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Abstract

Systemic lupus erthematosus (SLE) is a prototype of autoimmune disease
characterized by tissue deposition of autoantibody immune complex formation.
However, etiology of disease remains unclarified. Defects of T lymphocytes lead to loss
of immunological tolerance and support autoantibody production suggested that they
may consistently have a central role in pathogenesis of SLE. Notch signaling is an
evolutionarily conserved pathway responsible for thymocyte development, activation,
proliferation, differentiation and T cell functions. Several evidences suggest Notch
signaling involvement in autoimmune disorders. The aim of this study was to investigate
the correlation of Notch1 receptor expression in T lymphocytes with disease
progression. Twenty-two Thai SLE patients and eleven healthy controls were recruited
for the study. Notch1 expression in PHA-stimulated T lymphocytes of SLE patients that
indicated significantly defective regulation of Notch? in activated T lymphocytes of SLE
patients with active stage (p=0.025) while stimulated T lymphocytes of SLE patients with
inactive stage were indifferent expression of Notch1 compared with healthy controls that
quantified by real-time RT-PCR. It was confirmed by conventional RT-PCR that showed
deceleration of Notch1 expression in SLE (p=0.015). As well as Notch1 protein
expression, it was downregulated in active SLE compared to controls and inactive SLE
(p=0.001 and 0.037, respectively). However, Hes1 that was target of Notch signaling did
not reduce expression in SLE T lymphocytes. Moreover, proliferation capacity in SLE
patients did not defect. These results showed. converse correlation of Notch1
expression with severity of SLE. The data reveal the defective Notch1 in T cells that is

possibly uncovered new factor of pathogenesis in SLE.
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APC
APS
ARA
BAFF
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BSA
°C
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CMV
Cox-2
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cpm

CSL
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DNA
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Introduction

Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized
by a wide spectrum of clinical manifestations. It is prominently characterized by
abundant production of autoantibodies to autoantigens and deposition of immune
complex in various tissues such as kidney, central nervous system and skin (1).
Because of the nature of autoantibody production in this disease, hyperactivation of B
lymphocytes are considered to play a central role in disease onset (2). In addition to B
lymphocytes, evidences suggested the involvement of T lymphocytes in pathogenic
events leading to flare up of the clinical conditions have been reported (3). Cytokines
derived from T helper T lymphocytes have been implied in driving affinity maturation of
immunoglobulin presentin high levels of serum in SLE patients (4). Furthermore, defects
in signaling molecules of TCR complex and co-stimulatory molecules have been
reported in SLE (5). Although still controversial, the abnormalities in regulatory T cells
with essential immune regulatory functions have also been reported in SLE (6-8).
Therefore, T lymphocytes are considered to play an important role in etiology of SLE and
knowledge on the defects of T lymphocytes may lead to a novel therapeutic intervention
of autoimmune disorders, including SLE (5).

Notch signaling is an evolutionarily well conserved signaling pathway. It was first
discovered and studied in Drosophila melanogaster as a neurogenic gene involved in
cell fate decision during neuronal development (9). Extensive studies have uncovered
and broadened its role in regulating differentiation, proliferation and apoptosis in wide
spectrum of tissues, including cells_in hematopoiesis. Notch signaling is initiated by
interaction between Notch receptor and ligand on cell surface, leading to cleavage of
Notch receptor by proteolytic enzymes and releasing an intracellular Notch from the cell
surface (10). As the two nuclear localizing motifs it contains suggest, once activated,
intracellular Notch translocates to nucleus and forms a transcriptional activator complex
with a DNA-binding protein CSL. After recruitment of multiple transcriptional activators
such as p300 and MAML, the complex drives expression of various target genes such

as helix-loop-helix motif containing transcriptional repressor Hes7. Mammals have four
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Notch receptors, i.e. Notch1-4, and five Notch ligands, i.e. jagged1-2, delta-like 1,3 and
4,

