrolysis of TG-glycerolysis of FFA
using make-up ¢lycerol. The four scenarios, MG and DG are synthesized
transesterification of TG-glycerolysis of FAME using a heterogeneous catalyst in order

to improve the process perfomance.

3.2 Key components

The feedstock of waste cooking oil (WCO) consisting of triglyceride 90%, free
fatty acid 6%, and water 4% is used for each scenarios [45]. The plant capacity is set
at feedstock supply of 81,457.3 kg/hr or 787,110 ton/y according to EU WCO
quantitation [46]. For scenario |, the feed molar ratio of methanol:oil was used at
14:1 for transesterification [40]. For scenario Il, the feed molar ratio of water:oil was
17:1 for hydrolysis [41]. For scenario lll, the feed molar ratio of water:oil was 17:1 and
using make-up glycerol to obtain glycerol to FFA molar ratio of 1:1 [41]. For scenario
IV, the feed molar ratio of methanol:oil was used at 14:1 for transesterification and

using MgO as a heterogeneous catalyst for glycerolysis of FAME [40].



22

3.3 Thermodynamic selection

The thermodynamic characteristics of non-polar - polar chemical
components is determined using the regressed UNIQUAC model. According to a
study of Gaurav et al. [47], all chemical components were linked to the UNIQUAC

model.

3.4 Process description

3.4.1 Scenario I: Transesterification of TG-glycerolysis of FAME

In the first scenario, MG and DG are synthesized from WCO via two combined
processes of the transesterification with methanol and glycerolysis of FAME. The kinetic
parameters of pre-exponential factor A, (s*) and activation energy Ea; (J/mol) are shown in
Table 8. The concentration of glycerol in the ester phase increases with increasing
monoglyceride concentrations, resulting in kinetic suitable for use in glycerolysis of
FAME. The mixture of oleic acid and triolein is used as a model compound of WCO
consisting of triolein 90%, oleic acid 6%, and water 4% [45]. The oleic acid and palmitic
acid have similar kinetic result because the initial rate of reaction decreased slightly with
increasing the carbon chain length of the fatty acids, possibly resulting from the steric
hindrance effect of the carbon chains [48]. The main reaction is transesterification of TG as
presented in Eq. (2.12). The values of the rate constant for glycerolysis of FAME are shown
in Table 6 obtained from a report by Negi et al. [5] and the reaction steps illustrated in
Egs. (2.4) - (2.6) are modeled as glycerolysis of FAME.

The WCO and the methanol (MTOH) feed steams were mixed in MIX-100. It was
heated to 65 °C in heater (E-100) before sent to the reactor (TRANS). Transesterification
was carried out in reactor (TRANS) using a K/CeO, to produce FAME, glycerol. The resulting
mixture of reactants and products (MTOH, FAME, glycerol, FFA, water) was increased the
pressure to 1.5 atm (P-100) and sent to distillation (T-100). Methanol was recovery from T-
100 and then it was reduced pressure to 1 atm (VAL-100) before sent back to the TRANS
reactor. It was reduced pressure to 1 atm (VAL-101) after that the water was removed via
flash distillation (V-100). For, the glycerolysis of FAME process, the stream No.7 (TRI, MTOH,
FAME, glycerol, water, FFA) and stream of CH;ONa (No.8) were mixed in MIX-101, after that
reduced the temperature to 135 °C in E-101 before sent to the reactor (GLYCERO).
Glycerolysis of FAME was carried out in reactor (GLYCERO) to produce MG, DG, TRI and the
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un reacted of MTOH, FAME and glycerol. Then it was increased the pressure to 1.5 atm (P-
101) before sent to the distillation (T-101). Methanol was recovery from T-101 and then it
was reduced pressure to 1 atm (VAL-102) before sent back to the TRANS reactor. Glycerol
was recovery from T-102 and then it was reduced pressure to 1 atm (VAL-103) before sent
back to the reactor (GLYCERO). The stream No.14 (MG, DG, TRI, FAME, glycerol, FFA,
CH;ONa) was reduced the pressure to 1 atm (VAL-104) and then it was heated to 135 °C in
heater (E-102). The stream H;PO, (No.17) was heated to 135 °C in heater (E-103) before
sent to the neutralized reactor (R-NUTR). Neutralization was carried out in a reactor (R-
NUTR) and then separated NasPO, from SEP. Pump (P-102) was used to increase the
pressure of stream No.21 (MG, DG, TRI, MTOH, FAME, glycerol, FFA) to 1.5 atm. And the last
step of the scenario | was purification through the distillation (T-103) to make FAME to
96.5%wt purity and the distillation (T-104) to achieve MG to 90%wt purity.
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3.4.2 Scenario II: Hydrolysis of TG-glycerolysis of FFA

In the second scenario, MG and DG are synthesized from WCO via hydrolysis of
TG and glycerolysis of FFA. The kinetic parameters of hydrolysis are listed in Table 9
obtained from a report by Alenezi et al. [41]. The main and side reactions of hydrolysis
of TG are presented in Egs. (2.13) - (2.15). FFA can act as an acid catalyst in the
hydrolysis in the subcritical water and yield up to 90% conversion.

The forward reaction rate constants of glycerolysis of oleic acid are presented in
Table 5. The highest reaction rate constant of MG formation is found in the MSA
catalyst. Similar behaviors could be observed when kinetic constants were compared
between the reaction of DG formation and TG formation. The main reaction of
glycerolysis of oleic acid are expressed in Egs. (2.9) - (2.11). The reaction rate constants
of the glycerol esterification with FFA are results in high conversion and low
residence time.

The process in scenario Il was shown in Fig 14. The WCO and the water were
mixed in MIX-100. Pump (P-100) was used to increase the pressure of mixed feedstocks
to 20 MPa and then it was heated to 350 °C in a heater (E-100) before sent to a reactor
(HYDRO). Hydrolysis was carried out in the reactor (HYDRO) to produce MG, DG, glycerol,
FFA and water. Then, the temperature was reduced to 119 °C in E-101 after that it was
increased pressure to 1.5 atm (VAL-100) sent to distillation (T-100). Water was recovery
from T-100 and it was reduced pressure to 1 atm (VAL-101) before sent back to the
HYDRO reactor. It was reduced pressure to 1 atm (VAL-102). For the glycerolysis of FFA
process, the stream No.6 (glycerol, FAME, water) was reduced the temperature to 120
°C in E-102 before sent to the reactor (GLYCERO). The water was removed via flash
distillation (V-100). Pump (P-101) was used to increase the pressure of stream No.9 to
1.5 atm and sent to distillation (T-101). Glycerol was recovery from T-101 and then it
was reduced pressure to 1 atm (VAL-103) before sent back to the reactor (GLYCERO).
The stream No.11 (MG, DG, TR, glycerol, FFA) was reduced the pressure to 1 atm (VAL-
104) and then it was heated to 120 °C in heater (E-103). The stream NAOH and stream
MSA was heated to 120 °C in heater (E-104) before sent to the neutralized reactor (R-
NUTR). Neutralization was carried out in a reactor (R-NUTR). The water was removed via

flash distillation (V-101) and then separated CHsNaO,S from SEP. Pump (P-102) was used
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to increase the pressure of stream No.19 to 1.5 atm. The last step of the scenario Il was
purification through the distillation (T-102) to separate FFA from the product stream and
the distillation (T-103) to obtain 90%wt purity of MG. The stream DI was purified via
distillation (T-104) to achieve DG to 97%wt purity.
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3.4.3 Scenario lll: Hydrolysis of TG-glycerolysis of FFA with make-up glycerol

