Abstract:
หาจุดแบ่งที่เหมาะสมที่สุดสำหรับการพยากรณ์การจำแนกข้อมูลไม่จัดกลุ่มในตัวแบบการถดถอยโลจิสติกแบบ 2 ประเภท ปัจจัยที่สนใจศึกษาในครั้งนี้คือ สัดส่วนของความล้มเหลวของลักษณะที่สนใจศึกษา (a) เท่ากับ 0.1, 0.5 และ 0.9 ระดับความสัมพันธ์ระหว่างตัวแปรอิสระ (M) เท่ากับ 0, 0.33, 0.67 และ 0.99 ขนาดตัวอย่าง (n) แบ่งเป็น 3 ระดับ คือเล็ก (n = 20, 40) ปานกลาง (n = 60, 80) และใหญ่ (n=100, 120) และจำนวนตัวแปรอิสระ (p) แบ่งเป็น 3 ระดับ คือระดับน้อย (p = 1, 2) ปานกลาง (p = 3, 4) และ มาก (p = 5, 6) ข้อมูลทัง้หมดนี้ใช้การจำลองโดยเทคนิคมอนติคาร์โล ด้วยโปรแกรม R การหาจุดแบ่งใช้ทฤษฎีของ Hadjicostas P. (2006) ผลการวิจัยสรุปได้ดังนี้
กรณีสัดส่วนของความล้มเหลวของลักษณะที่สนใจศึกษา เปลี่ยนแปลง แต่ปัจจัยอื่นๆ คงที่ พบว่า ที่สัดส่วนของความล้มเหลวของลักษณะที่สนใจศึกษามีค่าเท่ากับ 0.5 ค่าจุดแบ่งมีค่า ลู่เข้าสู่ 0.5 แต่ที่ค่าอื่นๆ ค่าจุดแบ่งมีค่าต่ำกว่า 0.5 กรณีระดับความสัมพันธ์ระหว่างตัวแปรอิสระ เพิ่มขึ้น แต่ปัจจัยอื่นๆ คงที่ พบว่า ที่สัดส่วนของความล้มเหลวของลักษณะที่สนใจศึกษามีค่า เท่ากับ 0.5 ค่าจุดแบ่งมีแนวโน้มลดลงจาก 0.5 แต่ที่ค่าอื่นๆ ค่าจุดแบ่งจะมีค่าลดลง จนถึงระดับ ความสัมพันธ์ระหว่างตัวแปรอิสระเท่ากับ 0.67 และจะเพิ่มขึ้นเล็กน้อย กรณีขนาดตัวอย่างเพิ่มขึ้น แต่ปัจจัยอื่นๆ คงที่ พบว่า ที่จำนวนตัวแปรอิสระ อยู่ในระดับน้อย ค่าจุดแบ่งมีค่าลู่เข้าสู่ 0.5 แต่ที่จำนวนตัวแปรอิสระ อยู่ในระดับอื่นๆ ค่าจุดแบ่งมีค่าต่ากว่า 0.5 กรณีจำนวนตัวแปร อิสระเพิ่มขึ้น แต่ปัจจัยอื่นๆ คงที่ พบว่า ค่าจุดแบ่งที่สัดส่วนของความล้มเหลวของลักษณะที่สนใจศึกษา มีค่าเท่ากับ 0.1 และ 0.9 มีค่าลู่เข้าสู่ค่าจุดแบ่งที่สัดส่วนของความล้มเหลวของลักษณะที่สนใจศึกษา มีค่าเท่ากับ 0.5 ซึ่งมีค่าประมาณ 0.5 จากการประมาณค่าของจุดแบ่ง สำหรับสถานการณ์ทั้งหมด จากตัวแบบการถดถอยโลจิสติกแบบ 2 ประเภทที่มีผลอันตรกิริยา พบว่าค่าสัมประสิทธิ์การตัดสินใจ (R2) มีค่าสูง แสดงว่าสมการการถดถอยมีความเหมาะสมมาก สามารถใช้ประมาณค่าจุดแบ่งที่เหมาะสมที่สุดในสถานการณ์อื่นๆ ได้