During development and differentiation of T lymphocytes, Notch signaling plays
an essential role in governing T/B lineage decision, cell proliferation during Y-selection,
influencing positive and negative selection and CD4/CD8 lineage choices (10). Notch
signaling also regulates development and functions of T lymphocytes in the periphery
during Th1/Th2 differentiation, and suppressive phase of regulatory T cells (11). These
latter roles of Notch signaling remain controversial as conflicting evidences were
reported. Notch signaling is shown to directly regulate expression of /L-4 during
differentiation of Th2, while it is shown to regulate T-bet expression and IFN-Y
production during Th1 development (12-14). As for its role relevant to regulatory T cells,
Notch has been implied in development of natural occurring regulatory T cells as
overexpression of activated form of Notch3 enhanced generation of regulatory T cell
development (15). In addition, overexpression of Notch ligands in APC led to
development of antigen-specific regulatory T cell and Notch/Hes axis is reported be
essential for suppressive functions of TGF-B+ regulatory T cells (16, 17).

Defects in Notch signaling have been linked to several models of autoimmune
disorders. Decreased Notch signaling using pharmacological approach protected

animals from experimental autoimmune encephalomyelitis through downregulation of T-

bet expression (14). Partial loss of presenilins, components of enzyme Y-secretase
which responsible for Notch receptor processing upon ligand engagement, resulted in
severe autoimmune diseasen phenotypes (18). In addition, presenilin2 is differentially
expressed in human SLE T lymphocytes (19). In this study, we investigated the
expression of Notch1 and one of its target genes, Hes1, in in vitro activated T
lymphocytes from SLE patients. Upregulation of Notch1 was significantly decreased in

active SLE patients, suggesting a role it plays during progression of SLE.
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Methods

1. Patients and controls

Twenty-two patients with SLE, according to American College of Rheumatology
classification criteria, were included in this study. According to the MEX-SLEDAI index,
twelve of these patients were classified as active SLE (SLEDAI<3) and ten patients were
in an inactive stage (SLEDAI<3). Inactive SLE patients received low doses of
prednisolone at < 10 milligrams per day within at least one month and patients with
active SLE received low to intermediate doses of corticosteroids (2.5-25 milligrams of
prednisolone with or without cellcept or imuran). Twenty-one of SLE patients were
females and ages of all patients were in the range of 16 to 41 years old. Sex and age-
matched 11 healthy volunteers were included as controls. This study has been
approved by the Ethics Committee for Human Research of the Faculty of Medicine,
Chulalongkorn University, and written informed consents were obtained from all
subjects.(20)
2. Cells and cell cultures

Peripheral blood mononuclear cells (PBMC) were isolated using Ficoll-Hypaque
reagent (Sigma, St. Louis, MO). T lymphocytes were purified using positive selection
strategy by magnetic beads (Miltenyi Biotech). Cells were cultured in RPMI1640 medium
supplemented with 10% fetal bovine serum (Hyclone, Logan, UT) and penicillin and
streptomycin. For stimulation experiments, cells were stimulated with either PHA (10
pg/ul) or plate bound anti-humanCD3 (clone UCHT1; 2.5ug/pl) for 72 hrs at 37°C in 5%
CO, condition.
3. Quantitative real time RT-PCR and conventional RT-PCR

A quantitative real time RT-PCR assay was developed for detection and
quantification of Nofch1 and Hes-1 transcripts using f-actin as endogenous control
using total RNA isolated from cells treated as indicated using Trizol reagent (Invitrogen
Life Technologies). Primers used in this study are as followed: Notch1 forward 5’
CAGCCT GCACAACCAGACAGA3, Notch1 reverse 5TGAGTTGATGAGGTCCTCC
AG3’, Hes1 forward 5 ACCAACTGGGACGACATGGA GAA3', Hes1 reverse 5 GTG
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GTGGTGAAGCTGTA GCC 3, B-actin forward 5° ACCAACTGGGACGACATGGAGAA 3,
B-actin reverse 5 GTGGTGGTGAAGCTGTA GCC 3. PCR amplification was performed
with 2x QuantiTect SYBR Green PCR Master Mix with 0.5 uM primers, 16 ng cDNA and
nuclease-free water according to the manufacturer’'s protocol (Qiagen). The PCR
conditions are as follows: 95°C for 15 min, 95°C for 15 sec, 55°C (Notcht) or 57°C