The process in scenario lll was shown in Fig 15. The WCO and the water were
mixed in MIX-100. Pump (P-100) was used to increase the pressure of mixed
feedstocks to 20 MPa and then it was heated to 350 °C in a heater (E-100) before
sent to a reactor (HYDRO). Hydrolysis was carried out in the reactor (HYDRO) to
produce MG, DG, glycerol, FFA and water. Then, the temperature was reduced to 119
°C in E-101 after that it was increased pressure to 1.5 atm (VAL-100) sent to
distillation (T-100). Water was recovery from T-100 and it was reduced pressure to 1
atm (VAL-101) before sent back to the HYDRO reactor. It was reduced pressure to 1
atm (VAL-102). For the glycerolysis of FFA process, the stream GLY as a make-up was
feed glycerol 64,570.5 ton/y to obtain glycerol to oleic acid molar ratio of 1:1. The
stream No.6 was reduced the temperature to 120 °C in E-102 before sent to the
reactor (GLYCERO). The water was removed via flash distillation (V-100). Pump (P-101)
was used to increase the pressure of stream No.9 to 1.5 atm and sent to distillation
(T-101). Glycerol was recovery from T-101 and then it was reduced pressure to 1 atm
(VAL-103) before sent back to the reactor (GLYCERO). The stream No.11 (MG, DG, TRI,
glycerol, FFA) was reduced the pressure to 1 atm (VAL-104) and then it was heated
to 120 °C in heater (E-103). The stream NAOH and stream MSA was heated to 120 °C
in heater (E-104) before sent to the neutralized reactor (R-NUTR). Neutralization was
carried out in a reactor (R-NUTR). The water was removed via flash distillation (V-101)
and then separated CH;NaOsS from SEP. Pump (P-102) was used to increase the
pressure of stream No.19 to 1.5 atm. The last step of the scenario Ill was purification
through the distillation (T-102) to separate FFA from the product stream and the
distillation (T-103) to obtain 90%wt purity of MG. The stream DI was purified via
distillation (T-104) to achieve DG to 97%wt purity.
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3.4.4 Scenario IV: Transesterification of TG-glycerolysis of FAME heterogeneous
catalyst.

In the fourth scenario, MG is synthesized from WCO via transesterification of
TG and glycerolysis of FAME. The kinetic parameters of transesterification reaction are
listed in Table 8 obtained from a report by Roy et al. [40] The main reaction is
transesterification of TG as presented in Eq. (2.12). The WCO and the MTOH feed
steams were mixed in MIX-100. It was heated to 65 °C in heater (E-100) before sent
to the reactor (TRANS). Transesterification was carried out in reactor (TRANS) using a
K/CeO, to produce FAME, glycerol. The resulting mixture of reactants and products
(MTOH, FAME, glycerol, FFA, water) was increased the pressure to 1.5 atm (P-100) and
sent to distillation (T-100). Methanol was recovery from T-100 and then it was
reduced pressure to 1 atm (VAL-100) before sent back to the TRANS reactor. It was
reduced pressure to 1 atm (VAL-101) after that the water was removed via flash
distillation (V-100). For, the glycerolysis of FAME process, the stream No.7 (TRI, MTOH,
FAME, glycerol, water, FFA) and stream of MGO were mixed in MIX-101, after that
reduced the temperature to 135 °C in E-101 before sent to the reactor (GLYCERO).
Glycerolysis of FAME was carried out in reactor (GLYCERO) to produce MG, DG, MTOH
and then it was increased the pressure to 1.5 atm (P-101) before sent to the
distillation (T-101). Methanol was recovery from T-101 and then it was reduced
pressure to 1 atm (VAL-102) before sent back to the TRANS reactor. The stream
No.11 was heated to 350 °C in heater (E-102) before sent to the separation (SEP). And
the last step of the scenario | was purification through the distillation (T-102) to make
FAME to 96.5%wt purity and the distillation (T-103) to make MG to 90%wt purity.

Table 10 summarizes the temperature and pressure of all units for 4

scenarios.
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3.5 Cost analysis

The cost analysis for the MG and DG producing techniques is shown in the
section below. The cost of manufacturing was calculated by estimating the capital
investment, operational labor cost, utility cost, waste treatment cost, and raw

material cost, respectively.

3.5.1 Equipment and capital cost

The capital cost of the MG and DG manufacturing processes is calculated
using the module costing approach. The simulation data from Aspen Plus V11
software is used to estimate the sizing of the equipment. From the acquired
equipment and installation charges, the bare module cost (CBM) is computed. To
account for inflation, the chemical engineering plant cost index (CEPCI = 801.3, 2022)
[49] is employed (year 2022).

logC;=K|+ K,log (A) +K,[log, (A) 12 (3.1)

where C; is equipment purchasing cost at carbon steel construction and
ambient pressure, Jan 2001 (CEPCI = 394.3 ,2001). K;, K, K3 are cost constants, and A

is equipment capacity as indicated in Table 11.

Table 11 Parameters of estimated equipment cost [50].

Equipment Unit for A K; K, K

Pumps (Centrifugal) KW 3.8696 0.3161 0.1220
Pressure vessel (cs) m’ 3.4974 0.4485 0.1074
Reactor (agitated, jacketed) m’ 4.1052 0.5320 -0.0005
Sieve trays m? 2.9949 0.4465 0.3961
Heat exchanger (Floating head) m? 4.8306 -0.8509 0.3187
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Eqg. (3.2) was used to evaluate bare module cost of each equipment. Egs.
(3.3) and (3.4) showed the fixed cost investment (FCl) and the total capital
investment (TCl), respectively. The FCl is combination of direct costs (purchasing
equipment and installation cost) and indirect costs ( freight, overhead, and
engineering). In addition, TCl is summarization of FCl and working capital (WC) that is
capital needed for the initial operation of the plant. Working capital was assumed at

15% of total capital investment.

Bare module cost of equipment:
Cpy=CJIB +B,F F | (3.2)

2p m

Fixed capital investment (FCI):

Total capital investment (TCI):
100
TCI= ——=FCI (3.4)
85

where Cgy is equipment bare module cost. B;, B, are constants for bare
module estimation. F, is pressure factor and F,, is material factor. F,, = 1 when
material of construction is carbon steel. FC/ is fixed capital investment and TC/ is

total capital investment.

3.5.2 Cost of manufacturing (COM)

The manufacturing cost of MG and DG production process, including non-
depreciable production costs (COMy), is calculated by investing in fixed costs.
Operating labor cost (Cpy), utility cost (Cyy), waste treatment (Cy7) and raw material
cost (Cry) is calculated using Eq. (3.5). The cost of operating labor cost was estimated

from Eq. (3.6)

COM, =0.180FCI+2.73C; + 1.23( C 1+ Cyrt Cpy)) (3.5)

NOL=( 6.29+ 31.7P2+ 0.23an) 0.5 (3.6)
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where COMy is manufacturing cost, FC/ is fixed cost investment, Cp, is cost of
operating labor, Cyr is cost of utility, Cyr is cost of waste treatment, Cgy, is cost of raw
material, Np, is number of operators per shift, N, is unit that non-particulate
processing (compression, heating/ cooling, separation, mixing and reaction), and P is
particulate processing unit (transportation, distribution and particle size control).

Depreciation is not included in the computed production cost in Eq. (3.5). The
operating labor cost was assumed at 24,600 USD/y [50] with a single operator works
49 weeks/y, 5 shifts/week and 8 hr/shift [51]. Thailand's operational labor rate was
used as a comparison. It should be noted that the labor rate can be significantly

different in other countries.
3.5.3 Cost of raw materials
The cost of raw materials and products which are used to calculate in this

study are presented in Table 12.

Table 12 Cost of raw materials and products.

Component name Price (USD/ton) Ref.
WCO 224 [52]
Methanol 600 [53]
Sodium methoxide 1,150 [54]
Phosphoric acid 340 [55]
K/CeO, 78,520 (56, 57]
Water 2.84 [58]
Sodium hydroxide 200 [54]
Methanesulfonic acid 1,600 [59]
Glycerol 1,260 [60]
Magnesium oxide 1,500 [61]
Monoglyceride 800 [62]
Diglyceride 600 [63]

Biodiesel (FAME) 524 [64]
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Operation of the MG and DG production processes are provided by utilities.