(Hes-1) for 30 sec and 60°C for 30 sec, followed by repeating of 40 cycles. Levels of
mRNA were measured by a Light Cycler (Roche Molecular Biochemicals, Indianapolis,
IN). Levels of mMRNA were expressed as threshold cycle (C;) and used comparative C,
method for analysis. For relative quantification, expressions of Noich? and Hes-1 as
target genes were normalized by expression of f-actin relative to a calibrator. The

AN
amount of target was given by 2 AL

Expressions of Noich1 and Hes1 were confirmed by conventional RT-PCR. The
PCR conditions are as follows: hot start 94°C for 5 min, followed by 30 cycles of 94°C
for 30 sec, 55°C (for Notcht gene) or 60°C (for GAPDH) for 30 seconds, 72°C for 30

sec and final extension at 72°C for 10 min. Amplification was performed in Perkin
Elmer/GeneAmp PCR system 2400 (Perkin Elmer). The PCR products were analyzed in
1.5 % Tris-acetate agarose gel.
4. Cell proliferation assay

Isolated T lymphocytes were stimulated with PHA for 72 hrs at 37°C in 5% CO,
condition. Cells-were pulsed with 1. pCi/ml. of 3H—methyl—thymidine (3H-TdR) during the
last 6 hrs of incubation. After incubation, cells were harvested and 3H-TdR incorporation
were measured- with a scintillation counter (Packard Instruments, Downers Grove, IL).
5. Western blot

Cells treated as indicated were harvested and cell lysates were prepared as
described previously (13). Amounts of proteins were measured using BCA protein assay
kit (Pierce; Rockford, IL). Cell lysates (30 pg) were separated on 8% sodium dodecyl
sulfate polyacrylamide gel electrophoresis using Protein Il system (Bio-Rad). After gel
separation, proteins were transferred onto PVDF membrane (Amersham Biosciences)

and blocked in PBS containing 3% nonfat dry milk and 0.05% Tween 20. Blots were
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probed with rabbit anti-Notch1 Ab at 1:1000 dilution, rabbit anti-cleaved Notch1 Ab at
1:1000 dilution or anti-Bactin mAb at 1:5000 dilution, followed by washing and probing
with HRP-conjugated donkey anti-rabbit IgG Ab or sheep anti-mouse IgG Ab at 1:4000
dilution. After washing, signals were detected using ECL Western blotting analysis
system (Amersham Biosciences).
6. Flow Cytometric Analysis

Purified T lymphocytes stimulated with PHA as describe above were harvested.
Cells were stained with cocktail of FITC conjugated anti-CD3 Ab (clone S4.1), PE
conjugated anti-CD4 Ab (clone S§3.5), PE-Cy5.5 conjugated anti-CD8 Ab (clone 3B5)
and APC conjugated anti-CD25 Ab (clone CD25-3G10) (Caltag, Burlingame, CA) for 20
minutes at room temperature. After washing, cells were fixed with 1% paraformaldehyde
in PBS followed by analyzing on a FACSCalibur flow cytometer using Cellquest software
(Becton Dickinson).
7. Statistical Analysis

Mean + SD of independent experiments were analyzed. Intergroup comparisons
in all experiments were analyzed using independent t test of SPSS software (version

11.5). A p value of <0.05 was considered statistical significance.

Results

Notch1 has been shown to be upregulated in T lymphocytes upon stimulation in
vitro (13). To investigate the expression of Notch1in T lymphocytes of SLE patients upon
activation in vitro, we stimulated purified T lymphocytes using mitogenic stimulus PHA
for 72 hr, and the level of expression was measured by quantitative real time RT-PCR.
As shown in Figure 1A, activated T lymphocytes from patients with active SLE showed
significant decrease in Nofch1 expression, compared to those from controls (p<0.025).
In contrast, T lymphocytes from inactive SLE did not showed significant decreased
Notch1 expression as compared to controls. When total cases of SLE were combined
regardless of disease stage, the level of Notch? is significantly lower in SLE patients

compared to those of controls (p<0.05). T lymphocytes from organ transplanted patients
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receiving similar drug regimen did not show significant decrease in Noich1 expression,
excluding the possibility that the observed defect is due to drugs received at the time of
experiments (data not shown). To verify the results obtained from real time RT-PCR, we
carried out conventional RT-PCR and found similar downregulation of Notch? in T
lymphocytes of active SLE patients (Figure 1B). Because post-transcriptional regulation
exists, we examined the expression pattern of protein Notch1 in activated lymphocytes.
Notch receptor exists on the cell surface as heterodimers of extracellular domain and
intracellular plus transmembrane domain (ICT). ICT is detectable by using antibodies
specific for intracellular domain of Notch with the molecular weight of approximately 110
kDa. Consistent with previous report, Notch1 protein was similarly upregulated upon
stimulation in controls and inactive SLE. Lymphocytes of active SLE patients, however,
failed to upregulate Notch1 (Figure 1C). When the level of expression was quantified,
lymphocytes from active SLE showed significant decrease Notch1 expression upon
stimulation, compared to those from controls (p=0.001) and inactive SLE patients (data
not shown). Interestingly, the level of Notch1 in cells cultured without stimuli showed
inverse relationship with the disease severity, where active SLE showed the lowest
expression, and healthy controls showed the highest expression.

Upregulation of Notch1 in T lymphocytes is shown to couple with proliferation
and upregulation of target gene of Notch signaling, Hes? (13, 21). Therefore, we
examined the proliferation of T lymphocytes and Hes? expression from SLE patients and
healthy contrals. ‘As “shown ‘in 'Figure 2A-B, T 'lymphocytes from controls and SLE
patients showed similar proliferative responses and Hes7 expression upon stimulation.
Finally, we determined cell populations based on cell surface markers, CD4, CD8 and
CD25 after stimulation. T lymphocytes from SLE patients showed decreased CD4+
population and increased CD8+ population profiles, as compared to healthy controls
(Figure 2C). This result is consistent with the previous report showing the abnormalities
of CD4+ and CD8+ population in active SLE patients (22). Therefore, defects in Notch1
upregulation in T lymphocytes from SLE patients did not affect proliferation and Hes?

expression.
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Figure 1. Decreased Notch1 expression in activated T lymphocytes from SLE patients.

A. Purified PHA-stimulated T lymphocytes from healthy controls, inactive SLE and
active SLE patients were subjected to real time RT-PCR analysis for expression
of Nocth1 and B-actin as described in Methods. The results shown are relative
expression of Notch1 normatized to B-actin. (*p<0.025, **p<0.05).

B. Representative conventional RT-PCR of Notch1 and 3-actin from PHA-stimulated
T lymphocytes.

C. PBMC from SLE patients or healthy controls were stimulated with PHA for 72 h
and cell lysates were analyzed for Notch1 expression by Western blot. B-actin

was used as loading control. Representative Western blot is shown.



18

80000

70000 -

60000 -
50000 + ‘V

40000 +

30000 +
20000 -

3H-Thymidine uptake (cpm)

10000 -

normal active SLE inactive SLE

P=0.09

1 4 - | L]

relative Hes-1 mRNA expression
w

. . I A i

normal total SLE active SLE inactive SLE

C P=0.01

P=0.01
100% -
90% H
80% A
70% A
60% A
50% H
40% +
30% -
20%
10% -
0%

P=0.002

@ normal
m active SLE
O inactive SLE

cell population (%)

== |
+ + + + + +
CD4 CD4 CD25 CD8 CD8 CD25

Figure 2. Normal proliferation, HesT expression and T lymphocyte population profile in
activated T lymphocytes from SLE patients.
A. Purified T lymphocytes from healthy controls or SLE patients were stimulated for
72 hr before subjecting to TdR incorporation assay.as described in Methods.
The results shown are mean + SD of triplicate of all tested subjects.
B. Hes1 expression in activated T lymphocytes was analyzed using real time RT-
PCR as described in Methods.
C. Purified T lymphocytes were stimulated by PHA and subjected to cell surface
staining for FACS analysis. The results shown are summary of all individual lymphocytes

used in this study.
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Discussion