Hot utilities are such as low-pressure steam, medium-pressure steam, and high-

pressure steam. The utility cost is presented in Table 13

Table 13 Utility cost [51].

Utility Unit Cost of utility
Cooling water USD/GJ 0.21
LP steam UsD/GJ 1.90
MP steam UsD/GJ 2.20
HP steam USsD/GJ 2.50
Hot oil USD/GJ 3.50
Fired temperature UsD/GJ 4.25
Very high temperature USsD/GJ 8.90
Electricity USD/GJ 16.9

3.6 MG production cost and sensitivity analysis

3.6.1 MG production cost

Economic analysis was carried out based on the finding of the process

simulation in terms of itemized cost estimation and sensitivity analysis of net present

value (NPV). The total annual costs and the annual MG production were used to

calculated itemized cost estimation per unit of MG production, as given in Eq. (3.7).

UsD
Total annual cost (T)

MG production cost (% of MG) =

Annual MG production (kg ofMTG)

(3.7)

The total annual costs are summation of the annualized capital costs and the

annual operating costs.
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3.6.2 Sensitivity analysis

The influence of uncertainty on input parameters, such as raw material cost,
utility cost, total capital investment, and MG and DG selling prices, are investigated
using sensitivity analysis. The net present value (NPV) is the total discounted cash
flow at the conclusion of the project. The output NPV of the processes is influenced
by the input parameters. The range of price study was selected in the proximity of 0
to selected price of each parameter or proximity of -100% to +100% from the base
condition (0%) to each parameter, while the values of other parameters remain fixed.
The NPV in this study is calculated using a 10-year plant life and a 10% internal rate

of return. Eqg. (3.8) is used to compute the NPV.

10 Net cash flow at year n
NPV= - (3.8)
2l (1+0.10)"
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Chapter 4

Results and discussion

A techno-economic analysis of MG and DG production process was presented
in this study. The simulation results were discussed in following aspects: performance

analysis, energy consumption, cost analysis and sensitivity analysis.

4.1 Performance analysis

4.1.1 Comparisons of required feedstock amount

Based on material balance, 100 kmol/hr of WCO was fed to the process,
which corresponded to 787,110 ton/year of WCO consisting of triolein 90%, oleic acid
6%, and water 4% for all scenarios in this study. The number of other reactants are

required for each scenario as shown in Fig. 17.

80000 70,508
— 64,571

60000 51,527 51,527 51,767
=
E 40000
™~
[*}
o
% 20000
°
o
]
[T 5

0
Scenario | : Scenario Il : Hydrolysis of Scenario Ill : Hydrolysis of Scenario IV :
Transesterification of TG-  TG-glycerolysis of FFA  TG-glycerolysis of FFA Add Transesterification of TG-
glycerolysis of FAME GLY glycerolysis of FAME

Hetero add MgO
OMTOH BWATER OGLY
Fig. 17 The required amount of feedstocks calculated based on supplied WCO of
787,110 ton/year

After mixing with the recycle stream, the methanol feed was based on a molar
ratio 14:1 of triglyceride at inlet of the reactor for scenario | and IV (Transesterification
of TG-glycerolysis of FAME), while the water feed was based on a molar ratio 17:1 of

triglyceride at inlet of the reactor for scenario Il and Ill (Hydrolysis of TG-glycerolysis
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of FFA). Considering of scenarios | and IV, scenario IV presented lower required
methanol amount than that of scenario | because the heterogeneous catalyst of
MgO provided the higher glycerol conversion per pass (99.0%) compared to the
scenario |, which used the homogeneous catalyst of CH;ONa (34.7%). This result is
agreed with the results of Ferretti et. Al [37] and Negi et. Al [5]. Higher glycerol
conversion produced higher amount of methanol for recycling to transesterification
reactor and led to reduce the required amount of methanol. The make-up sglycerol
was not required for cases I, Il and VI since the first reaction step produce the
available slycerol for the consecutive glycerolysis. For scenario lll, the make-up
glycerol was added to achieve the glycerol to FFA molar ratio of 1:1 [38], which was
improved from scenario Il because scenario Il produced less glycerol from hydrolysis

and resulted in the lower MG production.

4.1.2 Comparisons of MG and DG productivities
100 kmol/hr of WCO was fed to the process, which corresponded to 787,110
ton/year of WCO in all scenarios. The MG and DG productivity of each scenario is

shown in Fig. 18.
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> 235,974 254,951
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Scenario | : Scenario Il : Hydrolysis of Scenario Il : Hydrolysis of Scenario IV :
Transesterification of TG-  TG-glycerolysis of FFA  TG-glycerolysis of FFA Add Transesterification of TG-
glycerolysis of FAME GLY glycerolysis of FAME

Hetero add MgO

B Monoglyceride DO FAME [ODiglyceride

Fig. 18 The MG and DG productivity of each scenario

Comparison of transesterification of TG and glycerolysis of FAME in the
scenario | and IV with hydrolysis of TG and glycerolysis of FFA in the scenario Il and Il

transesterification-glycerolysis  processes provided higher MG production than
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hydrolysis-glycerolysis processes because the higher yield of MG form glycerolysis of
FAME. The maximum MG productivity (282,763 ton/year) was obtained in scenario |,
followed by scenario IV, lll, and I, respectively.

Considering the MG productivity of scenario | and IV, the scenario | gave more
recycled unreacted glycerol (142,377 ton/year) resulting in higher reactant inlet the
glycerolysis reactor of and leading to higher MG productivity than that of scenario IV.
For the MG productivity of scenario Il and Ill, scenario Il provided higher MG
productivity than that of scenario Il because the make-up glycerol was added to the
glycerol to FFA molar ratio of 1:1 in scenario Il which can improve the MG
production rate in scenario Il. Considering the by-product of all process, FAME was a
by-product from transesterification for scenarios | and IV, while DG was a by-product
from hydrolysis and glycerolysis reaction for scenarios Il and lll. Thus, they have a
market value which is positive effect in economics of the process. In addition,
scenario | provided higher FAME productivity than that of scenario IV because
scenario IV consumed more FAME for glycerolysis (overall glycerol conversion was

99.83%) than scenario | (overall glycerol conversion was 98.01%).

4.1.3 Comparison of energy consumption

Energy consumption for scenario | was divided into 4 sections:
transesterification section (E-100, TRAN, P-100, T-100, and V-100), glycerolysis section
(E-101, GLYCERO, P-101, T-101 and T-102), separation section for washing
homogeneous catalyst (E-102, E-103, R-NUTR, and SEP), and product purification
section (P-102, T-103 and T-104). For scenario Il and lll, energy consumption was
divided into 4 sections: hydrolysis section (E-100, HYDRO, P-100, E-101, and T-100),
glycerolysis section (E-102, GLYCERO, V-100, P-101 and T-101), separation section for
washing homogeneous catalyst (E-103, E-104, R-NUTR, V-101, and SEP), and product
purification section (P-102, T-102, T-103, and T-104). For scenario IV, energy
consumption was divided into 3 sections: transesterification section (E-100, TRANS, P-
100, T-100, and V-100), glycerolysis section (GLYCERO, P-101, and T-101), and product
purification section (T-102 and T-103). The energy consumption was considered only

hot duties and electricity which were the amount of energy that we have to provide
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to the system. The divided energy consumption was presented in Fig. 19 and Table
14. The order of energy consumption is required as scenario | (167,547.76 kW),
followed by scenario Il (161,900.02 kW), scenario Il (154,981.59 kW) and scenario IV
(83,710.99 kW), respectively. Production process in scenario IV can reduce one
distillation column for separation and a recycle line of unreacted slycerol, thus
leading to the reduction of energy consumption in the glycerolysis and purification
sections as compared to the scenario I. Moreover, the energy glycerolysis section was
decreased for scenario IV since the total inlet reactant including recycle stream was
lower than that of scenario I. Whereas, the overall energy consumption for scenario
Il was higher compared to the scenario Il due to the addition of glycerol stream to
accelerate glycerolysis rate resulting to increase the energy consumption in the

glycerolysis section from 27,662.94 to 39,058.71 kW.
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Energy consumption (kW)

Scenario | : Scenario Il : Hydrolysis Scenario Il : Hydrolysis Scenario IV :
Transesterification of  of TG-glycerolysis of  of TG-glycerolysis of Transesterification of
TG-glycerolysis of FFA FFA Add GLY TG-glycerolysis of

FAME FAME Hetero add MgO

W Transesterification Hydrolysis ~ EGlycerolysis M Catalyst removal [ Purification

Fig. 19 Energy consumptions in each scenario
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Table 14 Comparisons of energy consumptions was divided into 4 sections for each

scenario.