The rationale behind this study is that there are mounting evidences suggesting
crucial roles Notch signaling plays during T cell activation, its involvement in
autoimmune disorders and the central role of T cell driven hyperactivation of immune
responses in SLE. First, Notch signaling governs multiple choices during thymic
development (10). Therefore, anomalies in Notch signaling, by way of abnormal
expression of Notch receptors and ligands, are expected to influence ontogeny of T
lymphocytes. The link between anomalies in Notch signaling during T cell development
and autoimmune disorders, however, is still missing. Second, Notch signaling is
involved in helper T cell development, particularly Th1/Th2 lineage choice (11).
Conflicting evidences have been reported on this issue. While some studies suggested
that Notch signaling is favored Th2 development by directly regulating /L-4 expression
and conditional targeted deletion of a Notch-specific scaffold protein encoding gene,
MAML, resulted in compromised Th2-type immune response against helminthic infection
(23, 24). On the other hand, several studies suggested that Notch signaling regulates
Th1-type cytokine IFNY via direct regulation of Th1 master regulator, T-bet (13, 14, 25).
The reasons for these conflicting reports remained unresolved. SLE is generally
considered Th2-driven disorder from hyperactivation of B cells, but studies of cytokine
patterns in SLE patients could not be concluded decisively whether it is a Th1 or Th2
type immune response (26, 27). Third, Notch signaling is reported to be involved in
generation and suppressive functions of regulatory T cells (15, 17, 28). Recently, there is
a resurging interest in these regulatory-T cells in pathogenesis of autoimmune disorders,
including SLE. Multiple studies suggested defects in frequency of regulatory T cells and

their suppressive functions in SLE patients (6-8). Forth, differential expression of

presinilin2, one of the components of Notch receptor processing enzyme Y-secretase, is
reported, and partial loss of preseniln1 in the presenilin2 null background resulted in
systemic autoimmune phenotypes similar to human SLE (18, 19).

In this study, we investigated the expression of Nofch? in T lymphocytes of SLE

patients upon activation. Decrease in Notch1 upregulation correlated well with active
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stage of SLE. We also examined the consequence of this defect in proliferative capacity
and Hes1 expression and found no effect on both phenotypes. Therefore, it remains to
be determined whether defects in Notch1 upregulation in T lymphocytes upon in vitro
stimulation is relevant to onset of SLE. The normal expression of Hes7 in stimulated T
cells from SLE, despite the marked decrease in Notch1 expression, may be the result of
functional redundancy among Notch receptors. Notch1, 2 and 3 have been shown to
be upregulated in activated T lymphocytes (13, 21, 25). The expression of Notch2 and 3
in activated T lymphocytes in SLE patients remains to be determined.

From our observations and the reported roles Notch signaling plays in regulating
effector function of T lymphocyte, there are potential links that needs to be further
investigated. Notch signaling may regulate Th1/Th2 differentiation and skew cytokine
profiles to be pathogenic in SLE patients. Generation of regulatory T cells and its
suppressive function also involve Notch signaling that need to be further explored.
Interestingly, Notch1 is upregulated in antigen tolerized T lymphocytes upon activation,
while T cells from airway inflammation animal models failed to do so (17). This is
intriguing in light of the observation that regulatory function of regulatory T cells is
mediated through Notch1 and membrane form of TGF-B. Therefore, it may be that T
lymphocytes from active SLE escape regulatory mechanisms of regulatory T cells by
downregulating Notch1.

In conclusion, we provided evidence in this report that Notch1 upregulation in
stimulated T lymphocytes is significantly defective in<SLE patients. The results of this
defect in T cell functions remain to be determined. The uncovered link between Notch
signaling and SLE may lead-to a new therapeutic intervention for correcting T cell

functions in the future.
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Conclusion

The aim of this study was to determine Notch?1 expression in stimulated T
lymphocytes of SLE patients that indicated significantly defective regulation of Notch7 in
activated T lymphocytes of SLE patients with active stage while stimulated T
lymphocytes of SLE patients with inactive stage were indifferent expression of Notch1
compared with healthy controls. Interestingly, stable inactive SLE was showed mRNA
Notch1 expression similar to healthy controls while unstable inactive SLE was
significantly decelerated compare to healthy controls and stable inactive SLE. That not
only showed conversely correlation of Notch1 expression with severity of SLE but also
Notch1 expression might be a new marker to predict stage of SLE and the disease
progression. This finding might be a clue of role in Notch1 signaling for T, 1/T 2
development and suppressive function of Treg cells in SLE that need to further
discovery.