Parameters Unit Scenario | Scenario |l Scenario Il Scenario IV
Transesterification kW 41,490.22 - - 42,219.56
Hydrolysis kW - 78,423.70 78,423.70 -
Glycerolysis kKW 38,802.88 27,662.94 39,058.71 16,972.95
Catalyst removal kW 636.53 4,643.82 4,731.38 -
Purification KW 86,618.12 44,240.09 39,675.23 23,714.73

The details of energy consumption of each unit operation as presented in Fig.
20 and Table 15. The unit operation for purification of FAME (T-103 distillation
column) for scenario | required the highest energy consumption since the energy was
used to heat a large amount of low purity FAME. While the unit operation for
separation of water in hydrolysis process (T-100 distillation column) for scenario |l
and Il required the highest energy consumption for separation the excessive amount
of water and recycled back to hydrolysis reactor. For scenario IV, the unit operation
for separation of methanol in transesterification process (T-100) also required the
highest energy consumption for using to separate an excessive amount of methanol

and recycled back to transesterification process.

180000

i 150000
S
= 120000
Q.
g 90000
%)
[=
8 60000
>
20
@ 30000
[=
wi
0
Scenario | : Scenario Il : Hydrolysis of TG-  Scenario Il : Hydrolysis of Scenario IV :
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Fig. 20 Details of energy consumptions for each unit operation of all scenarios



Table 15 Comparisons of energy consumptions for each unit operation.

aq

Parameters Unit Scenario | Scenario |l Scenario Il Scenario IV
V-100 kw 7,415.12 4,400.37 6,092.39 4,234.33
V-101 kw - 4,558.59 4,646.15 -
E-100 kw 1,556.66 29,339.9 29,339.9 1,452.26
E-101 kw - - - 806.749
E-102 kw - - - -
E-103 kw 51.05 - - -
E-104 kw - 85.23 85.23 -
T-100 kw 32,515.70 47,172.00 47,172.00 36,530.20
T-101 kw 17,325.40 20,533.30 27,402.50 15,054.20
T-102 kw 19,946.80 36,177.10 23,677.90 14,503.90
T-103 kw 78,722.80 5,134.36 10,356.10 9,210.83
T-104 kw 7,893.41 2,925.33 5,637.78 -
TRANS kw - - - -
GLYCERO FAME kw 1,512.82 — - 1,913.58
HYDRO kw - - - -
GLYCERO FFA kw - 2,7126.56 5,560.51 -
R-NUTR kw 585.476 - - -
P-100 kW 2.74 1,911.80 1,911.80 2.77
P-101 kW 17.86 2.71 3.31 2.17
P-102 kw 1.91 3.30 3.45 -
SEP kw - 11.03 10.98 -
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4.1.4 Comparison of energy consumption per MG productivity.

The divided energy consumption per MG productivity was presented in Fig 21
and Table 16. Overall energy consumption per MG productivity of scenario IV was the
lowest (0.33 kW/ton) due to scenario IV provided the lowest energy consumption
and high MG productivity, followed by scenario | (0.59 kW/ton), scenario Il (0.94
kW/ton) and scenario Il (1.70 kW/ton), respectively.

2.00

1.70

1.60

1.20 0.94

0.80 0.59

0.00 -

Scenario | : Scenario Il : Hydrolysis of Scenario Ill : Hydrolysis of Scenario IV :
Transesterification of TG-  TG-glycerolysis of FFA  TG-glycerolysis of FFA Add Transesterification of TG-
glycerolysis of FAME GLY glycerolysis of FAME

Hetero add MgO

Overall energy consumption per MG
productivity (kW/ton)

M Energy consumption per MG productivity

Fig. 21 Energy consumption per MG productivity

Table 16 Comparison of energy consumption per MG productivity.

Parameters Unit Scenario | Scenario |l Scenario Il Scenario IV
MG
ton/year  282,763.00  91,049.20 171,335.00 254,951.00
productivity
Energy
kW 167,547.76  154,981.59 161,900.02 83,710.99
consumption

Overall energy
consumption

kW/ton 0.59 1.70 0.94 0.33
per MG

productivity
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4.2 Cost analysis

4.2.1 Comparison of capital investment

The capital investment of different scenarios was shown in Fig. 22 and Table
17 which summarized the capital investment for economic evaluation. This can be
seen that scenario | gave the highest MG productivity as well as required the highest
capital investment cost. Most cost of capital investment in scenario | was derived
from the reactor cost based on the size of the reactor including reactor for
neutralization process of homogenous catalyst. Moreover, the highest cost of reactor
was obtained in scenario | because transesterification was carried out for the longest
residence time as well as glycerolysis using homogeneous catalyst. Thus, large
volume of reactors was installed resulting to the highest cost of reactor. In addition,
the cost of the distillation significantly increased for scenario | due to it required
more distillation column to separate unreacted slycerol for recovery as compared to
scenario IV which applied heterogenous catalyst on glycerolysis. The scenario |
required the highest total capital investment (20.12 Million USD), followed by
scenario Il (19.64 Million USD), II (19.03 Million USD) and | (12.22 Million USD),
respectively. The high pump cost is acquired for scenario Il and lll because the
hydrolysis condition was carried out at high operating pressure, resulting in the
requirement of high cost of operated reactor. From the result, scenario IV provided
the lowest total capital investment (TCl) and presented the lowest TCl per ton of MG

produced due to the high MG production obtained from scenario IV.
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Table 17 Capital investment costs of MG and DG production processes.
Parameters Unit Scenario | Scenario Scenario |lI Scenario IV
MG
ton/year 282,763.00 91,049.20 171,335.00 254,951.00
productivity
Pump usD 201,359.80 1,179,077.48 1,184,504.60 118,046.34
Heat
usSD 656,439.50 485,793.18 496,445.81 103,263.45
exchanger
Reactor usD 8,449,154.04 7,801,743.71 8,053,337.46 5,590,431.28
Separator usSD 76,652.06 78,553.09 85,332.54 85,332.17
Distillation usD 5,034,004.62 4,081,171.73 4,154,515.41 2,825,222.68
Fixed capital
usD 17,105,472.48 16,272,465.29 16,694,336.41 10,393,001.15
investment
Total capital
usD 20,124,085.27 19,144,076.81 19,640,395.77 12,227,060.18

investment




4.2.2 Comparisons of manufacturing cost

The cost of manufacturing of different scenarios was shown in Fig. 23 and
Table 18. Scenario Il required the highest cost of manufacturing without depreciation
(COMy). Mostly COMy for all scenarios was derived from the raw material cost and
utility cost. The scenario IV presented the lowest COMy (296.17 Million USD),
followed by scenario Il (301.58 Million USD), | (329.99 Million USD) and Il (392.11
Million USD), respectively. Moreover, the lowest COMy per ton of produced MG after
deduction of the revenue from by-product was included in scenario | since scenario |
providing the highest MG productivity as presented in Table 17. The minimum MG
production cost (213.51 USD/ton) was obtained in scenario I, followed by scenario IV
(244.26 USD/ton), Il (718.67 USD/ton), and Il (1,757.50 USD/ton), respectively. For
scenario I, Il and IV, MG production cost per ton of MG was still lower than currently

MG price (800 USD/ton) [62], indicating that these processes can be feasible

economically.
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Table 18 Cost of manufacturing of MG and DG production processes.

a9

Parameters Unit Scenario | Scenario |l Scenario Il Scenario IV
Raw material
WCO UsD/y 176,312,640.00 176,312,640.00 176,312,640.00 176,312,640.00
MTOH UsD/y  40,370,760.00 - - 31,057,200.00
CH;ONa UsD/y  15,020,150.00 - - -
K/CeO, UsD/y 906,949.19 - - 906,949.19
Water USD/y - 146,337.82 146,337.82 -
NaOH USD/y - 2,512,160.00 2,512,160.00 -
MSA USD/y - 24,584,320.00  24,584,320.00 -
Glycerol uSD/y - - 81,358,830.00 -
MgO USD/y f Q - 9,143,280.00
Utility
LP Steam?® UsDry 85,371.41 1,605,484.80 1,605,484.80 79,490.07
MP steam?® usD/y  2,194,774.08 218,588.48 357,714.72 -
HP steam? USD/y = 3,521,970.00 4,170,334.00 2,630,180.00
Hot oil UsDry 748,991.60 = - 426,820.80
FIREDP USD/y  4,794,370.60 2,026,903.20 3,354,066.00 234,192.00
VERY® USD/y  22,284,866.64  11,013,963.60  10,168,719.92  9,937,248.72
Cooling water  USD/y 946,551.36 793,599.90 778,181.96 357,341.11
Electricity USD/y 11,417.80 933,443.73 933,809.53 3,869.55
Total utility

USD/y  31,066,343.50  20,113,953.71  21,368,310.93  13,669,142.25
cost
Operating

USD/y 369,000.00 369,000.00 369,000.00 344,400.00
labor cost
Waste
management  USD/y  2,004,980.40 18,334,303.20 9,244,119.60 7,417,270.80

cost
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Table 18 Cost of manufacturing of MG and DG production processes (continue).

Parameters Unit Scenario | Scenario |l Scenario |lI Scenario IV

Cost of
USD/y  329,991,714.27 301,584,688.88 392,110,214.12  296,173,925.36
manufacturing

COM( per ton

UsD/t 1,167.03 3,312.90 2,289.21 1,160.70
MG
COMy per ton
methanol
(Deduct from  USD/t 21351 1,757.50 718.67 244.26
revenue of

selling value)

8LP, MP and HP are low pressure, medium pressure and high pressure, respectively
PFIRED is fired heat

“VERY is very high temperature fired heat

4.3 Sensitivity analysis

Sensitivity analysis was performed to investigate the impact of input parameters
on the MG production cost of the MG production processes, as shown in Fig. 24.
Sensitivity analysis based on a 10-year project were undertaken by varying by-
product price, WCO price, fixed capital investment (FCI), utility costs, methanol price,
catalyst price in scenario | and IV, and water price in scenario Il and Ill. Each
parameter was varied from -40% to +40% from the based scenario (0%). The
sensitivity analysis can reveal the most sensitive factor to the process, providing
significant influence. At the current conditions, the MG production cost of the MG
production plant was lower than the current MG price in scenario I, lll, and IV.
Therefore, these processes can return a profit which corresponded to positive net
present value (NPV) of 803.14, 52.02, and 691.63 Million USD for scenario |, lll, and IV,
respectively. By-product price was also being the most sensitive parameter for
scenario |, lll, and IV. The subsequent parameters of scenario | and IV were WCO

price, methanol price, utility cost, and FCl, while the subsequent parameters of
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scenario Il and Il were WCO price, utility cost, water price, and FCl. Moreover, WCO
price was the most sensitive parameter for scenario Il followed by by-product price,
utility cost, water price, and FCl. For payback period of scenario |, Ill, and IV was 0.17,
1.88, and 0.12 year, respectively. In summary, transesterification of TG and
glycerolysis of FAME in the scenario | and IV not only provided the high productivity
but also achieved the great value for investment. The scenario | provided the highest
productivity and lowest MG production cost and scenario IV when applied
transesterification followed by g¢lycerolysis process with heterogenous catalyst
presented high productivity, low MG production cost and lowest energy

consumption.
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Fig. 24 Sensitivity analysis (SA) in term of MG production cost in (a) scenario |,
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Chapter 5

Conclusion

5.1 Conclusions

A techno-economic analysis of MG and DG production process was presented
in this study. The simulation results were discussed in following aspects: performance
analysis, energy consumption, cost analysis and sensitivity analysis. 100 kmol/hr of
WCO was fed to the process, which corresponded to 787,110 ton/year of WCO as a
basis of calculation for all scenario in this study. In both scenarios | and IV, MG is
synthesized from WCO via transesterification of TG and glycerolysis of FAME then
scenarios Il and Ill, MG is synthesized from WCO via hydrolysis of TG and glycerolysis
of FFA, Therefore, it is divided into four scenarios including of scenario I
transesterification of TG-glycerolysis of FAME using a homogeneous catalyst of
CH3ONa, scenario II: hydrolysis of TG-glycerolysis of FFA, scenario lll: hydrolysis of TG-
glycerolysis of FFA with make-up glycerol and scenario IV: transesterification of TG-
glycerolysis of FAME using a heterogeneous catalyst of MgO. After mixing with the
recycle stream, the methanol feed was based on a molar ratio 14:1 of TG at inlet of
the reactor for scenario | and IV, while the water feed was based on a molar ratio
17:1 of TG at inlet of the reactor for scenario Il and Illl. For scenario | and IV
(Transesterification of TG-glycerolysis of FAME), scenario IV presented lower required
methanol feed than scenario I. In addition, scenario lll which make-up glycerol was
added to obtain the glycerol to FFA molar ratio of 1:1 as an improvement from
scenario |l.

Comparison of transesterification of TG-glycerolysis of FAME scenarios
(scenario | and IV) and hydrolysis of TG-glycerolysis of FFA scenarios (scenario Il and
IIl), transesterification-glycerolysis processes provided higher MG production than
hydrolysis-glycerolysis processes. Considering the MG productivity, the maximum MG
productivity (282,763 ton/year) was obtained in scenario I, followed by scenario IV, I,

and I, respectively. For by-product of all processes, FAME was a by-product from
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transesterification for scenarios | and IV, while DG was a by-product from hydrolysis
and glycerolysis for scenarios Il and lll. In addition, scenario | provided higher FAME
productivity than that of scenario IV since the scenario IV consumed FAME for
glycerolysis reaction more than scenario .

For the energy consumptions, scenario | required the highest energy
consumption (167,547.76 kW), followed by scenario Il (161,900.02 kW), scenario |l
(154,981.59 kW) and scenario IV (83,710.99 kW), respectively. Production process in
scenario IV can reduce one distillation column for separation and a recycle stream of
unreacted glycerol, leading to reduce energy consumption in glycerolysis and
purification section compared to the scenario I. Moreover, the energy glycerolysis
section was decreased for scenario IV since the total inlet reactant including recycle
stream was lower than that of scenario I. Whereas the overall energy consumption
for scenario lll was higher compared to the scenario Il due to the addition of make-up
glycerol stream to enhance glycerolysis rate.

For the capital investment of different scenarios, although scenario | achieved
the highest MG productivity, scenario | also required the highest capital investment
cost (TCI). Most cost of capital investment in scenario | was derived from the reactor
cost due to the size of reactor including neutralization reactor for homogenous
catalyst. In addition, the cost of the distillation significantly increased for scenario |
due to it required one distillation column for separation and unreacted glycerol
recovery as compared with scenario IV which applied heterogenous catalyst for
glycerolysis. Scenario Il and Il presented the high pump cost because hydrolysis
condition was carried out high pressure. Although scenario Il provided the lowest TCl
while scenario IV provided the lowest TCl per ton of MG produced due to high MG
production of scenario V.