Although at the present several reports indicated that Notch signaling plays an
important role in periphery, most of these functions are still inconclusive and
controversial. Further investigating the potential roles of Notch pathway in lymphocytes
are necessary. These insights may yield novel diagnostic and therapeutic application for

SLE.
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Introduction

DNA methylation is a postsynthesis DNA modification, which in eukaryotes
occurs at the 5 position of the cytosine ring in the context of CpG dinucleotides. There
are regions of the genome termed CpG islands which are rich of CpG pairs. Most of
CpG islands overlap the 5 end of gene regions, including promoter and first exon
sequences. In general, the promoters of active genes and tissue-specific genes are
typically hypomethylated, while inactive genes are silenced by methylation. The
process of DNA methylation is carried out by DNA methyltransferase (Dnmt1, Dnmt2
and Dnmt3) (1).

Several studies on the relationship between DNA methylation and SLE have
been reported by Richardson and coworkers. They reported that T cells of active SLE
patients were globally hypomethylated DNA and associated with decrease of Dnmt1
MRNA levels when compared with normal T cells (2, 3). Additional evidence of the role
of aberrant methylation in the development of SLE comes from studies with DNA
demethylating drugs. Treatment CD4+ T cells with the DNA methylation inhibitors (5-
azacytidine, procainamide or hydralazine) became autoreactive. The CD4+ T cell
autoreactivity was found to be due in part to an overexpresion of the adhesion molecule
lymphocyte function-associated antigen 1 (LFA-1) (4). It has been also reported that the
increase expression of perforin and CD70 of methylation inhibitors treated- CD4+ T cells
contributed the macrophage killing and B cell IgG production, respectively (5, 6). The
overexpression of LFA-1, perforin and CD70 of CD4+ T cells related with demethylation
of the specific sequence in promoter, as observed in SLE patients (5-8). Furthermore, in
vivo study showed that adoptive transfers of 5-azacytidine or procainamide-treated
CD4+ T cells to syngeneic recipient ‘“mice caused a lupus-like disease (9, 10).
Therefore, CD4+ T cell hypomethylation- may contribute the development of SLE.
However, genes that are affected is unknown.

The fundamental lesion in autoimmune disease, including SLE, is selective loss
of tolerance and self/non-self recognition and the development of autoantibodies (11,
12). In normal immune system, apoptosis or programmed cell death is critical for
lymphocyte development and homeostasis. Potentially autoreactive T and B cells

during development and after completion of an immune response are removed by
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apoptosis (13). Impairment of death pathways lead to the prolonged survival of
pathogenic lymphocytes. This may be one disease mechanism that contributes to the
susceptibility to SLE. This hypothesis was supported by observation in murine lupus
models. MRL/Ipr and Gld/gld mice are lupus animal model that have defective Fas
receptor and Fas ligand (FaslL), respectively. Defective Fas-mediated apoptosis in
these mice result in massive lymphoproliferation and the development of severe lupus-
like disease with immune glomerulonephritis (14, 15). However, mutation in the genes
encoding Fas and FasL are rare in SLE patients, suggests that these mutations are an
uncommon cause of the disease (16, 17). Defects other than mutations in Fas/FasL may
play a role in maintaining autoreactive cells in SLE. In the study gene expression of SLE
CD4+ T cell under anergy and activation induced cell death (AICD) inducing condition
by microarray, activated CD4+ T cells of SLE patients resisted anergy and apoptosis by
upregulation of cyclooxygenase (cox) 2 mRNA (18). Furthermore, the importance of
COX-2 mediated resistance to activation induced cell death in lupus T cells was
confirmed by studies with COX-2 inhibitors and COX-2 deficient mice (18). Interestingly,
PTGS2 gene, which encodes COX-2, is located in chromosome 1 region for lupus
susceptibility in mice and humans (19, 20). The factors which control expression of
PTGS2 gene in CD4+ T cells of SLE patients are interesting. The association of DNA
methylation in PTGS2 gene with gene expression in cancer cells have been reported
(21, 22). Therefore, aberrant methylation of PTGS2 gene in SLE CD4+ T cell may
contribute the increasing expression of COX-2 that involve in resistance to AICD.