For the cost of manufacturing without depreciation (COMy), scenario I
presented the highest cost of manufacturing without depreciation (COMy). The
scenario IV achieved the lowest COMy (296.17 Million USD), followed by scenario |I
(301.58 Million USD), I (329.99 Million USD) and Il (392.11 Million USD), respectively.
Moreover, the minimum MG production cost (213.51 USD/ton) was obtained in

scenario |, followed by scenario IV (244.26 USD/ton), Il (718.67 USD/ton), and I
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(1,757.50 USD/ton), respectively. For scenario |, Il and IV, MG production cost per ton
of MG was also lower than currently MG price, indicating that these processes can be
feasible economically.

Sensitivity analysis based on a 10-year project were undertaken by varying of by-
product price, WCO price, fixed capital investment (FCI), utility costs, methanol price
in scenario | and IV, and water price in scenario Il and lll. The sensitivity analysis can
reveal that the factor is the most sensitive to the process, providing significant
influence. At the current conditions, the MG production cost of the MG plant was
lower than the current MG price in scenario |, lll, and IV. Therefore, these processes
returned the profit which corresponded to positive net present value (NPV) of 803.14,
52.02, and 691.63 Million USD for scenario I, lll, and IV, respectively. By-product price
was the most sensitive parameter for scenario |, Ill, and IV. For payback period of
scenario I, lll, and IV were 0.17, 1.88, and 0.12 year, respectively. This simulation
results suggested that using transesterification of TG and glycerolysis of FAME in the
scenario | and IV are potential processes for MG production based on the MG

productivity and economic assessment.

5.2 Suggestions

5.2.1 Effect of types of catalyst should be further used to investigate due to it
directly results in the productivity of MG from g¢lycerolysis. In addition, the
heterogeneous catalyst can decrease energy consumption of the process as can be
seen from scenario IV.

5.2.2 Operating conditions and parameters of hydrolysis should be further
optimized to improve the productivity and decrease of energy consumptions such as

using heterogeneous catalyst instead of subcritical water.
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APPENDIX B

Total energy requirement

Table B-1 Energy requirement of Transesterification of TG-glycerolysis of FAME.

Process Symbol Equipment Type Utility Duty (kw)
P-100 2.75
Centrifugal
P-101 - Electricity 17.86
pump
P-102 1.92
E-100 Heater LP steam 1,560.16
E-101 8,410.87
Heat exchanger Cooler Cooling water
E-102 15,811.29
E-103 Heater MP steam 51.06
TRANS Cooling water | 1,775.26
R-NUTR 585.47
Reactor Isothermal
GLYCERO MP steam
1,516.28
Scenario | FAME
SEP Separate Cooler Cooling water 0.002
V-100 Flash vessel Heater HOT steam 7,430.53
Condenser Cooler Cooling water | 27,664.36
T-100
Reboiler Heater MP steam 32,487.20
Condenser Cooler Cooling water | 2,166.00
T-101
Reboiler Heater FIRED 14,186.75
Condenser Cooler Cooling water | 20,267.08
T-102
Reboiler Heater FIRED 24,983.26
Condenser Cooler Cooling water | 70,898.62
T-103
Reboiler Heater VERY 78,470.35
Condenser Cooler Cooling water 8,037.79
T-104
Reboiler Heater VERY 8,471.93
Total cooling 15,5031.27
Total heating 169,743.00
Total electricity 22.52
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Table B-2 Energy requirement of Hydrolysis of TG-glycerolysis of FFA.

Process Symbol Equipment Type Utility Duty (kW)
P-100 1,911.80
Centrifugal
P-101 - Electricity 2.72
pump
P-102 3.31
E-100 Heater LP steam 29,340.23
E-101 18,657.54
Heat
E-102 Cooler Cooling water | ¢390.63
exchanger
E-103 15,853.07
E-104 Heater MP steam 8522
HYDRO Cooling water | 157,292.00
R-NUTR Cooling water 2,886.77
Reactor Isothermal
GLYCERO
MP steam 3,364.75
Scenario |l FFA
SEP Separate Heater HP steam 10.83
V-100 4,603.68
Flash vessel Heater HP steam
V-101 4,496.81
Condenser Cooler Cooling water | 41,119.77
T-100
Reboiler Heater HP steam 39805.32
Condenser Cooler Cooling water 7,166.45
T-101
Reboiler Heater FIRED 16,559.80
Condenser Cooler Cooling water | 26,954.02
T-102
Reboiler Heater VERY 33,470.82
Condenser Cooler Cooling water 2,671.49
T-103
Reboiler Heater VERY 3,381.61
Condenser Cooler Cooling water | 2,818.74
T-104
Reboiler Heater VERY 6,117.49
Total cooling 129,980.06
Total heating 141,236.57
Total electricity 1,917.83
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Table B-3 Energy requirement of Hydrolysis of TG-glycerolysis of FFA added glycerol.

Process Symbol Equipment Type Utility Duty (kW)
P-100 1,911.80
Centrifugal
P-101 - Electricity 3.32
pump
P-102 3.46
E-100 Heater LP steam 29,340.23
E-101 26,024.68
Heat
E-102 Cooler Cooling water | ¢219.27
exchanger
E-103 18,034.37
E-104 Heater MP steam 8522
HYDRO Cooling water | 157,292.00
R-NUTR Cooling water 2,886.25
Reactor Isothermal
GLYCERO
MP steam 5,560.57
Scenario lI FFA
SEP Separate Heater HP steam 10.83
V-100 6,092.44
Flash vessel Heater HP steam
V-101 4,646.18
Condenser Cooler Cooling water | 41,119.77
T-100
Reboiler Heater HP steam 47,172.32
Condenser Cooler Cooling water | 11,811.32
T-101
Reboiler Heater FIRED 27,402.72
Condenser Cooler Cooling water | 4,569.26
T-102
Reboiler Heater VERY 23,678.08
Condenser Cooler Cooling water | 5,949.27
T-103
Reboiler Heater VERY 10,356.22
Condenser Cooler Cooling water 5,379.07
T-104
Reboiler Heater VERY 5,637.99
Total cooling 129,980.06
Total heating 159,982.81
Total electricity 1,918.57
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Table B-4 Energy requirement of Transesterification of TG-glycerolysis of FAME using

heterogeneous catalyst.

Process Symbol Equipment Type Utility Duty (kw)
P-100 Centrifugal 2.77
- Electricity
P-101 pump 2.18
E-100 LP steam 1,452.68
Heat Heater
E-101 HOT steam 806.76
exchanger
E-102 Cooler Cooling water | 496510
TRANS Cooling water 1,773.82
GLYCERO Reactor Isothermal
FIRED 1,913.35
FAME
Scenario IV SEP Separate Heater VERY 0.00
V-100 Flash vessel Heater HOT steam 4.234.37
Condenser Cooler Cooling water | 28,865.23
T-100
Reboiler Heater HP steam 36,530.57
Condenser Cooler Cooling water 4,499.95
T-101
Reboiler Heater VERY 15,054.29
Condenser Cooler Cooling water 10,613.36
T-102
Reboiler Heater VERY 14,504.03
Condenser Cooler Cooling water 7,809.78
T-103
Reboiler Heater VERY 9,210.91
Total cooling 58,527.25
Total heating 82,900.19

Total electricity 4.95
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APPENDIX C

Cost evaluation

Total capital investment can be calculated from Eqgs (3.1)-(3.4)

Table C-1 Total capital investment of Transesterification of TG-glycerolysis of FAME.

Process Symbol Equipment A(Eq. 3.1) Unit Cam
P-100 2.75 52,721.35
P-101 Centrifugal 1786 W 101.737.33

pump
P-102 1.92 46,901.13
E-100 31.47 40,655.02
E-101 Heat 78.86 , 25,538.46
E-102 exchanger 93.42 " 23,631.14
E-103 0.77 566,614.88
TRANS 348.16 2,330,520.97
R-NUTR s 13.79 e 418,316.84
GLYCERO 1,870.39 5,700,316.22
FAME
SEP Separate 17.85 m’ 76,652.06
Scenario |
V-100 Flash vessel 18.79 m’ 78,553.09
Vessel 532.83 m> 522,003.14
Sieve 10.06(5) diameter(trays) 607,689.58
e Condenser 641.04 m? 116,84.59
Reboiler 770.05 m’ 117,446.82
Vessel 54.04 m’ 140,520.44
Sieve 2.74(8) diameter(trays) 82,158.10
ot Condenser 49.97 m? 31,872.19
Reboiler 738.03 m’ 115,603.53
Vessel 490.39 m’ 461,587.88
Sieve 6.40(15) diameter(trays) 403,217.23
ez Condenser 96.19 m’ 23,322.24
Reboiler 2,865.41 m’ 216,253.72




Table C-1 Total capital investment of Transesterification of TG-glycerolysis of

FAME (continue).

Process Symbol Equipment A (Eq. 3.1) Unit Caum
Vessel 1,174.55 m> 781,962.41
Sieve 9.91(15) diameterl(trays) 948,262.75
T-103
Condenser 463.69 m? 12,856.06
Reboiler 619.12 m? 108,563.95
Scenario |
Vessel 105.24 m’ 200,980.48
Sieve 3.96(7) diameterl(trays) 132,703.55
T-104
Condenser 26.5482 m? 44,670.78
Reboiler 71.4742 m? 70,645.10
FCI (USD) 1.18%(2CBM) 17,105,472.48
TCI (USD) (100/85)*FCl 20,124,085.27
FCl per ton MG 60.49
MG productivity = 282,763 ton/year
TCl per ton MG 71.17

Table C-2 Total capital investment of Hydrolysis of TG-glycerolysis of FFA.

Process Symbol Equipment A(Eq. 3.1) Unit Cau
P-100 1,911.80 1,055,676.09
P-101 Centrifugal pump 272 kw 67,320.43
P-102 B3I 56,080.95
E-100 1,506.42 12,510.53
E-101 115.63 28,343.57
E-102 Heat exchanger 144.71 m? 19,565.89
Scenario |l E-103 98.70 23,054.91
E-104 113 408,367.04
HYDRO 76.96 6,138,268.20
R-NUTR 14.13 423,712.82
Reactor m?3
GLYCERO 106.30
1,239,762.68
FFA
SEP Separate 18.79 m’ 78,553.09
V-100 18.79 78,553.09
Flash vessel m’
V-101 22.34 85,332.53
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Table C-2 Total capital investment of Hydrolysis of TG-glycerolysis of FFA

(continue).
Process Symbol Equipment A (Eq. 3.1) Unit Cau
Vessel 883.76 m? 718,536.64
Sieve 12.95(5) diameter(trays) 1,048,098.64
T-100
Condenser 367.89 m?2 13,842.58
Reboiler 854.38 m? 122,207.66
Vessel 76.45 m’ 171,015.86
Sieve 3.81(5) diameter(trays) 103,748.25
T-101
Condenser 48.96 m? 32,204.16
Reboiler 2,036.34 m? 180,405.40
Vessel 328.97 m? 378,088.85
) Sieve 6.55(9) diameter(trays) 353,016.94
Scenario |l T-102
Condenser 144.71 m? 19,565.89
Reboiler 289.84 m? 86,843.89
Vessel 113.02 m’ 205,128.62
Sieve 3.35(12) diameter(trays) 128,618.21
T-103
Condenser 8.75 m? 87,955.14
Reboiler 43.39 m? 69,997.68
Vessel 39.85 m? 120,227.32
Sieve 2.43(7) diameter(trays) 65,784.26
T-104
Condenser 6.83494 m? 103,815.07
Reboiler 24.9971 m? 72,070.57
FCI (USD) 1.18%2CBM) 16,181,943.16
TCI (USD) (100/85)*FCI 19,037,580.19
FCl per ton MG 177.75
MG productivity = 91,049.2 ton/year
TCl per ton MG 209.12




Table C-3 Total capital investment of Hydrolysis of TG-glycerolysis of FFA added
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glycerol.

Process Symbol Equipment A(Eq. 3.1) Unit Cem
P-100 1,911.80 1,055,676.09
p-101 Centrifugal pump 3.32 kw 71,908.28
P-102 3.46 56,920.22
E-100 1,506.42 12,510.53
E-101 208.93 22,294.63
E-102 Heat exchanger SRIE m? 30,902.46
E-103 105.65 22,371.13
E-104 1.13 408,367.04
HYDRO 76.96 6,138,268.20

R-NUTR 14.46 429,050.60
Reactor m?
GLYCERO 149.43 1,486,018.65
FFA
SEP Separate 22.34 m> 85,332.53
Scenario Il
V-100 23.97 88,274.35
Flash vessel m>
V-101 22.34 85,332.53
Vessel 883.76 m> 718,536.64
Sieve 12.95(5) diameter(trays) 1,048,098.64
T-100
Condenser 367.89 m?2 13,842.58
Reboiler 1,009.13 m? 130,638.29
Vessel 205.62 m?3 296,242.70
Sieve 6.24(5) diameter(trays) 239,504.30
T-101
Condenser 75.15 2 26,120.05
Reboiler 2,752.76 m?2 211,526.06
Vessel 64.23 m? 153,493.59
Sieve 2.89(9) diameter(trays) 93,292.83
T-102
Condenser 29.14 m? 42,411.09
Reboiler 190.85 m? 79,409.45
Vessel 256.47 m?3 319,451.26
Sieve 4.72(14) diameter(trays) 232,032.94
T-103
Condenser 18.87 m? 54,385.01
Reboiler 87.55 m? 71,599.64




Table C-3 Total capital investment of Hydrolysis of TG-glycerolysis of FFA added

glycerol (continue).

Process Symbol Equipment A(Eq. 3.1) Unit Cem
Vessel 82.35 m’ 176,076.80
Sieve 3.50(7) diameter(trays) 109,813.72
Scenario Il T-104
Condenser 13.0373 m? 68,103.20
Reboiler 48.1838 m? 69,936.50
FCI (USD) 1.18%(2CBM) 16,694,336.41
TCI (USD) (100/85)*FCl 19,640,395.77
FCl per ton MG 97.46
MG productivity = 171,371 ton/year
TClI per ton MG 114.66

Table C-4 Total capital investment of Transesterification of TG-glycerolysis of FAME

using heterogeneous catalyst.

Process Symbol Equipment A (Eq. 3.1) Unit Cau
P-100 277 52,900.01
Centrifugal pump kw
P-101 2.18 65,146.32
E-100 29.61 42,036.89
E-101 Heat exchanger 1,094.58 m? 10,182.87
E-102 21.03 51,043.68
TRANS 348.16 m? 2,330,520.96
GLYCERO Reactor
654.25 3,259,910.30
FAME
SEP Separate 22.34 85,332.17
3
Scenario IV V-100 Flash vessel 22.34 m 85,332.17
Vessel 582.37 m? 551,593.33
Sieve 10.51(5) diameter(trays) 667,077.84
T-100
Condenser 666.64 m? 11,557.61
Reboiler 474.36 m? 99,493.24
Vessel 142.83 m? 233,897.96
Sieve 3.96(11) diameter(trays) 161,170.54
T-101
Condenser 46.87 2 32,928.40
Reboiler 117.97 m? 73,770.28
Vessel 156.93 m?> 246,957.62
T-102 Sieve 4.26(10) diameter(trays) 175,041.92
Condenser 42.33 m? 34,704.31
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Table C-4 Total capital investment of Transesterification of TG-glycerolysis of FAME

using heterogeneous catalyst (continue).