In this study, we hypothesize that variation of DNA methylation status in PTGS2

gene may lead to different gene expression and contribute in development of SLE.
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Objective
To study DNA methylation status of PTGS2 gene in CD4+ T cells, CD8+ T cells

and B cells compare between normal controls and SLE patients and/or disease activity.

Literature review

Prostaglandin-endoperoxide synthase (PTGS) or COX is a key regulatory enzyme
involved in prostaglandin biosynthesis, the conversion of arachidonic acid to
prostaglandin.  Two major isoforms of COX are COX1 and COX2 (23). COX1 is
expressed constitutively in- most cell types for cellular housekeeping functions, whereas
COX-2 is associated with biologic events such as injury, inflammation, and proliferation
and is mainly expressed in macrophages, monocytes, fibroblasts and endothelial cells
(24). In the study gene expression of SLE CD4+ T cell under anergy and AICD inducing
condition by microarray, activated CD4+ T cells of SLE patients resisted anergy and
apoptosis by upregulation of COX2 mRNA (18). Furthermore, the importance of COX-2
mediated resistance to activation induced cell death in lupus T cells was confirmed by
studies with COX-2 inhibitors and COX-2 deficient mice (18). Interestingly, PTGS2 gene,
which encodes COX-2, is located in chromosome 1 region for lupus susceptibility in
mice and humans (19, 20). The factors-which control-expression of PTGS2 gene in
CD4+ T cells of SLE patients are interesting. Because, T cells hypomethylation was
found in SLE patients and adoptive transfers of methylation inhibitors treated- CD4+ T
cells in to syngeneic recipient mice caused a lupus-like disease (2, 9, 10). Therefore,
aberrant methylation in SLE CD4+ T cell may contribute ‘the increasing expression of
COX-2 that .involve in. resistance..to-AlCD. . Furthermore, the associations of DNA
methylation of PTGS2 gene and gene expression in ‘cancer cells have been reported
(21, 22). In this study, we hypothesize that variation of DNA methylation status in
PTGS2 gene may lead to different gene expression and contribute in development of

SLE.
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Research methodology

Normal and SLE patients

Twelve Thai patients with SLE attending at King Chulalongkorn Memorial hospital,
who fulfilled at least 4 of the American College of Rheumatology (ACR) revised criteria
for SLE, were included in this study. Sex matched healthy volunteers were recruited as
control group. The ethics committee of the faculty of Medicine, Chulalongkorn
University, Bangkok, Thailand approved the study and the subjects gave their informed

consent. Characteristics of SLE patients was shown in table 1.

Sample collection and Cell isolation

Peripheral blood mononuclear cell (PBMC) of SLE patients and healthy donors were
isolated from heparinized blood by using Ficoll-Hypaque desity gradient centrifugation.
CD4+ T cells, CD8+ T cells and B cells are isolated by specific immunomagnetic beads

(Dynal Biotech ASA, Oslo, Norway) (Fig. 1).

DNA methylation study

DNA methylation in the CpG island at 5 region of COX2 was detected by
Combined Bisulfite Restriction Analysis (COBRA) method as described previously (22).
Genomic DNA was extracted from isolated-cells and cell lines (Hela, Daudi and Jurkat
cell). Bisulfite treatment of DNA was performed with the EZ DNA Methylation-Gold ™ Kit
(Zymo Research, Orange, CA, USA), according to-the manufacturer's instructions.
Bisulfite treated DNA.was amplified by specific primers described by Toyota and
colleagues (22) : COX2F, 5-GATTTGTAGTGAGYGTTAGGAGT-3' ;= Cox2R, 5'-
RCCAAATACTCACCTATATAACTAAA-3. - -The 187 bp-amplicons were digested by
restriction enzymes Tail (MBI Fermentas, Flamborough, Ontario, Canada) at 65°C for 16
h and were then electrophoresed in 8% nondenaturing polyacrylamide gel. The gel
was analyzed by staining with syber green and calculating the percent methylation upon
visualization on a phosphor imager using the Image Quant software (Molecular

Dynamics, Pharmacia Amersham). The cox2 methylation level was calculated as a
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percentage of intensity of the methylated sequence divided by the sum of methylated

and nonmethylated amplicons.