Process Symbol Equipment A(Eq. 3.1) Unit Cam
T-102 Reboiler 115.38 m? 73,576.31
Vessel 115.29 m? 208,718.24
Scenario IV Sieve 3.65(10) diameter(trays) 137,286.79
o Condenser 24.76 m? 46,468.64
Reboiler 77.55 m? 70,979.59
FCI (USD) 1.18%(2CBM) 10,393,001.15
TCI (USD) (100/85)*FCI 12,227,060.18
FCl per ton MG 40.73
MG productivity = 255,168 ton/year
TCl per ton MG 47.92

Cost of manufacturing can be obtained from Eq (3.5) and (3.6) and Table 14.

Table C-5 Cost of manufacturing of Transesterification of TG-glycerolysis of FAME.
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Component Cost/Unit Unit Cost (USD/year)
WCO (t/y) 224.00 787,110.00 176,312,640.00
MTOH (t/y) 600.00 67,284.60 40,370,760.00
CH,ONa (t/y) 1,150.00 10,100.00 11,615,000.00
H5PO, (t/y) 340.00 7,903.04 2,687,033.60
K/CeO, (ke/y) 78.52 11,550.55 906,949.19
Labor (person) 15.00 24.600.00 369,000.00
LP steam (GJ/y) 1.90 44,932.32 85,371.41
Hot oil (GJ/y) 3.50 213,997.60 748,991.60
Cooling water (GJ/y) 0.21 4,464,864.92 946,551.36
Electricity (GJ/y) 16.90 675.60 11,417.80
MP steam (GJ/y) 2.20 997,624.58 2,194,774.08
VERY (GJ/y) 8.90 2,503,917.60 22,284,866.64
FIRED (GJ/y) 4.25 1,128,087.20 4,794,370.60
Waste management (t/y) 36.00 55,693.90 2,004,980.40
FCI (USD) 17,105,472.48
Total cost of manufacturing (USD/y) 329,991,714.27
Total cost of manufacturing per ton of MG (USD/t) 1,167.03




Table C-6 Cost of manufacturing of Hydrolysis of TG-glycerolysis of FFA.
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Component Cost/Unit Unit Cost (USD/year)
WCO (t/y) 224.00 787,110.00 176,312,640.00
Water (t/y) 2.84 51,527.40 146,337.82
NaOH (t/y) 200.00 12,560.80 2,512,160.00
MSA (t/y) 1,600.00 15,365.200 24,584,320.00
Labor (person) 15.00 24,600.00 369,000.00
LP steam (GJ/y) 1.9 844,992.00 1,605,484.80
HP steam (GJ/y) 2.5 1,408,788.00 3,521,970.00
Cooling water (GJ/y) 0.212 3,586,103.76 793,599.90
Electricity (GJ/y) 16.9 55,233.36 933,443.73
MP steam (GJ/y) 2.2 99,358.40 218,588.48
VERY (GJ/y) 8.9 1,237,524.00 11,013,963.60
FIRED (GJ/y) 4.25 476,918.40 2,026,903.20
Waste management (t/y) 36.00 509286.20 18,334,303.20

FCI (USD)

16,181,943.16

Total cost of manufacturing (USD/y)

301,584,688.88

Total cost of manufacturing per ton of MG (USD/t)

3,312.72

Table C-7 Cost of manufacturing of Hydrolysis of TG-glycerolysis of FFA added glycerol.

Component Cost/Unit Unit Cost (USD/year)
WCO (t/y) 224.00 787,110.00 176,312,640.00
Water (t/y) 284 51,527.40 146,337.82
NaOH (t/y) 200.00 12,560.80 2,512,160.00
MSA (t/y) 1,600.00 15,365.200 24,584,320.00
Glycerol (t/y) 1,260.00 64,570.50 81,358,830.00
Labor (person) 15.00 24.600.00 369,000.00
LP steam (GJ/y) 1.9 844,992.00 1,605,484.80
HP steam (GJ/y) 2.5 1,668,133.60 4,170,334.00
Cooling water (GJ/y) 0.212 3,513,377.60 778,181.96
Electricity (GJ/y) 16.9 55,255.00 933,809.53
MP steam (GJ/y) 2.2 162,597.60 357,714.72
VERY (GJ/y) 8.9 1,142,552.80 10,168,719.92
FIRED (GJ/y) 4.25 789,192.00 3,354,066.00
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Table C-7 Cost of manufacturing of Hydrolysis of TG-glycerolysis of FFA added

glycerol (continue).

Component Cost/Unit Unit Cost (USD/year)
Waste management (t/y) 36.00 256,781.00 9,244,119.60
FCI (USD) 16,694,336.41

Total cost of manufacturing (USD/y)

392,110,214.12

Total cost of manufacturing per ton of MG (USD/t)

2,289.21

Table C-8 Cost of manufacturing of Transesterification of TG-glycerolysis of FAME using

heterogeneous catalyst.

Component Cost/Unit Unit Cost (USD/year)
WCO (t/y) 224.00 787,110.00 176,312,640.00
MTOH (t/y) 600.00 51,762.00 31,057,200.00
MgO (ke) 1.50 6,095.52.00 9,143,280.00
K/CeO, (ke/y) 78.52 11,550.55 906,949.19
Labor (person) 14.00 24.600.00 344,400.00
LP steam (GJ/y) 1.9 41,836.88 79,490.07
Hot oil (GJ/y) 3.5 121,948.80 426,820.80
Cooling water (GJ/y) 0.212 1,685,571.28 357,341.11
Electricity (GJ/y) 16.9 22897 3,869.55
HP steam (GJ/y) 2.5 1,052,072.00 2,630,180.00
VERY (GJ/y) 8.9 1,116,544.80 9,937,248.72
FIRED (GJ/y) 4.25 55,104.00 234,192.00
Waste management (t/y) 36.00 206,035.30 7,417,270.80

FCI (USD)

10,393,001.15

Total cost of manufacturing (USD/y)

296,173,925.36

Total cost of manufacturing per ton of MG (USD/t)

1,160.70
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APPENDIX D

Sensitivity analysis

Sensitivity analysis (SA) was used to explore the effect of +40% variation in

WCO price, by-product price, MTOH price, FCI, water, and Utility cost on the profit

abilities of the four process schemes. The NPV can be obtained from Eq (3.8).

Table D-1 MG production cost of Transesterification of TG-glycerolysis of FAME.

MG production cost (USD)
Catalyst
Parameter | WCO price | BY-PRODUCT | MTOH price FClI Utility cost .
price
-40% -93.27 594.91 143.26 209.15 159.45 191.71
0% 213.50 213.50 213.50 213.50 213.50 213.50
40% 520.28 -167.90 283.75 217.86 267.56 235.29
Table D-2 MG production cost of Hydrolysis of TG-glycerolysis of FFA.
MG production cost (USD)
Catalyst
Parameter | WCO price BY-PRODUCT FCI Utility cost Water .
price
-40% 804.83 2379.76 1744.81 1648.98 1756.89 1624.64
0% 1757.68 1757.68 1757.68 1757.68 1757.68 1757.68
40% 2710.53 1135.59 1770.55 1866.38 1758.47 1890.36

Table D-3 MG production cost of Hydrolysis of TG-glycerolysis of FFA added glycerol.

MG production cost (USD)
Catalyst
Parameter | WCO price BY-PRODUCT FCI Utility cost Water
price
-40% 212.22 1346.88 711.65 657.29 718.24 648.05
0% 718.66 718.66 718.66 718.66 718.66 718.66
40% 1225.10 90.45 725.68 780.04 719.08 789.28
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Table D-4 MG production cost of Transesterification of TG-glycerolysis of FAME using
heterogeneous catalyst.

MG production cost (USD)

Catalyst
Parameter | WCO price BY-PRODUCT MTOH price FCl Utility cost .
price
-40% -95.69 610.83 184.37 241.32 217.90 224.87
0% 244.26 244.26 244.26 244.26 244.26 244.26
40% 584.21 -122.32 304.13 247.18 270.61 263.63
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