20 ml heparinized blood from
SLE patients or healthy donors

;

PBMC

Dynabeads CD19 Isolation

Untouched cells B cell
(Bead-bound cell)

'

DNA extraction

Dynal T Cell Negative Isolation

T cell Bead-bound cells
(Untouched cell)

Dynabeads CD4 Isolation

CD4+ T cell CD4- T cell
(bead-bound cell) (Untouched cell)
DNA extraction DNA extraction

Figure 1 Procedure for cell isolation
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Table 1 Characteristics of SLE patients who were analyzed in the methylation study

Patient Age/Gender Clinical activity Medications
1 16/female inactive Prednisolone/Imuran
2 35/female inactive Prednisolone/ Cellcept
3 23/female inactive Prednisolone
4 36/female inactive Prednisolone
5 42/female inactive Prednisolone
6 37/female inactive Prednisolone
7 26/female active Prednisolone/ Cellcept
8 33/female active Prednisolone/ Endoxan
9 33/female active Imuran
10 30/female active Prednisolone/ Cellcept
11 24/female active Prednisolone
12 45/female active Prednisolone
— | 4— 187 bp
l o w— | <— 160 bp
— | — 114 bp
I I I
= | 4— 46 bp
27 bp 46 bp 114 bp
= 4— 27 bp

Figure 2.-The expected PCR products.for COBRA analysis. -Methylated-amplicons are
160 and 114 bp. COX2 methylation level was calculated as a percentage of intensity of

114 bp fragment divided by the sum of 187, 160 and 114 bp fragments.
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Result

In this study, we examined the methylation status of CpG site within CpG island at
5’ region of COX2 gene in T and B cell from 6 healthy and 12 SLE patients. This CpG,
which is associated with loss of expression, was detected by COBRA assay (22). First,
to investigate whether methylaton status of COX2 gene differs in Jurkat (human T cell
lymphoblast-like cell line), Hela (human epithelial carcinoma cell line) and Daudi (human
Burkitt's lymphoma cell line). Methylation was detected in only Daudi, so this cell line
was used as positive control (Figure 3). Second, to investigate whether methylaton
status of COX2 gene differs in T and B cell which were isolated from healthy and SLE
patients. We found that CD3+CD4+ T cell, CD3+CD4- T cell and B cell of healthy and
SLE patients are demethylated in the CpG site at 5° CpG island of COX2 gene (Figure
4).

<«— 187bp
<— 160 bp

<— 114 bp

Figure 3 Methylation status of the COX2 5’ CpG island in cell lines. M is 100-bp DNA

size marker. J, H and D are Jurkat, Hela and Daudi, respectively.
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Figure 4 The representative of Methylation status of the COX2 in Healthy and SLE
patients. M is 100-bp DNA size marker.

Line 1, 2, and 3 are B, CD3+CD4+ T, CD3+CD4- T cell of healthy control 1.
Line 4, 5, and 6 are B, CD3+CD4+ T, CD3+CD4- T cell of healthy control 2.
Line 7, 8, and 9 are B, CD3+CD4+ T, CD3+CD4- T cell of inactive SLE 1.
Line 10, 11, and 13 are B, CD3+CD4+ T, CD3+CD4- T cell of inactive SLE 2.
Line 14, 15, and 16 are B, CD3+CD4+ T, CD3+CD4- T cell of inactive SLE 3.
Line 17, 18, and 19 are B, CD3+CD4+ T, CD3+CD4- T cell of active SLE 1.
Line 20, 21, and 22 are B, CD3+CD4+ T, CD3+CD4- T cell of active SLE 2.
Line 23, 24, and 25 are B, CD3+CD4+ T, CD3+CD4- T cell of active SLE 3.
Line 12 is Daudi.
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